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Estimating Multiclass Service Demand Distributions Using Markovian Arrival
Processes

RUNAN WANG, GIULIANO CASALE, and ANTONIO FILIERI, Department of Computing, Imperial

College London, UK

Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution
estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods
focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect
prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a
microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model
the departure process of requests completed by the software service as a Markovian arrival process. This allows formulating the
estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand
distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the
service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the
computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application
and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service
demand estimation approaches for software services.

Additional Key Words and Phrases: Service demand distribution, Markovian arrival process, Maximum likelihood estimation, Queueing
models, Performance
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1 Introduction

Stochastic modeling of microservices is often used in simulation-based and analytical evaluations of system perfor-
mance. A classic approach to software performance prediction relies on Markovian models, which can help to describe
the system analytically and efficiently simulate and forecast performance as needed by both developers and operators.
Stochastic models such as queueing networks [15], layered queueing networks [14] and Petri nets [25] have been widely
used to model web applications. Similarly, software architecture models are appropriate to describe changes in software
components and resources [26], which can be used in conjunction with stochastic models to holistically describe the
quality of service in a complex distributed system.

However, choosing the right model parameters is challenging for the predictive accuracy of performance models.
In this paper, we focus on service demands which are model parameters describing resource consumption for a single
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2 Runan Wang, Giuliano Casale, and Antonio Filieri

request to a processing unit such as a CPU, a GPU, a disk or other resource.1 Demands are usually estimated by applying
regression methods to measurements of resource utilization and response time collected via system monitoring. Several
different approaches for service demand estimation have been proposed over the years, such as utilization law [9],
response time approximations based on linear regression [36], non-linear optimization [43], as well as machine learning
methods [13].Most of the existing approaches for service demand estimation mainly focus on estimating the mean

service demand, as opposed to considering the Service demand distribution, which is the probability distribution of the
demand of time consumption on a specific server without any queueing time. This is different from the response time
distribution, which captures the amount of elapsed time from when a request is sent to the time it is completed by
the server, including both the service time and the time for queueing. However, as we show in this paper, restricting
attention to the mean can limit the accuracy of performance prediction. For example, higher-order moments can affect
the predictive accuracy for critical metrics, such as higher percentiles of the response time.

As applications are nowadays updated directly while running in production, to build useful performance models for
software services, besides accuracy, it is also important to derive an analytical model directly from run-time data. We
focus in this work on microservice-based systems, which are widely used in industry. To learn the service demand
distribution, we first model each microservice as a closed queueing system, with the finite closed population representing
the maximum parallelism level for served requests due to the microservice admission control. Within this queueing
system, the service demand for the queueing station is characterized as an acyclic phase-type (APH) distribution [18, 29].
After generating the continuous-time Markov chain (CTMC) for this model, we filter the departure transitions into a
Markovian arrival process (MAP) to characterize the inter-departure times of requests served by the microservice [7, 28].
The problem of service demand estimation can then be formulated as an optimization problem to infer the service
demand distribution (i.e., the APH) that maximizes the likelihood of the departure MAP having produced the collected
runtime data. In particular, the optimal parameters of the service demand distribution are obtained from matching
moments of the APH distribution by a global search with the maximum likelihood estimation procedure.

Since the likelihood function may be non-convex, to overcome the high cost of global optimization, we propose a
heuristic estimation method. In this approach, the estimation is divided into sub-problems aimed at fitting different
moments. The required measurements for fitting consist of the inter-departure times, response times and the time
of departure, which can be directly collected via network traffic sniffing from pairs of arrival and departure events
for requests processed at the microservice. To evaluate our method, we validate it against real traces with a single
service class, which are obtained from a microservice-based application. The results show that our method can fit the
distribution of real traces with a high degree of accuracy.

Based on our previous work on estimating the service demand distribution for a single service class in [42], we
then extend our heuristic estimation method to multiclass service processes that can characterize software systems
exposing multiple types of services, e.g., the different microservice endpoints. To estimate the service demand for
multiclass service queues, we apply class aggregation to simplify the multiclass estimation problem into a sequence of
two-class sub-problems that can be used to approximate the initial model. Class aggregation for multiclass queues can
effectively help to reduce the computational difficulty of solving CTMCs in the presence of state space explosion. Then,
we propose to estimate the service demand distribution for multiclass services with the heuristic method, which is
extended to matching the first three moments for different service classes with class aggregation. We also evaluate our

1This slightly differs from defining service demands as the cumulative time a request spends receiving service from a resource, accumulated over all visits
prior to completion.
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extended work on real traces collected from the microservice application with different number of service classes. The
experimental results indicate an accurate fit performance of the proposed model prediction to the real traces.

The rest of the paper is organized as follows. Related work is summarized in Section 2. In Section 3, we recall
the necessary background and definitions. In Section 4 the inter-departure time model and problem formulation are
introduced. In Section 5, we discuss our proposed service demand distribution estimation method based on global
optimization with maximum likelihood. In Section 6, we introduce the heuristic method for service demand distribution
estimation. We present our experimental results in Section 7. The multiclass service demand distribution estimation
method is introduced in Section 8, and the experimental results for multiclass are presented in Section 9. Finally, we
draw conclusions in Section 10.

2 Related work

To enable automatic generation for accurate performance modeling, model parameterization brings out an important
problem of resource demand estimation. There are several works using regression methods. Rolia et al. [38] introduce the
resource demand estimation problem with linear regression techniques. In general, linear regression has been employed
to solve the service demand estimation, mostly based on utilization [8, 9] and response time [36]. Neural networks
like recurrent neural networks (RNN) may also be applied to estimate resource demands for the ability to predict time
series data [13]. Machine learning can also help to select the optimal approaches for estimation on account of varieties
of existing resource demand approaches [23]. However, most of the mentioned approaches based on regression only
enable to obtain the mean value of the resource demand instead of full distributions, lacking higher-order properties of
the demand.

There are many examples of works using Poisson arrival processes and exponential service times in system modeling
with a Poisson arrival process and an exponentially distributed service time [4, 22]. However, the information captured
by the service demand distribution is not leveraged. This information is especially important under First-come First-
served (FCFS) scheduling, where mean demands are no longer sufficient to characterize performance exactly as in
processor sharing scheduling (PS). To characterize more accurate service demand, PH distributions provide the ability
to approximate arbitrary distributions, which has been used in studies of modeling and simulation like [12, 34].

Moment matching is one of the most common methods for approximating PH distributions [24]. This method is
mainly based on the optimization techniques like maximum likelihood estimation (MLE) and expectation maximization
(EM) algorithm [30, 41] to minimize the difference between the parameters and the PH distribution moments. The
selection of the number of moments to use for PH fitting can be arbitrary, while most of the existing works usually
take the two or three moments that are sufficient to match a mixture of different distributions, for example, in [1, 31].
Therefore, the study of low order moments is important and common in moment matching methods to fit a PH
distribution.

MAPs provide a more general way to model the successive times between event occurrence. MAPs are widely used
in the existing works on building traffic models [17, 20] and workload characterization [7], due to the ability to capture
the burstiness and correlated traffic features. There are also some analytical studies on the queueing system with MAP
arrivals, in which the authors work with MAP/G/K queues [10, 19]. To capture different types of correlated arrivals,
Buchholz et al. [6] extend single MAP to multiclass MAP with marked arrivals and provide the parameter fitting method.
As MAPs are able to incorporate the inter-event times, it is also possible to study the service process with MAPs.
However, techniques to infer the departure process from real data using MAPs, to our knowledge, have not received
attention in the literature.
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4 Runan Wang, Giuliano Casale, and Antonio Filieri

3 Preliminaries

Acyclic Phase-type Distribution. A phase-type (PH) distribution [32] is defined as the distribution of absorbing time
in a continuous-time Markov chain (CTMC) with finite states {1, 2, ...,𝑤,𝑤 + 1}, where the first𝑤 states are transient,
and the last one is absorbing. The infinitesimal generator matrix of this CTMC is

𝑮 =

[
𝑻 𝒕

0𝑻 0

]
The sub-generator 𝑻 has dimension𝑤 ×𝑤 and specifies the transition rate from state 𝑖 to state 𝑗 ≠ 𝑖 when this does not
lead to an absorption. We also define 𝒕 = −𝑻𝒆, where 𝒆 denotes a column vector of 1 with appropriate dimension. We can
further describe the stationary distribution of the transient states with 𝜶 = (𝛼1, 𝛼2, . . . , 𝛼𝑤), subject to 𝜶𝒆 = 1, 𝛼𝑖 ≥ 0.
A PH distribution may thus be compactly specified as 𝑃𝐻 (𝜶 , 𝑻 ). An acyclic PH (APH) distribution [1] is a subset of PH
distributions with an acyclic underlying Markov chain. This implies that any state in the underlying Markov chain
cannot be visited more than once before absorption. If a random variable 𝑌 has APH distribution with parameter 𝜶 ′

and 𝑻 ′, we write 𝑌 ∼ 𝐴𝑃𝐻 (𝜶 ′, 𝑻 ′).
Service demand distribution modeling. In this paper, the service demand distribution is modeled as an APH
distribution. This is because Markovian distribution models such as the APH are flexible for moment fitting and
composition with CTMCs. Given a set of moments, the parameters of an 𝐴𝑃𝐻 (𝜶 , 𝑻 ) may be obtained with various
PH distribution fitting methods [18]. In this work, we will use the method of moment matching, which can fit the
parameters to match an arbitrary number of moments of a reference on empirical distribution, so that the service
demand distribution is tackled by finding moments to fit an APH. In particular, we consider using the first three
moments to study the APH distribution of the service demand. The third moment (skewness, a) is considered for its
characterization of the fitting performance of the end of the tail

a =
𝐸 [(𝑋 −𝑚)3]
(𝐸 [(𝑋 −𝑚)2])3/2

(1)

Here, the random variable X denotes the service demand placed by a request at the resource and its first three
moments may be given in terms of the mean (𝑚), the squared coefficient of variance (SCV, 𝑐2) and the skewness (a),
which are related as follows:

𝐸 [𝑋 2] = (1 + 𝑐2)𝑚2 (2)

𝐸 [𝑋 3] = a (𝑐2)3/2𝑚3 + 3𝑚3𝑐2 +𝑚3 (3)

Thus, we assume that the service demand distribution may be approximately fitted from knowledge of the first three
moments 𝐸 [𝑋 ], 𝐸 [𝑋 2] and 𝐸 [𝑋 3] which in turn are described by parameters𝑚,𝑐2, and a . Our analysis does not rely
strongly on the number of moments chosen and may be generalized to situations where more than three moments are
used to fit an APH distribution.
Markovian Arrival Processes. PH distribution provides a more general way to capture the service demand distribution,
however, it is not always feasible to obtain the measurements from the system that can be directly used for fitting
PH-distributed service demand. Here, we consider using MAPs that can reveal the underlying PH process with an
explicit counting process.

MAPs [28] are able to incorporate correlations between successive inter-arrival times. An 𝑛-state MAP consists of
two stochastic processes, referring to a counting process and a phase process modeled by a finite state (𝑛 states) CTMC
Manuscript submitted to ACM
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Think timeThink time

MicroserviceMicroservice

Fig. 1. The reference closed queueing model for a microservice

with infinitesimal generator 𝑸 . Let 𝑫0 be a matrix associated with transitions without arrivals with non-negative
off-diagonal elements; 𝑫0 and 𝑫1 satisfy 𝑸 = 𝑫0 + 𝑫1 and (𝑫0 + 𝑫1)𝒆 = 0.

4 Problem formulation

As mentioned, we propose to observe the departure process of a microservice and determine parameters of service
demand distribution, modeled as an APH, using maximum likelihood estimation.

To ensure the quality and efficiency of frequent interactions between different services, in microservice-based
systems, connection pooling is applied to maintain the number of open connections for the REST-based interactions
over HTTP. Hence, each microservice has a finite upper bound on the maximum number of concurrent users. Thus, a
closed queueing model can capture the finite parallelism level of microservices.

Moreover, increasing populations of jobs under closed model may be used to approximate open models [3]. Therefore,
the proposed method is still applicable in principle to capture open workload-based systems. In this paper, we then
abstract the microservice-based applications as closed queueing models as follows. Figure 1 illustrates the analytical
model for this service, consisting of a closed queueing network describing both the microservice buffer and serving
process, as well as the think time of clients issuing requests. The model features 𝑁 concurrent users, each modeled
as a job. Scheduling could be either first-come first-served (FCFS) or Processor-sharing (PS) order, depending on the
implementation details of the admission control system within the microservice. We assume exponentially distributed
user think times at the delay station. The problem we study is to determine the APH service demand distribution in the
queueing station. Note that since we focus on a single class of jobs, the queueing model admits a product-form solution
for the steady-state distribution, while no specific product-form simplifications are available to stochastically analyze
the departure process at the queue. As we show next, the service distribution identification problem requires instead a
detailed Markovian analysis.
Departure process modeling with MAP. Referring to [2], the inter-event times in queueing models can be captured
with a quasi birth-and-death (QBD) process as follows. The state space of a QBD process is the set of {(𝑘, 𝑙) |1 ≤ 𝑘 ≤
𝑛𝑙 , 𝑙 ≥ 0} can be divided into levels, where 𝑘 is referred to as the phase and 𝑙 is the level of the QBD. Transactions are
only allowed between adjacent levels in QBD processes. Therefore, the generator matrix 𝑸 of such a QBD process is
given by the quasi birth-death process (QBD)

𝑸 =



𝑳0 𝑭 0

𝑩1 𝑳1 𝑭 1

𝑩2 𝑳2 𝑭 2

. . .
. . .


where 𝑳𝒍 represents the transition rates within level 𝑙 , 𝑭 𝒍 is for the transitions from level 𝑙 to level 𝑙 + 1 and 𝑩𝒍

describes the backward transactions from level 𝑙 to level 𝑙 − 1 when 𝑙 ≥ 1.
Manuscript submitted to ACM
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6 Runan Wang, Giuliano Casale, and Antonio Filieri

We can generate the infinitesimal generator 𝑸 of the underlying CTMC and then filter the events associated with
job departures in matrix 𝑫1. That is, all and only the transition rates for departures from the queue are included in the
non-negative matrix 𝑫1. Then, a MAP can be used to model the departure process with representation (𝑫0,𝑫1), where
𝑫0 = 𝑸 − 𝑫1.

We consider a MAP = {𝑫0,𝑫1} that represents the departure process of the queueing station, our objective is to
estimate the parameters for service demand distribution as 𝐴𝑃𝐻 (𝜶 , 𝑻 ) from the observed inter-departure times (IDTs).
We denote the time between two successive departure events 𝑖 and 𝑖 − 1 as 𝑋𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Thus, the IDTs of jobs are
the set 𝑿 = [𝑋1, 𝑋2, . . . , 𝑋𝑛]. Since the departure process is modeled as a MAP, the IDTs follows a PH distribution
𝑃𝐻 (𝝅 ,𝑫0), where 𝝅 = 𝝅 (−𝑫0)−1𝑫1 indicating the stationary distribution of the embedded chain. If 𝑫0 is acyclic,
then the PH distribution specializes into an APH one. This distribution produces an interval stationary initialization for
the MAP.

For the MAP described above, the joint probability density function (PDF) of IDTs 𝑿 is

𝑓 (𝑿 ) = 𝝅𝑒𝑫0𝑋1𝑫1𝑒
𝑫0𝑋2𝑫1 . . . 𝑒

𝑫0𝑋𝑛𝑫1𝒆 (4)

For computational convenience, we assume that the given departure events are independent. Thus, we have the
approximation

log 𝑓 (𝑿 ) =
𝑛∑︁
𝑖=1

log(𝝅𝑒𝑫0𝑋𝑖𝑫1𝒆) (5)

In general, let 𝑺 be the parameter set of the service demand distribution to be estimated. The log-likelihood for the
IDTs is

log 𝑓 (𝑺 |𝑿 ) =
𝑛∑︁
𝑖=1

log(𝝅𝑒𝑫0 (𝑺 )𝑋𝑖𝑫1 (𝑺)𝒆) (6)

where 𝑫0 (𝑺) and 𝑫1 (𝑺) explicit the functional dependencies between 𝑫0, 𝑫1 and the service demand distribution
parameters 𝑺 we seek for, i.e., its moments𝑚, 𝑐2, and a . Then the service demand distribution estimation problem can
be formulated as finding the parameters that maximize the log-likelihood of the IDTs measured from the monitoring
traces.
Data preprocessing. For a real system, there could be several requests from the users arriving within a very short
period of time. If we directly take all the samples in the trace, it could be quite time-consuming to calculate the likelihood
function in Equation (6), especially due to the cost of evaluating the matrix exponential.

To address the issue, we observe that the inter-departure times of jobs can be grouped into different patterns. In order
to accelerate the execution times, we apply clustering based on k-means [21] to partition the IDTs to obtain 𝐾 groups
of data with cluster centroids 𝒀 = [𝑌1, 𝑌2, . . . , 𝑌𝐾 ]. Then, the log joint density in Equation (5) may be approximated
based on the IDT clusters as

log 𝑓 (𝒀 ) =
𝐾∑︁
𝑖=1

𝑙𝑖 log(𝝅𝑒𝑫0𝑌𝑖𝑫1𝒆) (7)

where 𝑙𝑖 denotes the number of points in cluster 𝑖 .
We only briefly discuss the clustering of IDTs in this section and give an experimental example of the trade-off

between computational complexity and effectiveness is shown in Section 7.2.
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5 Global optimization based estimation

The moment estimation of service demand distribution is based on measurements at runtime. Our measured
observation consists of timestamps of arrival and departure for a sample set of successive requests, from which it is
easy to derive quantities such as inter-departure times and response time at every resource of interest, we now discuss
how we use this data to find a maximum likelihood estimation of the moments. Since an APH can be then recovered
from the moments via moment matching, this provides a solution to the service demand distribution fitting problem.
5.1 State space reduction

As we increase the number of concurrent users, the state space of the CTMC can easily suffer state-space explosion.
Assume a single-server queue where the service demand 𝑆𝐷 of the queue node is APH distributed and a delay node as
shown in the example in Figure 1. First, we consider the jobs in the queue are processed in a first-come, first-served
(FCFS) order. Only one job can be served by the server at one time. Let 𝑃 denote the number of phases in the service
process, i.e., the number of columns in 𝜶 . The number of states in the state space is

𝑠 = 𝑁 · 𝑃 + 1 (8)

where 𝑁 is the number of users in the system.
Instead, if the server follows a processor sharing (PS) scheduling strategy, i.e., multiple jobs can be served simultane-

ously, and the total number of states is

𝑠 =

𝑁∑︁
𝑖=0
(𝑁 + 1 − 𝑖)

(
𝑖 + 𝑃 − 2

𝑖

)
(9)

To mitigate the complexity of dealing with PS scheduling, we approximate the model as follows. We focus on the
mean queue length that can be efficiently estimated using approximate mean value analysis (AMVA) [11]. Based on
solving the CTMC, the computational complexity is 𝑂 (𝑁 3) even for FCFS scheduling. However, AMVA complexity is
independent of 𝑁 . The computational complexity is 𝑂 (𝐼 ) for a single class case, where 𝐼 is the number of iterations
required for AMVA to converge, which is drastically fast to obtain the estimated number of permanent users for the
queue in milliseconds.

The structure of the modified model is shown in Figure 2. Instead of considering all the individual jobs circulating
in the delay and queue nodes as usual, we propose a modified model where the mean number of jobs residing at the
queueing station in the original model is forced in the modified model to permanently reside at that station with 𝑁

′

permanent users, to mimic a similar average congestion level. We approximate 𝑁
′
with

𝑁
′
=
𝑁 − 1
𝑁

𝐸 [𝑄 (𝑁 )] (10)

where 𝐸 [𝑄 (𝑁 )] is the expected number of jobs at the queueing station in the original model. Note that the number
of jobs 𝑁

′
looping in the new model may be seen as an approximation for the expected number of users at an arrival

instant in the queue based on Schweitzer’s Approximation [11], which gives the 𝑁−1
𝑁

term.
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8 Runan Wang, Giuliano Casale, and Antonio Filieri

For a real system with a large number of users, this approximation can lead to a significant reduction of the
computational cost, while providing accurate results.
5.2 Global optimization based estimation

Given the observed trace data, a common approach for parameter estimation is maximum likelihood estimation
(MLE) [33], which casts the estimation as a global optimization problem. Thus, we propose an estimation method that
combines MLE with simulations of queueing models to approximate the APH distribution of the service demand.

Algorithm 1 describes the implementation of this method in detail. The algorithm requires a set of clustered IDTs
and searching boundaries as inputs. We first define a function to calculate the likelihood based on departure MAPs as
shown at Line 1 to 16. We use moment matching [1] to fit an APH distribution for the service demand, pointing to
APHFit in Line 3. Note that we need to satisfy that the APH distribution is feasible with given parameters, i.e., both 𝜶

and 𝑻 are nether empty nor zero. After obtaining the service demand distribution 𝑆𝐷 , a queueing model is generated
with a queueing station of 𝑆𝐷 . The current queueing model can be solved by analyzing the underlying CTMC, obtaining
the infinitesimal generator 𝑸 . By analyzing the transitions in 𝑸 , the transition rates of departure events on the queue
node can be filtered for 𝑫1 at in Line 5-7.

However, the computation of the infinitesimal generator involves the evaluation of a matrix exponential, which is
computationally expensive and can incur numerical instability [27]. To mitigate these issues, we use CTMC uniformiza-
tion [37] which is an efficient numerical method for computing transient measures involving matrix exponential. For
transient analysis, uniformization techniques can be applied with sub-generator 𝑫0 and the initial distribution 𝝅 of
the MAP. Since the transient rate in 𝑫0 of a real system could be large, to guarantee stable calculations, we adopt
the scaling method from [39], involving a scaling factor 𝑞 to avoid floating-point errors. In Line 9, the scaling CTMC
uniformization method is defined as CTMCUniform, which takes 𝜋 , 𝑸 − 𝑫1 and the centroids of the cluster as the input.
The approximated transient probability 𝛽 can be obtained with 𝐶𝑇𝑀𝐶𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚. Then the log-likelihood value can
be computed using Equation (7) at Line 10. Therefore, we can obtain the optimal moments to fit the service demand
distribution by maximizing the likelihood on the monitoring traces at Line 18.

6 Heuristics-based estimation
As illustrated in the last section, the global optimization for service demand distribution estimation needs to consider

a large search space. It could be time-consuming to obtain the optimal parameter set maximizing the likelihood value.
The method presented in this section estimates the parameters sequentially, rather than jointly, offering a heuristic
estimation that trades accuracy for speed.
Mean service demand estimation. The mean value of service demand can be efficiently estimated based on perfor-
mance measurements from monitoring traces. We refer to the work in [36], which allows estimating the expected value
of service demand with queue length and response times. Both queue length and response times are easily measured
with system monitoring. As we target on modeling the departure process in the queueing station, the input dataset of
the estimation method contains the following data by calculating from system monitoring at departing occurrence.

• The response times from the monitoring traces (𝑅)
• The queue length seen upon arrivals (𝐴)

Considering a single class of jobs in the system, let 𝑁 be the size of the population in the closed queueing network.
It is known that the mean service demand 𝐸 [𝐷] for the single-class case can be estimated as [36]:

𝐸 [𝐷] = 𝐸 [𝑅]
1 + 𝐸 [𝐴] (11)
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Algorithm 1 Global optimization based estimation method

Input: Y← Set of clustered inter-departure times [𝑌1, 𝑌2, . . . , 𝑌𝑛, 𝑙1, 𝑙2, . . . , 𝑙𝑛], where 𝑌𝑖 is the centroid value and 𝑙𝑖 is
the number of points in cluster 𝑖
𝐿𝐵 ←moment lower bound
𝑈𝐵 ←moment upper bound

Output: 𝑆𝐷 ← Estimated service demand distribution
1: function Likelihood(`1, `2, `3, 𝒀 )
2: Fit service demand distribution 𝐴𝑃𝐻 (𝜶 , 𝑻 ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`1, `2, `3]
3: if 𝐴𝑃𝐻 (𝜶 , 𝑻 ) is feasible
4: Generate a queueing network model with service demand 𝐴𝑃𝐻 (𝜶 , 𝑻 )
5: Solve the generated model and obtain the infinitesimal generator 𝑸
6: Filter 𝑫1 from 𝑸
7: MAP← {𝑸 − 𝑫1,𝑫1}, generate 𝝅
8: for 𝑖 = 1 to 𝑛
9: 𝜷 ← 𝐶𝑇𝑀𝐶𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝝅 ,𝑸 − 𝑫1, 𝑌𝑖 )
10: 𝐿 ← 𝐿 + log(𝜷𝑫1𝒆)𝑙𝑖
11: end for
12: else
13: 𝐿 ← −∞
14: end if
15: return 𝐿
16: end function
17: [`∗1, `

∗
2, `
∗
3] = argmax

`1,`2,`3
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (`1, `2, `3, 𝒀 )

18: return 𝑆𝐷 = 𝐴𝑃𝐻 (𝜶 , 𝑻 ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`∗1, `
∗
2, `
∗
3]

where 𝐸 [𝑅] and 𝐸 [𝐴] are the expected values of response time and queue length seen upon arrival, respectively.
SCV estimation. To estimate the second moment of service demand, we investigate the state-dependent behavior
of the system. The estimation formulation is derived from the SCV on the mean queue length seen upon arrival. In a
queueing system, the response time of a job is related to the number of jobs in the queueing station either waiting or
receiving service. We define 𝑅𝑖 as the response time of the 𝑖𝑡ℎ request and 𝐴𝑖 is the queue length seen upon the arrival
of the request 𝑖 . Then the response times can be then grouped into𝑚𝑎𝑥 (𝐴) sets of data according to the value of 𝐴. Let
𝑅
′
be the grouped set of response times (e.g., 𝑹

′

𝒌
= [𝑅𝑖 , . . . , 𝑅 𝑗 ] where 𝑅𝑖 , . . . , 𝑅 𝑗 have the same queue length 𝐴𝑘 with

0 ≤ 𝑘 ≤ 𝑚𝑎𝑥 (𝐴) and 𝑅′
𝑘𝑖

is the 𝑖𝑡ℎ response time in 𝑅
′

𝑘
), resulting in a representation with (𝑅′

𝑘
, 𝐴𝑘 ).

We propose to estimate 𝑐2 using the following heuristic expression

𝑐2 = max
𝐸 [(𝑅′

𝑘𝑖
− 𝐸 [𝑅′

𝑘
])2]

𝐸 [𝑅′
𝑘
]2

(12)

To demonstrate the accuracy of the approximation for SCV, we conduct an experiment with 𝑁 = 100. We analyze real
trace data from system monitoring and compare the 𝑐2 of real traces to the simulated queueing model with estimated
parameters based on MLE. We can see from Figure 3(a) that the 𝑐2 conditional on the queue length first increases to the
maximum and then decrease with the growth of queue length. The same pattern can also be observed for the real trace
as shown in Figure 3(b). The simulated 𝑐2 value is 8.3. It can be seen that the𝑚𝑎𝑥 (𝑐2) of the simulation is close to the
one for the real trace with 𝑐2 = 11.2.
Heuristic service demand distribution estimation. Our heuristic method to accelerate the MLE estimation is shown
in Algorithm 2. Compared to the global optimization in Algorithm 1, the heuristic-based method is used to estimate the
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Fig. 3. 𝑐2 conditional on the queue length seen upon arrivals for simulation (a) and the real trace (b)

Algorithm 2 Heuristics based estimation method
Input: 𝑌 ← Set of clustered inter-departure times

𝑅 ← Set of response times [𝑅1, 𝑅2, . . . , 𝑅𝑛]
𝐷𝑇 ← Set of departure times [𝑑𝑡1, 𝑑𝑡2, . . . , 𝑑𝑡𝑛]
a = [a1, a2, . . . , a 𝑗 ] ← searching set of skewness a

Output: 𝑆𝐷 ← Estimated service demand with APH distribution
1: Compute 𝐴 from 𝐷𝑇 and 𝑅
2: 𝑚 ←𝑚𝑒𝑎𝑛𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝐴, 𝑅)
3: 𝑐2 ← 𝑠𝑐𝑣𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝐴, 𝑅)
4: `1, `2 ←𝑚,𝑐2 /*Compute the first two moments according to Equations (1) and (2)*/
5: for 𝑖 = 1 to j do
6: `3 ← a𝑖 /*Compute the third moment based on Equation (3)*/
7: 𝐿 ← 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (`1, `2, `3, 𝒀 ) /*Algorithm 1 at Line 2 to 16*/
8: end for
9: `∗3 = argmax

`3
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (`1, `2, `3, 𝒀 )

10: return 𝑆𝐷 = 𝐴𝑃𝐻 (𝜶 , 𝑻 ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`1, `2, `∗3]

service demand distribution with a series of methods to fit the first three moments, including mean service demand (𝑚),
SCV (𝑐2) and the skewness (a) estimation.

The algorithm requires a set of IDTs, the departure times, the response time of each job, and the queue lengths seen
upon arrivals. In Line 1, we first compute the arrival times with the departure times 𝐷𝑇 and response times 𝑅 and then
calculate the queue length seen upon arrivals for each job. The mean service demand is estimated based on response
times and the queue length seen upon arrivals. Then the algorithm estimates 𝑐2 through Equation (12). The only search
parameter for our method now is the skewness a . Here we perform MLE on the departure process with Equation (6).
As in the search-based global optimization, we first generate a set of candidate third moments parameters `3 with
skewness values a = [a1, a2, . . . ]. For each a𝑖 , we generate a queueing model with corresponding service demand and
then calculate the likelihood value with function Likelihood in Algorithm 1 from Line 1 to 16. The algorithm will search
on all candidates in the set, and the process is repeated with multiple candidate points for robustness. The estimated
result of the skewness is finally decided by the one that maximizes the likelihood value. Therefore, the final result is
obtained by three-parameter estimation methods.
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Estimated service demand Generate a closed queueing model Parameterize the model

Solve the modelObtain the response time distribution (CCDF)

Response time distribution in real traces

Comparison

Simulate

Fig. 4. The process of experimental comparison

Table 1. Workload mixes

CPU level Low Medium High
CPU utilization (𝑈 ) 33% 43% 95%
Number of users (𝑁 ) 50 100 300

7 Evaluation

This section introduces the experimental setup and evaluation metrics, together with a comparison of our method
against baseline algorithm.
7.1 Experimental setup

To evaluate the proposed service demand distribution estimation, we conduct several experiments using an open-
source microservice-based application called Sock Shop2, which emulates an ecommerce website designed for testing
microservices and cloud native technologies. Sock Shop consists of 13 different services, and all services communicate
using REST APIs over HTTP. We use Docker Compose for the multi-container orchestration to deploy the microservice-
based system. However, in the experiment, we target a service that does not interact with other databases, which avoids
indirect drifts in the response time due to the state of the database.

To perform the load test, we then generate closed workloads with a different number of users by using Locust3.
Locust is an open source load testing tool, which allows emulating microservice users by defining tasks with Python
and injecting an artificial workload into the system.

The details of the experimental environment are described as follows. For the deployment of the application, we use a
server running Ubuntu 16.04.7, and our target service is pinned to a separate CPU core. Locust is running on 6 different
client machines to simulate the concurrent users for the microservice. We experiment with different populations of
users to assess the corresponding CPU utilization level as shown in Table 1. In all the experiments, the users’ think time
is setting with an exponential distribution with a mean value of 0.1 seconds.

First, we run numerical experiments to compare the estimation results to known service demand distribution
parameters. In numerical experiments, the trace data is collected by generating of closed queueing models and solve the
models with simulation. Next, to evaluate on real microservice traces, we conduct experiments with the workload mixes
in Table 1 with Sock Shop and capture the network traffic with a dockerized tcpdump that is triggered over HTTP.
During the experiments, we monitor HTTP traffic on the source and destination nodes of our target service. Then
the traffic data is parsed to extract the request and response information of each request. For each workload pattern,
we collect 10,000 successive HTTP requests and response pairs to build up the trace dataset. Each sample in the trace
dataset consists of the timestamps of the request arrival and departure.
Baseline algorithm. The service demand distribution is usually modeled as exponential fitting the estimated mean
value [40]. In our experiments, we also fit as a baseline with an exponential distribution for service demand.
2https://microservices-demo.github.io/
3https://locust.io/
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Fig. 5. The CCDF of response times (a) and the execution times (b) of maximum likelihood estimation under different number of
clusters

Metrics. Since the real service times of systems are usually difficult to measure, we opt to use the complementary
cumulative distribution function (CCDF) to compare the response time distribution modeling accuracy of the model
prediction to the real trace following the methodology as shown in Figure 4. After estimating this service demand
distribution, we construct the closed queueing models. Then we use the simulation-based solver JMT in LINE [35] to
solve the generated models, and obtain the corresponding response times CCDF from the parameterized model and
baseline for comparison with the measure CCDF. The only difference between the baseline and our experiments is
the service demand distribution, since the service demand distribution of the baseline is estimated by an exponential
distribution with the mean value𝑚.
7.2 Data preprocessing and clustering

To demonstrate the trade-off between computational cost and approximation accuracy depending on chosen number
of clusters 𝐾 , we conduct the experiment with the microservice trace when 𝑁 = 50. As mentioned in Section 7.1 each
trace dataset consists of 10000 samples, in this experiment, we refer the original data without clustering to 𝐾 = 10000.
Then we estimate the service demand distribution with both the original data (𝐾 = 1000) and clustered data for different
values of 𝐾 = [10, 50, 100, 500, 1000]. Figure 5 presents the accuracy and execution time comparison for different 𝐾 .
It can be observed from Figure 5(b) that with clustered IDTs the execution time drops by almost 33%, comparing the
results between the original data (𝐾 = 10000) and 𝐾 = 1000. The accuracy of estimation with the clustered data is
evaluated in Figure 5(a) by CCDF diagrams of the response time distributions. While small values of 𝐾 lead to a coarse
approximation, by increasing 𝐾 , the CCDF for the clustered data rapidly converges to the curve representing the
results with the original data (non-clustered). As can be noted from Figure 5(a), the curves become indistinguishable
for 𝐾 ≥ 100. We can thus conclude that our clustering heuristics does not significantly reduce the accuracy of the
estimation when 𝐾 ≥ 100, while significantly reducing the computational cost of the estimation.
7.3 Numerical experiment results

We conduct the following numerical experiments to assess our global-search based method for the service demand
distribution estimation, aiming to obtain a ground-truth with pre-setting parameters.

We generate closed queueing networks with a single server queue that can simulate the behaviors of a simplistic
microservice, which is denoted as generated model in the following description. In the generated model, we give the
moments of service demand distribution at the queueing node with different values, so that we can have a ground truth
of the moments of service demand distributions. Then we collect samples of timestamps of arrival and departure as the
trace data by solving the generated models. In this way, we can compare the estimated results from global optimization
to these values setting in the generated model.
Manuscript submitted to ACM
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(d) 𝑐2 = 16

Fig. 6. CCDF of response time for different setting of 𝑐2
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(b) 𝑁 = 5
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(c) 𝑁 = 10

Fig. 7. CCDF of response time for different numbers of users 𝑁

The details of the numerical experimental design are as follows. For the setting of pre-known service demand
distribution, we fix themean service demand𝑚with a random value 0.7 and then set different SCVwith 𝑐2 ∈ {0.5, 1, 4, 16}.
Therefore, there are 4 generated queueing models with different service demand distributions. Then we execute
Algorithm 1 with these 4 traces data and compare the estimated 𝑆𝐷 to the known values and the baseline algorithm.
The results of the comparison are plotted as CCDF diagrams in Figure 6.

It can be seen from the response times distributions that our estimation method achieves good fits for all settings of
𝑐2 and outperforms the exponential distribution, especially for the tail of the distributions. For larger 𝑐2, such as 𝑐2 = 16,
we can observe that estimating the mean𝑚 of the exponential distribution alone cannot capture the full distribution of
service demand, with the baseline algorithm decreasing much faster than our method (e.g., the green curve in Figure 6),
resulting in an inaccurate prediction of the response times.

Next, we turn to evaluate the estimation accuracy under different number of users. In this part of the experiment, we
still set the service demand distribution with known values of the generated model, and vary the number of users in
𝑁 ∈ {1, 5, 10}. The assigned parameters of service demand in the generated models are𝑚 = 0.7 and 𝑐2 = 16, which
represents a higher variability than in the first numerical experiment. During solving generated models, we notice
that with 𝑁 = 10 the CPU utilization can reach over 95% which is close to saturation. As shown in Figure 7, all the
green curves with baseline algorithm fail to model the response time distribution accurately under different workloads.
While, the fitting results of our method achieve very close fit to the trace data under light load 𝑁 . For 𝑁 = 5 and 𝑁 = 10,
the results of the proposed method still yields good performance for both body and tail distribution compared to the
baseline.
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(c) 𝑁 = 300,𝑈 = 95%

Fig. 8. CCDF of response time with different utilization for the fitted models with FCFS.

Table 2. Service demand distribution parameter estimation results for FCFS

𝑁 𝑚 × (10−4) 𝑐2 a 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × (104)
50 8.33 8.24 11 6.62
100 6.21 11.22 57 14.31
300 3.50 8.03 12 10.64

Table 3. Service demand distribution parameter estimation results for FCFS with FCFS-single method

𝑁 𝑚 × (10−4) 𝑐2 a

50 13.61 2.31 4
100 7.96 2.85 5
300 3.72 2.87 7

7.4 Analysis of Results on Measured Traces

Analysis with FCFS.We now turn our attention to experiments of the real trace on the microservice application. First,
we present our experimental results with FCFS scheduling policy under different workload patterns.

We notice that for a single server queueing system under FCFS scheduling, the service times are measurable by
sampling IDTs when the server is not idle, which provides an explicit way to evaluate our proposed estimation method.
Therefore, for FCFS scheduling, we add another comparison by directly calculating the first three moments from
these sampled service times, which is denoted the FCFS-single method. We evaluate the model prediction results with
FCFS-single method, baseline algorithm, and our method to the real trace data. The CCDF of response times for low,
medium, and high CPU utilization are plotted in Figure 8, respectively. The estimated parameters for service demand
distribution with FCFS are summarized in Table 2, and the parameters based on FCFS-single method are in Table 3.

First, compared to the baseline algorithm with exponential distribution, it can be seen that for all 3 different 𝑁 , our
method produces a closer fit. As one can see for the body fitting, both baseline and our proposed model yield good
performance. For 𝑁 = 50 and 𝑁 = 100, our model fits the body with better accuracy, whereas the baseline method is
outperformed for 𝑁 = 300. However, for the fitting of the tail, the baseline method is worse in terms of accuracy for all
values of 𝑁 .

Then we compare the fitting results of our heuristic method to the direct measurement - FCFS-single method. We
observe in Figure 8 that our estimation results yield a similar accuracy of fitting the tail of the distribution under low
and medium utilization levels as the FCFS-single method. Both the blue and black curves are much closer to the one
of the real trace data. While our method achieves more accurate fitting of the body when 𝑁 = 100. For higher CPU
Manuscript submitted to ACM
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Fig. 9. CCDF of response time with different utilization for the fitted models with PS.

utilization, the results from our method show slightly weaker fitting in the middle of the body, but achieve a better fit
for the tail of the distribution. We interpret that the real microservice system is not precisely served by FCFS scheduling,
while it exhibits some state-dependent degree of CPU sharing. The proposed heuristic method captures instances of
large service variance that occur in certain system states, which can be inferred from 𝑐2 in Table 3.

Overall, under FCFS scheduling policy, our estimated distribution achieves a better fit throughout the distribution
curve, producing an approximation of the real trace distribution accurately. Compared to the baseline and FCFS-single
method, our proposed method can model the tail behaviors, which is significant to model different intensive workloads.
Analysis with PS. To analyze the impact of scheduling policies, we conduct experiments with 𝑁 ∈ {50, 100, 300}
and PS scheduling policy. The parameter estimation results with PS scheduling are shown in Table 4 and the fitting
comparison is plotted in Figure 9.

First, compared to the results with FCFS scheduling, switching to PS scheduling impacts the parameter estimation
results of the baseline in a significant manner. Comparing the estimated skewness to the results for FCFS in Table 2, we
can observe smaller values of skewness in Table 4. While the likelihood values for different workloads with PS are still
close to the one with FCFS.

For the fitting comparison on CCDF diagrams, under light and medium load, it can be seen in Figure 9(a) and 9(b),
the baseline method first fits well at the beginning, and it decays faster from the middle body, ultimately not able to
capture the tail for light and medium load. While our method also fits the body with low inaccuracy and outperforms
the baseline for the tail fitting, showing a more accurate fit for the distribution. However, with increasing the number
of users to 𝑁 = 300 that is close to 100% CPU utilization, the baseline method achieves a closer fit to the data with PS
scheduling in Figure 9(c).

The above experimental results with FCFS and PS scheduling indicate that in reality, the actual system scheduling
will factor in several elements such as caching, memory bandwidth, and operating system scheduling, which are neither
perfectly PS nor FCFS. Therefore, our results indicate that either model provides a reasonable approximation to the
observed system behavior, but FCFS appears more suitable to model heavy loads.

Summarizing, the previous results indicate that in the majority of instances the proposed method is able to estimate
the service demand distribution with higher fidelity than simple exponential service demand. By comparing the CCDF of
the response time distribution, the proposed heuristic method can also capture the tail behaviors with higher accuracy.

8 Heuristic estimation for multiclass models

For a microservice, different services can be identified into the classes based on different endpoints to model
heterogeneous service processing. In this section, we generalize our service demand distribution estimation method to
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Table 4. Service demand distribution parameter estimation results for PS

𝑁 𝑚 × (10−4) 𝑐2 a 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × (104)
50 8.33 8.24 9 6.11
100 6.21 11.22 10 14.53
300 3.50 8.03 4 10.68

the multiclass service queues. Single-class service demands are often insufficient to capture the dynamic behaviors in
the server, resulting in inaccurate predictions. For example, ignoring the presence of multiple classes can systematically
underestimate or overestimate the service demand distribution for a queueing station.

Multiclass service demand distribution estimation can, however, be intractably expensive to solve with either the
global search or the heuristics-based method mentioned in sections 5 and 6. First, the state space explosion problem
could be further worsened by the use of different APH distributions for each class, with the state space roughly growing
in size as the product of the corresponding state spaces for models with a single class. Moreover, the optimization
problem can be challenging due to the increased number of search parameters, which are now to be differentiated
across service classes.

To mitigate the execution complexity of searching for the optimal parameters, class aggregation [5, 16] can be applied
to service demand distribution estimation. In particular, multiclass estimation problem can be systematically reduced to
an equivalent two-class estimation problem. We also introduce an extension of our heuristics-based method for two
classes where the model includes only a tagged class and an aggregated class, in the sense described later in this section.
Finally, we evaluate the accuracy and scalability of the multiclass estimation in Section 9.
8.1 Class aggregation.

First, we illustrate the class aggregation process through the example shown in Figure 10. In this procedure, we
tackle the estimation of service demand distribution of each class by solving 𝑅 two-class submodels, with 𝑅 being the
total number of classes in the original model. For the problem in Figure 10, we need to solve three submodels, so that
the service demand distribution for a given job class (e.g., class 𝐴) is estimated based on a submodel with a tagged class
(e.g., 𝐴) and an aggregated class that includes all other classes (e.g., 𝐵 and 𝐶). By recursively applying this approach to
all classes, considering each in turn as the tagged one, the problem is mapped to a collection of submodels, which can
be solved independently of each other. In essence, this approach approximates the service demand distribution in a
more scalable fashion than the original model by reducing the level of fidelity by which we represent the other classes.
When solving each submodel, we only extract from that submodel the estimated service demand distribution of the
tagged class.

The detailed description of submodel generation based on class aggregation is as follows. Referring to Figure 10,
assume our objective is to estimate the service demand distribution for the tagged class 𝐴. In the aggregated class, the
number of users is directly calculated with 𝑁𝑎𝑔𝑔 = 𝑁𝐵 + 𝑁𝐶 . Let denote 𝑝 as the probability to be as class 𝐵; 1 − 𝑝 is
the probability to be class 𝐶 . The probability for the aggregated class is decided by the throughputs of each class, for
example, 𝑝 =

𝑋𝐵

𝑋𝐵+𝑋𝐶
, where 𝑋𝑖 represents the throughput of class 𝑖 . The aggregated mean value𝑚𝐴𝑎𝑔𝑔 for the submodel

from tagged class 𝐴 is calculated with the throughputs and the probabilities of the aggregated classes. Similarly, the
aggregated SCV and the skewness can be obtained as a mixture distribution in the same way, where the original
parameters of the service demand distribution for each class are the component of the mixture. With this definition, the
moments have the following expression

𝐸 [𝑀𝑖
𝑎𝑔𝑔] =

∑︁
𝑝∈𝑷 ,𝑐∈𝑪

𝑝𝐸 [𝑀𝑖
𝑐 ] (13)
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Class A
Class B
Class C

Class C

Class A,B

Class B

Class A,C

Class A

Class B,C

submodel 1

submodel 2

submodel 3

Fig. 10. Example: submodel generation based on class aggregation with 3 classes

where𝑀𝑖
𝑐 represents the 𝑖𝑡ℎ moment of the service demand distribution of class 𝑐 and 𝑪 is the set of service classes. 𝑷

represents the probabilities of each class except the tagged class.
Multiclass MAP. Multiclass service demand distribution is an extension of the single-class case. Multiclass departure
process MAP can also be represented with𝑀𝐴𝑃 = {𝑫0,𝑫1}, where 𝑫1 =

∑𝑁
𝑖=1 𝐷

𝑐
1 . Let 𝝅𝑐 be the stationary distribution

that follows a departure of class 𝑐 that satisfies 𝝅𝑐 = 𝜋 (−𝑫0)−1𝑫𝑐1.
For each inter-departure time 𝑋𝑖 extracted from the system monitoring traces, we denote 𝑐𝑖 as the class label

of the current departure job. The value of 𝑐𝑖 can be repeated within the class set 𝑪 of the queueing model, e.g.,
𝑪 = [𝑐1, 𝑐2, 𝑐2, 𝑐3, · · · ].

For multiclass MAPs, we assume that the IDTs and the class labels of the departure jobs are independent. Thus, the
PDF of IDTs is

𝑓 (𝑿 , 𝑪) = 𝝅𝑒𝑫0𝑋1𝑫𝑐11 𝑒
𝑫0𝑋2𝑫𝑐21 . . . 𝑒𝑫0𝑋𝑛𝑫𝑐𝑛1 𝒆 (14)

Based on (14), the log joint PDF for multiclass can be approximated with

log 𝑓 (𝑪,𝑿 ) =
𝐾∑︁
𝑖=1

log(𝝅𝑒𝑫0𝑋𝑖𝑫𝑐𝑖1 𝒆) (15)

Multiclass MEAN and SCV estimation. For multiclass service demand distribution estimation, we also aggregate
classes for the third-moment estimation. The mean value of service demand is calculated referring to the response-time
based estimation extended to the multiclass scenario. Let

• Response times of class 𝑐 from the monitoring traces be represented as 𝑹𝑐 .
• Queue length of class 𝑗 seen upon arrival of class 𝑐 be 𝐴 𝑗𝑐 .

For multiclass queue, the two scheduling policies we consider have different mean estimation expressions due to
different behaviors of the server. For FCFS, we need to consider the different classes of jobs queueing in the server to
wait for the service

𝐸 [𝐷𝑐 ] =
𝐸 [𝑅𝑐 ] −∑𝑖∈𝐶,𝑖≠𝑐 𝐸 [𝐷𝑖 ]𝐴𝑖𝑐

1 +𝐴𝑐𝑐
(16)

While for PS, the mean service demand can be estimated with Equation (17) which is directly extended from the single
class.

𝐸 [𝐷𝑐 ] =
𝐸 [𝑅𝑐 ]

1 +∑𝑖∈𝐶 𝐴𝑖𝑐 (17)
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Class = [A,B,C]

Sub-model1
Tagged class: A

Sub-model2
Tagged class: B

Sub-model3
Tagged class: C

𝑆𝑘!""# 𝑆𝑘!""$ 𝑆𝑘!""%

𝑆𝑘%𝑆𝑘$𝑆𝑘#

Fig. 11. Synchronize submodels with iterations

SCV estimation 𝑐2 for class 𝑐 can be generalized with multiclass jobs using the following equation

𝑐2𝑐 = max
𝐸 [(𝑅′𝑐

𝑘𝑖
− 𝐸 [𝑅′𝑐

𝑘
])2]

𝐸 [𝑅′𝑐
𝑘
]2

(18)

For each class 𝑐 , we group the response times using the same method as for the single class case, where 𝑅
′𝑐
𝑘

is the
grouped set of response time with queue length 𝐴𝑘 .
Iterative synchronization of the submodels. To synchronize the submodel for the tagged class with the estimated
moments by the heuristic estimation method, we then iterate on the results of solving submodels. As mentioned before,
the service demand distribution for 𝑅 different classes is estimated considering a different tagged class each time.
However, also the service demand distribution results for the aggregation classes can be used to calibrate the accuracy
of the estimation iteratively, as shown in Figure 11.

We define an iterative method to solve all |𝑪 | two-class submodels with the |𝑪 | groups of estimated parameters with
𝑚,𝑐2 and a for each class. Here, we denote a𝑐𝑎𝑔𝑔 as the skewness value for the aggregated class in a submodel with a
tagged class 𝑐 . The parameters of each aggregated class (e.g., a𝐴𝑎𝑔𝑔) can be updated after obtaining the skewness values
(e.g., calculate a new a𝐴𝑎𝑔𝑔

′
with a𝐵 and a𝐶 using Equation (13)) from the current estimation iteration. Thus, the updated

parameters of the aggregated classes in each iteration can be used to synchronize the submodel, which provides a
calibration on the moments for aggregated classes. With iterative calibration of fitting the APH distribution of service
demand in the queue node for aggregation class, the estimated skewness would be converged.

8.2 Heuristic based estimation method for multiclass demand

Service demand distribution estimation for multiclass can be split into two sub-problems. The first one is to estimate
skewness for each class with the tagged class and aggregated class. The second problem is to iteratively calibrate the
accuracy of the estimated skewness.

Assuming that there are |𝑪 | job classes in total, we need to generate |𝑪 | submodels to solve this problem. In each
submodel, there are two classes of jobs with 𝑁𝑡𝑎𝑔 and 𝑁𝑎𝑔𝑔 users. The heuristics-based method for multiclass is
implemented as shown in Algorithm 3. This algorithm requires the following inputs. The throughput 𝑿 for different
classes (calculated from monitoring traces), the number of users 𝑁𝑐 and think time 𝑍𝑐 in each class, and the clustered
set of IDTs and class labels.

We define the function Likelihood_multi to calculate the likelihood on multi-class departure MAPs in Algorithm 3
referring to Line 3-25. In this procedure, the service demand distribution is first fitted conditionally on the synchronized
iteration with the prior information of the skewness as shown from Line 7 to 11. Then a two-class submodel for
estimation current a𝑐 is generated. The submodel is then solved by analyzing the CTMC to obtain the infinitesimal
Manuscript submitted to ACM
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Algorithm 3 Heuristics based estimation method for multiclass

Input: 𝑪 ← service class set,𝒎, 𝒄2←mean and SCV set, 𝒁 ← user think times, 𝑿 ← throughputs for different service
classes, 𝒀 = (𝒀1 = [𝑌11, · · · , 𝑌1𝑛, 𝑙11, · · · , 𝑙1𝑛], 𝒀2 = [𝑌21, · · · , 𝑌2𝑛, 𝑙21, · · · , 𝑙2𝑛]) ← Set of clustered inter-departure
times for each service class, 𝑵 ← Set of number of users in each class

1: 𝑪, 𝝁3 ← 𝐶𝐻𝐸𝐶𝐾𝑆𝑐𝑣 (𝑪,𝒎, 𝒄2,𝒁 ) /*Defined in Algorithm 4*/
2: Initialize 𝑖𝑡𝑒𝑟 = 1
3: function Likelihood_multi(`1, `2, `3, 𝑖𝑡𝑒𝑟, 𝒀 )
4: 𝐴𝑃𝐻1 (𝜶 , 𝑻 ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`1, `2, `3]
5: 𝑚𝑎𝑔𝑔 , 𝑐2𝑎𝑔𝑔 , a𝑎𝑔𝑔 ←𝑚,𝑐2, a,𝑿 /*From Equation (13)*/
6: Compute the first three moments for aggregated class [`′1, `

′
2, `

′
3] based on Equations (1) to (3)

7: if 𝑖𝑡𝑒𝑟 == 1
8: 𝐴𝑃𝐻2 (𝜶

′
, 𝑻
′ ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`′1, `

′
2]

9: else
10: 𝐴𝑃𝐻2 (𝜶

′
, 𝑻
′ ) ← 𝐴𝑃𝐻𝐹𝑖𝑡 [`′1, `

′
2, `

′
3]

11: end if
12: if 𝐴𝑃𝐻1 and 𝐴𝑃𝐻2 are feasible
13: 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙 ← 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃𝐻1, 𝐴𝑃𝐻2, 𝑁𝑡𝑎𝑔, 𝑁𝑎𝑔𝑔)
14: 𝑸 ← 𝑠𝑜𝑙𝑣𝑒 (𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙)
15: 𝑀𝐴𝑃 ← {𝐷0, 𝐷

𝑡𝑎𝑔

1 + 𝐷𝑎𝑔𝑔1 }, generate 𝜋
16: for 𝑘 = 1 to 𝑛
17: 𝜷1 ← 𝐶𝑇𝑀𝐶𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝜋, 𝐷0, 𝑌1𝑘 )
18: 𝜷2 ← 𝐶𝑇𝑀𝐶𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝜋, 𝐷0, 𝑌2𝑘 )
19: 𝐿 ← 𝐿 + 𝑙1𝑘 log(𝛽1𝐷

𝑡𝑎𝑔

1 𝒆) + 𝑙2𝑘 log(𝛽2𝐷
𝑎𝑔𝑔

1 𝒆)
20: end for
21: else
22: 𝐿 ← −∞
23: end if
24: return 𝐿
25: end function
26: while 𝑡𝑜𝑙 ≠ 0 do
27: for 𝑖 in 𝑪 do
28: Relabel samples with tagged and aggregated classes
29: 𝑸𝒍𝒆𝒏← 𝑟𝑒𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑸𝒍𝒆𝒏)
30: Update users with two classes 𝑵𝒕𝒂𝒈,𝑵𝒂𝒈𝒈

31: 𝝁3 ←𝑚,𝑐2,𝝂 with Equation (3)
32: `∗3 = argmax

𝝁3

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑚𝑢𝑙𝑡𝑖 (`1, `2, `3, 𝑖𝑡𝑒𝑟, 𝒀 )

33: end for
34: [`′1, `

′
2, `

′
3] ←𝑚𝑜𝑚𝑒𝑛𝑡𝐴𝑔𝑔(𝑿 , [`1, `2, `∗3])

35: a
′
𝑎𝑔𝑔 = a𝑎𝑔𝑔

36: a𝑎𝑔𝑔 ← `
′
3

37: 𝑡𝑜𝑙 = 𝑑𝑖 𝑓 𝑓 (a𝑎𝑔𝑔, a
′
𝑎𝑔𝑔)

38: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
39: end while

generator𝑄 . The two-class departure MAP now can be constructed as the process (𝐷0, 𝐷
𝑡𝑎𝑔

1 , 𝐷
𝑎𝑔𝑔

1 ), which are generated
by filtering different classes on 𝑄 . In Line 11 to 15, the result of log-likelihood for the tagged class with relabeled
inter-departure times is obtained.
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Algorithm 4 𝐶𝐻𝐸𝐶𝐾𝑆𝑐𝑣

Input: 𝑪 ← service class set, 𝒎, 𝒄2← mean and SCV set, 𝒁 ← user think times
1: 𝒎𝑎𝑔𝑔 ←𝑚𝑒𝑎𝑛𝐴𝑔𝑔(𝒁 ,𝒎) /*According to Equation (13)*/
2: 𝒄2𝑎𝑔𝑔 ← 𝑠𝑐𝑣𝐴𝑔𝑔(𝒁 , 𝒄2) /*Using Equation (13) and Equations (1) to (2)*/
3: for 𝑖 = 1 in |𝑪 | do
4: if 𝑐2

𝑖
≤ 1 then

5: if 𝑐2
𝑖
== 1 then

6: a𝑖 = 2 /*the skewness of Exponential distribution*/
7: end if
8: Calculate a𝑖 of 𝐸𝑟𝑙𝑎𝑛𝑔(𝑚𝑖 , 𝑐2𝑖 )
9: 𝑪 ← remove 𝑖 from 𝑪
10: Compute `3𝑖 with (𝑚𝑖 , 𝑐2𝑖 , a𝑖 ) using Equation (3)
11: end if
12: end for
13: return 𝑪, 𝝁3

𝑐!
" <1

𝑐!
" =1

𝑐!
" >1

𝐸𝑟𝑙𝑎𝑛𝑔(𝜂! , 𝑐!
")

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜂!)

𝐴𝑃𝐻(𝜂! , 𝑐!
", 𝑠𝑘𝑒𝑤)

Fig. 12. Conditional skewness estimation

Algorithm 3 starts with calculating the number of classes and the set of third moments according to Algorithm 4.
Then it iterates on each service class, updating the number of uses in the tagged and aggregated class and relabel the
samples with two classes, referring to Line 28-30. The algorithm calculates the third moment of the current tagged
service class and obtain the likelihood value via Likelihood_multi. Then the first three moments of the current tagged
class can be then obtained with the third moment candidate that maximized the likelihood. The parameters of the
skewness of the remaining classes are solved with the same procedure by solving with submodels as illustrated.

After solving all submodels based on the MLE method, the skewness of each class can be obtained. The submodels can
be synchronized with updated aggregated skewness values. The aggregated skewness for each submodel is calibrated
with moment aggregation based on the throughputs. At the end of each iteration, the algorithm compares the current
skewness for the aggregated classes in each submodel with the updated values.

To accelerate the convergence of the algorithm, we add additional conditions to estimate the skewness as shown in
Figure 12 and Algorithm 4.For each service class, there are three cases to fit for the APH distributed service demand in
the queue node. First, if 𝑐2

𝑖
< 1, it can be then fitted from an Erlang distribution for the service demand with𝑚𝑖 , 𝑐2𝑖 . Thus,

there is no estimation of the skewness for class 𝑖 since it can be directly calculated based on the Erlang distribution. In
this case, Algorithm 3 only involves the rest of class in 𝑪 except class 𝑖 according to Algorithm 4. Next, if 𝑐2

𝑖
= 1, the

service demand distribution of this class should form an Exponential distribution with the skewness equal to 2.
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Fig. 13. CCDF of response times of multiclass for numerical experiments

Table 5. Parameter estimation results for numerical experiments with 3 classes

𝑚 Estimated 𝑚 𝑐2 Estimated 𝑐2 a Estimated a
Class1 5 5.15 1 1.62 2.00 50.0
Class2 5 5.13 4 4.36 5.31 5.4
Class3 5 5.00 8 18.96 7.98 12.8

9 Multiclass experiments

9.1 Numerical experiments

To evaluate the effectiveness of the proposed heuristic-based estimation for multiclass jobs, numerical experiments
are conducted based on traces collected via simulation.

In the following experiments, we first generate closed queueing models with 3 service classes of service, and sample
from the simulation results to construct the datasets for evaluation. To avoid the difference in service distributions
being driven by their mean value, we set the same mean value for the service demand distribution for different classes
in the queue node to𝑚 = 5 and 𝑐2 is selected as 1, 4, 8 for each class. In this way, we can have the ground truth for
comparison to the result of our proposed method. The details of the parameter settings in the sampling models are
shown in Table 5 and Table 6. In the experiment of Table 5, we set the mean and SCV values for the generated model.
Thus, a of 3 classes can be compared to the baseline (Column a) by calculating the skewness of the fitted APH with
𝑚 and 𝑐2. While for Table 6, we also set the skewness values in a = [4, 7, 10] of the generated model. Therefore, in
the second experiment, the accuracy of the skewness estimation can be directly measured by comparing the setting
skewness and the experimental results. The CCDF of the above experiments are shown in Figure 15(a) and 15(b).

First, compared to the baseline algorithmwith exponential distribution, our estimation results yield better performance
from the body to the tail. The green curve of the exponential distribution decays faster from the middle, resulting in an
inaccurate prediction of the tail of the response times. We can then observe from the parameter estimation results in
Table 5 that the estimated values of𝑚 and 𝑐2 are close to the given parameters of the generated model. If the optimal
result reaches a bound value, the algorithm will then fit from the first two moments instead of three moments to reduce
the inaccuracy. The results in Table 6 show that the skewness estimation for all 3 classes is accurate.

Next, we evaluate the effectiveness of iterative calibration with different submodels. We compare the CCDFs with and
without iterative calibration (e.g., with a single execution) in Figure 14. The black curve represents the CCDF without
iteration. It can be seen that for the body of the distribution, there is no obvious difference between our estimation and
the one without calibration. However, our estimation method captures the tail of the distribution quite well compared
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Table 6. Parameter estimation results for numerical experiments with 4 classes

𝑚 Estimated 𝑚 𝑐2 Estimated 𝑐2 a Estimated a
Class1 5 5.06 1 1.55 4 8.1
Class2 5 4.40 4 4.14 7 8.4
Class3 5 4.89 8 10.77 10 12.3

10-3 10-1 101 103

x - Response time [s]
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>x
)
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Estimation
No iteration

Fig. 14. Comparison results for iterative calibration

to the simulated trace data. Instead, the method without iteration deviates from the tail. Therefore, we conclude that,
for the multiclass case, the calibration with iteration on the skewness can help to improve the accuracy of the service
demand distribution estimation for multiclass cases.

9.2 Real traces analysis

In the following experiments, we evaluate our estimation method with real traces from the same microservice
application (Sock Shop) as before. We concluded from Section 7 that the scheduling policy under high load is intended to
be FCFS, while more likely to be PS with lower load. In this section we have run experiments with two parameterizations:
𝑁 = {10, 10, 10} and 𝑁 = {10, 10, 10, 10} for 3 and 4 service classes, which are under medium load, configuring the
worst case for estimation, since neither FCFS nor PS will constitute a perfect fit.
Analysis with FCFS. Comparative results for 𝑁 = 30 for 3 classes and 𝑁 = 40 with 4 classes are shown in Figure 15(a)
and Figure 15(b) respectively. Table 7 shows the corresponding parameter estimation results for the service demand
distribution. Note that 𝑐2 of class 3 is less than one, and the service demand distribution for class 3 is estimated with
an Erlang distribution as illustrated in Section 8. Thus, in these two tables, a of class 3 is obtained by calculating the
skewness of the Erlang distribution.

For three classes, both the baseline algorithm and our estimation are able to fit the response time distribution of the
real trace, while our estimation is better on the tail. It can be seen from Figure 15(b) that our estimation achieves almost
the same fitting accuracy as the exponential one. Compared to the baseline algorithm with FCFS for both three and four
classes, the heuristics-based method performs similar as the exponential distribution, however, the fitting from our
estimation is still a fair approximation of the real trace behavior.
Analysis with PS. Table 8 and Figure 16 show the estimation results with PS. For fitting the service demand distribution
of three service classes in Figure 16(a), both our estimation result (the blue curve) and the exponential one (green) are
close to the real trace, indicating a good characterization of the service demand of the real system. Figure 16(b) shows
how our estimation method outperforms the baseline algorithm for the four classes case. Moreover, comparing the
fitting on the tail of the distribution, our result is closer to the real trace. Instead, with the exponentially distributed
Manuscript submitted to ACM
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Fig. 15. CCDF of response times for multiclass with FCFS

Table 7. Parameter estimation results with FCFS

3 classes

𝑚 × 10−3 𝑐2 a

Class 1 1.8 11.1 16.1
Class 2 4.4 2.4 14.9
Class 3 17.5 0.7 1.6

4 classes

𝑚 × 10−3 𝑐2 a

Class1 1.4 10.2 14.3
Class2 3.8 2.5 12.9
Class3 16.1 0.7 1.6
Class4 1.4 10.0 15.1
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Fig. 16. CCDF of response times for multiclass with PS

service demand, the predictive curve of the response times decays faster, especially for the four classes trace. Thus, the
heuristics-based method has a better fit throughout the response time distribution.

In summary, for three and four service classes the estimation results with both FCFS and PS achieve reasonable
accuracy to capture the real system. We can draw the same conclusion as the single-class experiments that the tail
behaviors based on our estimation achieve good accuracy to capture the response times distribution, especially for high
percentiles, while also being more efficient to compute.

10 Conclusion

In this paper, we introduced a service demand distribution estimation method by using Markovian arrival processes to
abstract a microservice. We presented a closed queueing model for a microservice and characterized the service demand
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Table 8. Parameter estimation results with PS

3 classes

𝑚 × 10−3 𝑐2 a

Class 1 2.8 11.1 5.1
Class 2 5.7 2.4 3.9
Class 3 26.1 0.7 1.6

4 classes

𝑚 × 10−3 𝑐2 a

Class1 3.2 10.2 5.5
Class2 5.7 2.5 3.5
Class3 22.8 0.7 1.6
Class4 3.0 10.0 5.4

of the queue node with an APH distribution based on departure MAP. For multi-class service demand distribution
estimation, we applied class aggregation to reduce the number of classes, mapping to a collection of two-class service
demand estimations, and introducing an iterative calibration to increase the accuracy of the two-class estimation by
combining their individual results. Heuristics-based estimation method was proposed to reduce the computational
cost compared to the global search approach. We further showed that the proposed estimation method with both
optimization and heuristic solution yields a better performance on fitting real traces of microservices compared to
state-of-the-art alternatives.

As part of the future work, we plan to integrate our work in an orchestration toolchain and extend it to microservices
architectures and serverless function chains with LQNs. In such cases, a single component of a microservice or an
individual serverless function can still be abstracted as a single queueing model, suggesting that the currently proposed
estimation method can possibly capture the service demand distribution based on data from distributed tracing and
monitoring.
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