204 research outputs found

    Compact Markov-modulated models for multiclass trace fitting

    Get PDF
    Markov-modulated Poisson processes (MMPPs) are stochastic models for fitting empirical traces for simulation, workload characterization and queueing analysis purposes. In this paper, we develop the first counting process fitting algorithm for the marked MMPP (M3PP), a generalization of the MMPP for modeling traces with events of multiple types. We initially explain how to fit two-state M3PPs to empirical traces of counts. We then propose a novel form of composition, called interposition, which enables the approximate superposition of several two-state M3PPs without incurring into state space explosion. Compared to exact superposition, where the state space grows exponentially in the number of composed processes, in interposition the state space grows linearly in the number of composed M3PPs. Experimental results indicate that the proposed interposition methodology provides accurate results against artificial and real-world traces, with a significantly smaller state space than superposed processes

    Logics and Models for Stochastic Analysis Beyond Markov Chains

    Get PDF

    Estimating multiclass service demand distributions using Markovian arrival processes

    Get PDF
    Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model the departure process of requests completed by the software service as a Markovian arrival process. This allows formulating the estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service demand estimation approaches for software services

    Hybrid Stochastic Models for Remaining Lifetime Prognosis

    Get PDF
    The United States Air Force is developing its next generation aircraft and is seeking to reduce the risk of catastrophic failures, maintenance activities, and the logistics footprint while improving its sortie generation rate through a process called autonomic logistics. Vital to the successful implementation of this process is remaining lifetime prognosis of critical aircraft components. Complicating this problem is the absence of failure time information; however, sensors located on the aircraft are providing degradation measures. This research has provided a method to address at least a portion of this problem by uniting analytical lifetime distribution models with environment and/or degradation measures to obtain the remaining lifetime distribution

    Error analysis of structured Markov chains

    Get PDF
    • …
    corecore