157,774 research outputs found

    Generating synthetic power grids using exponential random graphs models

    Full text link
    Synthetic power grids enable secure, real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using Exponential Random Graph (ERG) models. Our two main contributions are: (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids, and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify the edge counts per bus type and kk-triangles as crucial topological characteristics for synthetic power grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids

    Concepts and a case study for a flexible class of graphical Markov models

    Full text link
    With graphical Markov models, one can investigate complex dependences, summarize some results of statistical analyses with graphs and use these graphs to understand implications of well-fitting models. The models have a rich history and form an area that has been intensively studied and developed in recent years. We give a brief review of the main concepts and describe in more detail a flexible subclass of models, called traceable regressions. These are sequences of joint response regressions for which regression graphs permit one to trace and thereby understand pathways of dependence. We use these methods to reanalyze and interpret data from a prospective study of child development, now known as the Mannheim Study of Children at Risk. The two related primary features concern cognitive and motor development, at the age of 4.5 and 8 years of a child. Deficits in these features form a sequence of joint responses. Several possible risks are assessed at birth of the child and when the child reached age 3 months and 2 years.Comment: 21 pages, 7 figures, 7 tables; invited, refereed chapter in a boo

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Discrete Temporal Models of Social Networks

    Full text link
    We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks
    corecore