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Dansk resumé

Kødannelse opstår i forbindelse med de fleste kommercielle aktiviteter. Men-
nesker står i kø i butikker, i banker og i restauranter. Biler, skibe og fly venter
på veje, i havne og på landingsbaner, medens elektroniske meddelelser venter
ved transmissionslinier og på at blive behandlet i servere. Den matematiske
modellering af køfænomener har været stigende siden køteoriens fødsel, der
sædvanligvis tilskrives AK Erlang, i begyndelsen af det 20ende århundrede.
Erlang er nok den fremmeste repræsentant blandt adskillelige skandinaviske,
heriblandt flere danske, forskere som har bidraget væsentligt til køteorien
og den nært beslægtede risikoteori med forsikringsvidenskab som sit største
anvendelsesområde. Ved modellering af køsystemer er det nødvendigt med
en model til beskrivelse af den tilfældige ankomststrøm af efterspørgsel ef-
ter betjening, i dennes forskellige former som mennesker, biler, skibe eller
elektroniske meddelelser. Teorien for punktprocesser inden for anvendt sand-
synlighed er netop udviklet til at imødekomme dette behov.

Den Markovske ankomst Process (MAP) er en af de vigtigste konkrete
manifestationer af teorien for punkt processer. MAPpen er således en vigtig
byggesten i matrix analytiske metoder en disciplin i køteorien, der er udviklet
af Neuts og medforfattere. Teorien for matrix analytiske metoder er bekvem
ud fra et praktisk synspunkt, idet mange systemer kan evalueres analytisk
og numerisk ved brug af denne teoridannelse. I denne afhandling præsente-
res bidrag til den teoretiske udvikling af feltet, herunder en generalisering
til flerdimensionale fordelinger. Yderligere demonstreres anvendeligheden af
teorien gennem eksempler fra telekommunikation og datalogi.

Afhandlingen er baseret på en række originale bidrag med en indledende
sammenfatning. Strukturen af sammenfatningen er som følger.

Klassen af MAPper og den relaterede klasse af fasetype (PH) fordelinger
tilhører de lidt større klasser af processer og fordelinger betegnet som hen-
holdsvis Rationelle ankomst Processer (RAP) og matrixeksponentielle (ME)
fordelinger. I kapitel 2 præsenteres de grundlæggende konstruktioner af fa-
setype og matrixeksponentielle fordelinger sammen med Markovske og ratio-
nelle ankomst processer. Den grundlæggende teori samt klassiske egenskaber
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10 Dansk resumé

beskrives relativt kort, medens egne bidrag til teorien er beskrevet mere detal-
jeret. Kapitel 3 er afsat til diskussion af parameterestimation i de modeller,
der er beskrevet i kapitel 2. Der gives en kort gennemgang af nuværende
estimeringsmetoder, igen med et fokus på egne bidrag.

I kapitel 4 og 5 beskrives forskellige anvendelsesaspekter. Markovske an-
komst Processer er et alsidigt redskab til følsomhedsanalyser af stokastiske
systemer, eftersom de fleste punktproces deskriptorer for en MAP kan be-
regnes relativt enkelt. Følsomhedsanalyser baseret på MAPper er beskrevet
i kapitel 4. Dette kapitel er af noget mere generisk natur end kapitel 5, hvor
nogle konkrete eksempler på tekniske anvendelser præsenteres.

I kapitel 6 beskrives to forskellige bevisteknikker for, hvordan matrix ana-
lytiske resultater relateret til de klassiske modeller for fasetype fordelinger
og Markovske ankomst processer udvides til at omfatte matrixeksponentielle
fordelinger og rationelle ankomst processer.

I kapitel 7 introduces klasserne af multivariate matrixeksponentielle og
bilaterale multivariate matrixeksponentielle fordelinger. Kapitlet starter med
en lille gennemgang af tidligere arbejder om multivariate fasetype fordelinger,
mens resten af kapitlet indeholder de seneste resultater af egen forskning.

Afhandlingens vigtigste bidrag er beskrevet i kapitel 4, 6 og 7. Kapitel 4 er
vigtigt ud fra en teknisk synsvinkel. Fremgangsmåden beskrevet i [8] var på
daværende tidspunkt noget kontroversiel. Målinger i pakkebaserede kommu-
nikationsnetværk viste, at trafikken udviste betragtelig variabilitet med vari-
ation over flere tidsskalaer. Disse målinger fik adskillige forskere til at mene,
at Markovkæde baserede modeller ville blive af mindre betydning fremover,
da disse ikke skulle kunne tage højde for variabilitet over flere tidsskalaer.
På basis af dette mente disse forskere, at der var behov for et paradigmeskift
i køteorien. Imidlertid viste resultaterne fra [8], at den Markovske ankomst
proces kunne forblive et nyttigt værktøj til modellering af moderne kommuni-
kationssystemer. Artiklen og en foreløbig udgave [7] har været meget citeret.
Også [4] er vigtig, da denne artikel demonstrerer, hvordan følsomhedsanaly-
ser af køsystemer udført ved brug af Markovske ankomst Processer ofte kan
føre til konklusioner af almen gyldighed.

De to sidste kapitler, 6 og 7, indeholder betydelige teoretiske bidrag. Be-
tydningen af kapitel 6 ligger på nuværende tidspunkt primært i dets mate-
matiske indhold. Det har været tilfredsstillende endeligt at kunne fastslå, at
den almindelige forventning om, at resultater for PH fordelinger og MAP-
per kan overføres direkte til de mere generelle tilfælde med ME fordelinger og
RAPper, er korrekt. De sædvanlige matrix analytiske ræsonnementer baserer
sig på probabilistisk argumentation ud fra den tidsmæssige udvikling af den
underliggende Markovkæde. Disse argumenter kan ikke umiddelbart udvides
til ME og RAP tilfældet, idet man her ikke har en underliggende Markov-
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kæde. To forskellige bevis teknikker blev anvendt. I [17] er analysen baseret
på et “last entrance time” argument, medens analysen i [18] er baseret på en
indlejret Markov kæde med et generelt tilstandsrum.

Endeligt beskrives bidrag fra [22, 24, 25, 28] i kapitel 7 indeholdende de-
finitionen af en vigtig klasse af bilaterale multivariate matrixeksponentielle
fordelinger sammen med eksempler på deres anvendelse og forskellige relate-
rede resultater. Disse fordelinger udgør et meget fleksibelt værktøj til model-
lering af multivariate fænomener. Definitionen synes at være den naturlige
definition af multivariate matrixeksponentielle fordelinger. Hovedresultatet
er en karakterisering svarende til karakteriseringen af den multivariate nor-
malfordeling. Endelig vises, hvordan klassen af MVME fordelinger forener et
antal af tidligere publicerede modeller meget lig den måde PH og ME for-
delinger forenede en mængde af tilsyneladende løst forbundne modeller og
resultater.

Det arbejde, der beskrives i kapitel 7 åbner op for adskillige ikke-trivielle
teoretiske spørgsmål af matematisk art. Hvis nogle af disse udfordringer kan
løses tilfredsstillende, vil det bane vejen for et potentielt stort antal anvendel-
ser, og det er meget sandsynligt, at fordelingsklassen kan blive meget nyttig
i statistisk analyse.
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1 Introduction

Queueing permeates most of man’s commercial behaviour. People queue in
stores, at banks, and at restaurants. Cars, ships and air-planes queue at
roads, ports and runways, while electronic messages queue at transmission
lines and in servers, waiting to be processed. The mathematical modelling
of queueing phenomena has developed at ever increasing speed since the
birth of queueing theory in the early 20th century, usually ascribed to A.
K. Erlang, who worked as a mathematician for the Copenhagen telephone
Company (KTAS - Kjøbenhavns Telefons Aktie Selskab). Erlang is perhaps
the foremost representative among many Danish and Scandinavian scientists
who have contributed profoundly to queueing theory and the closely related
field of risk theory, with insurance being its main application area. When
modelling queueing systems a model is needed for the description of the
random arrival stream of demands, in terms of customers in the various
forms of people, cars, ships, or electronic messages. Point process theory
arose from the field of applied probability to address this need.

The Markovian Arrival Process (MAP) is one of the main concrete mani-
festations of point process theory. The MAP is an essential building block
within matrix analytic methods in queueing theory pioneered by Neuts and
coauthors. The theory of matrix analytic methods is appealing from a prac-
tical point of view as many systems can be analytically and numerically
evaluated using this approach. In this thesis we present contributions to the
theoretical development of the field of matrix analytic methods including an
extension to a multivariate setting. We further demonstrate the applicabil-
ity of the theory, giving examples from telecommunications engineering and
computer science.

The thesis is based on a number of original contributions and a summary
introductory paper. The outline of the summary is as follows.

The class of MAPs and the related class of Phase Type (PH) distributions
belong to the slightly larger classes of what have been termed Rational Arrival
Processes (RAP) and Matrix Exponential (ME) distributions, respectively.
In Chapter 2 we present the basic constructions of phase-type and matrix-
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14 Chapter 1 Introduction

exponential distributions along with the Markovian and rational arrival pro-
cesses. We briefly mention some well-known properties of these constructions
while describing our own contributions in more detail. Chapter 3 is devoted
to discussion of parameter estimation in the models described in Chapter 2.
We give a very brief review of current estimation methods while focusing on
our own contributions.

Chapters 4 and 5 contain different aspects of applications. The MAP is a
versatile tool in sensitivity analyses of stochastic systems since point process
descriptors of a MAP can be evaluated numerically. Sensitivity analyses
based on the MAP are described in Chapter 4. That chapter is somewhat
more generic in nature than Chapter 5 in which some concrete examples of
engineering applications are presented.

In Chapter 6 we present two different ways of proving how the matrix
analytic results related to the classical models of phase-type distributions
and Markovian arrival processes extend to the case of matrix-exponential
distributions and rational arrival processes.

In Chapter 7 we introduce the classes multivariate matrix-exponential and
bilateral multivariate matrix-exponential distributions. The chapter starts
with a small review of previous work on multivariate phase-type distributions
while the rest of the chapter contains recent results of our own research.

The main contributions of the thesis are described in Chapters 4, 6,
and 7. Chapter 4 is important from an engineering perspective. The ap-
proach described in [8] was somewhat controversial at the time. Measure-
ments in packet based communication networks made some researchers call
for a paradigm shift in queueing theory, where models based on Markovian
assumptions would be, if not superfluous, then at least of minor importance.
The contribution of [8] was to show that the Markovian arrival process could
indeed remain a useful tool in modelling modern communication systems.
The paper and its preliminary version [7] have been widely cited. Also [4]
is important as this paper exemplifies how sensitivity analyses of queueing
systems can be carried out using the Markovian arrival process, frequently
leading to conclusions of general validity.

The two final chapters, 6 and 7, contain substantial theoretical contribu-
tions. The importance of Chapter 6 is at present primarily the mathematical
content. It has been satisfying to finally settle the common anticipation that
results for PH distributions and MAPs carry over verbatim to the case of
ME distributions and RAPs. The method of proof has to rely on new ideas,
as the standard probabilistic line of reasoning breaks down in the case of
matrix-exponential distributions and rational arrival processes. Two differ-
ent proof techniques were applied. In [17] a continuous time analysis based
on a last exit time approach was applied. The approach taken in [18] was



15

that of an embedded Markov chain with a general state space.
Finally Chapter 7 describes the contributions of [22, 24, 25, 28] contain-

ing the definition of the important class of bilateral multivariate matrix-
exponential distributions together with examples of their use and various
related results. These distributions provide a very flexible tool for modelling
multivariate phenomena. The definition seems to be the natural multivari-
ate generalisation of matrix-exponential distributions. The main result is a
characterisation theorem similar to the main characterisation theorem of the
multivariate normal distribution. Finally we demonstrate how the MVME
distribution class unifies a number of previously published models in a way
quite similar to the way PH and ME distributions unified a number of seem-
ingly loosely connected models and results. The work described in Chapter 7
opens several non-trivial mathematical and theoretical questions. If just some
of these problems can be solved satisfactorily it will pave the way for a huge
application potential, and it is very likely that the distributions can and will
be useful in statistical analysis too. The research on multivariate distribu-
tions lead to [27] describing a closure property of matrix-exponential and
phase-type distributions.

In general, results from our own research will be stated as definitions,
lemmas, corollaries, and theorems, while other results will be part of the
text flow. The notation used in the papers is generally similar to that of the
summary, and it is my hope that the slight differences will not reduce the
accessibility of the papers.

The thesis is based on the following papers

Primarily related to Chapter 2

[3] Allan T. Andersen, Marcel F. Neuts, and Bo F. Nielsen. PH-Distributions
Arising through Conditioning. Commun. Statist.-Stochastic Models,
16(1):179–188, 2000.

[27] Mogens Bladt and Bo Friis Nielsen. Moment distributions of phase
type. Stochastic Models, 27:651–663, 2011.

[69] Bo Friis Nielsen, Uffe Høgsbro Thygesen, L. A. Fredrik Nilsson, and
Jan E. Beyer. Higher order moments and conditional asymptotics of
the batch Markovian arrival process. Stochastic Models, 23(1):1–26,
2007.

Primarily related to Chapter 3

[21] Mogens Bladt, Luz Judith Rodriguez Esparza, and Bo Friis Nielsen.
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Fisher information and statistical inference for phase–type distribu-
tions. Journal of Applied Probability, 48A - A Festschrift for Søren
Asmussen:277–293, 2011.

[66] Bo Friis Nielsen and Jan E. Beyer. Estimation of Interrupted Poisson
Process parameters from counts. Report No. 21, 2004/2005, fall,
Institut Mittag-Leffler, 2005.

Primarily related to Chapter 4

[4] Allan T. Andersen, Marcel F. Neuts, and Bo F. Nielsen. On the time
reversal of Markovian Arrival Processes. Stochastic Models, 20(3):237–
260, 2004.

[5] Allan T. Andersen and Bo F. Nielsen. On the statistical implica-
tions of certain random permutations in Markovian Arrival Processes
(MAP)s and second order self-similar processes. Performance Evalu-
ation, 41:67–82, 2000.

[6] Allan T. Andersen and Bo F. Nielsen. On the use of second order
descriptors to predict queueing behaviour of MAPs. Naval Research
Logistics, 49(4):391–409, 2002.

Primarily related to Chapter 5

[8] Allan T. Andersen and Bo Friis Nielsen. A Markovian approach for
modeling packet traffic with long range dependence. IEEE JSAC,
16(5):719–732, 1998.

[36] Thomas Kaare Christensen, Bo Friis Nielsen, and Villy Bæk Iversen.
Phase-type models of channel holding times in cellular communication
systems. IEEE Trans. on Veh. Technol., 53(3):725–733, May 2004.

[67] Bo Friis Nielsen, Flemming Nielson, and Hanne Riis Nielson. Model
checking multivariate state rewards. In Seventh International Con-
ference on the Quantitative Evaluation of Systems, pages 7–16, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.

Primarily related to Chapter 6

[17] Nigel Bean and Bo Friis Nielsen. Quasi-birth-and-death processes with
rational arrival process components. Stochastic Models, 26(3):309–334,
July 2010.
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[18] Nigel Bean and Bo Friis Nielsen. Analysis of queues with rational ar-
rival process (RAP) components - a general approach. IMM-Technical
Report 5, IMM, 2011.

[68] Bo Friis Nielsen and V. Ramaswami. A Computational Framework for
a Quasi Birth and Death Process with a Continuous Phase Variable.
In V. Ramaswamiand P.E. Wirth, editor, Teletraffic Contributions for
the Information Age, ITC-15, page 477–486. ITC, Elsevier, 1997.

Primarily related to Chapter 7

[22] Mogens Bladt, Luz Judith Rodriguez Esparza, and Bo Friis Nielsen. Bi-
lateral matrix–exponential distributions. In G. Latouche, V. Ramaswami,
J. Sethuraman, K. Sigman, M.S. Squillante, and D. Yao, editors,Matrix-
Analytic Methods in Stochastic Models, volume 27. Springer Proceed-
ings in Mathematics and Statistics, 2012.

[24] Mogens Bladt and Bo Friis Nielsen. Multivariate matrix-exponential
distributions. In Dario Bini, Beatrice Meini, Vaidyanathan Ramaswami,
Marie-Ange Remiche, and Peter Taylor, editors, Numerical Methods for
Structured Markov Chains, number 07461 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, Germany, 2008. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[25] Mogens Bladt and Bo Friis Nielsen. Multivariate matrix–exponential
distributions. Stochastic Models, 26(1):1–26, 2010.

[26] Mogens Bladt and Bo Friis Nielsen. On the construction of bivari-
ate exponential distributions with an arbitrary correlation coefficient.
Stochastic Models, 26(2):295–308, 2010.

[28] Mogens Bladt and Bo Friis Nielsen. On the representation of dis-
tributions with rational moment generating functions. IMM-Technical
Report 16, IMM, Technical University of Denmark, DK-2800 Kgs. Lyn-
gby, 2012.
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2 Background

The memoryless property of the exponential distribution has been of para-
mount importance for the development of large parts of applied probability.
This property ensures that when modelling a lifetime, the distribution of the
remaining lifetime stays exponential with the same rate parameter regardless
of the current age. For an exponentially distributed random variable X with
intensity parameter λ the memoryless property is formally expressed by

P (X > x+ t|X > t) = P (X > x) = e−λx.

The natural choice when modelling the time to decay of radioactive atoms is
the exponential distribution due to its memoryless property. The memoryless
assumption is also reasonably justified when modelling the lifetime of certain
kinds of electronic equipment. In addition, the exponential distribution is
frequently well suited for modelling phenomenons where human activity is
involved. This is particularly true when modelling the process of telephone
call initiations, where a large number of individuals tend to initiate calls
independently of each other, with a low rate for each individual.

Most technical and biological systems are, however, characterised by life
and process times that cannot be reasonably described by the exponential dis-
tribution. The idea of still exploiting the memoryless property by modelling
lifetimes and other durations by compositions of exponential random vari-
ables is usually ascribed to Erlang, but according to [39, Page 4] the idea was
already described by Ellis in 1844. Jensen [48] generalised Erlang’s approach
by introducing a class of distributions defined as absorption times in Markov
chains, which was finally brought to its full potential by Neuts [61]. Neuts
termed these distributions of absorption times “distributions of phase-type”
(PH distributions). The theory of PH distributions facilitates construction
of flexible models using the analytical and mathematical convenience that
arises from the memoryless property of the exponential distributions govern-
ing the sojourn times in the states of the Markov chain. In the context of
phase type distributions states are frequently referred to as phases.

Some applications of PH distributions naturally support decomposition of
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20 Chapter 2 Background

the lifetime of a phenomenon into phases. One such example is the modelling
of the progress of colon cancer which is medically divided into four stages.
In many cases there is no such natural interpretation of the phases and the
phase-type approach is considered a convenient approximation to the real
lifetime distribution, in the same way that a polynomial might approximate
a general function. This is supported by the fact that, for any distribution
on the non-negative reals, there exists a sequence of PH distributions that
converges weakly to the distribution [9, Theorem III.4.2].

In Section 2.1 we define phase-type and matrix-exponential distributions,
while the Markovian and rational arrival processes are defined in Section 2.2.

2.1 Phase-type and matrix-exponential distri-
butions

A phase-type (PH) distribution is a distribution that can be interpreted as
the distribution of the time to absorption in a finite state Markov chain where
one state is absorbing and the other states are transient. The generator of
such a Markov chain can be partitioned as(

S s
0 0

)
.

For a discrete PH distribution the zero in the lower right corner is replaced
by a 1 to get a probability transition matrix. The initial distribution of
the Markov chain is given by the row vector (α, αp+1). The p × p matrix
S is a sub-generator, (a sub-probability transition matrix in the discrete
case), while the vector s is a column vector of absorption rates. The pair
(α,S) is called a representation for the distribution. The survival function
G(x) of a PH distribution can be expressed as G(x) = αeSx1, where 1 is
a column vector of ones of appropriate dimension. The analytical form of
the survival function is also valid for a larger class of distributions called
Matrix-Exponential (ME) distributions. The class of ME distributions is
strictly larger than the class of PH distributions, see e.g. [70] for a thorough
discussion and unique classification of PH distributions within the class of ME
distributions. The general form of the survival function of an ME distribution
is G(x) = −αeSxS−1s with corresponding representation (α,S, s). For a
PH representation one must necessarily have 0 ≤ α1 ≤ 1 and S1 + s =
0. These restrictions do not arise naturally for ME distributions, however,
one can without loss of generality assume that a representation for an ME
distribution satisfies them. Unless otherwise stated, such representations
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will be assumed throughout the thesis. In general, the matrix-exponential
distributions do not have an interpretation as the distribution of absorption
times in finite state Markov chains. The Laplace-Stieltjes transform H(s) of
an ME distribution is H(s) = 1−α1+α(I+s(−S)−1)−11, where the matrix
I is an identity matrix of appropriate dimension. The function H(s) is thus
a rational function in s. Indeed, an alternative characterisation of matrix-
exponential distributions is that a distribution is matrix-exponential if and
only if it has a rational Laplace-Stieltjes transform. Very little work has
been done on the discrete version of matrix-exponential distributions, called
matrix-geometric distributions, but see [46] for examples of genuine matrix-
geometric distributions. Here we will focus almost entirely on the continuous
case. Main references to the theory of phase-type distributions are [61],
giving emphasis to the discrete case, and [55, 63]. In [63] an analytic angle
is taken with respect to proofs followed by discussions of the probabilistic
interpretation. In [55] the probabilistic arguments are used directly as proofs.
The analytic proofs of [63] extend immediately to the matrix-exponential
case, such that all closure properties that can be proven analytically for
PH distributions also hold for ME distributions. Phase-type distributions,
hence also matrix-exponential distributions, are known to be closed under
finite convolutions and mixtures, finite order statistics, and random sums
where the number of terms in the sum is given by a discrete phase-type
distribution. We will now give some additional examples of closure properties
for phase-type and matrix-exponential distributions, which are part of our
own contributions to the field. As several of these results were proven using
the time reversed representation of a PH distribution and time reversal of
stationary MAPs a brief introduction to time reversal follows.

Time reversal

Any distribution on the non-negative reals can be used to define a renewal
process. This is in particular true for phase-type distributions, where the
underlying phase process makes it natural to consider a sequence of inter
arrival times as successive visits to an instantaneous state. Hence a phase-
type renewal process appears when rather than terminating the process on
absorption, it is restarted according to the initial vector. For ease of expos-
ition we will assume that α1 = 1. The infinitesimal generator (transition
probability) matrix of the Markov chain defined in this way is

S + sα. (2.1)

The vector π = α(−S)−1(πs)−1 is the stationary probability vector of this
Markov chain generated by the phase-type renewal process. The time re-
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versed representation
(
α̃, S̃

)
of the representation (α,S) is obtained by a

standard time reversal operation on the stationary Markov chain(
α̃, S̃

)
=
(
π∆(s)(πs)−1,∆(π)−1ST∆(π)

)
. (2.2)

The matrix ∆(π) is a diagonal matrix with the entries of π in the diagonal.

Conditional distributions of phase-type

Phase-type distributions occur naturally as first exit time distributions from
finite sets of states in Markov chains. This is also true in the case where
the set can be left in different ways when conditioning on exits to specific
states or sets of states. Consider a finite Markov chain with p transient and
r absorbing states and partition its generator Q as

Q =

(
S S1

0 0

)
,

where S1 is a p × r matrix. The initial probability vector is now written as
(α,0). The distribution of the time until one of the r absorbing states is
reached is obviously of phase-type. The distributional form of the time to
absorption conditioned on absorption in a subset of the r absorbing states
was addressed in [5]. Not surprisingly, it turns out that these distributions
are also of phase-type. The Laplace-Stieltjes transform of the conditional
distribution of the time to absorption in absorbing state j is

Ψj(s) = (v∗j )
−1α(sI − S)−1S1(j),

for 1 ≤ j ≤ r. Here S1(j) is the jth column of S1 and v∗j = α(−S)−1S1(j)
is the probability of absorption in state j. A corresponding phase-type rep-
resentation was given as Theorem 2.1 of [3].

Theorem 1 (Theorem 2.1 of [3]) The function Ψj(s) is the Laplace-Stiel-
tjes transform of a PH-distribution with representation (γ(j), C) = (γ(j),
∆−1(π)S′∆(π)), with γ(j) = ∆(π)S1(j)(πS1(j))

−1.

The generalisation to a subset of the r absorbing states is made by replacing
the jth column of S1 with the sum of all columns leading to states in the
subset. The result was used in [5] and is currently being used in work that
is a continuation of [67].
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Size-biased distributions

The joint distribution of age and residual lifetime of a phase-type renewal
process was studied in [25], leading to the study of the distribution of the
related concept of the spread, which is the sum of the age and residual life-
time. The distribution of the spread is an example of a moment distribution,
that is, a distribution for a non-negative random variable where the density
is proportional to tif(t), with f(t) being the density of a random variable.
Moment distributions are frequently referred to as size-biased distributions in
applications. In [27] we demonstrated that the classes of matrix-exponential
and phase-type distributions are also closed under formation of size-biased
distributions. For the matrix-exponential distributions this was stated as
Theorem 3.1 in [27].

Theorem 2 (Theorem 3.1 in [27]) Consider a matrix-exponential distri-
bution with representation (α,S, s) of dimension p such that s = −S1 and
0 ≤ α1 ≤ 1. Then its nth moment distribution is also matrix-exponential
with representation (αn,Sn, sn), where

αn =

(
αS−n

αS−n1
,0, ...,0

)
Sn =


S −S 0 ... 0
0 S −S ... 0
... ... ... ... ...
0 0 0 0 S

 , sn =


0
0
..
s

 ,

where Sn is an (n+ 1)p⊗ (n+ 1)p dimensional matrix.

Even if (α,S, s) is a representation of a phase-type distribution the rep-
resentation (αn,Sn, sn) given in Theorem 2 will generally not be a valid
phase-type representation since off-diagonal elements can be negative. Us-
ing a probabilistic argument based on time reversal we derived a phase-type
representation for the first order moment distribution of a phase-type distri-
bution. This representation was presented as Theorem 3.3 of [27]. It turned
out that, using an analytical argument, the result of Theorem 3.3 of [27]
could be generalised to give a valid phase-type representation for the nth or-
der moment distribution of a phase-type distribution. The following theorem
was initially stated as Theorem 3.5 of [27].

Theorem 3 (Theorem 3.5 of [27]) Consider a phase-type distribution with
representation (α,S). Then the nth order moment distribution is again of
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phase-type with representation (α•n,S
•
n), where

α•n =

(
ρn+1

ρn
s′∆(πn+1),0, . . . ,0

)
,

S•n =



Cn+1 Dn+1 0 . . . 0 0
0 Cn Dn . . . 0 0
0 0 Cn−1 . . . 0 0
...

...
...

...
...
...

...
...

0 0 0 . . . C2 D2

0 0 0 . . . 0 C1


,

and ρi = α(−S)−i1 are the reduced moments with

πi = ρ−1i α(−S)−i, Ci = ∆(πi)
−1S′∆(πi), Di =

ρi−1
ρi

∆(πi)
−1∆(πi−1).

For the phase-type case we also gave an alternative forward representation
as Corollary 3.6 in [27].

Corollary 4 (Corollary 3.6 in [27]) The nth order moment distribution
of a phase-type distribution with representation (α,S) has a phase-type rep-
resentation (α†n,S

†
n) with

α†n = (ρ−1n α∆n,0,0, . . . ,0)

S†n =


∆−1n S∆n ∆−1n ∆n−1 0 . . . 0

0 ∆−1n−1S∆n−1 ∆−1n−1∆n−2 . . . 0
0 0 ∆−1n−2S∆n−2 . . . 0
...

...
...

...
...
...

...
0 0 0 . . . S

 ,

with ∆n = ∆(ρn), ρn = (−S)−n1 and ρn = αρn.

The probabilistic interpretation for the first order moment distributions was
also considered in [27].

Size-biased distributions have applications in engineering. In particular,
the first order moment distribution is used in financial engineering. The
Gini Index and the Lorenz Curve are descriptors calculated from the first
order moment distribution that are used to describe inequality in income
distributions, where the Gini index is the descriptor used most frequently.
These quantities are readily expressed for matrix-exponential distributions
through
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Theorem 5 (Theorem 4.1 of [27]) Let F be the distribution function of
a matrix-exponential distribution with representation (α,S, s), where s =
−S1. Then the Lorenz curve is given by the formula

γ : t→
(

1−αeSt1, 1− αS−1

αS−11

(
eSt1 + teSts

))
and the Gini index G by

G = 2(α⊗α1) (− (S ⊕ S1))
−1 (s⊗ 1)− 1.

2.2 Markovian and rational arrival processes

The construction in Equation (2.1) can be generalised. The term sα/α1
associated with successive visits to the absorbing state and thus to points
occurring in the point process (the renewals) is a rank one matrix of non-
negative entries. By allowing for a general non-negative matrix associated
with the occurrence of points in the point process one obtains the Markovian
Arrival Process - the MAP.

Consider a generator (probability transition) matrix D for a finite di-
mensional Markov chain and its decomposition into an at most countable set
of matrices such that D =

∑∞
i=0Di. If Di ≥ 0 for i ≥ 1, all off-diagonal

elements ofD0 are non-negative, andD1 = 0, (1) in the continuous (respect-
ively discrete) case, then the entries of the matrices Di can be interpreted
as arrival rates for occurrences of points with characteristic - or mark - i.
Such a process is a marked point process, termed a marked MAP or MMAP
in [47] when the underlying point process is a MAP as here. Quite frequently
the mark i will be associated with the arrival of i homogeneous customers or
items, in which case the process is called a Batch Markovian Arrival Process
(BMAP), or simply a MAP whenever there is only one non-zero matrixD1 of
arrival intensities. The finite dimensional distribution of the first n intervals
and types of the marks is given by the joint density

f(t1, i1, t2, i1, . . . , tn, in) = αeD0t1Di1e
D0t2Di2 . . . e

D0tnDin1. (2.3)

Here tj is the time between the j − 1st and jth arrival, and ij is the type of
the jth mark, with the convention that there is an arrival at time 0. For the
important special case of a MAP we have no distinction between the different
points such that Di1 = D1.
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The rational arrival process

The class of rational arrival process (RAP) is defined in [11] as the class of
point processes where the prediction process has a version that belongs to
a finite dimensional sub-space. The main result of [11] is that RAPs can
be equivalently characterised as the point processes with finite dimensional
distributions given by Equation (2.3). The process class has also been con-
sidered in [60] as a cascading sequence of matrix exponentials but without
the complete characterisation of [11]. The RAP generalises the MAP in a
way similar to the way the ME distributions generalise PH distributions.

Time reversal

Following [15] or [73], we restate Definition 1 of [4] as

Definition 6 (Definition 1 of [4]) The time reverse of the MAP (D0,D1)
is the MAP (D̃0, D̃1) with D̃i = ∆(π)−1D′i∆(π), i = 0, 1 where π is the
stationary probability distribution satisfying πD = 0 and ∆(π) is a diagonal
matrix with the components of π as diagonal elements.

MAP properties

Let N(t) be the number of arrivals (counts) in (0, t]. It is customary in
applied probability to use transform expressions when calculating moments.
For the BMAP we have the generating function

E
(
zN(t)

)
= H?(z, t) = αeD(z)t1, (2.4)

where D(z) =
∑∞

i=0 z
iDi. The Index of Dispersion for Counts (IDC) is

defined as IDC(t) = Var(Nt)/E(Nt), i.e., as the ratio of the variance of
Nt to the corresponding variance which is 1 in the case of a Poisson arrival
process [38, p. 72]. The IDC(t) can be calculated by taking first and second
derivatives in Equation (2.4). The IDC(t) is most frequently used for time
stationary versions of MAPs and BMAPs such that the initial vector α is
equal to π. For a time stationary MAP the IDC(t) is given as (see e.g. [62])

IDC(t) = 1− 2λ? +
2

λ?
πD1(Π−D)−1D11 (2.5)

− 2

λ?t
πD1(I − eDt)(Π−D)−2D11

where Π = 1π and λ? = πD11. A stationary sequence of inter-arrival
times is obtained by initiating the process according to the vector φ which
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is obtained from the embedded Markov chain with the value of the state
immediately after an arrival. The transition probability matrix P of this
embedded Markov chain is given by

P = (−D0)
−1D1. (2.6)

The vector φ is then obtained by solving φ = Pφ, where some states of P
might be ephemeral such that the corresponding entries of φ are zero.

Now let Sn =
∑n

i=1Xi be the sum of the first n inter-arrival intervals
in the interval stationary version of the process. The Index of Dispersion
for Intervals (IDI) is defined as IDI(k) = (λ?)2

k
Var(Sk), i.e., as the ratio of

the variance of Sn to the corresponding variance in case of a Poisson arrival
process [38, p. 71].

Theorem 7 (Theorem 1 of [6]) The IDI for a MAP - (D0,D1) is

IDI(n) = 2λ?π(I − (−D0)
−1D1 + Φ)−1(−D0)

−11− 1

− 2
n
λ?π(I − (−D−10 D1)

n)(I − (−D0)
−1D1 + Φ)−2(−D−10 D1)(−D0)

−11

with Φ = 1φ.

Using an alternative normalisation in the expression for the IDI one gets
the Index of Variation for Intervals (IVI). For the IVI, we normalise by the
marginal variance of the process itself. Thus, the IVI is the sequence of di-
mensionless constants IV I(n) = Var(Sn)[nVar(S1)]

−1. The IVI is a measure
of the variability in the Sn that is due to the dependence of the successive
intervals. The normalisation with nVar(S1) can sometimes be more natural
as the IVI is 1 for a renewal process.

Calculation of matrix exponentials using uniformization

The calculation of the exponential of a matrix is a frequently occurring op-
eration when dealing with ME distributions and RAPs, and of course PH
distributions and MAPs. The calculation of the exponential of a generator
matrix can be done surprisingly efficiently and in a numerically stable manner
using a method called uniformization, even though in general, the calculation
of the matrix exponential is challenging. The uniformization formula is

eQx = e−ηx
∞∑
n=0

(ηx)n

n!
Ki (2.7)

where η must be chosen to be at least as large as the largest absolute
value on the diagonal of Q and K = I + η−1Q. This ensures that K is
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a stochastic matrix, whenever Q is a generator, while K is a sub-stochastic
matrix, wheneverQ is a sub-generator. The infinite matrix sum involves only
bounded non-negative entries, and an exact upper bound for the truncation
error can be derived from the Poisson weighting factors (ηx)n

n!
e−ηx.

The calculation of the probability distribution of N(t) has been addressed
in [65] for a BMAP. The matrix P (n, t) with (i, j)th entries P (N(t) =
n, J(t) = j|J(i) = 0) can be efficiently computed using the uniformization
algorithm, with J(t) being the state of the Markov chain at time t. The
recursion scheme for a MAP is

V (0, 0) = I P (0, t)← V (0, 0)b0

for n ≥ 1

V (n, 0) = 0 P (n, t)← 0

for 1 ≤ k ≤ N

V (n, k) = V (n, k − 1)K0 + V (n− 1, k − 1)K1 (2.8)
P (n, t)← P (n, t) + V (n, k) (ηt)

n

n!
e−ηt, (2.9)

with η = maxi |(D0)ii|, K0 = 1
η
D0 + I, and K1 = 1

η
D1. We will apply

this algorithm in Section 3.2 where we will describe its use in relation to an
estimation problem described in [66]. In [69] uniformization was used to cal-
culate the non-central moment matrices Θq(t), given by their (i, j)-elements.
For t ≥ 0, q ∈ N0 we have [Θq(t)]ij = E (N q(t)δ (J(t) = j) |J(0) = i) , where
δ (A) is the indicator function of the event A. Corollary 3.4.1 of [69] gave a
formula for numerical evaluation of Θq.

Corollary 8 (Corollary 3.4.1 of [69]) The matrices Θq (q ≥ 1) are given
by

Θq(t) = e−ηt
q∑

n=1

∑∑n
r=1 qr = q
qr ≥ 1

∞∑
k=0

q!

q1! · · · qn!

(ηt)k+n

(k + n)!
Eq1...qn(k),

with

η ≥ max
i

(−Dii), D
∗
n =

∞∑
i=0

inDi, K = I +
1

η
D, K∗n =

1

λ
D∗n,

E∅(k) = Kk, Eq1...qn(0) =
n∏
r=1

K∗qr ,

Eq1...qn(k + 1) = Eq1...qn(k)K +Eq1...qn−1(k + 1)K∗qn .

Uniformization was also used in [21, 36] which will be described in Chapters 3
and 5.
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Phase-type distributions and Markovian arrival processes, to a lesser extent
matrix-exponential distributions and rational arrival processes, have been
used extensively for modelling stochastic systems, particularly in queueing
contexts, but also in the context of risk models and for modelling financial
systems. Models and applications based on data are significantly less com-
mon, this is probably due to several factors. Most noticeable among these is
an inherent problem of the models stemming from their flexibility; the num-
ber of free parameters is large contrary to the principle of parsimony which
is hailed in statistics. A different, yet related, reason is that the theory on
statistical inference for these models is still at a relatively undeveloped stage
which manifests itself in the sparsity of readily available and reliable software
packages.

In this chapter we describe our contributions to the estimation area. The
original work was [66] on estimation of parameters in the Interrupted Pois-
son Process (IPP) [53] with applications to Fisheries Science to be described
in Section 3.2. Some of the ideas of that paper were followed in [21] which
compares the EM algorithm with a quasi-Newton method with explicit cal-
culation of the gradient for the optimisation of the likelihood function. The
paper also provides an explicit algorithm for the calculation of the Fisher
information matrix. The interpretation of the Fisher information matrix is
useful in cases using non-redundant canonical forms that remove the problem
of over-parameterisation.

3.1 Estimation in phase-type models

Early works on estimation in PH distributions were based on more or less
heuristic approaches minimising various criteria [2, 30, 34] or moment match-
ing [49, 50, 78]. Initial work [31, 32, 33] based on the maximum likelihood
principle was followed by the now dominant approach [12] using the EM al-
gorithm. Estimation based on a Bayesian approach using the Markov Chain

29
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Monte Carlo method has been reported in [23] and [59]. In [23] the problem
of non-uniqueness of PH representations is avoided by estimating functionals
of PH distributions rather than the parameters of the distributions. Very
little work has been reported on the uncertainty of parameter estimates.
One exception is [43] that reports uncertainty estimates but apparently from
a purely numerical perspective using standard software.

The approach taken in [12] is to view the problem of estimating para-
meters in phase-type distributions as a missing data problem. The missing
information is the realised path behaviour of the underlying Markov chains
associated with the different times of absorption. The EM algorithm [40] is
particularly well suited in such settings and in [12] formulae for the E and
M steps are given. The matrix C(y) given by the integral in Equation (3.1)
is used in the E step of the algorithm to calculate the expected time spent
in each state given the observed value of the absorption time y and the cur-
rent values (α,S) of the parameters. In [12] the matrix-exponential and
the integral given in Equation (3.1) were evaluated solving systems of linear
differential equations using a Runge-Kutta method. An alternative way is
to use uniformization as in Equation (2.7). We took this approach in [21],
while a similar approach has been taken by [51] for the case of estimating
parameters in the BMAP. Our method is slightly different from that of [51]
although the basic idea is the same. The evaluation using uniformization is
given by

C(y) =

∫ y

0

eS(y−u)sαeSudu = e−ηy
∞∑
s=0

(ηy)s+1

(s+ 1)!
KC(s), (3.1)

which was Equation 1 of [21] where KC(s) =
∑s

j=0K
j 1
η
sαKs−j. The

matrices KC(s) may be calculated recursively. For large values of the ar-
gument y the matrix function C(y) can be evaluated using

C(x+ y) = eSxC(y) +C(x)eSy.

This formula can also be used to calculate C(x+ ∆x), using previous terms,
improving the efficiency considerably.

One of the strengths of the uniformization method is the exact upper
bound that can be given on the absolute truncation error since the weighting
factors can be interpreted as the probability mass function of the Poisson dis-
tribution. A similar exact upper bound on the truncation error can be given
when determining an upper limit for the truncation of the sum involved in
calculating C(y). To see this, we will consider the first moment distribution
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of the Poisson distribution given by

qi =
i · λi

λi!
e−λ, i = 0, 1, 2, . . . , ,

(
or qi =

λi−1

(i− 1)!
e−λ, i = 1, 2, . . .

)
.

Thus the Poisson distribution is in a sense closed under size biasing albeit
shifted to the right. All row sums of KC(s) are bounded by s + 1 and we
can obtain the lower bound for the truncation limit from the size biased
distribution of the Poisson distribution, which happens to be the standard
uniformization truncation limit plus one.

The Newton-Raphson method described in [21] was based on an expli-
cit calculation of the gradient. Equation (4) of [21] has the same structure
as (3.1) and the determination of the truncation level from the Poisson dis-
tribution applies here as well. The two methods had equal performance in
the cases we investigated.

Finally in [21], similar numerical techniques were applied to calculate
the Fisher information matrix for both the EM method and the Newton-
Raphson approach. Phase type distributions with upper bidiagonal repres-
entation of the sub-generator S have unique canonical forms avoiding the
usual over-parameterisation of PH distributions. One specific type of upper
diagonal representation is commonly referred to as a Coxian representation.
The Fisher information was calculated for such Coxian PH representations
to evaluate the uncertainty of parameter estimates.

3.2 Estimation of MAP parameters from count-
ing information

In [51] the approach of [12] was generalised to the setting of fitting data
to observed inter-arrival times of a BMAP. Previous work in this direction
is [75, 76, 77]. However, when point processes are observed, it is frequently
the case that only information on counts obtained during specific time in-
tervals is available, rather than the more detailed information of arrival
instances. We investigated one such case in [66]. The feeding pattern of
predatory fish is not well understood, yet under the assumption of constant
digestion times, the number of fish in the stomach of a predatory fish can
roughly be considered as the number of prey items caught during the previ-
ous time interval of a length corresponding to the digestion period. Other
similar contexts include observation of packet counts during intervals of fixed
lengths in communication systems. The predation process was modelled as
an interrupted Poisson process, where predators forage either in a patchy
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environment of prey encountering prey with a rate of λ or move between
patches without feeding opportunities. The rate ω1 of leaving a patch and
the patch encounter rate ω2 are both constant in the IPP scenario [19]. The
IPP is a PH renewal process that can be expressed as a MAP(D0,D1) with

D0 =

[
−(λ+ ω1) ω1

ω2 −ω2

]
, D1 =

[
λ 0
0 0

]
. (3.2)

We estimated the parameters of the model by optimising the log-likelihood
function l(θ,x) where θ = (λ, ω1, ω2). With nx denoting the number of fish
with exactly x prey items in the stomach the optimisation problem can be
stated as

max
θ

l(θ;x) = max
θ

xmax∑
x=0

nx log (πP (x, t0)1),

where P (x, t0) is calculated using Equation (2.9). The gradient of l(θ;x) is
given by

∂l(θ;x)

∂θi
=
∂π

∂θi

xmax∑
x=0

nx
πP (x, t)1

P (x, t)1 + π
xmax∑
x=0

nx
πP (x, t)1

∂P (x, t)

∂θi
1.

By differentiation in Equation (2.8) and (2.9) we obtain ∂P (x,t)
∂θi

through

V (0, 0)′i = 0

V (n, k)′i = V (n, k − 1)′iK0 + V (n, k − 1)K0
′
i

+(V (n− 1, k − 1)′iK1 + V (n− 1, k − 1)K1
′
i)δn>0

P (n, t)′i ← P (n, t)′i + bn
′
iV (n, k) + bnV (n, k)′i ,

where δ(n > 0) is 1 when n > 0 and 0 when 0 ≥ n. The partial derivatives
of K0 and K1 are calculated by basic rules of differentiation. In [66] the
algorithm was tested on an exhaustive simulation study. The study showed
that reliable estimation results can be expected already for moderate sample
sizes, whenever the parameter values of the IPP are not too extreme.

In addition, the estimation algorithm was applied in [66] for a data set
of cods feeding on capelin. Data was given in the form of number of capelin
found in the stomachs of cods partitioned according to the length distribution
of the cods. Table 3.1 presents the estimation results. Goodness-of-fit tests
for the applicability of the IPP model were accepted at the 5% significance
level for all length classes, except class 3. The p-value for the class 3 goodness
of fit test was 1%. All fits were significantly better than those obtained with
a Poisson distribution as evaluated by the difference in log-likelihood.
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Class LHIPP LHPP MLE
ω̂1(σ̂ω̂1) ω̂2(σ̂ω̂2) λ̂(σ̂λ̂) λ̂∗

1 -136.6 -154.7 1.54(1.75) 0.97(0.55) 3.70(1.45) 1.4
2 -214.0 -290.5 13.26(31.02) 1.68(0.52) 28.40(52.36) 3.2
3 -298.2 -517.0 5.14(3.14)? 1.26(0.23)? 27.18(10.49)? 5.3
4 -288.7 -558.4 3.38(1.50) 1.23(0.23) 29.59(6.79) 7.9
5 -256.0 -595.0 2.27(0.76) 1.22(0.23) 36.20(4.78) 12.7
6 -205.2 -542.1 3.32(1.40) 1.25(0.26) 52.54(10.59) 14.4

Table 3.1: Estimation results for cod-capelin data: The value of the IPP log-
likelihood function at maximum (LHIPP ), the value of the Poisson log-likelihood
function, the maximum likelihood estimates (λ̂, ω̂1, ω̂2), the estimated fundamental
rate (λ̂∗). ? symbolises a rejected goodness of fit test result.

λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 ω̂1 ω̂2

σ̂λ̂1 σ̂λ̂2 σ̂λ̂3 σ̂λ̂4 σ̂λ̂5 σ̂λ̂6 σ̂ω̂1 σ̂ω̂2

5.33 12.14 21.40 30.09 44.54 53.98 3.53 1.27
1.00 1.97 3.15 4.43 7.34 7.99 0.87 0.12

Table 3.2: Estimation result in the reduced model - parameters (first line) -
and their estimated standard deviation (second line).

The similarity of the ω2 estimates over length classes (Table 3.1) is striking
suggesting that the model provides some valid biological information. The
biological interpretation of the model suggests that a reasonable hypothesis
is ωi1 = ω1 and ωi2 = ω2. Formally, the sum of the log-likelihood values is
1398.7 for the reduced model with ωi1 = ω1 and ωi2 = ω2 to be compared
with 1401.2 for the model with different values of the ωs for each length
class. The test statistic is 5 which is clearly insignificant when compared
to a χ2(10) distribution. The parameter estimates obtained in this reduced
model are given in Table 3.2.
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4 Sensitivity analyses

One of the main attractions of the Markovian Arrival process is that it of-
fers the opportunity to perform numerical calculations relatively easily. Fre-
quently stochastic models are hard to analyse analytically when one goes bey-
ond standard features such as steady state probabilities for simple queueing
systems. Hence in order to gain insight into models and systems one must
resort to computer experimentation using simulation or well-designed nu-
merical experiments whenever the latter is feasible. Even though simulation
might be faster in quite a few cases it is more satisfactory to make explicit
calculations where potential errors can be ascribed solely to implementation,
truncation, or to finite precision calculations. In many cases it is possible
to give error bounds when working with Markovian arrival processes and
phase-type distributions. In this section we will describe some studies where
the numerical tractability of the Markovian models has served as a means to
obtain generic insights into queueing systems.

4.1 Predictive power on queueing from second
order properties

Throughout the 80s and 90s quite a few studies were published approxim-
ating arrival processes by second order properties only, or fitting processes
from data using moment estimates, again generally based only on second or-
der information. In [6] we addressed the effect on queueing behaviour when
varying third order properties of arrival processes, either fixing second order
properties of counts or second order properties of intervals. Not surprisingly,
the study demonstrated that queueing behaviour could vary substantially
even in simple cases of models with few free parameters. The IDC for a
MAP is given by Equation (2.6). It is possible to construct a sequence of
two-state MAPs that all have the same rate and IDC. Each two state MAP
of [6] was a Switched Poisson Process (SPP) [81], which is a superposition of
an IPP and a Poisson process. The state corresponding to the active state of

35
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Figure 4.1: (Figure 1 in [6]) Probability that the queue length ex-
ceeds x for a number of SPPs with fixed rate and IDC

the IPP provides a regime with high activity while the state corresponding
to the passive state of the IPP provides a regime with low activity. This
construction with a sequence of SPPs was used to make Figure 4.1 (Figure 1
in [6]). The figure demonstrates that the queue length cannot be adequately
predicted from first and second order properties of the counting properties.
Correspondingly, one can construct a sequence of two-state MAPs with fixed
rate and IDI, where the IDI can be calculated using Theorem 7. Figure 4.2
(Figure 4 in [6]) is based on this idea. It is evident that second order proper-
ties of the interval process alone do not suffice to give reasonable prediction
of queueing behaviour either.

The study raised the question whether simultaneously fixing second order
properties of both the stationary versions of the counting and the interval
processes would give a good prediction of queueing behaviour. This question
was settled in the negative in [4]. The key observation to reach that conclu-
sion was that a Markovian arrival process and the time reversed version of it
have identical first and second order descriptors for the time stationary and
interval stationary properties. We hence constructed a MAP that, used as an
input process to a queue, gave rise to a somewhat different queueing beha-
viour than what would be obtained using the time reversed version. Before
giving the queueing examples at the end of the section we demonstrate that
a MAP and its time reversed version have the same first and second order
properties of both the interval and counting processes. Theorem 3.1 of [4]
stated that the marginal distribution of counts in intervals of fixed lengths
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agree between a MAP and its reverse.

Theorem 9 (Theorem 3.1 of [4]) The marginal distributions of N(t) for
the time stationary version of a MAP and its reverse are identical. In terms
of the transforms,

H?(z, t) = H̃?(z, t),

where H?(z, t) = πexp((D0 + zD1)t)1 and H̃?(z, t) = πexp((D̃0 + zD̃1)t)1.
The marginal distributions of N(t) are identical for the interval stationary

versions of a MAP and its reverse. In terms of the transforms,

J?(z, t) = J̃?(z, t),

where J?(z, t) = φexp((D0 + zD1)t)1 and J̃?(z, t) = φ̃exp((D̃0 + zD̃1)t)1.

From that result it follows immediately that second order properties of the
counting process also agree between a MAP and its reverse. This was stated
as Corollary 3.2 of [4].

Corollary 10 (Corollary 3.2 of [4]) The following descriptors agree for a
MAP and for its reverse:

1. The variance time curve, the IDC, and the peakedness functional [41],

2. The square wave power spectral density (SQSD).
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The result for interval properties, similar to Theorem 9 for counting proper-
ties, was stated as Theorem 3.3 in [4].

Theorem 11 (Theorem 3.3 in [4]) For all n ≥ 1, the distributions of the
time between the kth and the (k + n)th arrival are identical for an interval
stationary point process and for its reverse. Equivalently, the distributions of
Sn and S̃n are identical for all n ≥ 1.

Also in this case the properties regarding second order properties follow im-
mediately, stated as Corollary 3.4 of [4].

Corollary 12 (Corollary 3.4 of [4]) The following descriptors agree for a
MAP and the corresponding reversed MAP:

1. The marginal distributions of the inter-arrival times.

2. The variance of Sn and S̃n, and therefore also the IDIs and IVIs.

We give an important definition following the lines of [58]. The definition
was Definition 2 of [4].

Definition 13 (Definition 2 of [4]) Two point processes are stochastic-
ally equivalent (SE) if for any n ≥ 1, the joint distributions of the first n
intervals agree.

This definition leads naturally to the following definition of a class of MAPs
(Definition 3 of [4]).

Definition 14 (Definition 3 of [4]) A MAP that is stochastically equi-
valent with its reverse is called reversible.

The existence of reversible MAPs should be immediate. Examples include

Theorem 15 (Theorem 4.1 of [4]) The following are special cases of re-
versible MAPs:

• Phase-type renewal processes

• Two-state MAPs

Another immediate result is (Theorem 4.2 of [4]).

Theorem 16 (Theorem 4.2 of [4]) The superposition of the reversed ver-
sions of two independent MAPs is identical to the reverse of the superposition
of these MAPs.
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Consequently to create a non-reversible MAP one would need a state space of
dimension at least 3. The construction used in [4] to demonstrate differences
in queueing behaviour between a MAP and its reverse was a 3-state process.
For the 3-state MAP, we selected the parameter values λ1 = 0, λ2 = 1, λ3 =
100, D0,12 = 5 · 10−4, D0,23 = 5 · 10−4, and D0,31 = 1. That MAP and its
reverse were used as input in a MAP/M/1 queue. The MAP cycles through
the three phases in such a way that the intensity increases and then drops
sharply. Conditioned on state 1 there is no input to the queue and the queue
length decreases according to a Poisson process; conditioned on being in state
2 the queue is just stable with usual random fluctuations, while conditioned
on state 3 the queue is highly unstable. In general the queue length will
be moderate when state 3 is entered, and a short period of overload can be
compensated by the following longer stay in state 1. For the reversed process,
however, the short period with overload is followed by a longer period with
only very little excess capacity to get rid of the unfinished work that remains
from the sojourn in state 3, and the queue will recover slowly. Choosing
the mean of the exponential server to obtain a traffic intensity of 0.5, we
computed the tail probabilities of the steady-state queue lengths. These are
shown in Figure 4.3. The difference in queueing behaviour is striking, finally
settling that combined second order properties of counts and intervals by no
means can be used as predictors of queueing behaviour. Some suggestions
for descriptors that might add predictive power were also presented in [4]
but the conclusion must be that more specific studies of data related to the
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particular application in mind need to be performed.

4.2 Sensitivity analyses of alternating processes

The work reported in this section is yet unpublished work jointly performed
with Marcel Neuts. Our starting point will be that of an arrival process
in an environment alternating between two sets S1 and S2 of states. Both
sets are finite with p1 and p2 states respectively. The sojourn times of visits
to S1 and S2 will be phase-type distributed with representation (α1,S1) and
(α2,S2) respectively. The Markov chain describing the successive alterations
will be used as modulator for an ON-OFF type process. We have Poisson
arrivals with intensity λ1 whenever the alternating process is in S1 and Pois-
son arrivals with intensity λ2 whenever the alternating process is visiting S2.
This model can be formulated as a MAP. When each subset consists of only
one state our model reduces to that of a Switched Poisson Process (SPP).
Further, if one of the arrival rates is zero the model reduces to that of an
IPP, see Equation (3.2). The parameter matrices (D0,D1) of the MAP are
appropriately partitioned by

D0 =

[
S1 S12

S21 S2

]
−D1 with D1 =

[
λ1I 0
0 λ2I

]
.

The dimension of Sij is pi × pj.
The essential part of this section is on alternative choices for the matrices

S12 and S21 which preserve the marginal distribution of the sojourn times
in S1 and S2 while allowing for dependence between these sojourn times.
The motivation for such an analysis is that in general it would be much
easier to establish the marginal distributions of the sojourn times in each
of the two sets, than to get information on the dependence structure, while
the dependence structure might still have importance for the system under
investigation. Specifically, we will address the problem of choosing S12 and
S21 such that the correlation between these sojourn times is either maximised
or minimised. In the case of general S12 and S21 the successive sojourn
times in the two sets will still be phase-type distributed with a possibly
complicated dependence structure. The marginal distributions of the two
sojourn times are given by PH distributions with representations (φ1,S1)
and (φ2,S2) respectively. To find the two vectors φ1 and φ2 we consider the
MAP where events correspond to the times of entering each of the sets. This
MAP has parameter matrices (E0,E1) given by

E0 =

[
S1 0
0 S2

]
, E1 =

[
0 S12

S21 0

]
.
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The embedded Markov chain of the state immediately after an event is given
by Equation (2.6) and we get

P =

[
0 (−S1)

−1S12

(−S2)
−1S21 0

]
.

The event stationary vector φ = (φ1,φ2) corresponding to the events of
entering subset S1 is the unique solution to the system of equations

φ = φP

which partitions into

φ1 = φ2(−S2)
−1S21,

φ2 = φ1(−S1)
−1S12.

As φi should be proportional to αi we see that we need to choose S21 and
S12 such that the following two equations are satisfied

α1 = α2(−S2)
−1S21, (4.1)

α2 = α1(−S1)
−1S12.

We always have a feasible solution corresponding to the case of independent
sojourn times

S12 = −S11α2 S21 = −S21α1. (4.2)

Since for fixed parameters (α1,S1) and (α2,S2) the means and variances
are fixed, maximisation or minimisation of correlations reduces to the prob-
lem of maximising or minimising the first cross moment, or the expected
product, of the generic sojourn times X1 and X2. The joint Laplace-Stieltjes
transform of the two sojourn times is given by

H(s1, s2) = E
(
e−s1X1−s2X2

)
=

1

2
α1(s1I − S1)

−1S12(s2I − S2)
−1(−S2)1

+
1

2
α2(s1I − S2)

−1S21(s2I − S1)
−1(−S1)1

which upon differentiation with respect to s1 and s2, and letting s1, s2 tend
to 0 gives the expression for the first cross moment

E(X1X2) =
1

2
α1(−S1)

−2S12(−S2)
−11 +

1

2
α2(−S2)

−2S21(−S1)
−11.
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It is this expression we want to maximise or minimise, subject to the two sets
of linear constraints given in (4.1). We find it convenient to introduce the fol-
lowing re-parameterisation R1 = (−S1)

−1S12 and R2 = (−S2)
−1S21. With

this reformulation we can restate our problem in the case of maximisation as

max
R1,R2

α1(−S1)
−1R1(−S2)

−11 +α2(−S2)
−1R2(−S1)

−11

R1 ≥ 0, R11 = 1, α1R1 = α2, −S1R1 ≥ 0,

R2 ≥ 0, R21 = 1, α2R2 = α1, −S2R2 ≥ 0.

The matrix R1 is a p1 × p2 transition probability matrix whose (i, j)th ele-
ment gives the probability, that if the first phase-type distribution exits from
state i then the second phase-type distribution will start in state j of that
distribution. This matrix and the corresponding matrix R2 of probabilit-
ies constitute the decision variables of our optimisation problem. Thus we
have formulated the problem as a standard linear programming problem with
easily interpretable decision variables, coefficients, and constraints. The con-
straints of the problem do not guarantee that the Markov chain is irreducible.
In the case of a reducible Markov chain the optimisation problem gives an
upper, respectively lower, bound on the correlation.

As an example we will consider a case where the sojourn time distribu-
tions in each regime are given by mixtures of four Erlang2 distributions with
means of 2, 20, 200, and 2000, and with mixture probabilities of 0.85, 0.12,
0.025, and 0.005. The mean and standard deviation of the sojourn time dis-
tribution are 19.1 and 1451 respectively. With these values the supremum
of the correlation of the sojourn times becomes 0.6627 and the infimum of
the correlation becomes -0.0094. The minimum in the optimisation problem
is attained by an irreducible MAP, while the parameter matrices that solves
the optimisation problem corresponds to a reducible MAP. To construct an
irreducible MAP a small perturbation using independence between the two
sojourn times as expressed in Equation (4.2) is added to get (1−ε)R12+ε1α2

and (1−ε)R21+ε1α1 respectively. The parameter ε can be chosen sufficiently
small such that the correlation of the sojourn times with four significant digits
is 0.6627. The arrival rate λ in the active regime is set to 4. The MAP with
these parameters is fed to a single server queue with an Erlang2 distribution
of mean 0.4. The effect of the optimisation of correlation is demonstrated in
Figure 4.4 and Figure 4.5.

High correlation is beneficial to the queue as long periods with overload
tend to be followed by long silent periods. The correlation of the minimum
is not that far from 0 but nevertheless contributes to a more variable queue
as long periods with overload tend to be followed by small silent periods
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such that a queueing event can survive a silent period with even more queue
buildup in a possible second long period with overload.

4.3 Effects from random permutations of point
processes

Another sensitivity study is [5]. The Poisson process has been applied suc-
cessfully since the days of Erlang for the modelling of fresh traffic for tra-
ditional telephone systems. As telecommunications became digitised, pack-
etised and in particular automised a significant part of traffic became only
indirectly created by human activity. The variation in data traffic caused by
for instance very long data files resulted in traffic patterns with a variability
that far exceeded that of the Poisson process. In the early 90s a number of
studies were published documenting this huge variability in packetised traffic
processes, particularly the now famous Bellcore traces [57]. It was claimed
that this huge variability called for a paradigm shift in queueing theory, see
e.g. [45].

Among the studies claiming the need for such paradigm shift was [42] that
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became quite influential. The study concluded that long term rather than
short term correlations in traffic processes gave rise to highly varying queue
length behaviour in communications systems. The conclusion was reached by
making simulations using random permutations referred to as internal and
external shuffling. For both shuffling schemes a sample of measurements will
be divided in blocks of a certain size m. Internal shuffling consists of random
permutations of the samples within each block while keeping the sequence
of the blocks, while external shuffling consists of randomly permutating the
blocks while keeping the sequence within each block unchanged. In [5] we
demonstrated that internal and external shuffling have a more subtle influ-
ence on the correlation structure of a process than what was communicated
based on intuitive arguments in [42]. This can be seen in Figure 4.6 (Fig-
ure 1 of [5]). Internal shuffling merely averages the correlations of small lags
rather than destroying them, thus leaving the process somewhat less altered
than stated in [42]. The external shuffling not only removed long correla-
tions completely but at the same time reduced the short range correlations
drastically.

Even though the most important conclusions of [5] do not rely on MAP
formalism we have chosen to incorporate the paper as part of the thesis, as it
fits naturally with the other contributions on sensitivity. In [5] explicit con-



4.3 Effects from random permutations of point processes 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80 90 100

co
r(k

)

lag k

Correlations of an exactly second order self similar process (H = 0.90)

Original process
Internally shuffled process (m = 25)

Externally shuffled process (m = 25)

Figure 4.6: (Figure 1 of [5])Correlations of a shuffled exactly second
order self similar process
(H = 0.75 and m = 25)

0

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50 60 70 80 90 100

Int
co

r(k
)

lag k

IAT correlations

Original process
Internally shuffled process (m = 25)

Externally shuffled process (m = 25)

Figure 4.7: (Figure 5 of [5])Interval correlations in a MAP with no
correlation in counts



46 Chapter 4 Sensitivity analyses

structions are given for the external and internal shuffling of a MAP (RAP)
but these constructions were not necessary to obtain the main conclusions
of the paper. One example of the applicability of MAPs is presented in Fig-
ure 4.7. The figure shows the effect on the correlations in the interval process
when shuffling is performed on a MAP with no correlation in the counting
process.



5 Application examples

Most of the contributions described in this thesis relate to theoretical res-
ults and, in particular, enhancements to the general theory. Nevertheless,
a primary motivation for our research has always been to demonstrate the
applicability and potential of the Markovian arrival process with extensions
for the design and analysis of technical systems, as well as for applications
in science. In this chapter we will focus on some contributions of this kind
of our own, acknowledging that many other significant contributions to the
field exist. While Chapter 4 on sensitivity analyses presents examples using
the framework to get generic insight into queueing models, in this chapter
we will present some concrete examples of applications.

As telecommunications has historically been a main application of queueing
theory, and applied probability in general, it should come as no surprise that
applications in this field abound. Queueing theory was in fact developed
from engineering applications by Erlang. Sections 5.1 and 5.2 contain ap-
plications in communications engineering. Recently, phase-type models have
also appeared in computer science applications, one of which is described in
Section 5.3.

5.1 Processes with excessive variability

The measurements documenting the high variability of packetised traffic as
described in Section 4.3 caused many researchers to claim that traffic mod-
els based on Markovian assumptions would become partly obsolete. In [8](a
preliminary version was published as [7]) we investigated the possibility of
modelling arrival processes with extremely high variability using more tradi-
tional models like the MAP. The model was inspired by self-similarity as a
superposition of a number d of independent SPPs, see Page 36, with logarith-
mically varying timescales. The algorithm, which is a heuristic, for parameter
selection is designed to ensure that the autocorrelation of the counting pro-
cess behaves like a power law function over a number of time scales. The

47
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Figure 5.1: (Figure 6 of [8])Correlations in counting process for
pOct.TL and fitted model

algorithm consists of three major steps.

1. The calculation of the logarithmic spacing between time constants of
individual sources.

2. Calculation of the magnitude of the arrival intensity in the high re-
gime for each SPP source relative to the source with the highest time
constant.

3. Calculation of the arrival intensity in the high regime for the SPP source
with the highest time constant and calculation of the sum of the arrival
intensities in the low regime of all the sources.

The result of the fitting procedure with respect to the second order prop-
erties of counts is illustrated in Figures 5.1 and 5.2. The three curves in
the figures represent the empirical correlation of one of the Bellcore data-
sets [57], the correlation of a MAP constructed by the heuristic to emulate
the Bellcore data, and the correlation of a slight modification of a second
order self similar-process. The paper ([8]) illustrated that the Markovian
arrival process is fully sufficient as an engineering tool for the modelling of
packet arrival processes, even in an environment of high variability and long
range correlation. As evident from the results presented in Section 4.1, suc-
cessfully fitting second order properties of counts is not necessarily sufficient
to obtain good prediction of queueing behaviour. Even the correlation in the
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Figure 5.2: (Figure 11 of [8])Correlations in counting process for
pAug.TL and fitted model

interval process followed a slightly different pattern than the Bellcore dataset
as can be seen in Figures 5.3 and 5.4. The queueing behaviour evaluated when
using the MAP as an arrival process deviated somewhat from the queueing
behaviour obtained from simulations using the Bellcore data [8]. In fact this
work partly inspired us to investigate which properties were most decisive for
queueing behaviour leading to [6] and later [4], as described in Section 4.1.
The model of [8] includes sufficient flexibility to optimise parameter selection
with respect to additional criteria like properties of the interval process, but
that line of research was not pursued extensively in [8].

5.2 Channel holding times in mobile networks

Another application is the modelling of channel holding times in mobile sys-
tems [36] under the influence of roaming customers. A preliminary version
appeared as [35]. The call holding time is the entire duration of a call, while
the cell residence time is the time a customer spends in a specific cell of the
mobile communication system. The channel holding time is the part of the
duration of a call that can be ascribed to a specific cell. Due to the mobil-
ity of customers and randomly varying signal strengths, the holding times of
channels in mobile communication systems differ from the call holding times.
In [36] we analysed this problem under the assumption of phase-type distrib-
uted call holding and cell residence times. While previous work had been
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Figure 5.3: (Figure 7 of [8])Correlations in interval process for
pOct.TL and fitted model
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performed modelling residence times or channel holding times using various
specific distributions [44, 72, 79], the contribution of [36] was to present a
unified treatment to the modelling of channel holding times. The main result
of the paper can be stated as

Theorem 17 Suppose the call holding times are given by a phase-type dis-
tribution with representation (β,T ), while the cell residence times are given
by phase-type distributions with representations (α0,S0) and (α,S) for the
first and successive cell residence times respectively. Then channel holding
times are phase-type distributed and a representation can be chosen as (γ,L)
with

γ =

(
α0 ⊗

β

βK0(I −K)−11 + 1
,α⊗ βK0 (I −K)−1

βK0 (I −K)−1 1 + 1

)
,

L =

[
S0 ⊕ T 0

0 S ⊕ T

]
.

where

K0 =
∞∑
k=0

k∑
l=0

k!

l!(k − l)!

(
I + η−10 T

2

)l
α

(
I + η−10 S0

2

)k−l
η−10 s0

2
,

K =
∞∑
k=0

k∑
l=0

k!

l!(k − l)!

(
I + η−1T

2

)l
α

(
I + η−1S

2

)k−l
η−1s

2
,

with η0 = max{|S0,ii| : 1 ≤ i ≤ n0, |Tii| : 1 ≤ i ≤ m} and η = max{|Sii| :
1 ≤ i ≤ n, |Tii| : 1 ≤ i ≤ m}.

The phase-type representation of the channel holding times was given as
formulae (22) and (23) of [36], while the formulae forK0 andK are (11) and
(12) of that paper. The matrices K0 and K can alternatively be determ-
ined from (9) and (10) of [36]. The uniformization technique was applied
to evaluate expressions involving matrix exponentials as in Corollary 8 and
Equation (3.1).

The conditional distributions of the channel holding time conditioned
on whether termination was due to a call termination or a call hand over
was derived using Theorem 17. The representations of these phase-type
distributions were given as (γV ,R) and (γW ,R) expressed by formulae (24),
(25), and (27) of [36].

It is natural to allow for correlated residence times. This was modelled
in [36] using a MAP model for the residence times. In this case the phase-
type representation (γ,Q) for the channel holding time had γ and Q given
by formula (35) and (36) of [36].
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5.3 Multivariate modelling of abstract computer
systems

An important aspect of formal verification of computer systems is model
checking pioneered by Clarke, Emerson, and Sifakis [37, 71]. A recent ref-
erence including a description of probabilistic model checking is [14]. Model
checking is based on a formal model description language, with semantics,
which, in many cases of probabilistic or stochastic model checking, will be
that of a discrete or continuous time Markov chain. A logical language is used
to establish queries about the system in question. The validity of the logical
queries is verified by the actual model checking with algorithms typically
developed in the Performance Evaluation field.

In [67] we contributed to the model checking toolbox by incorporating
models with rewards of different types. The rewards considered are state
rewards earned proportionally to the sojourn times spent in the transient
states of an absorbing Markov chain. The focus is thus on rewards earned
during the sojourns of the transient states in a phase-type distribution rather
than the time to absorption per se, although the absorption time is easily
incorporated using a reward of one in all states. A multivariate vector of
cumulated rewards is obtained by having different reward variables with dif-
ferent reward rates. We will use this construction extensively in Section 7.1.

The syntax for the model description language was given in Definition 1
of [67].

Definition 18 (Definition 1 of [67]) The language MRP of Markov Re-
ward Expressions consists of definitions D with process expressions E as an
auxiliary syntactic category:

E ::= λ.E | E + E | 0 | X | D
D ::= [X1{ann1}[rew1] := E1; · · · ;Xn{annn}[rewn] := En]i

ann ::= a1, · · · , an
rew ::= Y1 : r1; · · · ; Yn : rn

The semantics of the language is such that D and E statements are used
to express the underlying Markov chain, while rew statements express the
reward variables and the corresponding reward rates for each state. The
semantics was formalised in Definition 2 of [67] as a Labelled Continuous
Time Markov Reward Chain (abbreviated CTMCLSR).

The E and D expressions can be expressed in a fully explicit form such
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that
Xi{anni}[rewi] :=

∑
j

λij.Xj.

These statements define the states and the generator matrix Q of a continu-
ous time Markov chain such that Qij = λij for i 6= j. The diagonal elements
Qii ensure that the row sums of Q are zero. The rewards [rewi] encompass
the rows of a matrix R of reward rates while the annotations {anni} are
state labels not usually used in performance evaluation but central to the
computer science applications. These state labels contribute relevant model
information, examples could involve which part of a computer system would
be active in different states like printing or file transfers.

An important aspect of model checking is the possibility to ask questions
about the probabilistic behaviour of the model in a stringent and well defined
way using a logical language. These inquiries typically relate to the annota-
tions. The logical language used for formulating queries to be model checked
was defined in Definition 4 of [67]. The first two lines of the definition are
quite standard in stochastic logics while the two last, as repeated here,

Υ ::= c | Υ1 > Υ2 | Υ1/h | P[φ] | S[Φ]
| RY [C≤t] | RY [FΦ] | Rf [I

=t] | RY [S]
| Ef [φ]

f ::= Y | c | f + f | f ∗ f

contain some additional expressiveness. Particularly the Υ and f statements
support the possibility of constructing algebraic expressions of the reward
variables Yj. The following natural lemma, Lemma 2 of [67], provides the link
between the CSLMSR language for logical enquiries and the model checking.

Lemma 19 (Lemma 2 of [67]) Any moment expression f can be written
in the following normal form

f := Σi ci

(
Πm
j=1 Y

hij
j

)
where the powers hij indicate the order of the moments of the random vari-
ables.

Thus evaluating algebraic expressions of moments reduces to the evaluation
of expressions of the form

E
(

Πm
j=1 Y

hij
j

)
.

This evaluation of higher order moments and cross moments was performed
using Theorem 32 on Page 69 which we will discuss in more detail in Sec-
tion 7.1.
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6 Extensions of classical results

As mentioned previously, one of the main attractions in modelling arrival
processes and service processes with Markovian arrival processes and phase-
type distributions is the analytical and particularly the numerical tractability
of the resulting queueing models. This is most notable for queues of the
GI/M/1 type, M/G/1 type, and Quasi-Birth-and-Death (QBD) processes
as termed by Neuts [63, 64]. These two books by Marcel Neuts, the book
by Latouche and Ramaswami [55], and the book by Bini, Latouche and
Meini [20] treat the theory accessibly and comprehensively. The Markov
chains describing the queues are two dimensional with an integer component
L ∈ N called the level and a component J ∈ J called the phase, where J is
some general space. In the classical framework J is finite. One would expect
that the matrix-analytic results for the QBD process would still be valid
in cases where the arrival process of the queue is a rational arrival process
rather than a Markovian arrival process, and the service time distribution
is matrix-exponential rather than phase-type. This was stipulated in the
conclusions of [10] as well as of [11]. In [17] we showed that this is indeed
true and provided an alternative proof in [18].

We will give a brief summary of the main results of QBD theory that
are needed to put the contributions of [17] and [18] in perspective. This
will be done in Section 6.1. The approach taken in [17] was to properly
adjust the most recent arguments from [55, 74], to prove the validity of the
matrix geometric solution in the general setting of a Quasi-birth-and-death
process with rational arrival process (RAP) components. This is described
in Section 6.2. The pathwise arguments used in the traditional analysis no
longer apply. Rather, one needs to consider a process with less information,
where only level changes are observed. The information on phases carried
over at level changes can be interpreted as posterior probabilities of phases.
These probabilities, in turn, can be viewed as weights of measures. It turns
out that with this modification one can still apply the part of the argument
of [74] related to last entrance times. In the general setting of a QBD with
RAP components the entries of the weight vector can be negative, and the

55
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interpretation of the entries is then only that of a weight of a measure. This
approach was used in [17] to prove the validity of the matrix geometric solu-
tion for models with RAP components. In Section 6.3 we will briefly sketch
the setting of a structured Markov chain of the GI/M/1 type with a general
phase space for a discrete time Markov chain as described in [80]. This theory
is then applied in Section 6.4 to a Markov chain with a general state space
where the transition kernels can be expressed using orthonormal functions.
Finally, in Section 6.5 we provide an alternative to the proof presented in Sec-
tion 6.2 by considering the embedded Markov chain at level transitions. This
is a Markov chain of the type described in Section 6.3 and the theory of [80]
can be applied. It is not straightforward to find the measure of the phase so
the method is modified to deal with certain operators of the measure. For
queues with RAP components we need the expected value of the phase at
level changes. This approach was introduced in [18]. The formulation using
operators on measures actually includes the approach of Section 6.4 such that
the results of Sections 6.4 and 6.5 can be obtained in a unified framework.

6.1 Quasi-Birth-and-Death Processes

A Markov chain in continuous (or discrete time) is called a Quasi-Birth-and-
Death (QBD) process if its infinitesimal generator Q (transition probability)
matrix can be structured as

Q =


B1 B0 0 0 0 . . .
B2 A1 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...
...
...

 . (6.1)

Here the dimension of B1 is p0× p0 and the dimension of A1 is p× p. States
with index in 1, . . . , p0 are said to belong to level 0, while states with index
in [p0 + (`− 1)p+ 1, p0 + `p] where ` is a positive integer are said to belong
to level `. The most prominent example is that of a MAP/PH/1 queue,
that is a queue with a Markovian arrival process as input and phase-type
distributed service times. The key result is that the steady state vector π
partitioned according to levels can be expressed by

πi = π1R
i−1, (6.2)

where the matrix R is the minimal non-negative solution to the equation

R2A0 +RA1 +A2 = 0
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(in the continuous case). The matrix R in turn is connected to another
matrix G that solves the dual equation

A0 +A1G+A2G
2 = 0

via R = A0(−A1 −A0G)−1 (in the continuous case). Both R and G have
probabilistic interpretations. The vectors π0 and π1 are found from boundary
conditions and normalisation. It is customary to calculate G rather than R
using the logarithmic reduction algorithm described in [56] or some variant
thereof. This approach provides an accuracy check as the row sums of G
are one whenever the QBD process is stable. The traditional proofs of these
results are probabilistic in nature using the interpretation of the matrices Ai

as intensity or probability transition matrices.

6.2 Last entrance time approach

The starting point of the analysis is to interpret a QBD process as a random
walk on levels. The sojourn times of successive visits to the different levels
follow phase-type distributions with generator matrix A1 (B1 in the case of
level 0) and initial probability vector given as the unit vector with 1 in the
position corresponding to the entering state. Suppose that it is only possible
to observe level changes, and not the actual phase entered. Then the sojourn
time in each level would be phase-type distributed with the same generator
with an initial probability vector that would depend on the value of the
initial vector when the previous level was entered, the sojourn time in that
level, and whether the transition was to a level below or above. The QBD
process with rational arrival process components generalises this idea. The
QBD process with rational arrival process (RAP) components as defined and
analysed in [17] is constructed by allowing for matrix-exponential sojourn
times in levels. Given an initial weight vector of the matrix-exponential
distribution for a visit to a level, the initial vector of the subsequent level
visit is a function of the initial weight vector, the random sojourn time spent
in the level, and whether the next level to be visited is one above or one
below the level being left. The set of values that can be attained by the
weight vector A(t) is denoted by A, which is a convex compact subset of Rp

for some p ∈ N.
We consider the Markov process X(t) = (L(t),A(t)), where L(t) is the

level taking values in N0 = {0}∪N with N being the set of natural numbers,
and A(t) ∈ A. A key idea in the standard analysis of the QBD process
is to consider certain taboo probabilities of the process. This idea can be
applied with equal power for the QBD process with RAP components. Rather
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than considering the taboo probabilities of the Markov chain we consider
the taboo of a related yet different process {B(t)}. The process {B(t)}t≥0,
taking values in A, is the phase vector of weights of the censored process
consisting of level m only, measured in the local time of level m, and with
level m − 1 taboo. The time spent in level m before return to level m − 1
is phase-type distributed in the standard QBD case. This generalises to the
time spent being matrix-exponentially distributed in the extended case and
can be expressed as the lifetime of the {B(t)} process. This was stated as
Theorem 9 of [17].

Theorem 20 (Theorem 9 of [17]) The total lifetime `m(∞) of {B(t)}t≥0
is ME distributed, that is

P (`m(∞) > t|B(0) = a) = aeUt1,

for some matrix U .

The matrix G has an element-wise probabilistic interpretation in the stand-
ard QBD setting. Here the (i, j)th element gives the probability that the
first return to level m − 1 from state i in level m happens in state j. The
probabilistic meaning of the matrix G in the QBD process with RAP com-
ponents is as an operator on the row vector of weights. This interpretation
was stated as Theorem 11 in [17].

Theorem 21 (Theorem 11 in [17]) Let τn be the first passage time to
level n. For all a ∈ A, we have

Ψ(a) = E [A(τn−1)I(τn−1 <∞)|X(0) = (n,a)] = aG,

for a unique matrix G. Further, aG ∈ A, for all a ∈ A.

In the classical theory, the probabilistic arguments relate the matrices U and
G intrinsically as U = A1+A0G and G = (−U )−1A2. The validity of these
expressions was established as Corollary 13 and Lemma 14 of [17]. Finally,
the matrix R also has to be interpreted as an operator working on (mean)
weights of measures. This was stated as Theorem 17 of [17].

Theorem 22 (Theorem 17 of [17]) Assume that X(·) is an ergodic Mar-
kov process.

1. Let the vectors πn, n ≥ 0, denote limt→∞ E [A(t)I(L(t) = n)|X(0) =
(j,a)], then

πn+1 = πnR for all n ≥ 1,

with
R = A0(−U)−1.
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2. The vectors π0 and π1 satisfy

π1

(
A1 +B2(−B1)

−1B0 +RA2

)
= 0, π0 = π1B2(−B1)

−1,

subject to
π1

(
B2(−B1)

−11 + (I −R)−1 e
)

= 1.

6.3 Tweedie’s operator geometric results

Equation (6.2) holds for a generalisation of (6.1), which has has been termed
GI/M/1-type by Neuts [63]. When the phase space is some general set the
transition probability matrix of a discrete time Markov chain is replaced by
a transition kernel. If such a kernel has a GI/M/1-type structure then there
exists a stationary measure with an operator geometric form similar to the
classical matrix geometric result (6.2). In this section we describe this setting
of a discrete time Markov chain on a general state space where the kernel has
a GI/M/1-type structure. The framework is a Markov chain on the state
space N0 × J, where N0 = {0} ∪ N with N being the set of natural numbers,
and J is a general measurable space equipped with a sigma-algebra J . As in
Section 6.2, the two-dimensional Markov chain Xn has an integer component
Ln called the level and a component J with values in J called the phase.
The GI/M/1-type kernels of the Markov chain Xn = (Ln,Jn) considered by
Tweedie [80] are expressed by

P̂ (x, J) =


B̂1(x, J) Â0(x, J) 0 0 . . .

B̂2(x, J) Â1(x, J) Â0(x, J) 0 . . .

B̂3(x, J) Â2(x, J) Â1(x, J) Â0(x, J) . . .
...

...
...

 , (6.3)

where

Âi(x, J) = P (Ln = Ln−1 + 1− i,Jn ∈ J |Jn−1 = x) ,

B̂i(x, J) = P (Ln = 0,Jn ∈ J |Ln−1 = i− 1,Jn−1 = x) .

The invariant measure of Xn is of the form ν(·) = (ν0(·), ν1(·), . . .) ([80,
Theorem 2]) with

νi+1(J) =

∫
J
νi(dx)Ŝ(x, J), (6.4)

where the operator Ŝ(x, J) is the minimal non-negative solution to

Ŝ(x, J) =
∞∑
j=0

∫
J
Ŝj(x, dy)Âj(y, J), (6.5)
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and the operator Ŝj(x, J) is the jth iterate

Ŝj(x, J) =

∫
J
Ŝj−1(x, dy)Ŝ(y, J).

Equation (6.4) generalises Equation (6.2). In the Markov chain setting of
Neuts the operator equation (6.5) reduces to a matrix equation

∞∑
i=0

RiAi = R. (6.6)

The stationary measure ν0(·) at level zero, subject to normalisation, can be
found from

ν0(J) =
∞∑
j=1

∫
J

∫
J
ν0(dx)Ŝj−1(x, dy)B̂j(y, J), (6.7)

where, from Proposition 1 of [80],
∑∞

j=1

∫
J Ŝ

j−1(x, dy)B̂j(y, J) = 1 for all
x ∈ J.

Cases with more complex boundary behaviour are modelled by replacing
the kernel Â0 in the row block corresponding to level 0 with B̂0. It is straight-
forward that (6.4) is still valid for i ≥ 1 while (6.7) needs minor adjustments
and an additional equation is needed.

ν0(J) =

∫
J
ν0(dx)B̂1(x, J)

+
∞∑
j=1

∫
J

∫
J
ν1(dx)Ŝj−1(x, dy)B̂j+1(y, J), (6.8)

ν1(J) =

∫
J
ν0(dx)B̂0(x, J)

+
∞∑
j=1

∫
J

∫
J
ν1(dx)Ŝj−1(x, dy)Âj(y, J). (6.9)

In Sections 6.4 and 6.5 we will consider two applications of this theory.

6.4 Kernels with orthonormal bases

In [68] we demonstrated the analytical simplifications that occur whenever
the kernels Âi and B̂i are in a function space S with an orthonormal base.
One standard example of such a space is L2([0, 1]× [0, 1]).
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We assume that we have a set of basis functions ψi(x), i = 0, 1, 2, ...,
satisfying ∫ 1

0

ψi(x)ψj(x)dx = δ(i = j),

where δ(i = j) is 1 when i = j and 0 when i 6= j, such that S consists of
all kernels α̂(x, y) which have a density â(x, y) that can be expressed in the
form

â(x, y) =
∞∑
i=0

∞∑
j=0

Aijψi(x)ψj(y),

where the term on the right is absolutely convergent for all x, y, and the
matrix A = [Aij] defines the kernel â.

In [68] the analysis was done for transition kernels (6.3) with QBD struc-
ture, simplifying the construction. We have the following result for the com-
putation of the stationary densities of a QBD structure,

Theorem 23 (Theorem 3.2 in [68]) Suppose the kernels ai are in the space
S with corresponding matrix representation Ai, i=0,1,2. Then the density σ
of the kernel Ŝ belongs to S and has matrix representation S, where

S =
∞∑
k=0

A0,k Π0
j=k−1A2,j,

with

A0,0 = A0(I −A1)
−1

A2,0 = A2(I −A1)
−1

Ai,k+1 = [Ai,k]
2(I −A0,kA2,k −A2,kA0,k)

−1.

The I in the above equations denotes the identity matrix, and the inverse
is the matrix inverse defined by (I −A)−1 =

∑∞
k=0 A

k. Also, an empty
matrix product is defined to be the identity matrix.

Finally the validity of Equation (6.2) in the setting of a QBD transition
kernel with orthonormal bases was stated as Theorem 3.3 in [68].

Theorem 24 (Theorem 3.3 in [68]) Assume that the conditions of The-
orem 23 holds. Then the stationary distributions νn have densities fn with
representation fn(y) =

∑
i Fniψi(y), where the vector Fn of coefficients Fni

is such that
Fn = F0 S

n

and F0 is an invariant vector of the matrix B + SA2, where B is the matrix
associated with the kernel β.



62 Chapter 6 Extensions of classical results

Two applications were given in [68], one small analytical example using Le-
gendre polynomials and one with a trigonometric basis which was truncated
for numerical evaluations.

6.5 Embedded Markov chain approach to the
GI/RAP/1 queue

The definition of a RAP, based on finite dimensionality, makes it tempting
to assume that the method of Tweedie should be applicable for the QBD
process with RAP components similarly to the case with orthonormal basis
functions. Because of the finite dimensionality of the RAP one would even
expect the resulting matrix equations to involve only matrices of finite dimen-
sions leading to the matrix equations like (6.6) being of finite dimension. In
this section we demonstrate that this is indeed a viable approach for the gen-
eralisation of the classical matrix analytic results and consequently offers an
alternative approach to that of Section 6.2. By considering the QBD process
with RAP components embedded at level changes we obtain a discrete time
Markov chain on a general state space with a structure that makes the oper-
ator geometric results in Section 6.3 applicable. As the results of Section 6.2
can already be shown to hold in the more general setting of queues with
GI/M/1 and M/G/1 structures, we will first derive results for the GI/RAP/1
queue, and later specialise them to the QBD process with RAP components.
One important modification to the framework of Section 6.3 is needed, as
Tweedie’s results do not apply directly in these two settings. The vectors πi
are the expected value of A(t)δ (L(t) = i) under the stationary measure ν
and not the measure itself. The measure could have a somewhat more com-
plicated structure. Thus to generalise the matrix-analytic method of Neuts it
suffices to find the expectation of A(t) under the stationary measure rather
than the measure itself. The concept of operator linearity was introduced
in [18] to handle this.

Operator linearity

This paragraph is a technical primer to establish the setting for the results
to follow. It is taken more or less verbatim from [18].

We consider a set J equipped with a σ-algebra J and denote the set of
finite signed measures on (J,J ) by M. Of particular importance is the subset
Mp of M of measures with total variation at most 1. Next we define the set
of operators (kernels) that take an element ϕ of Mp to Mp and denote that
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set by P, such that Π ∈ P : Mp →Mp. The operator Π is defined through its
kernel Π̂(x, J), Π(ϕ)(J) =

∫
J ϕ(dx)Π̂(x, J), where x ∈ J and J ∈ J , Π̂(x, J)

is such that Π̂(x, ·) is a measure for each x ∈ J, and Π̂(·, J) is measurable in
J for fixed J .

We then define the set G of linear continuous operators onM? ⊂M taking
values in some real or complex, normed vector space V with a countable basis,
such that Γ ∈ G : M? → V. Of course Γ might be defined and linear for
all ϕ ∈M, in which case we can take M? = M. Thus an operator Γ is a
descriptor that extracts some characteristic from a measure µ ∈M?. We will
take special interest in the restriction of Γ to M?

p = Mp ∩M? of measures of
total variation at most one. The definition of operator linearity was given as
Definition 1 of [18].

Definition 25 (Definition 1 of [18]) An element Π ∈ P is said to be Γ-
linear with respect to M?

p ⊂ Mp if Π : M?
p → M?

p and if Γ(Π(ϕ)) = Γ(ϕ)P ,
for all ϕ ∈ M?

p, for a unique matrix P . Whenever M?
p = Mp we simply say

that Π is Γ-linear.

The concept of operator linearity was then applied to the Markov chains
of GI/M/1 type assuming operator linearity of all kernels involved.

For the GI/M/1 queue, the matrix sequence Ri+1 =
∑∞

k=0R
k
iAk can

be shown to converge to the minimal non-negative R that solves Equa-
tion (6.6) ([63]). In [80] this generalises to the operator sequence Ŝi+1(x, J) =∑∞

k=0

∫
J Ŝ

k
i (x, dy)Âk(y, J) converging to Ŝ. In [18] we showed that all terms

in the sequence Ŝi are operator linear provided that all the Âk kernels of the
queue are operator linear. The result was stated as Lemma 4 of [18].

Lemma 26 (Lemma 4 of [18]) If for all k ≥ 0 the Âk are Γ-linear with
respect to M?

p with matrix Ak, then all elements of the sequence Ŝi are Γ-
linear with respect to M?

p. The matrices Si corresponding to Ŝi are given by
the (equivalent) matrix sequence

S0 = 0, Si+1 =
∞∑
k=0

SkiAk, i ≥ 0.

Finally we state the main result (Corollary 5 of [18]) converting the operator-
geometric result of Tweedie [80] into a matrix-geometric expression under
the operation of Γ as Si → S. The concept of operator linearity changes
the operator Equation (6.5) into a matrix equation as stated in Theorem 5
of [18].
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Theorem 27 (Theorem 5 of [18]) If for all k ≥ 0 the Âk are Γ-linear
with respect to M?

p with matrix Ak, and Xn is positive recurrent, then the
operator Ŝ is Γ-linear with respect to M?

p with matrix S which is a solution
to

S =
∞∑
k=0

SkAk.

Having established the matrix associated with the operator linear kernel Ŝ,
Corollary 5 of [18] established how to calculate the operator of the stationary
measure without needing to calculate the measure itself.

Corollary 28 (Corollary 5 of [18]) Assume that for all i B̂i and Âi are
Γ-linear. Let ν = (ν0, ν2, ν2, . . . ) be the stationary measure determined by
equations (6.4), (6.8), and (6.9). Then ν0 ∈M?

p0
, νi ∈M?

p for i ≥ 1, and we
have Γ(νi+1) = Γ(νi)S, for i ≥ 1, with Γ0(ν0) and Γ(ν1) given by Γ0(ν0) =
Γ0(ν0)B1+Γ(ν1)

∑∞
j=1 S

j−1Bj+1, and Γ(ν1) = Γ0(ν0)B0+Γ(ν1)
∑∞

j=1 S
j−1Aj.

The following corollary, initially stated as Corollary 8 of [18], demonstrated
how to obtain numerical values efficiently.

Corollary 29 (Corollary 8 of [18]) When Âi = 0 for i > 2 and B̂i = 0
for i > 1 then the logarithmic reduction algorithm of Latouche and Ramaswa-
mi [56] applies verbatim to the matrices A0,A1,A2,B0 and B1 , associated
with Γ-linearity.

As the work described in Section 6.4 deals with the density of the measure
rather than the measure itself that development could be seen as an applic-
ation of operator linearity.

The GI/RAP/1 queue

We now apply the concept of operator linearity to the GI/RAP/1 queue
embedded at arrival epochs. The renewal process feeding the queue is gen-
erated by the distribution F (·) while the service process is generated by a
RAP with parameter matrices (D0,D1). The first coordinate, the level, Ln
of Xn = (Ln,Jn), is the number of customers in the queue at the nth arrival
and Jn is the phase vector taking values in A. The transition probability
law of that Markov chain is given by

P̂ (j, J) =


B̂0(j, J) Â0(j, J) 0 0 . . .

B̂1(j, J) Â1(j, J) Â0(j, J) 0 . . .

B̂2(j, J) Â2(j, J) Â1(j, J) Â0(j, J)
. . .

...
...

... . . . . . .
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with

Âi(j, J) =

∫ ∞
0

P̂i(j, t; J)dF (t), i ≥ 0

B̂i(j, J) =

∫ ∞
0

Q̂i+1(j, t; J)dF (t), i ≥ 0.

Here P̂i(j, t; J) denotes the probability that the RAP(D0,D1) has had ex-
actly i events at time t, is currently serving a customer, and the phase vector
J is in the set J ∈ J , given that it had the value j ∈ A immediately after
last arrival; while Q̂i(j, t; J) denotes the probability that the RAP(D0,D1)
has had exactly i events at time t, and at the expiry of the ith event the
phase vector is in the set J ∈ J and then remains there as the queue is
empty, given it started in x ∈ A. The role of Γ will here be taken as the
expectation operator of the phase vector of the RAP, which clearly exists
and is in A for any measure on A, as A is compact and convex.

The operators Âi and B̂i are expectation-linear, which is shown by first
showing that the operators P̂i(j, t; J) and Q̂i(j, t; J) are expectation linear
for all i and t. We have from the definition of the RAP(D0,D1) that

P̂0(j, t; J) = jeD0teδ

(
jeD0t

jeD0te
∈ J
)
,

where δA is 1 when jeD0t

jeD0te
∈ J and 0 when jeD0t

jeD0te
/∈ J .

P̂1(j, t; J) =

∫ t

0

jeD0t1D1e
D0(t−t1)eδ

(
jeD0t1D1e

D0(t−t1)

jeD0t1D1eD0(t−t1)e
∈ J
)
dt1,

Q̂1(j, t; J) =

∫ t

0

jeD0t1D1eδ

(
jeD0t1D1

jeD0t1D1e
∈ J
)
dt1,

and for i ≥ 2,

P̂i(j, t; J) =

∫ t

0

∫
A
P̂1(j, t1; dy)P̂i−1(y, t− t1; J)dt1,

Q̂i(j, t; J) =

∫ t

0

∫
A
P̂1(j, t1; dy)Q̂i−1(y, t− t1; J)dt1.

The forms of P̂i(j, t; J) and Q̂i(j, t; J) lead to

Lemma 30 (Lemma 7 in [18]) The operators P̂i(j, t; J), for all i ≥ 0,
and Q̂i(j, t; J), for all i ≥ 1, are expectation-linear, that is∫

A
yP̂i(j, t; dy) = jPi(t)
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for the set of matrices Pi(t), i ≥ 0, given by

Pi(t) =


eD0t, i = 0,∫ t
0
eD0t1D1e

D0(t−t1)dt1, i = 1,∫ t
0
P1(t1)Pi−1(t− t1)dt1, i > 1,

and ∫
A
yQ̂i(j, t; dy) = jQi(t)

for the set of matrices Qi(t), i ≥ 1, given by

Qi(t) =


∫ t
0
eD0t1D1dt1, i = 1,∫ t

0
P1(t1)Qi−1(t− t1)dt1, i > 1.

(6.10)

From this lemma the expectation linearity of Âi(j, J) and B̂i(j, J) was im-
mediate, which was Corollary 8 in [18].

Corollary 31 (Corollary 8 in [18]) The operators Âi(j, J) and B̂i(j, J),
for i ≥ 0, are expectation-linear with matrices Ai =

∫∞
0
Pi(t)dF (t) and

Bi =
∫∞
0
Qi+1(t)dF (t), respectively.

Thus this corollary establishes that we can apply Theorem 27 and Co-
rollary 28 to the GI/RAP/1 queue, effectively obtaining exactly the same
non-linear matrix equation as in [63]. We can also use Lemma 26 to determ-
ine the required solution, say R, to that equation.

The application of the method to the QBD process with RAP components
was given in Lemmas 9 and 10 of [18], given the alternative proof that the
matrix geometric formula is also valid for queues with RAP components
though a slight reinterpretation of the results is necessary.
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Multivariate distributions arise naturally as the joint distributions of a finite
number of inter arrival times in point processes. The finite dimensional dis-
tributions of MAPs and RAPs is given by Equation 2.3 with Di1 = D1. In
this chapter we describe work on multivariate distributions that include the
finite dimensional distributions of RAPs as a special case. Once the theory of
multivariate matrix-exponential distributions is well established, its applica-
tions might well go beyond the point process and queueing theory contexts.
As an example, the joint distribution of different observations of the same
phenomenon will be a product of the marginal distributions whenever the
individual observations are independent. However, the joint distribution will
be non-trivial in cases where the observations cannot be considered inde-
pendent. Many modern data sets are huge and typically inhomogeneous,
each observation including several variables. To treat such data primar-
ily two approaches dominate. One approach is using a strictly parametric
approach with well defined statistical tests and properties based on the as-
sumption of data being adequately described by a multivariate Gaussian
distribution. Another approach is to use non-parametric methods, many of
which are highly applicable but also in general quite heuristic in nature. We
believe that the distributions, to be described in this chapter, could fill a gap
between these two approaches. The multivariate matrix-exponential distri-
butions offer a semi-parametric alternative providing for parameter reduc-
tions on a more rigid basis than that offered by the non-parametric methods
but with assumptions less restrictive than those of the multivariate Gaussian
distribution. In Section 7.1 we describe some previous developments on mul-
tivariate phase-type distributions. In Section 7.2 various explicit examples of
multivariate distributions are discussed in the framework of the MPH∗ dis-
tributions described in Section 7.1. Finally, Section 7.3 presents multivariate
matrix-exponential distributions in their full generality including the main
characterisation result, that a distribution is multivariate matrix-exponential
if and only if all univariate projections of the random vector follow univari-
ate matrix-exponential distributions. The characterisation result holds true

67
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when considering bilateral multivariate matrix-exponential distributions.

7.1 The class of MPH∗ distributions

The first formulation of multivariate phase-type distributions was presented
in [13]. Here the authors introduced the notion of first hitting times of
several overlapping absorbing sets. An absorbing set is a set of states that,
once entered, will not be left. The first entrance times to each of these sets
then constitute the different component random variables of the multivariate
phase-type distributed vector. Without loss of generality, the intersection
of the absorbing sets can be taken as a singleton that corresponds to the
absorbing state of a standard univariate phase-type distribution. This class
of multivariate phase-type distributions was termed MPH. Although initially
tempting, this definition places non-trivial restrictions on the sub-generator
S that cannot be put in an elegant way. One advantage, however, of the
MPH definition is that it is possible to give an explicit expression for the
joint distribution of the components of an MPH distributed random vector
due to the forward nature of the sub-generator. The expression is by no
means simple and requires detailed analysis of the sub-generator along with
its relation to the various absorbing sets. In [54] a slight reinterpretation
of the univariate phase-type distributions opened up for a more general and
more compact formulation of multivariate phase-type distributions. This
class was termed MPH∗ distributions. Consider a standard phase-type sub-
generator S. The time to absorption Xa is then the sum of the cumulated
sojourn times Zi in each of the individual transient states of the Markov chain
so that Xa =

∑p
i=1 Zi. Now suppose that rather than just summing these

cumulated sojourn times each of the cumulated sojourn times is multiplied
with a constant ri and then added to get the random variable X =

∑p
i=1 riZi.

The random variable X would then again be phase-type distributed, which is
easy to see if ri > 0 for all i and requires some work to see if ri is allowed to be
0 for some i [25, 54]. It is then natural to construct several variables Xj using
different weighting or reward factors rij such that Xj =

∑p
i=1 rijZi define

a random vector X = (X1, . . . , Xn). The acronym MPH∗ was introduced
to define this class, which is parameterised by α, S, and the matrix R of
the reward factors rij. We write X ∼MPH∗(α,S,R) when X is MPH∗
distributed with representation (α,S,R). The Laplace-Stieltjes transform
of an MPH∗(α,S,R) distribution can be expressed as

E
(
e−〈X ,s〉

)
= αp+1 +α

(
(−S)−1∆(Rs) + I

)−1
1. (7.1)
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We define a multivariate distribution to belong to the class MME∗ with
representation (α,S,R) whenever its Laplace-Stieltjes transform can be ex-
pressed as in Equation (7.1).

A recursive formula for the calculation of moments and cross-moments is
given in [54]. In [25], Theorem 4.2, we gave a closed form expression.
Theorem 32 (Theorem 4.2 of [25]) The cross–moments E

(∏n
i=1X

ki
i

)
,

where X follows an MME∗ distribution with representation (α,S,R), and
where ki ∈ N, are given by

E

(
n∏
i=1

Xki
i

)
= α

k!∑
`=1

k∏
i=1

(−S)−1∆(rσ`(i))1.

Here k =
∑n

i=1 ki, rj is the jth column of R and σ` is one of the k! possible
ordered permutations of the derivatives with respect to sj in Equation (7.1),
with σ`(i) being the value among 1 . . . n at the i’th position of that permuta-
tion.

7.2 Explicit distributions

There is a significant amount of work on multivariate exponential and gamma
distributions. Here we will only focus on those that have a rational Laplace-
Stieltjes transform, thus excluding gamma distributions with non-integer
shape parameter. Our main reference for the various multivariate expo-
nential and gamma distributions is [52]. We will briefly survey the many
different contributions emphasising the underlying ideas and our own contri-
butions. A comprehensive treatment will be given in a forthcoming mono-
graph coauthored with Mogens Bladt [29]. All bivariate distributions with
rational Laplace-Stieltjes transform we have encountered belong to the MPH∗
(MME∗) class while several even belong to the MPH class. Most distribu-
tions of higher order belong to the MPH∗ class. However, in [25] Theorem
4.3, we gave an example of a trivariate distribution which does not have an
MPH∗ representation of minimal order.

There are basically four generic ways that have been used to construct
the different multivariate distributions. In addition, there are a number
of related distributions that have attained some popularity without having
exponentially or gamma distributed marginals.

Sharing of exponential phases

Erlang distributions, that is gamma distributions with integer shape para-
meter, can be interpreted as the distribution of the sum of independent ex-
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ponential random variables. This provides a way of constructing depend-
ent Erlang distributed random variables by letting some of the exponential
random variables contribute to two or more components of a multivariate
random vector with Erlang distributed marginals.

We illustrate the idea by the case of a bivariate random vector where
each component has an Erlang distribution with a shape parameter of 2.
The MPH∗(α,S,R) representation of this distribution can be given as

α = (1, 0, 0), S =

 −1 1 0
0 −1 1
0 0 −1

 , R =

 µ−11 µ−12

µ−11 0
0 µ−12

 .

Here the first exponential phase contributes to both components while the
second and third contribute to only one of the two components. This con-
struction is known under the names of McKays bivariate gamma distribution,
Cheriyan and Ramabhadran’s bivariate gamma distribution, Prèkopa and
Szàntai’s multivariate gamma distribution, and Cheriyan and Ramabhad-
ran’s multivariate gamma distribution.

Exponential distributions expressed as a geometric mix-
ture of Erlang distributions

An exponential distribution can be expressed as a geometric mixture of Er-
lang distributions, a result that can be used to show that the time a typ-
ical customer spends in the M/M/1 queue is exponentially distributed. The
model is double stochastic. First one picks the shape parameter of the Erlang
distribution as a geometrically distributed random variable N , and then an
ErlangN variable is generated. A multivariate vector with exponential mar-
ginals can then be constructed by using the same shape parameter N for
all components of the random vector, where each component follows an Er-
lang distribution with shape parameter N . In the bivariate case this can be
accomplished using the MPH∗(α,S,R) representation

α = (1, 0), S =

(
−1 1
p −1

)
, R =

(
µ−11 0
0 µ−12

)
.

The form of α and S ensures that the two states of S have the same geomet-
rically distributed number of visits, while the form ofR ensures that the total
sojourn time of state i determines the ith component of the bivariate vector.
The construction is originally due to Kibble and has reappeared under dif-
ferent names such as Jensen’s, Gaver’s, and Downton-Moran’s distribution.
Erlang distributed marginals are obtained by adding random vectors with
exponential marginals.
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Decomposition of the exponential distribution

The distributions, described in this section, are based on the observation
that an exponential random variable with intensity µ can be expressed as
the sum of an exponential variable with intensity λ ≥ µ and a term which
is an indicator variable of probability λ−µ

λ
multiplied with an exponential

variable with intensity µ. If the decomposition is applied recursively to the
term that is multiplied with the indicator variable one gets the geometric
mixture of Erlang distributions in the limit. A simple bivariate distribution
using the decomposition is given by the MPH∗(α,S,R) representation

α = (1, 0), S =

(
−1 1− p
0 −1

)
, R =

(
µ−11 pµ−12

0 µ−12

)
.

The first component of the bivariate vector is given by the sojourn time in
state 1, while the second component is constructed using decomposition with
µ = µ2 and λ = µ2

p
.

Examples of the application of this construction are the Marshall-Olkin
distribution, Olkin and Tong’s Multivariate Exponential, Raftery’s bivariate
and Multivariate Exponential, and Dussauchoy and Berland’s distribution.
Multivariate Erlang distributions can be constructed by summing exponen-
tial random vectors as for geometric mixtures of Erlang distributions.

Farlie-Gumbel-Morgenstern distributions

The Farlie-Gumbel-Morgenstern construction [52] is a general construction
that can be used to construct a bivariate distribution, where the marginals
are given by their distribution functions Fi, i = 1, 2. The joint distribution
of X1, X2 according to this construction is given by

F (x1, x2) = F1(x1)F2(x2) (1 + ρ (1− F1(x1)) (1− F2(x2))) ,

where −1 ≤ ρ ≤ 1.
In Lemma 4.1 of [24] we showed that the Morgenstern copula can be seen

as a proper mixture of the two first order statistics.
Lemma 33 (Lemma 4.1 of [24]) Let Fmin

i (x) = 1 − (1 − Fi(x))2 and
Fmax
i (x) = F 2

i (x) such that Fmin
i (x) and Fmax

i (x) are cumulative distribution
functions of the minimum respectively maximum of two independent random
variables distributed according to Fi(x). Then the bivariate Morgenstern dis-
tribution F (x1, x2) based on F1(x1) and F2(x2) is

F (x1, x2) =
1 + ρ

4
Fmax
1 (x1)F

max
2 (x2) +

1− ρ
4

Fmax
1 (x1)F

min
2 (x2) +

1− ρ
4

Fmin
1 (x1)F

max
2 (x2) +

1 + ρ

4
Fmin
1 (x1)F

min
2 (x2).
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The probabilistic interpretation of Lemma 33 lead us to the MME∗ represent-
ations of bivariate distributions with matrix-exponential or phase-type dis-
tributed marginals of Morgenstern type as presented in Theorem 4.1 of [24].

Theorem 34 (Theorem 4.1 of [24]) The bivariate Farlie-Gumbel-Morg-
enstern distribution formed from two matrix-exponential distributions with
marginal representation of Fi given by (αi,Si,−Si1), i = 1, 2 is in MME∗.
An MME∗ representation (α,S,R) is

α = (α1 ⊗α1,0,0,0)

S =



S1 ⊕ S1
1
2

(s1 ⊕ s1) 1−ρ
4

(s1 ⊕ s1) 1α̃
(M,m)
2

1+ρ
4

(s1 ⊕ s1) 1α̃
(m)
2

0 S1
1+ρ
2
s1α̃

(M,m)
2

1−ρ
2
s1α̃

(m)
2

0 0 ∆−11 S
T
2 ∆1 ∆−11 (s2 ⊕ s2)T∆2

0 0 0 S̃
(m)
2


,

R =


1m1 ⊗ 1m1 0

1m1 0
0 1m2 ⊗ 1m2

0 1m2


with

π2 = α2 (−S2)
−1 /α2 (−S2)

−1 e , α̃2 = π2 • s2/π2s2 ,

S
(M)
2 =

[
S2 ⊕ S2 s2 ⊕ s2

0 S2

]
,

ζ
(m)
2 = (α2 ⊗α2) (S2 ⊕ S2)

−1 1, ζ
(M)
2 = (α2 ⊗α2,0)

(
−S(M)

2

)−1
1,

π
(M)
2 =

(
ζ
(M)
2

)−1
(α2 ⊗α2,0)

(
−S(M)

2

)−1
=

(
ζ
(m)
2

ζ
(M)
2

π
(m)
2 ,π

(M,m)
2

)
,

π
(m)
2 =

(
ζ
(m)
2

)−1
(α2 ⊗α2) (−S2 ⊕ S2)

−1 , α̃
(m)
2 =

(
ζ
(m)
2

)−1
π

(m)
2 •(s2⊕s2),

∆1 = ∆
(
π

(M,m)
2

)
, ∆2 = ∆

(
π

(m)
2

)
,

α̃
(M)
2 =

(
ζ
(M)
2

)−1 (
0,π

(M,m)
2 • s2

)
=
(
0, α̃

(M,m)
2

)
S̃

(m)
2 = ∆−12 (S2 ⊕ S2)

T ∆2,
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S̃
(M)
2 = ∆

(
π

(M)
2

)−1 [ (S2 ⊕ S2)
T 0

(s2 ⊕ s2)T ST
2

]
∆
(
π

(M)
2

)
=

[
S̃

(m)
2 0

∆−11 (s2 ⊕ s2)T∆2 ∆−11 S
T
2 ∆2

]
.

Lemma 33 immediately leads to the idea of constructing multivariate dis-
tributions as mixtures of order statistics. That idea was used in [26] in
combination with the decomposition of exponentials to express a new type
of bivariate exponential distribution. We first state a couple of lemmas re-
garding univariate exponential distributions using decomposition.

Lemma 35 (Lemma 4.2 of [26]) Let α1 = (α11, α12, . . . , α1p1) be any ini-
tial vector and let

S1 =


−λp1 λp1 − λ 0 ... 0

0 −λp1−2 λp1−2 − λ ... 0
...

...
...

...
...
...

...
0 0 0 0 −λ

 , (7.2)

where it is assumed that λ < λi for all i. Then PH(α1,S1) is equivalent to
an exponential distribution with rate λ.

The time reversed representation obtained from Equation (2.2) for α1 =
(1, 0, . . . , 0) was stated as Lemma 4.3 of [26].

Lemma 36 (Lemma 4.3 of [26]) Let α2 = (α21, ..., α2p2) with

α2i =
λ

λi

p2−i∏
j=1

λp2−j+1 − λ
λp2−j+1

and

S2 =


−λ λ 0 ... 0
0 −λ2 λ2 ... 0
...

...
...

...
...
...

...
0 0 0 ... −λp2

 , (7.3)

where λ < λi for all i. Then PH(α2,S2) represents an exponential distribu-
tion with rate λ.

The idea of [26] was to construct a bivariate exponential distribution be-
longing to MPH∗ by combining these two representations of an exponential
distribution. Whenever λi = iλ the representation with the sub-generator
S2 of Equation (7.3) is a uniform mixture of the first n order statistics of
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the exponential distribution. As the representation with the sub-generator
S1 of Equation (7.2) is the time reversed representation, one gets the ith
order statistic whenever the generator is left from state i. In [26] the dimen-
sions p1 and p2 of S1 and S2 were equal as this streamlines the presentation,
but this is not required. An MPH∗ representation (α,S,R) of the bivariate
distribution is

α = (1, 0, . . . , 0), S =

(
S1 λP
0 S2

)
, R =

(
1 0
0 1

)
,

where P has to satisfy
∑p1

i=1 Pij = 1/p1 and
∑p2

j=1 Pij = 1/p2. We will now
assume p1 = p2 = p. By choosing P = I one pairs the ith order statistic
of the first exponential with the (p − i + 1)st order statistic of the other,
while choosing P as the anti-diagonal pairs the ith order statistic from both
exponential distributions.

These kinds of distributions are capable of exhibiting arbitrary correla-
tions, which was expressed as Theorem 4.4 of [26].

Theorem 37 (Theorem 4.4 of [26]) Let ρ ∈ (1 − π2

6
, 1). Then we can

construct a two–dimensional exponential vector (X1, X2) with correlation coef-
ficient ρ in the following way. If ρ > 0 we choose p ∈ N such that ρmax =
corr(X1, X2) ≥ ρ and

P =
ρ

ρmax

{δ(i− 1 = p− j)}i,j +

(
1− ρ

ρmax

)
1

p
11′,

and if ρ < 0 we choose p ∈ N such that ρmin = corr(X1, X2) ≤ ρ and

P =
ρ

ρmin

{δ(i = j)}i,j +

(
1− ρ

ρmin

)
1

p
11′,

where δ(i = j) is 1 when i = j and 0 when i 6= j as in Equation (6.10).

The result of Lemma 33 was also given in [16] where the generalisation to
arbitrary order statistics was considered too.

Miscellaneous distributions

The four methods described up to now can be combined in different ways to
obtain multivariate Erlang distributions. An explicit example is Sarmanov’s
bivariate gamma and, for specific parameter values, Dussauchoy and Ber-
land’s distribution.

Some distributions with rational Laplace-Stieltjes transform without ex-
ponential or Erlang distributed marginals have appeared. Freund’s bivariate
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and multivariate distributions are probably the most frequently used of these.
A minor variant of Freund’s distribution has been introduced as Friday and
Patil’s bivariate exponential distribution, the name obscuring the fact that
these distributions do not in general have exponential marginals.

Parameter selection using linear programming

The linear optimisation approach of Section 4.2 can be applied equally well
to parameter selection in bivariate distributions, particularly for the selection
of P . In Section 4.2 maximisation or minimisation of the correlation led to
a linear programming problem. Here we present a couple of other objective
functions that can be optimised with linear programming.

We consider the two PH representations (α1,S1) and (α2,S2) with joint
density

α1e
S1t1V eS2t2(−S2)1

where α1(−S1)
−1V = α2 and V 1 = −S11. We have

P (min (X, Y ) > t) =

∫ ∞
t

∫ ∞
t

α1e
S1t1V eS2t2(−S2)1dt2dt1

= α1

∫ ∞
t

eS1t1dt1V
∫ ∞
t

eS2t2dt2(−S2)1

= α1e
S1t(−S1)

−1V eS2t1.

The expected value of that minimum is

E(min (X, Y )) =

∫ ∞
0

α1e
S1t(−S1)

−1V eS2t1dt.

The probability that Y is greater than X is

P (Y > X) =

∫ ∞
0

∫ ∞
t1

α1e
S1t1V eS2t2(−S2)1dt2dt1 =

∫ ∞
0

α1e
S1tV eS2t1dt

= α1(η1 + η2)
−1

∞∑
i=0

∞∑
j=0

(
i+ j

i

)(
η1

η1 + η2

)i(
η2

η1 + η2

)j
Ki

1V K
j
21

where we have used uniformization as in Equation (3.1).
Correspondingly,

P (max (X, Y ) ≤ t) = α1

∫ t

0

eS1t1dt1V
∫ t

0

eS2t2dt2(−S2)1

= α1

(
I − eS1t

)
(−S1)

−1V
(
I − eS2t

)
)1

= α1e
S1t(−S1)

−1V eS2t1 + 1−α1e
S1t1−α2e

S2t1

= P (X ≤ t) + P (Y ≤ t)− P (min (X, Y ) ≤ t),
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and

E(max (X, Y )) = E(X) + E(Y )− E(min (X, Y ))

The objective function as well as the restrictions are linear in all of the
cases above, thus choosing V by minimisation or maximisation is a linear
programming problem.

7.3 Multivariate Matrix Exponential Distribu-
tions

As mentioned previously, in [25] Theorem 4.3 we demonstrated that it is
not always possible to find an MPH∗ representation of minimal order for a
multivariate distribution with a rational Laplace-Stieltjes transform. Math-
ematically this is somewhat unsatisfactory for the MPH∗ class and raised the
question whether there is a more general class of distributions that should be
considered as the natural generalisation of phase-type and matrix-exponential
distributions. In Definition 4.1 of [25] we introduced such a class as

Definition 38 (Definition 4.1 of [25]) A non-negative random vectorX
= (X1, ..., Xn) of dimension n is said to have multivariate matrix-exponential
distribution if the joint Laplace-Stieltjes transform H(s) = E [exp(−〈X, s〉)],
where s = (s1, . . . , sn), is a multi-dimensional rational function, that is, a
fraction between two multi-dimensional polynomials. This class of distribu-
tions is denoted by MVME.

This seems to be the most obvious and reasonable way to generalise the
univariate matrix-exponential distributions into multivariate ones. This is
even more appealing due to the following characterisation theorem, Theorem
4.1 also from [25].

Theorem 39 (Theorem 4.1 of [25]) 1 A vector X = (X1, . . . , Xn) fol-
lows a multivariate matrix-exponential distribution if and only if 〈X,a〉 =∑n

i=1 aiXi has a univariate matrix-exponential distribution for all non-negative
vectors a 6= 0.

Inspired by Theorem 39 we introduced a class - MVPH - of multivariate
phase-type distributed random variables in Definition 4.2 of [25].

1Embarrassingly, Theorem 39 was not properly proven in [25], as we had been careless
with the proof of Lemma 4.1, as the sets Ci were not properly defined. This was corrected
in the related proof of Lemma 1 in [22].
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Definition 40 (Definition 4.2 of [25]) A vector X = (X1, ..., Xn) has a
multivariate phase–type distribution (MVPH) if 〈X,a〉 has a (univariate)
phase–type distribution for all non–negative a 6= 0.

An alternative characterisation of the MVPH class is open at this point. It is
tempting to conjecture that certain conditions on the poles of the denomin-
ator of the transform and a requirement for a positive joint density as in [70]
will suffice.

Due to the nature of phase-type distributions as modelling absorption
times in Markov chains they have been used for modelling phenomena that
are inherently non-negative such as inter-arrival times and service times in
queueing systems. The reward interpretation given by the MPH∗ class, how-
ever, opens the possibility for modelling phenomena that can attain values in
general real spaces. This was done in the univariate case in [1] and extended
to the multivariate case in [22], where the equivalent to Theorem 39 was
shown also to hold in this more general case as Theorem 4 in [22]. These dis-
tributions are termed bilateral phase-type (BPH) distributions [1] and mul-
tivariate bilateral matrix-exponential (MBME∗ corresponding to the MME∗
class and MVBME corresponding to the MVME class) distributions [22]. An
example of a distribution with rational moment-generating function is the
Wishart function. This might prove useful when the potential for the applic-
ation of these distributions is explored, as the Wishart distribution appears
as the distribution for empirical covariance matrices in multivariate statistics.
In [22] we also showed that multivariate distributions with rational moment
generating function occur naturally when analysing certain state-dependent
multivariate diffusions at absorption times in a related finite state Markov
chain. In fact, the result is slightly more general. Here we state it as a
theorem

Theorem 41 Let Y = (Y1, . . . , Y`) be an MVME distributed random vector
and consider another multidimensional vector X = (X1, . . . , Xk) such that

Xj =
∑̀
i=1

Bij, j = 1, . . . , k

where Bi = (Bi1, . . . , Bik) ∼ Nk(Yir(i), YiΣ(i)), with r(i) = (r1(i), . . . , rk(i))
and Σ(i) is a covariance matrix, i = 1, . . . , `. Then X has a rational (multi-
dimensional) moment-generating function, i.e. X belongs to the class of
Bilateral Multivariate Matrix-Exponential distributions (MVBME).
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Corollary 42 (Equation (18) of [22]) If Y of Theorem 41 is such that
Y ∼ MME∗(α,S,R), then the moment generating M(s) function of X of
Theorem 41 is given by

M(s) = α
(
I − S−1∆(Rθ)

)−1
1.

Here θ = (θ1, . . . , θ`)
′ with θi = sri + 1

2
sΣ(i)s′.

Corollary 42 was stated as Equation (18) in [22]. The proof of the corollary
in [22] also proves Theorem 41.

The question whether the class MVBME is strictly larger than the MBME∗
class was solved in the affirmative using corollary 42. Consider two inde-
pendent Brownian motions B1(t) and B2(t) with zero drift and diffusion
coefficients σ1 > 0 and σ2 > 0 respectively. Hence Bi(t) ∼ N(0, σ2

i t),
i = 1, 2. Let T be exponentially distributed with intensity λ > 0 and define
Y = (B1(T ), B2(T )).

Theorem 43 (Theorem 2.1 in [28]) The distribution of Y is a bivari-
ate bilateral matrix–exponential distribution which cannot be written on the
MBME∗ form.



8 Conclusion

In this thesis we have given an overview of our contributions to the field of
matrix analytic methods in queueing theory. The theory is based on the mod-
elling blocks of Markovian arrival processes and phase-type distributions, and
their analytic extensions rational arrival processes and matrix-exponential
distributions.

Although the field is reasonably mature, apparently there are still the-
oretical developments to be made even in the more basic part of the theory
as demonstrated with the results on size-biased distributions described in
Section 2.1.

Among the most important parts of the contributions described in the
thesis is the work on sensitivity analyses described in Chapter 4, including
the work on modelling processes with excessive variability described in Sec-
tion 5.1. The latter has had substantial impact in the field of performance
evaluation. These contributions are directly applicable with strong engineer-
ing aspects.

We see the work described in Sections 6.2 and 6.5 on extending the clas-
sical matrix analytic results to the general setting of queues with RAP com-
ponents as an important theoretical achievement. From a mathematical point
of view, it has been satisfying to finally settle in the affirmative that the main
classical results on queue length distributions hold in the full generality of
the RAP component framework and that existing algorithms and tools can
be used without modification. For now these contributions might primarily
be of theoretical importance, but new developments might lead to their use
in applications, for instance leading to substantial dimensionality reductions
in the matrix equations involved in the solution of queueing problems. Work
in this direction has already been reported by several researchers.

Finally, we believe that there is a huge application potential for MVME
distributions in such diverse areas as hydrology, road traffic modelling, pro-
cess algebras and their associated logics, and medicine. Section 7.2 should
demonstrate the potential as it demonstrates how the theory unifies earlier
contributions to these diverse application fields. The main obstacle be-
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ing that the overwhelming flexibility of MVME distributions turns into a
challenge when performing statistical estimation. However, we believe that
the steady increase in computing power, and the increasing need for semi-
parametric models less restrictive than the normal distribution will create
space for a rich development of MVME theory with applications. Thus the
work described in Chapter 7 has strong theoretical as well as practical im-
plications.

There are several open interesting and important theoretical problems.
The most challenging, which might not be analytically solvable, is the ques-
tion whether a given set of an initial vector and a matrix specifies a (matrix-
exponential) distribution. Although necessary conditions exist, so far it has
not been possible to derive sufficient ones. It is likely that a possible solu-
tion of the problem would at the same time give the corresponding solution
for determining whenever two matrices characterise a RAP. Among other
challenges is an understanding of the full class of MVME and MVBME dis-
tributions, and to obtain efficient ways of calculating the cumulative distribu-
tion function for the classes of MBME∗ distributions including the different
sub-classes like the important one of MPH∗.
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