6,487 research outputs found

    A Flexible Modeling Approach for Robust Multi-Lane Road Estimation

    Full text link
    A robust estimation of road course and traffic lanes is an essential part of environment perception for next generations of Advanced Driver Assistance Systems and development of self-driving vehicles. In this paper, a flexible method for modeling multiple lanes in a vehicle in real time is presented. Information about traffic lanes, derived by cameras and other environmental sensors, that is represented as features, serves as input for an iterative expectation-maximization method to estimate a lane model. The generic and modular concept of the approach allows to freely choose the mathematical functions for the geometrical description of lanes. In addition to the current measurement data, the previously estimated result as well as additional constraints to reflect parallelism and continuity of traffic lanes, are considered in the optimization process. As evaluation of the lane estimation method, its performance is showcased using cubic splines for the geometric representation of lanes in simulated scenarios and measurements recorded using a development vehicle. In a comparison to ground truth data, robustness and precision of the lanes estimated up to a distance of 120 m are demonstrated. As a part of the environmental modeling, the presented method can be utilized for longitudinal and lateral control of autonomous vehicles

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    Developing and evaluating a coordinated person-based signal control paradigm in a corridor network

    Get PDF
    Connected Vehicles (CVs) provide both vehicle trajectory data and occupancy information to the junction controller, which make person-based signal controls to be possible by realizing the importance of reducing person delay. This study presents a coordinated person-based signal control algorithm (C-PBC), which has extended a previously developed approach from isolated junctions to multiple junctions. C-PBC incorporates vehicle information that is outside the CV communication range from the adjacent junction. It also updates data inputs for signal optimization algorithms based on formulated different arrival vehicle trajectory situations and coordinated data supplement algorithms. The developed algorithm has been evaluated using simulation with benchmarking signal control methods under a variety of scenarios involving CV penetration rates and predictive horizons. The results indicate that C-PBC is able to significantly improve person delay reduction when compared with fixed time control and vehicle-based control using CV data in 100% CV penetration rate under saturated flow conditions

    Estimating confidence intervals for transport Mode share.

    Get PDF
    One of the common statistics used to monitor transport activity is the total travel by a particular method or mode and, for each mode, this share is routinely expressed as a percentage of total personal travel. This article describes a simple model to estimate a confidence interval around this percentage using Monte Carlo simulation. The model takes into account the impact of both measurement errors in counting traffic and daily variations in traffic levels. These confidence intervals can then be used to test reliably for significant changes in mode share. The model can also be used in sensitivity analysis to investigate how sensitive the width of this interval is to changes in the size of the measurement errors and daily fluctuations. A bootstrap technique is then used to validate the Monte Carlo estimated confidence interval

    Westwood Multimodal Transportation Plan

    Get PDF
    Westwood is experiencing an industrial regeneration that will change the way the area is utilized by the surrounding communities. To be proactive, Henrico County is planning for the future by creating an overlay zoning district and striving for a multimodal environment to ensure the area grows in a sustainable manner. This plan evaluates the study area, retrieves community engagement, and makes recommendations on streetscape design and public transit improvements to create a multimodal Westwood. Study area observations provided evidence that the streets in Westwood need to be redesigned to accommodate more for pedestrians and cyclists. Community outreach in the form of a survey was conducted to gather input on how the streetscape should be designed and what elements of the study area need the most attention. Results of the surveys and observations were analyzed and used to build the recommendations made for Westwood. Various types of funding options are presented to implement this plan. Sustainable, connected, and integrated transportation is essential to success and livability of the fast-growing study area. The plan aims to supply the knowledge needed to create a livable and thriving Westwood
    • …
    corecore