1,153 research outputs found

    Scattering Suppression from Arbitrary Objects in Spatially-Dispersive Layered Metamaterials

    Get PDF
    Concealing objects by making them invisible to an external electromagnetic probe is coined by the term cloaking. Cloaking devices, having numerous potential applications, are still face challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wavefronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may serve as a simple realisation of scattering-free detectors and sensors

    Fast 3D keypoints detector and descriptor for view-based 3D objects recognition

    No full text
    International audienceIn this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor. Our novel 3D interest points approach relies on surface type classifi-cation and combines the Shape Index (SI) - curvedness(C) map with the Gaus-sian (H) - Mean (K) map. For each extracted keypoint, a local description using the point and its neighbors is computed by joining the Shape Index histogram and the normalized histogram of angles between normals. This new proposed descriptor IndSHOT stems from the descriptor CSHOT (Color Signature of Histograms of OrienTations) which is based on the definition of a local, robust and invariant Reference Frame RF. This surface patch descriptor is used to find the correspondences between query-model view pairs in effective and robust way. Experimental results on Kinect based datasets are presented to validate the proposed approach in view based 3D object recognition

    Feature-based hybrid inspection planning for complex mechanical parts

    Get PDF
    Globalization and emerging new powers in the manufacturing world are among many challenges, major manufacturing enterprises are facing. This resulted in increased alternatives to satisfy customers\u27 growing needs regarding products\u27 aesthetic and functional requirements. Complexity of part design and engineering specifications to satisfy such needs often require a better use of advanced and more accurate tools to achieve good quality. Inspection is a crucial manufacturing function that should be further improved to cope with such challenges. Intelligent planning for inspection of parts with complex geometric shapes and free form surfaces using contact or non-contact devices is still a major challenge. Research in segmentation and localization techniques should also enable inspection systems to utilize modern measurement technologies capable of collecting huge number of measured points. Advanced digitization tools can be classified as contact or non-contact sensors. The purpose of this thesis is to develop a hybrid inspection planning system that benefits from the advantages of both techniques. Moreover, the minimization of deviation of measured part from the original CAD model is not the only characteristic that should be considered when implementing the localization process in order to accept or reject the part; geometric tolerances must also be considered. A segmentation technique that deals directly with the individual points is a necessary step in the developed inspection system, where the output is the actual measured points, not a tessellated model as commonly implemented by current segmentation tools. The contribution of this work is three folds. First, a knowledge-based system was developed for selecting the most suitable sensor using an inspection-specific features taxonomy in form of a 3D Matrix where each cell includes the corresponding knowledge rules and generate inspection tasks. A Travel Salesperson Problem (TSP) has been applied for sequencing these hybrid inspection tasks. A novel region-based segmentation algorithm was developed which deals directly with the measured point cloud and generates sub-point clouds, each of which represents a feature to be inspected and includes the original measured points. Finally, a new tolerance-based localization algorithm was developed to verify the functional requirements and was applied and tested using form tolerance specifications. This research enhances the existing inspection planning systems for complex mechanical parts with a hybrid inspection planning model. The main benefits of the developed segmentation and tolerance-based localization algorithms are the improvement of inspection decisions in order not to reject good parts that would have otherwise been rejected due to misleading results from currently available localization techniques. The better and more accurate inspection decisions achieved will lead to less scrap, which, in turn, will reduce the product cost and improve the company potential in the market

    Quantifying the urban forest environment using dense discrete return LiDAR and aerial color imagery for segmentation and object-level biomass assessment

    Get PDF
    The urban forest is becoming increasingly important in the contexts of urban green space and recreation, carbon sequestration and emission offsets, and socio-economic impacts. In addition to aesthetic value, these green spaces remove airborne pollutants, preserve natural resources, and mitigate adverse climate changes, among other benefits. A great deal of attention recently has been paid to urban forest management. However, the comprehensive monitoring of urban vegetation for carbon sequestration and storage is an under-explored research area. Such an assessment of carbon stores often requires information at the individual tree level, necessitating the proper masking of vegetation from the built environment, as well as delineation of individual tree crowns. As an alternative to expensive and time-consuming manual surveys, remote sensing can be used effectively in characterizing the urban vegetation and man-made objects. Many studies in this field have made use of aerial and multispectral/hyperspectral imagery over cities. The emergence of light detection and ranging (LiDAR) technology, however, has provided new impetus to the effort of extracting objects and characterizing their 3D attributes - LiDAR has been used successfully to model buildings and urban trees. However, challenges remain when using such structural information only, and researchers have investigated the use of fusion-based approaches that combine LiDAR and aerial imagery to extract objects, thereby allowing the complementary characteristics of the two modalities to be utilized. In this study, a fusion-based classification method was implemented between high spatial resolution aerial color (RGB) imagery and co-registered LiDAR point clouds to classify urban vegetation and buildings from other urban classes/cover types. Structural, as well as spectral features, were used in the classification method. These features included height, flatness, and the distribution of normal surface vectors from LiDAR data, along with a non-calibrated LiDAR-based vegetation index, derived from combining LiDAR intensity at 1064 nm with the red channel of the RGB imagery. This novel index was dubbed the LiDAR-infused difference vegetation index (LDVI). Classification results indicated good separation between buildings and vegetation, with an overall accuracy of 92% and a kappa statistic of 0.85. A multi-tiered delineation algorithm subsequently was developed to extract individual tree crowns from the identified tree clusters, followed by the application of species-independent biomass models based on LiDAR-derived tree attributes in regression analysis. These LiDAR-based biomass assessments were conducted for individual trees, as well as for clusters of trees, in cases where proper delineation of individual trees was impossible. The detection accuracy of the tree delineation algorithm was 70%. The LiDAR-derived biomass estimates were validated against allometry-based biomass estimates that were computed from field-measured tree data. It was found out that LiDAR-derived tree volume, area, and different distribution parameters of height (e.g., maximum height, mean of height) are important to model biomass. The best biomass model for the tree clusters and the individual trees showed an adjusted R-Squared value of 0.93 and 0.58, respectively. The results of this study showed that the developed fusion-based classification approach using LiDAR and aerial color (RGB) imagery is capable of producing good object detection accuracy. It was concluded that the LDVI can be used in vegetation detection and can act as a substitute for the normalized difference vegetation index (NDVI), when near-infrared multiband imagery is not available. Furthermore, the utility of LiDAR for characterizing the urban forest and associated biomass was proven. This work could have significant impact on the rapid and accurate assessment of urban green spaces and associated carbon monitoring and management

    CHARACTERIZATION OF ENGINEERED SURFACES

    Get PDF
    In the recent years there has been an increasing interest in manufacturing products where surface topography plays a functional role. These surfaces are called engineered surfaces and are used in a variety of industries like semi conductor, data storage, micro- optics, MEMS etc. Engineered products are designed, manufactured and inspected to meet a variety of specifications such as size, position, geometry and surface finish to control the physical, chemical, optical and electrical properties of the surface. As the manufacturing industry strive towards shrinking form factor resulting in miniaturization of surface features, measurement of such micro and nanometer scale surfaces is becoming more challenging. Great strides have been made in the area of instrumentation to capture surface data, but the area of algorithms and procedures to determine form, size and orientation information of surface features still lacks the advancement needed to support the characterization requirements of R&D and high volume manufacturing. This dissertation addresses the development of fast and intelligent surface scanning algorithms and methodologies for engineered surfaces to determine form, size and orientation of significant surface features. Object recognition techniques are used to identify the surface features and CMM type fitting algorithms are applied to calculate the dimensions of the features. Recipes can be created to automate the characterization and process multiple features simultaneously. The developed methodologies are integrated into a surface analysis toolbox developed in MATLAB environment. The deployment of the developed application on the web is demonstrated

    3D-deflectometry : fast nanotopography measurement for the semiconductor industry

    Get PDF

    Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review

    Get PDF
    The strict CO2 emission targets set to tackle the global climate change associated with greenhouse gas emission exerts so much pressure on our cities which contribute up to 75% of the global carbon dioxide emission level, with buildings being the largest contributor (UNEP, 2015). Premised on this fact, urban planners are required to implement proactive energy planning strategies not only to meet these targets but also ensure that future cities development is performed in a way that promotes energy-efficiency. This article gives an overview of the state-of-art of energy planning and forecasting approaches for aiding physical improvement strategies in the building sector. Unlike previous reviews, which have only addressed the strengths as well as weaknesses of some of the approaches while referring to some relevant examples from the literature, this article focuses on critically analysing more approaches namely; 2D GIS and 3DGIS (CityGML) based energy prediction approaches, based on their frequent intervention scale, applicability in the building life cycle, and conventional prediction process. This will be followed by unravelling the gaps and issues pertaining to the reviewed approaches. Finally, based on the identified problems, future research prospects are recommended

    Vision-based hand shape identification for sign language recognition

    Get PDF
    This thesis introduces an approach to obtain image-based hand features to accurately describe hand shapes commonly found in the American Sign Language. A hand recognition system capable of identifying 31 hand shapes from the American Sign Language was developed to identify hand shapes in a given input image or video sequence. An appearance-based approach with a single camera is used to recognize the hand shape. A region-based shape descriptor, the generic Fourier descriptor, invariant of translation, scale, and orientation, has been implemented to describe the shape of the hand. A wrist detection algorithm has been developed to remove the forearm from the hand region before the features are extracted. The recognition of the hand shapes is performed with a multi-class Support Vector Machine. Testing provided a recognition rate of approximately 84% based on widely varying testing set of approximately 1,500 images and training set of about 2,400 images. With a larger training set of approximately 2,700 images and a testing set of approximately 1,200 images, a recognition rate increased to about 88%

    Efficient registration for precision inspection of free-form surfaces

    Full text link
    Precision inspection of free-form surface is difficult with current industry practices that rely on accurate fixtures. Alternatively, the measurements can be aligned to the part model using a geometry-based registration method, such as the iterative closest point (ICP) method, to achieve a fast and automatic inspection process. This paper discusses various techniques that accelerate the registration process and improve the efficiency of the ICP method. First, the data structures of approximated nearest nodes and topological neighbor facets are combined to speed up the closest point calculation. The closest point calculation is further improved with the cached facets across iteration steps. The registration efficiency can also be enhanced by incorporating signal-to-noise ratio into the transformation of correspondence sets to reduce or remove the noise of outliers. Last, an acceleration method based on linear or quadratic extrapolation is fine-tuned to provide the fast yet robust iteration process. These techniques have been implemented on a four-axis blade inspection machine where no accurate fixture is required. The tests of measurement simulations and inspection case studies indicated that the presented registration method is accurate and efficient.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45849/1/170_2005_Article_370.pd
    • …
    corecore