
MeDICINE: Rapid Prototyping of Production-Ready
Network Services in Multi-PoP Environments

Manuel Peuster
Paderborn University

manuel.peuster@uni-paderborn.de

Holger Karl
Paderborn University

holger.karl@uni-paderborn.de

Steven van Rossem
Ghent University iMinds, INTEC
steven.vanrossem@intec.ugent.be

Abstract—Virtualized network services consisting of multiple
individual network functions are already today deployed across
multiple sites, so called multi-PoP (points of presence) environ-
ments. This allows to improve service performance by optimizing
its placement in the network. But prototyping and testing of
these complex distributed software systems becomes extremely
challenging. The reason is that not only the network service as
such has to be tested but also its integration with management
and orchestration systems. Existing solutions, like simulators,
basic network emulators, or local cloud testbeds, do not support
all aspects of these tasks.

To this end, we introduce MeDICINE, a novel NFV prototyping
platform that is able to execute production-ready network func-
tions, provided as software containers, in an emulated multi-PoP
environment. These network functions can be controlled by any
third-party management and orchestration system that connects
to our platform through standard interfaces. Based on this, a
developer can use our platform to prototype and test complex
network services in a realistic environment running on his laptop.

I. INTRODUCTION & MOTIVATION

The emerging trend of network function virtualiza-
tion (NFV) promises a new level of flexibility for the up-
coming 5th generation of networks. It turns network func-
tionality, previously implemented as proprietary hardware
boxes, into software artifacts that are executed in virtual-
ized environments. Multiple of these virtual network func-
tions (VNF) are then connected and create complex network
services (NS), which are controlled by a management and
orchestration (MANO) system [1] [2]. Such orchestrators do
not only manage the deployment of network services but also
automate operational management, e.g., service scaling.

Virtualized network services can be distributed in the net-
work and different functions of a service can be executed
in different points of presence (PoPs). These PoPs may be
full-fledged data centers but also smaller sites, like network
edge routers or base stations, which offer a limited amount of
compute resources to run arbitrary functions.

In such an environment, the creation of network services be-
comes a complex software development process that consists
of two main parts. First, the development of the service and its
functions as such. Second, the integration of the service with
a MANO system that manages the service during its lifecycle.
The second part involves the implementation and test of man-
agement interfaces but also the design, implementation, and
validation of service-specific management components, like

auto-scaling rules or placement strategies [1]. This complicates
the overall development process. To reduce this complexity,
extended tool support is required to reduce time-to-market,
save costs, and improve the quality of service.

A special problem in this process is the lack of supporting
tools to locally prototype or test complete network services
in end-to-end multi-PoP scenarios. These tools should allow
testing a network service as such, e.g., by sending generated
traffic through it, but also validating its interaction with a
MANO system, e.g., dynamic reconfiguration or placement
strategies. This is not possible with existing approaches which
either rely on local cloud testbeds that lack multi-PoP support,
simulations that only execute simplified versions of network
functions, or network emulation tools that do not offer inter-
faces to interact with MANO systems.

There are both simple and complex use cases for such
a development support tool which motivate our proposed
solution. These use cases can be divided into two categories.
First, use cases that check the functionality of the network
service as such (NF-UC); this can already be done with
existing emulation solutions but requires considerable manual
effort, e.g, for adapting the emulated services for production
environments. Second, use cases that check the interoperation
between network service and a MANO system (MANO-UC),
which can today only be done with complex cloud testbeds.
Examples for both categories are as follows.

a) NF-UC1 (Single VNF): A network service devel-
oper wants to deploy and test single VNFs in a local test
environment by sending some generated traffic through them.
Such VNFs should be executed as containers so that the same
container images can directly be deployed in a production
environment. During the test, a developer wants to interact
with the running VNFs to, e.g., change configurations or
monitor their behavior.

b) NF-UC2 (Complex services): A developer wants to
test entire complex services consisting of several chained
VNFs. A local test environment should be able to execute
such complex services so that end-to-end tests, e.g., sending
traffic through the service’s chain, can be performed.

c) MANO-UC1 (Service management): There is the
need to validate the service behavior in dynamic deployments
in which the service is modified at runtime by a MANO
system. To do so, a test environment needs to be able to
interface with existing MANO systems. An example is to978-1-5090-0933-6/16/$31.00 c© 2016 IEEE

Fig. 1: The MeDICINIE platform in the simplified ETSI NFV
reference architecture [3].

test reconfiguration mechanisms after adding additional VNF
instances to the service (scale-out). Such tests should be
performed in multi-PoP environments to also allow tests of
placement optimization strategies and service management
across multiple PoPs.

d) MANO-UC2 (Feedback-based autoscaling): A net-
work service developer wants to test custom autoscaling ap-
proaches. To support this, connected MANO systems have to
be able to collect feedback data, e.g., monitoring information,
from services executed in the test platform.

To cover the previously described use cases and over-
come the shortcomings of existing development support tools
(Sec. II), we introduce MeDICINE (Multi Datacenter servIce
ChaIN Emulator), a novel prototyping platform for network
services. Our platform is able to execute production-ready
network functions in realistic multi-PoP environments and
allows standard MANO systems to control the deployment,
like in a real-world system. Fig. 1 shows the scope of our
solution and its mapping to the ETSI NFV reference architec-
ture in which it emulates the network function virtualization
infrastructure (NFVI) and the virtualized infrastructure man-
ager (VIM).

The remainder of this paper is organized as follows. First,
we compare existing simulation, emulation, and testbed solu-
tions in Section II and describe our platform in Section III.
Section IV presents first experimental results and demonstrates
the platform. Section V concludes.

II. RELATED WORK

NFV development support is still a novel research direction
with a limited amount of existing solutions, most of them
focusing on SDN debugging rather than on prototyping of
complex network services [4]. Other approaches are based
on simulations to test and validate management solutions,
e.g., placement algorithms, but they only provide very limited
realism since the simulated network functions are only proxies
and not real implementations used in production [5] [6] [7].
VLSP [8] offers more realism but the tested network functions
are still limited to simple Java programs and not real NF
implementations.

Emulation tools, like Mininet, are able to execute any net-
work function implementation in its own virtualized network
namespace [9] [10] [11]. However, moving these network
functions into a production environments is still a time-
consuming task and these tools lack the possibility to emulate

PoPs or cloud sites, e.g., they have no functionality to stop and
remove hosts at runtime. The ESCAPE platform overcomes
some of these limitations by combining a MANO system with
multi-PoP support (including Mininet and OpenStack) but it
does not target development support or prototyping tasks. Its
main focus is on orchestration between non-emulated PoPs [2].

Real cloud testbeds, which might be installed on a single
physical machine, are typically not able to run services in
arbitrary network topologies [12]. And even if they do, they
come with considerable management overhead and only a
limited number of PoPs that can be used for tests [13].

TABLE I: Feature matrix of existing approaches

Si
m

ul
at

io
ns

V
L

SP
[8

]

M
in

in
et

[9
]

E
SC

A
PE

[2
]

D
ev

St
ac

k
[1

2]

C
lo

ud
te

st
be

ds

M
eD

IC
IN

E

production ready NFs - - o + + + +
multi PoP + + o o - o +
arbitrary topologies + + + o - - +
realistic NF performance - - o + o + o
explicit chaining support o o - + - o +

Fe
at

ur
e

MANO system integration o o - + + + +
run offline/local + + + o o - +
test/prototyping support + + + - o o +

+ : fully supported, o : partly supported, - : not supported

Table I presents an overview of features needed for NFV
development support and shows which of them are provided
by existing simulation, emulation, and testbed solutions. It
shows that all existing approaches lack some features and that
MeDICINE is the only solution that can execute production
ready NFs in an emulated multi-PoP environment.

III. MEDICINE PLATFORM

A. Background: Containernet

We base the implementation of MeDICINE on a tool
called Containernet [14] which was also developed by us. It
extends the Mininet emulation framework and allows us to
use standard Docker containers as compute instances within
the emulated network. An extension of Containernet to support
full-featured VMs (qemu) is left for future work. Containernet
allows adding and removing containers from the emulated net-
work at runtime, which is not possible in Mininet. This concept
allows us to use Containernet like cloud infrastructure in which
we can start and stop compute instances (in form of containers)
at any point in time. Another feature of Containernet is that it
allows to change resource limitations, e.g., CPU time available
for a single container, at runtime and not only once when a
container is started, like in normal Docker setups.

B. Overview and Workflow

To fulfill the previously defined use cases, MeDICINE
provides the following key features. First, it exploits Mininet’s
topology API to define arbitrarily complex multi-PoP envi-
ronments with realistic link properties, like delay, bandwidth

(a) General idea and workflow of the system. Example of a running emulation
environment with three PoPs, eight allocated compute instances executing VNFs,
and a service chain setup consisting of three chained VNFs distributed across two
PoPs through which generated traffic is sent from s to t.

(b) System architecture and components
with N active PoP endpoints offering con-
trol interfaces to an external MANO sys-
tem.

Fig. 2: The MeDICINE system

limitation, and loss rate. Second, it uses standard Docker con-
tainers to execute network functions, allowing a developer to
directly deploy the prototyped container images to production
PoPs after they have been tested locally. Third, it provides
cloud-like interface endpoints, e.g., an OpenStack Heat-like
interface, to control each emulated PoP in the platform. This
allows developers to connect their local prototyping environ-
ment to existing MANO tools.

Fig. 2a shows the general idea of MeDICINE and depicts
the high-level developer workflow. First, the service developer
defines a network service, consisting of function (VNFD) and
service (NSD) descriptors as well as Docker files or pre-built
images that contain the network functions to be tested (1).
The actual format of this network service and is descriptors
depends on the used MANO system that deploys these services
in our platform. Second, the developer defines a multi-PoP
topology on which he wants to test the service (2) and starts
the MeDICINE platform with this topology definition (3).
After the platform has been started, the developer connects the
MANO system of his choice to the emulated PoPs by using
a flexible endpoint API (4) described in Sec. III-E. Now, the
network service can be deployed on the platform by pushing it
to the MANO system (5) which starts each network function
as a Docker container in an emulated PoP, connects it to the
emulated network, and sets up its forwarding chain. Finally,
the service is deployed and runs inside our platform (6).

In this stage, a developer can directly interact with each
running container through Containernets’s interactive com-
mand line interface (CLI), e.g., to view log files, change
configurations, or run arbitrary commands, while the service
processes traffic generated by tools like iperf. Furthermore,
a developer and the MANO system can access arbitrary
monitoring data generated by the platform or the network
functions.

C. System Architecture

The system design of MeDICINE is highly customizable. It
offers plugin interfaces for most of its components, like API

endpoints, container resource limitation models, or topology
generators.

Fig. 2b shows the main components of our system and how
they interact with each other. The emulator core component
implements the emulation environment, e.g., the emulated
PoPs. It is the core of the system and interacts with the topol-
ogy API to load topology definitions. The flexible endpoint
API allows our system to be extended with different interfaces
that can be used by MANO systems to manage and orchestrate
emulated services (Sec. III-E). The resource management API
allows to connect resource limitation models that define how
much resources, like CPU time and memory, are available in
each PoP (Sec. III-G). Finally, we provide an easy-to-use CLI
that allows developers to interact with our platform.

D. Topology Definition

To test network services in realistic multi-PoP scenarios,
test topologies define available PoPs, their resources, as well
as the network and its properties between them. In contrast
to classical Mininet topologies, our MeDICINE topologies do
not describe single network hosts connected to the emulated
network but available PoPs. In the most simplified case,
such a PoP emulates just a single node, i.e., a router with
attached compute and storage facilities like a Blade server.
A more sophisticated node represents a small data center,
which comprises several servers and is internally connected
by a single SDN switch. More abstractly, an emulated PoP
can also be a complex data center whose internal connection
is simplified into a big-switch abstraction (as shown in Fig.
2a). For all these versions, we assume that the MANO system
has full control over whether a particular VNF is executed at
a particular PoP but does not care about internals of the PoPs.

A MeDICINE topology allows to add an arbitrary number of
SDN switches between PoPs (Fig. 2a, s1 and s2). These SDN
switches as well as any SDN switches within each PoP can
be either controlled by standard SDN controllers, by custom
controller implementations provided by the network service
developer, or by the MANO system itself. Thus, complex

network and forwarding setups with a high number of inter-
PoP switches can be emulated.

We based our topology API on Mininet’s Python API which
has the benefit that developers can use scripts to define or al-
gorithmically generate topologies. Listing 1 shows an example
topology script defining two PoPs that are interconnected by a
single switch. It shows how the PoPs are connected and how
the link setup is done (lines 1–8).

E. Flexible Endpoint API
After an emulation topology is defined, MANO systems

need a way to start and stop compute instances within the
emulated PoPs. To do so, we introduce the concept of flexible
API endpoints (Fig. 2b). Such an API endpoint is an interface
to a PoP that provides typical infrastructure-as-a-service (IaaS)
semantics to manage compute instances. Instead of fixing our
design to a single interface implementation, we provide an
abstract API and allow users of the platform to implement
their own endpoints on top of it. This has the benefit that
our platform can be integrated with any MANO system as
long as an API endpoint that provides the expected interfaces
is created. Examples for such endpoints are OpenStack Nova
or Heat-like interfaces, OpenVIM-like interfaces, or any other
open or proprietary interface to which a MANO system should
be connected.

These API endpoints are assigned to PoPs in the topology
scripts (Listing 1 lines 15–20). The default approach is adding
one endpoint to each PoP so that each emulated PoP provides
its own management endpoint (Fig. 2b). From the perspective
of the MANO system, this looks exactly like a real multi-
PoP environment offering a heterogenous set of management
interfaces towards the available PoPs.

F. Networking and Chain Management
To emulate a fully working network service, we need to

deploy its VNFs and set up the forwarding path between them,
as shown in the service chain of Fig. 2a. Since the emulated
PoPs consist of SDN switches, a service developer can have
full control over the forwarding paths of the service’s network
traffic. Setting up a chain where traffic is steered along a de-
fined path is now a matter of setting the correct forwarding en-
tries in the SDN switches with an SDN controller. To support
developers, we provide a simplified API that brings Service
Function Chaining (SFC) functionality into MeDICINE while
hiding the complexity of low-level SDN protocols. This API
allows to chain running containers by calling a single method,
i.e., setChain(vnf1, ... , vnfN). Our solution uses
VLAN tags as identifier to differentiate chains in multiple
emulated services, similar to ongoing research regarding the
use of Network Service Headers (NSH) [15]. An internal graph
representation of the topology and its attached containers is
kept to compute the forwarding chain with the fewest hops or
the smallest delay.

G. Resource Models
Even though cloud systems provide virtually infinite com-

pute resources to their customers, realistic scenarios, especially

1 # create two PoPs
2 p1 = net.addPoP("My PoP 1")
3 p2 = net.addPoP("My PoP 2")
4 # create an intermediate SDN switch
5 s1 = net.addSwitch("s1")
6 # connect PoPs: p1 <-> s1 <-> p2
7 net.addLink(p1, s1, delay="10ms")
8 net.addLink(p2, s1, delay="50ms", loss=2)
9 # init. and assign resource models for each PoP

10 r1 = ResModelA(max_cu=24, max_mu=80, max_su=90)
11 r1.assignPoP(p1)
12 r2 = ResModelB(max_cu=80, max_mu=120, max_su=280)
13 r2.assignPoP(p2)
14 # instantiate and start cloud interface for each PoP
15 api1 = HeatCloudApiEndpoint(port=8004)
16 api1.connectPoP(p1)
17 api1.start()
18 api2 = HeatCloudApiEndpoint(port=8005)
19 api2.connectPoP(p2)
20 api2.start()
21 # run the emulation
22 net.start()

Listing 1: Example MeDICINE topology with two PoPs
connected to Heat-like cloud endpoints and example resource
models.

with small PoPs, look different. Such PoPs offer limited
compute, memory, and storage resources which have to be
considered by a MANO system when placement and scaling
decisions are taken. To emulate such resource limitations,
MeDICINE offers the concept of flexible resource models
assigned to each PoP (Listing 1 lines 10–13). These models are
called whenever containers are allocated or released and they
compute CPU time, memory, and storage limits for each of
them. These models are also able to reject allocation requests,
indicating that there are no free resources left on a given
PoP. A generic API allows developers to easily create their
own resource models. For example, a telco operator that
deploys services in its own PoPs has more control about
available resources than a web service provider that buys
cloud resources from a third party, like Amazon. However,
MeDICINE can be used as a prototyping platform in both
cases. The telco operator might, e.g., use a resource model in
which resources are strictly reserved whereas the web service
provider uses a model in which the service’s performance is
influenced by other random 3rd party services. Models for
other operational metrics, like prizing models, can also be
implemented, e.g., increase prizes for resources if a PoP is
highly utilized.

To showcase how a MeDICINE resource model looks like,
we provide two example CPU limitation models that are
implemented in our prototype; memory and storage models
that use the same ideas are available as well. The goal of
the presented models is to limit the overall available CPU
capacity of each PoP in a way such that the utilization of
one PoP does not influence other PoPs. The presented models
use the notion of compute units (CU) to describe the relative
amount of CPU time allocated to a single container. E.g., a
container that requests 4 CUs will get twice as much CPU time

as a container requesting 2 CUs. Using this, relative resource
requirements can be described independently from absolute
available resources. Further, we define:

• Ecpu ∈ (0, 1] percentage of physical CPU time available
for emulation. For example, all containers together will
not use more than 60% of the physical CPU if Ecpu = 0.6.

• N ∈ N>0 number of PoPs in the emulated topology.
• mcp ∈ N>0: number of CUs available in PoP p.
• acp ∈ N: number of CUs allocated in PoP p.
• ncc ∈ N>0: number of CUs requested for a container c.
• Pc ∈ [0, 1] percentage of physical CPU time assigned to

container c.
Based on this, we define a CPU limitation function as

f : ncc × p → Pc and use it to introduce the following
example resource models.

1) Model A (Fixed Limit): Our first model assigns a fixed
amount of available CUs to each PoP in the system. If not
enough CUs are left in a PoP when a new container should
be started, the instantiation request is rejected. As a result a
PoP can never be over-utilized. Eq. 1 shows this model and
how it computes the CPU time (Pc) assigned to a container
that requests ncc CUs in PoP p.

fp(ncc) =

{
Ecpu∑N
i=1 mci

· ncc, if acp + ncc ≤ mcp

0 (reject), else
(1)

2) Model B (Cloud-like Over-Provisioning): Our second
model does not have fixed CU limits per PoP. Instead, it
allows CPU over-provisioning, which is a typical concept in
IaaS clouds. For example, OpenStack Nova sets its default
cpu allocation ratio property to 16 : 1 [16]. This results
in situations in which allocated compute instances get less
resources than initially requested. This means that a VNF
might slow down if another VNF is started in the same PoP.

To model this behavior, we scale the limits of all containers
within the same PoP by an over-provisioning factor defined
as the fraction of available and currently used CUs in a
PoP (Eq. 2). Further, we update the limits of all containers
of PoP p whenever a new container is added or removed from
p. As a result, the available CPU time for each container in an
over-utilized PoP p is reduced if more CUs than available are
used (acp > mcp). However, the limits of running containers
in other PoPs are not changed and thus our model creates a
realistic environment in which separated PoPs do not influence
each other.

fp(ncc) =
Ecpu∑N
i=1 mci

· mcp
max {mcp; acp}︸ ︷︷ ︸

over-prov. factor

·ncc (2)

This provides a playground for realistic placement tests,
e.g., an overloaded PoP might motivate a MANO system to
reassign its containers to other PoPs with better performance.
As a result, the previously over-utilized PoP is relieved and
the performance of containers it is hosting improves.

Implementation-wise, our system does not use Docker’s
default CPU share limitation API since it is not sufficient for
our use case. The first reason for this is that it only limits
the CPU share if two or more containers want to utilize the
entire CPU at the same time. It does not limit the CPU time
if only one container is utilized and the competing ones are
idle. Instead, we use the CPU bandwidth control functionalities
of Linux’s completely fair scheduler (CFS) [17]. The second
reason for our custom implementation is that Docker’s default
API does only allow to set limitations when a container
is started but not to update limits at runtime. We bypass
these shortcomings by directly manipulating the cgroup system
properties.

IV. EVALUATION

We did a couple of experiments to prove the overall concept,
validate the behavior of the introduced resource models, and to
showcase the system. The experiments use topologies with one
and two PoPs in which Docker containers that run a workload
generator (stress) are started. Thus, every container always
tries to fully utilize the CPU. The overall available CPU time
for containers is set to Ecpu = 0.5 and the experiments are
executed on a machine with Intel(R) Core(TM) i5-4690 CPU
@ 3.50GHz and 16GB memory.

The goal of our first experiment is to validate that the
measured CPU usage of containers in a single PoP is aligned
to the theoretical CPU usage computed by our models. During
the experiment a new container (requesting 1CU) is allocated
every 20 s during the experiment until 8 containers are re-
quested. After additional 20 s, these containers are terminated
one by one. The maximum limit of available CUs in the
PoP is set to 4CUs so that some of the requests are rejected
(model A) or the PoP is over-utilized (model B). Fig. 3 shows
the aggregated CPU usage for the entire PoP as well as the
average CPU usage for a single container, both measured with
Docker’s status API that returns detailed CPU time statistics.
Additionally, the expected CPU utilization calculated by our
models is plotted. The results show that the measured CPU
utilization for all containers in the PoP is close to the limits
computed by the model. The bottom graph in Fig. 3a shows
how model A rejects requests after 4 containers are allocated.
Model B, in contrast, accepts all 8 containers since it allows
over-provisioning (Fig. 3b). It also shows how the available
avg. CPU time for containers is reduced when the PoP is
over-utilized. An interesting observation in Fig. 3b are the
spikes in the measured CPU usage. We found that they happen
during the reconfiguration of CPU limits of already running
containers which is needed by model B and happens whenever
a container is added or removed from the system. Investigating
this issue and quantifying its effects will be part of future work.

The second experiment shows how the presented resource
models provide resource isolation between PoPs. It emulates
a topology with two PoPs, each with a limit of 2CUs. During
the experiment, the avg. physical CPU time available for a
single container is measured for different numbers of stress
containers running in PoP1. The number of stress containers

0

20

40

60

80

100
p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

ECPU

model

aggregate CPU

avg. per container CPU

0 50 100 150 200 250 300
experiment time [s]

0
4n

o
. containers

(a) Model A

0

20

40

60

80

100

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

0 50 100 150 200 250 300
experiment time [s]

0
4
8

n
o
.

(b) Model B

Fig. 3: Modeled vs. measured container CPU usage

running in PoP2 is fixed to two containers. With this, we
can observe how the changing number of containers in PoP1
influences the performance of containers in PoP2. Fig. 4
shows the results for different resource models. Fig. 4a shows
what happens when no resource limitation model is used. All
containers compete for the entire physical CPU time and the
performance of containers in PoP2 is reduced when more
containers are added to PoP1. The same happens in Fig. 4b
with the difference that it uses a common resource model for
both PoPs. Thus, the containers do not influence each other
until the maximum of two containers is running in PoP1.
Fig. 4c shows the behavior of model A which does not allow
over-provisioning and rejects all requests when two containers
are already running in a PoP. The behavior of model B is
shown in Fig. 4d. The figure validates that the model enables
resource isolation between PoPs even when PoP1 is over-
utilized and the CPU time for each of its containers is reduced.
Fig. 4d shows that there are still some minimal influences to
the performance of PoP2 when containers are added to PoP1,
i.e., PoP2’s performance is reduced by around 2% when PoP1
is over-utilized by a factor of 16×.

0 5 10 15 20 25 30
no. container in PoP1

0

20

40

60

80

100

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

PoP1: container CPU

PoP2: container CPU

(a) No Resource Model

0 5 10 15 20 25 30
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (b) No isolation

0 5
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (c) Model A

0 5 10 15 20 25 30
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (d) Model B

Fig. 4: Cross-PoP resource isolation using different resource
models

V. CONCLUSION AND FUTURE WORK

We introduced MeDICINE, a novel prototyping platform for
NFV that goes beyond its initial NFV use cases and is an
excellent prototyping and test platform for distributed cloud
services. The results of our experiments show that MeDICINE
can simulate resource limitations in multi-PoP environments
while ensuring resource isolation between PoPs. By using stan-
dard Docker containers to execute network functions within
our emulation platform, MeDICINE allows developers to di-
rectly move their tested services into production environments
without additional changes.

We believe that MeDICINE is an important step towards
a fully integrated development support toolchain for network

service development. Its code is open-source and available
as part of the emulation platform of the 5G-PPP project
SONATA [18]. We will continue our work in several direc-
tions, e.g., demonstrating the integration with different MANO
systems, network service and VNF test automation, improved
resource models with performance prediction, and advanced
service chaining techniques.

ACKNOWLEDGMENTS

This work has been partially supported by the SONATA project, funded by
the European Commission under Grant number 671517 through the Horizon
2020 and 5G-PPP programs (www.sonata-nfv.eu) and the German Research
Foundation (DFG) within the Collaborative Research Centre “On-The-Fly
Computing” (SFB 901).

REFERENCES

[1] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Mar-
trat, M. S. Siddiqui, S. van Rossem, W. Tavernier et al., “DevOps for
network function virtualisation: an architectural approach,” Transactions
on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1206–
1215, 2016.

[2] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf,
W. Tavernier, and F. Risso, “Multi-domain service orchestration over
networks and clouds: A unified approach,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. ACM, 2015, pp. 377–378.

[3] ETSI, “GS NFV 002: Network Functions Virtualisation (NFV): Archi-
tectural Framework,” 2014.

[4] I. Pelle, T. Lévai, F. Németh, and A. Gulyás, “One tool to rule them all:
A modular troubleshooting framework for sdn (and other) networks,” in
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, ser. SOSR ’15. ACM, 2015, pp. 24:1–24:7.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[6] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of cloud
computing: A review,” in Cloud Computing Congress (APCloudCC),
2012 IEEE Asia Pacific, Nov 2012, pp. 20–24.

[7] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demonstra-
tion, vol. 14, 2008.

[8] L. Mamatas, S. Clayman, and A. Galis, “A service-aware virtual-
ized software-defined infrastructure,” Communications Magazine, IEEE,
vol. 53, no. 4, pp. 166–174, 2015.

[9] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[10] P. Wette, M. Drxler, and A. Schwabe, “Maxinet: Distributed emulation
of software-defined networks,” in Networking Conference, 2014 IFIP,
2014, pp. 1–9.

[11] J. Ahrenholz, “Comparison of core network emulation platforms,” in
MILITARY COMMUNICATIONS CONFERENCE, 2010 - MILCOM
2010, Oct 2010, pp. 166–171.

[12] “OpenStack DevStack,” http://docs.openstack.org/developer/devstack/,
2016.

[13] M. Keller, C. Robbert, and M. Peuster, “An evaluation testbed for
adaptive, topology-aware deployment of elastic applications,” in Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. ACM, 2013, pp. 469–470.

[14] M. Peuster, “Containernet,” https://github.com/mpeuster/containernet.
[15] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-

ture,” https://tools.ietf.org/html/draft-ietf-sfc-nsh-04, Tech. Rep., 2015.
[16] “OpenStack Nova Guide,” http://docs.openstack.org/openstack-

ops/content/scaling.html, 2016.
[17] P. Turner, B. B. Rao, and N. Rao, “CPU bandwidth control for CFS,”

in Linux Symposium, vol. 10. Citeseer, 2010, pp. 245–254.
[18] SONATA Consortium, “SONATA Emulator,” https://github.com/sonata-

nfv/son-emu.

