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Abstract

Markov-modulated Poisson processes (MMPPs) are stochastic models useful for fitting em-

pirical traces for simulation, workload characterization and queueing analysis purposes. In

this paper, we develop the first counting process fitting algorithm for the marked MMPP

(M3PP), a generalization of the MMPP for modeling traces with events of multiple types.

We initially explain how to fit two-state M3PPs to empirical traces of counts. We then

propose a novel form of composition, called interposition, which enables the approximate

superposition of several two-state M3PPs without incurring into state space explosion. Com-

pared to exact superposition, where the state space grows exponentially in the number of

composed processes, in interposition the state space grows linearly in the number of com-

posed M3PPs. Experimental results indicate that the proposed interposition methodology

provides accurate results against artificial and real-world traces, with a significantly smaller

state space than superposed processes.
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1. Introduction

The Markov-modulated Poisson process (MMPP) is a general fitting tool for traces with

correlated arrivals [11] which finds application in modeling network traffic [27], disk I/O

patterns [32], grid and cloud workloads [22], and self-adaptive software systems [29]. A

central property of MMPPs is the composability with other Markov models, such as queueing

systems [17, 18, 31] or stochastic Petri nets [29], which enables using non-renewal processes

in performance models. This is important because autocorrelation and temporal dependence

can greatly affect system performance and therefore need to be taken into account in system

modeling [23].

The MMPP is a special case of the Markovian Arrival Process (MAP) [24] in which

the departure process is a modulation of Poisson processes and the active process is chosen
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according to the state of a continuous-time Markov chain. In this paper, we propose a

generalization of the MMPP, which we call the marked MMPP (M3PP), and develop a

scalable methodology for fitting M3PPs to empirical datasets. The M3PP can be regarded as

a specialization of the MMAP, the marked extension of the MAP [13]. A marked point process

associates to each arrival a class label [13, 12], thus it is useful to model traces with events

of multiple classes (e.g., read and write requests in disk drives). Marked processes are also

important in the analysis of priority queues and multiclass models [17, 8, 18, 31]. However, few

techniques exist for their fitting and they all focus on matching moments of the inter-arrival

time process for marked MAPs (MMAPs) [17, 8]. Therefore, no techniques exist yet for fitting

marked Markov-modulated processes to count data. Still, to limit monitoring overheads, only

count data can be extracted from certain classes of computer and communications systems

(e.g., network links). This motivates the investigation into methodologies to fit marked count

data.

In this paper, we fill this gap by developing approximate fitting algorithms for the count-

ing process of the M3PP. In particular, we first explain how to approximately fit a two-state

MMPP counting process and then extend the idea to two-state M3PPs. The proposed ap-

proach is applicable to traces with aggregated or coarse-grained measurements, which cannot

be analysed using approaches based on inter-arrival times, since these require moments from a

trace recording all the arrivals. The main drawback is that counting processes are mathemat-

ically less tractable than inter-arrival processes, therefore one normally focuses on low-order

moments of counts.

Two-state models are often insufficient to fit complex traces, therefore we also study the

approximate fitting of large M3PPs. In the single class setting, a known limitation of MMPPs

is the inability to simultaneously fit many statistical descriptors due to the non-linearity of

their underlying equations [20, 3, 16]. This has led to the definition of several approaches

to fit complex traces by composing multiple small-sized MMPPs or MAPs using Kronecker

operators [1, 15, 10]. These methods employ composition operators for moment fitting,

offering a different trade-off between computational cost and fitting accuracy compared to

fitting methods based on the EM algorithm [5, 19, 21]. In particular, the superposition

operator allows one to describe a trace by the statistical multiplexing of several MMPPs, at

the expense of an exponential growth of the number of states in the resulting process [30].

This state space explosion is an obstacle for the application of MMPPs and MAPs to modeling

real systems; for example it considerably slows down, or even renders infeasible, the numerical

evaluation of queueing models by matrix geometric methods [28, 2].

In this paper, we tackle the state space explosion problem of superposition by showing

that M3PPs admit a particular form of composition, which we call interposition, that enables
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several MMPPs to share the same state space without mutually affecting the marginal distri-

butions of their counting processes. However, interposition introduces spurious covariances

between class arrivals that may be seen as the cost of the state-space reduction. The inter-

position method defines an original approach to build large Markov-modulated processes, in

which a set of J two-state M3PPs is merged into a single M3PP process with just J+1 states

and without affecting the marginal counting processes of the initial M3PPs. We identify gen-

eral conditions for interposition to result in a valid MMAP and observe that these conditions

can be satisfied by M3PPs, but not by general MMAPs. The ability to interpose processes

makes a case for using M3PPs, instead of general MMAPs, for fitting count data. We then

define a method to automatically identify the M3PPs to be interposed and a mixed-integer

linear program (MILP) that can help in automatically identifying the order of interposition

of the M3PPs.

We conclude the paper by reporting fitting experiments for a set of artificial and real-

world traces. We show that the proposed M3PP fitting algorithms are widely applicable and

run efficiently even in the case of approximate fitting. We also find that interposition is much

more scalable than superposition, while retaining comparable accuracy.

Summarizing, our main contributions are as follows:

• Section 3 defines fitting algorithms for the counting process of two-state M3PPs with arbi-

trary number of classes. Our formulas are in closed-form for exact fitting and use quadratic

programming for approximate fitting. As a by-product, our approach also introduces the

first infeasibility adjustment methodology for approximate fitting of unmarked MMPPs.

• Section 4 introduces the new notion of interposition. This is an aid to compose mul-

tiple M3PPs, while preserving their statistical properties, as we rigorously establish in

Theorem 1.

• Section 5 develops a methodology for fitting empirical traces using the interposition op-

erator.

The paper reports in Section 6 an experimental study on random models and a real trace

validating the effectiveness of the proposed models and algorithms. In addition to the above,

a description of necessary background is given in Section 2. Section 7 concludes the paper.

2. Background

2.1. Model and Notation

An m-state MMPP is specified by a continuous-time Markov chain (CTMC) with irre-

ducible infinitesimal generator Q, having m states, and rate vector (λ(1), . . . , λ(m)). When

the CTMC is in state j, the MMPP generates arrivals according to a Poisson process with
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rate λ(j). The effect of the modulating action of the underlying CTMC is to enable the

modeling of non-Poisson, possibly nonrenewal, arrival processes. We assume the underly-

ing CTMC to be initialized according to its steady-state distribution so that the process is

time-stationary. For ease of comparison with the literature, we use throughout the paper the

MAP (D0,D1) notation, where for a MMPP D1 = diag(λ(1), . . . , λ(m)) and D0 = Q−D1.

We define a M3PP[K] as a MMPP in which arrivals are marked with one out of K

available classes. This may be seen as a marking of the Poisson processes of the MMPP

where one decomposes each rate λ(j), 1 ≤ j ≤ m, into arrival rates qj,kλ(j), 1 ≤ k ≤ K,

subject to
∑

k qj,k = 1, qj,k ≥ 0. When an arrival is generated by a Poisson process with

rate qj,kλ(j) it is said to be of class k. Equivalently, in matrix notation, augmenting a

MMPP (D0,D1) with marks defines a set of matrices D1,k = diag(q1,kλ(1), . . . , qm,kλ(m)),

such that D1 =
∑K

k=1D1,k. The tuple (D0,D1,1, . . . ,D1,K) is called the representation of

the M3PP[K]. Also, (D0,D1) is the embedded MMPP, which we refer to as the unmarked

process.

In the rest of the paper we often deal with processes having m = 2 states. In this case,

for readability, we use λ and λ′ in place of λ(1) and λ(2) and qk and q′k in place of q1,k and

q2,k.

2.2. Problem statement

Let us consider a M3PP[K] and let nk(t) ≥ 0 be the number of arrivals of class k at

time t after initialization, subject to nk(0) = 0 for all classes. The counting process of the

M3PP[K] is the CTMC with state n(t) = (n1(t), n2(t), . . . , nK(t)). We shall denote by

n(t) =
∑K

k=1 nk(t) the aggregate arrival count. Given an initial state probability vector,

the evolution over time of this process is characterized by a matrix P (n, t), with element

pi,j(n, t) in row i and column j representing the probability that a M3PP initialized in state

i is in state j at time t with an arrival count n(t). We refer to P (n, t) as the counting process

matrix. The counting process evolves according to the Kolmogorov forward equations

∂P (n, t)

∂t
= P (n, t)D0 +

K∑

k=1

P (n− ek, t)D1,k, (1)

where ek is a column vector of zeros except for a one in position k. From this equation, it

is simple to derive factorial moment functions, from which moments of the counting process

can be obtained in closed form [13]. For example, this method yields the mean arrival count

of class k at time t as

µk(t) = E[nk(t)] = µkt, µk = πD1,k1, (2)
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where π is the stationary distribution of the embedded CTMC, πQ = 0, π1 = 1, µk is the

mean arrival rate of class k in the time-stationary process, 0 and 1 are respectively column

vectors of zeros and ones. The variance of class k in counts (also called variance-time curve)

is [13]

Var[nk(t)] =
(
µk − 2µ2

k + 2ckD1,k1
)
t− 2ck

(
I − eQt

)
dk, (3)

where ck = πD1,k (1π −Q)−1 and dk = (1π −Q)−1
D1,k1. The above formulas and no-

tations are also valid for the unmarked process (K = 1), but in that case we omit the

dependence on class k. The covariance of counts for classes k and h is given by

Cov[nk(t), nh(t)] =
1

2
(Var[nk(t) + nh(t)]−Var[nk(t)]− Var[nh(t)]) , (4)

where Var[nk(t) + nh(t)] can be obtained from (3) by replacing µk with µk + µh and D1,k

with D1,k +D1,h.

The M3PP[K] fitting problem is to find a representation (D0,D1,1. . . . .,D1,K) such that

(2)-(4) match, to the best possible extent, the corresponding empirical moments at given

timescales t. Such a representation needs to be valid, meaning that all rates need be non-

negative real numbers and the generator Q of the embedded CTMC must be valid and

irreducible.

2.3. Two-State MMPP Fitting

In order to fit a two-state M3PP[K], we propose to separately fit the MMPP for the un-

marked process and the class markings of the M3PP. Since MMPP fitting is well-understood,

we just summarize the MMPP fitting method proposed in [14]. This algorithm receives in

input the following descriptors of the counting process:

µ =
E [n(t)]

t
, I(t) =

Var [n(t)]

E [n(t)]
, I = lim

t→∞
I(t), µ(3)(t) = E

[
(n(t)− µt)3

]
,

where µ is the rate, I(t) is the index of dispersion for counts [30] at a given timescale t, I is

the asymptotic index of dispersion value for t → ∞, and µ(3)(t) is the third central moment

of counts at timescale t. The objective is to fit the rates used in the MMPP representation

D0 =

[
−(λ + r) r

r′ −(λ′ + r′)

]
, D1 = diag(λ, λ′),

subject to all the parameters being non-negative and to λ+ λ′ > 0. Note in particular that

we exclude the trivial cases λ = λ′ and r = r′ = 0, where the MMPP degenerates into a

Poisson process, which does not require a two-state model.
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Fitting the above descriptors to a two-state MMPP requires to solve for the unknowns r,

r′, λ, and λ′ using a nonlinear system composed by the following four equations [14]

µ =
λr′ + λ′r

x
, I = 1 +

2(λ− λ′)2rr′

x2(λr′ + λ′r)
,

I − I(t)

I − 1
=

1− e−xt

xt
, h = (λ− λ′)x′, (5)

where x = r + r′, x′ = r − r′, t is an arbitrary finite timescale at which we want to fit

the index of dispersion, and h = (g(3)(1, t)− k1 − k2 + k3µ− k4µx)(k4+(k3/x)− k5)
−1. The

parameters in the last equation are k1 = µ3t3, k2 = 3µ2(I − 1)t2, k3 = 3µ(I − 1)/xt, k4 =

3µ(I − 1)te−xt/x2, k5 = 6µ(I − 1)(1− e−xt)/x3, and g(3)(1, t) is the third factorial moment

of counts at timescale t. We point to [14, Eq. (14d)] for explicit expressions of g(3)(1, t).

Heffes and Lucantoni [14] propose the following fitting method. First, compute x = r+r′,

solving at an arbitrary timescale t = t1 the fixed point equation

x =
1

t

(
I − 1

I − I(t)

)(
1− e−xt

)
, (6)

obtained by rewriting the third equation appearing in (5). Then, compute h at a second

arbitrary timescale t = t2. If h 6= 0, the fitting formulas are then given by

r =
x

2

(
1 +

1√
4y + 1

)
, r′ = x− r, λ′ = µ− hr′

x′x
, λ = µ+

hr

x′x
.

where y = (I − 1)µx3(2h2)−1. If h = 0, the explicit fitting formulas instead become

r = r′ =
x

2
, λ′ = µ− 1

2

√
2(I − 1)µx, λ = µ+

1

2

√
2(I − 1)µx.

The main drawback of this method is that the formulas can return negative rates for some

combinations of the input parameters. In this case, approximate fitting techniques are re-

quired. Yet, to the best of our knowledge these are not available in the literature on MMPP

counting process fitting.

3. Fitting the Counting Process of a Two-State M3PP[K]

In this section, we develop a method to fit two-state M3PP[K]s with representation

D0 =

[
−(λ + r) r

r′ −(λ′ + r′)

]
, D1,k = diag(qkλ, q

′
kλ

′),

where λ + λ′ > 0,
∑K

k=1 qk =
∑K

k=1 q
′
k = 1, qk ≥ 0, q′k ≥ 0, for all 1 ≤ k ≤ K. As mentioned

before, the availability of exact methods to fit unmarked MMPPs justifies an approach where

6



we separately fit the embedded MMPP first, followed by the marking process that defines the

M3PP. In practice, this means that we first fit D0 and D1 using a MMPP fitting algorithm

applied to the unmarked trace. Then we determine the individual D1,k matrices using the

marked trace and subject to the conditionD1 =
∑K

k=1D1,k, which ensures that the embedded

MMPP does not change. In Section 3.1, we discuss how to perform approximate fitting of

the unmarked process using an extension of the algorithm by Heffes and Lucantoni. In

Section 3.2, we discuss the fitting of the marked process.

3.1. Step 1: Approximate MMPP Fitting

The fitting algorithm of Heffes and Lucantoni described in Section 2.3 cannot be applied

to cases where the input set of descriptors µ, I(t), I and µ(3)(t) is infeasible for the considered

MMPP. We have found this to happen frequently in real traces, and even though one may

repeatedly attempt to fit different timescales t1 and t2 until finding a feasible set of descriptors,

we believe that better solutions are needed and possible. We have not found previous works

addressing this problem, at least for fitting counting processes. Our approximation consists

in sacrificing the degree of freedom of the third moment of counts µ(3)(t) to restore feasibility

of all second-order descriptors. As before, we focus on cases where the M3PP process is not

Poisson, thus we assume λ 6= λ′, r > 0, r′ > 0.

We begin by characterizing the feasibility region of the index of dispersion for a two-state

MMPP.

Proposition 1. In a two-state MMPP with λ 6= λ′, the index of dispersion satisfies I >

I(t) > 1 for any timescale t.

Proof. From the second equation in (5), it readily follows that I > 1 since λ 6= λ′. Moreover,

since x > 0, it follows from (6) that I > I(t). Noting that for x > 0 it is

0 <
1− e−xt

xt
< 1, ∀t > 0, x > 0,

by (5) and the constraint I > I(t) we conclude that I(t) > 1.

The previous proposition states the well-known fact that MMPPs can only fit traces that

have greater variability than a Poisson process. We now show that asking for r > 0 and

r′ > 0, to exclude the case where the MMPP is a Poisson process, is implied by the previous

statement and thus always verified.

Proposition 2. For I > 1, the conditions r > 0 and r′ > 0 are always satisfied.
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Proof. For the case h 6= 0, observe that y > 0 if I > 1. Therefore 1/
√
4y + 1 < 1 that implies

r > 0 and r′ > 0. Since x is positive, it also follows that 0 < r < x and 0 < r′ < x.

For the case h = 0, the result follows immediately given that x > 0 since r = r′ = 0

would imply a Poisson process that would have I = 1 against the assumption.

Therefore, provided that I > I(t) > 1, feasibility follows by ensuring that arrival rates

are non-negative and λ+ λ′ > 0. Using (5), we can reformulate this requirement as:

−µx

r
≤ h

x′
≤ µx

r′
. (7)

Note that this expression implicitly characterizes the feasible region for the rate µ and, via

the h term, for the third moment g(3)(1, t). If one of these conditions is not met, we propose

to relax the fitting method by ignoring the matching of the third moment g(3)(1, t) as follows.

Consider first the following lower bound on r.

Proposition 3. Without loss of generality, assume λ > λ′. Then in a feasible MMPP(2) it

is r ≥ u, where

u =
(I − 1)x2

2µ+ (I − 1)x
. (8)

in which x = r + r′ is the solution of (6).

Proof. We substitute the first equation in (5) into the second one and find after simple algebra

λ = λ′ +

√
(I − 1)µx3

2rr′
. (9)

Obtaining λ from the first equation in (5) and equating to (9), we get the feasibility constraint

λ′ = µ− r′

x

√
(I − 1)µx3

2rr′
≥ 0. (10)

The result follows using r′ = x− r and solving for r, which yields the lower bound u.

Any value u ≤ r < x leads to a feasible solution, thus we can for example choose the

middle point of this interval r = u + (u− x)/2. Our suggestion of the middle point is

convenient to keep the formulas in closed-form, however other choices are possible. After

choosing r, the other parameters are easily obtained by setting r′ = x− r and using (9)-(10)

to obtain λ′ and λ.

Summarizing, provided that I > I(t1) > 1, the approximate method we have defined fits

µ, I(t1) and I exactly at the expense of sacrificing an infeasible third moment µ(3)(t2), where

t1 and t2 are arbitrary timescales.
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3.2. Step 2: Fitting the Marking Process

In the second step of the fitting algorithm we determine the D1,k matrices. After Step 1,

all the statistical properties of the unmarked process are constrained by the D0 and D1

matrices of the MMPP, thus the focus of this step is to fit the class-specific properties and

the class covariances. We consider both exact and approximate fitting methods.

There are several ways of choosing which empirical descriptors to fit with a M3PP and

each choice leads to equations that may differ in tractability compared to other choices. We

have experimented with several possibilities, and we have found that fitting a set of central

moments, such as mean class rates µk, class variances, or covariances, typically leads to a

difficult non-convex formulation. Conversely, we have found more efficient to fit a two-state

M3PP[K] using the mean class rates and per-class contributions to the asymptotic index of

dispersion I. Other efficient approaches are possible, such as fitting mean class rates and

relative covariances or fitting mean class rates and differences between the class variances.

However, we here focus on the first method, which we believe provides the best combination

of efficiency (quadratic programming) and ease of interpretation.

3.2.1. Fitting mean class rates and per-class contributions to the index of dispersion

We begin by considering the more general problem of fitting the mean class rates µk and

gk(t) = Var [nk(t)] + Cov[nk(t),
∑

i 6=k ni(t)]. The gk(t) terms have the simple interpretation

of modeling the contribution of class k to the variance-time curve of the unmarked process,

since σ(t) = Var
[∑K

k=1 nk(t)
]
=
∑K

k=1 gk(t). We then specialize the method to the index of

dispersion, using the fact that I(t) = σ(t)/E[n(t)] =
∑K

k=1 gk(t)/E[n(t)].

Our goal is to compute the D1,k matrices from the gk(t) values, given D0 and D1 =
∑K

k=1D1,k. Recall that D1,k = diag(qkλ, q
′
kλ

′). The problem under consideration is to

determine the values of the probabilities qk and q′k that uniquely define the D1,k matrices,

given that λ and λ′ are known from the D1 matrix fitted in Step 1.

Exact matching. We now give formulas to fit the probabilities qk and q′k from µk and gk(t).

Note that the arbitrary timescale t used in the statement does not need to be equal to the

timescales used for fitting the embedded MMPP.

Proposition 4. Given (D0, D1) and, for each class k, µk and gk(t) at an arbitrary timescale t,

the parameters of the M3PP can be computed as follows:

qk = f1,1µk + f1,2gk(t), (11)

q′k = f2,1µk + f2,2gk(t), (12)
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where f1,1 = −F2x/F , f1,2 = λ′r/F , f2,1 = F1x/F , f2,2 = −λr′/F, in which F = (F1λ
′r − F2λr

′),

F1 = λr′x−4
(
2(λ− λ′)re−xt + tx

(
x2 − 2(λ′ − λ)r

)
+ 2(λ′ − λ)r

)
,

F2 = λ′rx−4
(
2(λ′ − λ)r′e−xt + tx

(
x2 − 2(λ− λ′)r′

)
+ 2(λ− λ′)r′

)
,

and x = r + r′ is the solution of (6).

Proof. The expressions of µk and gk(t) for a two-state M3PP[K] process are found from the

definitions to be

µk =
λqkr

′ + λ′q′kr

x
, (13)

gk(t) = F1qk + F2q
′
k, (14)

where F1 and F2 are constant coefficients given D0, D1 and the reference timescale t. Solving

(13) for qk we obtain

qk =
µkx− λ′q′kr

λr′
. (15)

Substituting (15) into (14), we obtain the fitting formulas (11) and (12).

We are now ready to determine the contributions to the index of dispersion. Note that

Proposition 4 may also be used to fit the contribution of class k to I(t) in the embedded

MMPP, i.e., Gk(t) = gk(t)/E[n(t)]. This is because we can rewrite the fitting formulas as

qk = c1,1µk + c1,2Gk(t), (16)

q′k = c2,1µk + c2,2Gk(t), (17)

where c1,1 = f1,1, c1,2 = f1,2µt, c2,1 = f2,1, c1,1 = f2,2µt. The asymptotic expressions of the

coefficients as t → ∞ are then readily obtained as

c1,1 = −2(λ′ − λ)r′ + x2

2λr′(λ− λ′)
, c1,2 =

µx2

2λr′(λ− λ′)
, c2,1 =

2(λ− λ′)r + x2

2λ′r(λ− λ′)
, c2,2 = − µx2

2λ′r(λ− λ′)
.

Combining these expressions with the requirements qk ≥ 0 and q′k ≥ 0, we find after simple

passages this lower bound required to hold for the feasibility of the per-class contributions

to the asymptotic index of dispersion

Gk ≥ µk

µ

(
1 + 2

max((λ′ − λ)r′, (λ− λ′)r)

x2

)
. (18)

For two-state M3PPs, the minimum value of the right-hand side is achieved for Poisson
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processes, where Gk = µk/µ and
∑

k Gk = I = 1.

Approximate matching. Some values of the descriptors may lead to unfeasible values of the

parameters (e.g., negative probabilities). In this case, we choose to fit the per-class arrival

rates µk exactly and find the feasible values G̃k that minimize the following L2-norm

K∑

k=1

(
G̃k −Gk

Gk

)2

=
1

2
xTHx+ fTx+K, (19)

with x = (G̃1, . . . , G̃K), H = diag (2/G2
1, . . . , 2/G

2
K), f

T = (−2/G1, . . . ,−2/GK), K being

the number of classes of the M3PP, and subject to the constraints

−ci,2G̃k ≤ ci,1µk ∀i = 1, 2; k = 1, . . . , K (20)

ci,2

K∑

k=1

G̃k = 1− ci,1µ ∀i = 1, 2. (21)

These constraints are derived using equations (16) and (17) for qk and q′k. In particular,

(20) stems directly from the constraints qk ≥ 0 and q′k ≥ 0, whereas (21) follows from the

conditions
∑K

k=1 qk = 1 and
∑K

k=1 q
′
k = 1.

The above optimization program may also be used for fitting mean class rates µk and the

contributions gk(t) to the index of dispersion I(t). In order to do so, it is sufficient to replace

the coefficients ci,j with the coefficients fi,j, Gk with gk(t), and G̃k with g̃k(t).

In either case, the program has a convex quadratic objective function, thus its minimizer

can be efficiently obtained using standard quadratic programming solvers. Once the problem

is solved and the feasible values G̃k or g̃k(t) are obtained, the parameters qk and q′k are readily

fitted using (16) and (17).

4. Compositional Fitting of M3PP[K]s

In the previous section, we have defined a general purpose fitting method for two-state

M3PPs. We now consider the problem of exploiting the additional degrees of freedom of a

M3PP[K] to increase the flexibility of the fitting. In this case, exact fitting methods capable of

exploiting all available degrees of freedom do not exist even for unmarked processes. Therefore

we focus on compositional fitting, where one builds a large process by composition of smaller

processes that are simpler to fit to count data. The drawback of compositional approaches

of this kind is that they use just a few degrees of freedom of a general MMAP in return for

ease of fitting.
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We first review and generalize superposition methods for unmarked MMPPs. Afterwards,

we introduce a novel form of composition, called interposition, which offers a different trade-

off between accuracy and compactness of the representation. Note that we do not consider

methods that are specific to inter-arrival processes, such as the Kronecker product composi-

tion [10].

4.1. Superposition

Unmarked case. Consider a set of J MMPPs (Dj
0,D

j
1), 1 ≤ j ≤ J , their superposition is

the MMPP process (D+
0 ,D

+
1 ) where D+

0 =
⊕J

j=1D
j
0, D

+
1 =

⊕J

j=1D
j
1, in which ⊕ denotes

the Kronecker sum operator [6]. Superposition naturally arises in networking to describe

the traffic process obtained by merging separate traffic flows, each described by a MMPP.

The superposed process defines the multiplexing of J channels, each with inter-arrival times

described by the j-th MMPP. This process has mean arrival rate and variance-time curve

equal to the sum of mean arrival rates and variance-time curves of the individual MMPPs.

The index of dispersion is a weighted sum of the IDCs of the individual MMPPs, i.e., I(t) =
∑

j(µj/µ)Ij(t), where µ =
∑

j µj is the mean arrival rate of the superposition. Also, if MMPP

j has mj states, the superposed process has
∏J

j=1mj states, thus its size grows exponentially

with J .

Marked case. Let K = {1, . . . , K} be a set of classes. We consider J M3PPs and assume

that M3PP j generates arrival of classes Kj ⊂ K, with K1 ∪ K2 ∪ · · · ∪ KJ = K. In this

case, some M3PPs contribute to arrivals of class k, thus D+
0 =

⊕J

j=1D
j
0, D

+
1,k =

⊕J

j=1D
j
1,k,

∀k ∈ K, where we define Dj
1,k = 0 if k /∈ Kj, where 0 is here a matrix of all zeros of order mj.

The statistical properties of the embedded unmarked process are obtained as in an unmarked

superposition. Lastly, note that if each M3PP has two states, the resulting process is a M3PP

with 2J states and K classes. Thus, the main drawback of the superposition method is the

state-space explosion, which limits the composition to a small number of processes.

4.2. Interposition

We now propose a new form of composition for Markov-modulated processes that tack-

les the state-space explosion problem of superposition. Informally, our idea is to define an

operator by which several M3PPs can by defined upon the same state space, without inter-

fering with their respective marginal counting processes. This allows us to preserve in the

interposition the counting process properties fitted in isolation for each composed M3PP. We

characterize the main feature of this new composition operator in Theorem 1, given later.

Note that the results in this section are also applicable to unmarked MMPPs, and thus

represent advances also for unmarked processes.
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Consider a set of J two-state M3PPs where the ith process has Ki classes. Assume

without loss of generality that classes are labelled such that each class appears in one and

only one M3PP. The M3PPs have representation

Di
0 =

[
−ri − λi ri

r′i −r′i − λ′
i

]
, Di

1,k = diag(qi,kλi, q
′
i,kλ

′
i), k = 1 . . . , Ki,

where we define the probabilities
∑Ki

k=1 qi,k = 1, qi,k ≥ 0, and
∑Ki

k=1 q
′
i,k = 1, q′i,k ≥ 0, and the

rates ri =
∑J

j=i αj and r′i =
∑i

j=1 βj , for given constants αj ≥ 0 and βj ≥ 0. Equivalently,

given the values of the ri and r′i constants, we can define the rate differences αi = ri − ri+1

and βi = r′i − r′i−1, with boundary values β1 = r′1 and αJ = rJ .

We now define the interposition operator for M3PPs. Given the set of J two-state M3PPs

(D0,D
i
1,1, . . . ,D

i
1,Ki

), the interposed process (D∗
0,D

∗
1,1, . . . ,D

∗
1,K) is the M3PP with J + 1

states, K =
∑J

i=1Ki classes, and representation

D∗
0 =




−Σ α1 α2 . . . αJ

β1 −Σ α2 . . . αJ

...
. . . −Σ

. . .
...

β1 . . . βJ−1 −Σ αJ

β1 . . . βJ−1 βJ −Σ




, D∗
1,k =

[
qi,cλiIi 0

0 q′i,cλ
′
iIJ+1−i

]
,

where In is the identity matrix of order n, class k =
∑i−1

j=1Kj+c is the class in the interposed

process associated to class c of the i-th composed M3PP, and the diagonal elements of D∗
0

are such that (D∗
0 +

∑
k D

∗
1,k)1 = 0. Throughout this section, we denote by Ki the set

of class indexes in the interposed process associated to the i-th composed M3PP, and by

K̄i = {1, . . . , K} \ Ki its complement.

The interposed process may be seen as a M3PP modulated by a CTMC with an in-

finitesimal generator Q∗ = D∗
0 +

∑K

k=1D
∗
1,k that allows exact CTMC aggregation [4, Chap

4.]. Specifically, for each of the initial M3PPs, we can define a partition of the states of

the interposed process such that, by exact aggregation of the CTMC Q∗ one recovers the

corresponding CTMC of the initial M3PP. For example, we may consider the aggregation

Q∗ =




−r1 α1 α2 . . . αJ

β1 −r2 − r′1 α2 . . . αJ

...
. . .

. . .
. . .

...

β1 . . . βJ−1 −rJ − r′J−1 αJ

β1 . . . βJ−1 βJ −r′J




⇒
[
−r1

∑J

i=1 αi

β1 −β1

]
=

[
−r1 r1

r′1 −r′1

]
= Q1,
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whereQ1 = D1
0+
∑

k D
1
1,k is the infinitesimal generator of the ith composed M3PP. Similarly,

for each partition, the definition of D∗
1,k ensures that the departure rates are identical to the

ones in the composed M3PP.

In order to prove that the marginal counting process of each composed M3PP, for all

classes k ∈ Ki, is preserved by the interposition operator, we require additional notation.

Let P (ni, t), ni = (n1, . . . , nKi
), be the 2 × 2 counting process matrix for the i-th M3PP

at time t. Similarly, let P ∗(n, t) be the (J + 1) × (J + 1) counting process matrix for the

composed M3PP, where n = (n1, . . . ,nJ). Let 0n and 1n be row vectors of size n of all zeros

and all ones, respectively, and define the aggregation matrix [7]

V i =

[
1i 0J+1−i

0i 1J+1−i

]
.

For an arbitrary (J + 1) × (J + 1) matrix X, the 2 × 2 matrix X i = W iXV T
i , where

W i = diag(1T
J+1V

T
i )

−1V i, gives the aggregation of X into the two states associated to the

i-th composed M3PP. Therefore

P ∗
i (n, t) = W iP

∗(n, t)V T
i ,

is the counting process matrix aggregated onto the states of the i-th composed M3PP. From

this matrix, we can readily compute the marginal counting process matrix of the i-th M3PP as

P ∗
i (ni, t) =

∑

nh:h∈K̄i

P ∗
i (n, t),

where the summation is over all classes not associated to the i-th M3PP. Using this notation,

we prove the main characterization result for the interposed process, which states that the

interposition operator does not affect the marginal counting process for the i-th M3PP.

Theorem 1. Assume all processes to be time-stationary, then

P (ni, t) = P ∗
i (ni, t), ∀t ≥ 0,ni ≥ 0. (22)

Proof. For the composed M3PP it is simple to verify that V i has the following properties

Q∗V T
i = V T

i Qi, D∗
1,kV

T
i = V T

i D
i
1,k, ∀k ∈ Ki. (23)

Note that conditions of this kind naturally arise in the study of minimal representations of

Markovian and Rational Arrival Processes [9].
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Let us then consider the Kolmogorov forward equation for P ∗(n, t). Pre-multiplying (1)

by W i and post-multiplying by V T
i , we obtain

∂P ∗
i (n, t)

∂t
=W iP

∗(n, t)D∗
0V

T
i +

∑
k∈Ki

P ∗
i (n− ek, t)D

i
1,k +

∑
k∈K̄i

W iP
∗(n− ek, t)D

∗
1,kV

T
i ,

where we have used (23) to simplify the expression and the notation n − ek indicates the

removal of a job of class k from n. Now plugging the identity D∗
0 = Q∗ −

∑K

k=1D
∗
1,k and

using again (23) we get

∂P ∗
i (n, t)

∂t
= P ∗

i (n, t)(Qi −
∑

k∈Ki
Di

1,k) +
∑

k∈Ki
P ∗

i (n− ek, t)D
i
1,k

+
∑

k∈K̄i

W i(P
∗(n− ek, t)−P ∗(n, t))D∗

1,kV
T
i

= P ∗
i (n, t)D

i
0 +

∑
k∈Ki

P ∗
i (n− ek, t)D

i
1,k +

∑
k∈K̄i

W i(P
∗(n− ek, t)− P ∗(n, t))D∗

1,kV
T
i .

We now consider the marginal probability P ∗
i (ni, t), for which the last expression implies

∂P ∗
i (ni, t)

∂t
=
∑

nh:h∈K̄i
P ∗

i (n, t)D
i
0 +

∑
nh:h∈K̄i

∑
k∈Ki

P ∗
i (n− ek, t)D

i
1,k

+
∑

nh:h∈K̄i

∑
k∈K̄i

W i(P
∗(n− ek, t)− P ∗(n, t))D∗

1,kV
T
i . (24)

Since the infinite summations in the last term of (24) are on the same class indexes (K̄i sets),

and P ∗(n − ek, t) = 0 when nk = 0, by symmetry the double summation vanishes. Thus

(24) reduces to

∂P ∗
i (ni, t)

∂t
= P ∗

i (ni, t)D
i
0 +

∑
k∈Ki

P ∗
i (ni − ek, t)D

i
1,k,

which is identical to the Kolmogorov forward equation for the counting process of the i-

th composed M3PP. In order to prove this statement, we just need to show that the initial

conditions of the Kolmogorov forward equations are the same, i.e., P (ni, 0) = P ∗
i (ni, 0), ∀ni.

Since we are considering time-stationary processes, the initial state of the interposed process

is determined by the equilibrium distribution of the CTMC with generator Q∗. Conversely,

for the i-th M3PP this is given by the equilibrium distribution of the CTMC with generator

Qi. By (23) we see that for an arbitrary vector π

W iπQ
∗V T

i = W iπV
T
i Qi = πiQi.

Therefore, if we choose the initial distribution to be the time-stationary distribution πQ∗ = 0,
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π1 = 1, we readily find that its aggregation corresponds to the time-stationary distribution

of the i-th M3PP, i.e., πiQi = 0 and πi1 = 1, where the last condition holds since we use

exact aggregation. This concludes the proof.

We remark that (23) provides a condition for a general MMAP to define a valid interposi-

tion. It is simple to see that the diagonal structure of the D1,k matrices in a M3PP satisfies

these assumptions. While our analysis does not exclude that other kinds of MMAPs may be

used for interposition, the conditions required to satisfy (23) do not seem to readily suggest

alternatives other than the M3PP. This motivates the use of M3PPs as a building block for

interposition.

Feasibility of an Interposition. We now give examples of valid and invalid interposed pro-

cesses. Consider the following two-state M3PP[2]s:

A0 =

[
−6 3

1 −5

]
, B0 =

[
−3 1

4 −7

]
, C0 =

[
−9 7

2 −5

]
, E0 =

[
−7 4

1 −3

]
,

where A1,1 = diag(1, 3), A1,2 = E1,1 = diag(2, 1), B1,1 = C1,1 = diag(1, 2), and B1,2 =

C1,2 = E1,2 = diag(1, 1). It is easy to see that the interposition of A = (A0,A1,1,A1,2) and

B = (B0,B1,1,B1,2) satisfies the assumptions on the non-negativity of the rates αj and βj

and yields the composed 3-state M3PP[4]

D∗
0 =



−8 2 1

1 −8 1

1 3 −11


 ,

with D∗
1,1 = diag(1, 3, 3), D∗

1,2 = diag(2, 1, 1), D∗
1,3 = diag(1, 1, 2), D∗

1,4 = diag(1, 1, 1). The

per-class arrival rates and variances of counts in the interposed process match the corre-

sponding statistics of the two classes of A and the two classes of B.

Conversely, the interposition of processes A and C = (C0,C1,1,C1,2) is invalid because

the non-diagonal rates of C0 are both greater than the corresponding rates in A0. Similarly,

the interposition of A and E = (E0,E1,1,E1,2) is invalid, even though B and E are the same

process, because their states are ordered in a different way and this affects the computation

of the αj and βj coefficients. This last example provides intuition on the fact that, to obtain

a feasible interposed process, one may need to re-order the states of the M3PPs. In the next

section, we describe an algorithm to find a feasible interposition of a given set of M3PPs, if

one exists.
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Class Covariances. While the interposed process preserves the marginal counting properties

of the composed M3PPs, when compared to superposition this comes at the expense of

introducing spurious covariances between arrivals of different M3PPs. This is because, by

definition of the interposed process, a transition in the state space of a composed M3PP also

changes the current state of the other composed M3PPs. In order to quantify the magnitude

of these covariances, we look at the asymptotic covariances, which contribute to the index of

dispersion. Observe that, by plugging (3) into (4), we find after some simplifications

σk,h = lim
t→∞

Cov[nk(t), nh(t)] = −2µkµh +πD1,h(1π−Q)−1D1,k1+πD1,k(1π−Q)−1D1,h1.

Let P = (1π − Q)−1 and observe that this by construction is a stochastic matrix with

equilibrium vector π. Using the fact that πD1,k = µk, for any class k, and after determining

the structure of the P matrices for the interposed process, it is possible to compute their

Jordan canonical form, which after algebraic simplifications yields the formula

σk,h =
r′irj(qj,hλj − q′j,hλ

′
j)(qi,kλi − q′i,kλ

′
i)(xj + xi)

x2
jx

2
i

, (25)

where it is assumed that k ∈ Ki and h ∈ Kj, and i < j.

Some remarks on the formulas are as follows:

• When any of the two M3PPs tends to a Poisson process, a pair of departure rates at

the numerator of (25) annihilates and σk,h goes to zero.

• The order of the denominator suggests that a way to reduce the covariance introduced

by interposition may consist in spending degrees of freedom to maximize xi and xj

in the embedded MMPPs, for fixed arrival rates. When applying such a scheme, one

should however take into account the bounds in Proposition 3, since an increase of the

value of xi also reduces fitting flexibility in the embedded MMPP.

• Since xi > 0 for any i, we note that the sign of the covariance is determined only by

the differences between the per-class arrival rates within each of the composed M3PPs.

5. Fitting the Interposed Process

In this section we consider two issues that arise in compositional fitting based on interpo-

sition. First, we consider the decision problem involving the mapping of a marked trace into

a set of two-states M3PPs. Then we show that the problem of finding a feasible interposition

of a set of J second-order M3PPs, where the i-th M3PP models any subset Ki of the K

classes, can be formulated as a MILP and hence solved using an integer programming solver.
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5.1. Fitting a marked trace into a set of M3PPs

Given a trace with arrivals of K classes, if the class arrivals are independent it is possible

to fit the trace using a superposition of K independent MMPPs, one for each class, and

then reduce the size of the resulting process using interposition. However, if the classes have

a significantly large covariance, this method may not produce good results. Therefore, we

propose two heuristic fitting methods to address these two cases. We assess the effectiveness

of these methods later in Section 6.

Independent Method. In this method, we ignore class covariances and fit each class into

a separate two-state MMPP. The method is similar to superposition, but returns a much

smaller M3PP[K] with K + 1 states, instead of 2K states. Interposition uses the order of

composition obtained from the MILP method that we present in Section 5.2.

Covariance-based Method. We initially build the asymptotic co-variance matrix Σ =

[σk,h] = limt→∞Cov[nk(t), nh(t)] between each pair of classes. We approximate the asymp-

totic timescale with the largest finite t for which we can average counts over at least 100

samples. The user is then requested to specify a covariance threshold δ. We then iterate

on the classes, in decreasing order of variance σk,k. For each class k, we first determine all

the classes h 6= k with σh,k ≥ δ and record the decision to fit these classes into the same

M3PP[K]. The algorithm then continues by analyzing in a similar way the other classes not

already planned for fitting in any M3PP. After this stage, each class k is mapped to a unique

M3PP i. In order to obtain a representation for each M3PP i, we run the algorithm given

in Section 5.2, which returns the parameters of the embedded MMPPs and their order of

composition in the interposition. With these, we can conclude by fitting the M3PPs with

the method in Section 3.2.1 and applying the interposition operator.

5.2. Finding a feasible interposition of M3PPs

The definition of the interposed process implies that the D1,k matrices are always feasible

by construction. Thus, infeasible M3PPs may arise only if the D0 matrix has some negative

elements. Since the entries of the D0 matrix depend only on the MMPPs embedded in

the two-state M3PPs, a method to determine a feasible interposition should be run prior to

fitting the MMPPs.

To find a feasible interposition, we consider permutations of the mapping of the rates

to the states in the embedded MMPP and the order in which the J M3PPs are composed.

Furthermore, when deciding the structure of the MMPPs, we exploit the degree of freedom

given by ignoring the fitting of the third moment of counts. Let xi and ui, be the values of

x and u for the i-th embedded MMPP. Sacrificing the fitting of the third moment allows us

to decide the value for ri, given xi, which then implies r′i = xi − ri. Recall from Section 3
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that when ignoring the third moment of counts, infinite feasible MMPPs exist as long as

ui ≤ ri < xi and r′i = xi − ri, where xi is found by (6). These bounds have been obtained

in Section 3 under the assumption that λi > λ′
i. While this assumption does not have any

impact on the feasibility of individual M3PPs, it has an impact on the feasibility of the

interposition. Making the opposite assumption λi ≤ λ′
i, we obtain the specular constraints

ui ≥ r′i > xi and ri = xi − r′i. Thus, the above bounds will need to be simultaneously

considered and only one will be active depending on the relative value of λi to λ′
i, which

we decide using a binary variable bi that is responsible for state order. Summarizing, the

above bounds allow us to obtain a feasible interposition by choosing from a continuous set

of feasible MMPPs.

Before solving the MILP formulation that decides the order of states and the order of

composition, we assume that the fixed point equation (6) has been solved for each M3PP i

for the values of xi and ui. For the MILP formulation, we then consider the following decision

variables:

• the rates ri > 0 and r′i > 0 of the i-th M3PP, ∀i ∈ {1, ..., J};
• the integer variables pi ∈ N, ∀i ∈ {1, ..., J}, deciding the position of the i-th M3PP in the

interposed process, i.e., the order of composition.

• the auxiliary binary variables zi,j ∈ {0, 1}, ∀(i, j) ∈ {1, ..., J}2, i 6= j, such that zi,j = 1 if

and only if pi ≤ pj;

• the binary variables bi ∈ {0, 1}, ∀i ∈ {1, ..., J}, encoding the choice of the state order for

the i-M3PP, with bi = 0 if λi > λ′
i and bi = 1 if λi < λ′

i.

Overall, the number of variables is O(J2), i.e., quadratic in the number of composed M3PPs.

Let M be a large constant. We consider the following MILP formulation:

minimize 0 (feasibility problem) (26)

s.t.: ui(1− bi) ≤ ri < xi − uibi, ∀i ∈ {1, ..., J} , (27)

uibi ≤ r′i < xi − ui(1− bi), ∀i ∈ {1, ..., J} , (28)

zi,j + zj,i = 1, ∀(i, j) ∈ {1, ..., J}2 : i 6= j, (29)

zi,j ≥ pj − pi, ∀(i, j) ∈ {1, ..., J}2 , (30)

ri ≥ rj − (1− zi,j)M, ∀(i, j) ∈ {1, ..., J}2 , i 6= j, (31)

r′i ≤ r′j + (1− zi,j)M, ∀(i, j) ∈ {1, ..., J}2 , i 6= j, (32)

pi 6= pj , ∀(i, j) ∈ {1, ..., J}2 : i 6= j. (33)

Strict bounds are obtained by adding small tolerance to the corresponding formulation with
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≤ inequalities. Observe that the objective function is a constant, since we just need a fea-

sible solution. Constraint (27) imposes the bounds on ri, with different bounds depending

on whether the state order of the i-M3PP is inverted or not. Constraint (28) imposes spec-

ular bounds on r′i. Antisymmetry constraints on the auxiliary variables zi,j are set in (29).

Constraint (30) ensures that zi,j = 1 if and only if pi ≤ pj. This constraint together with

the uniqueness constraint on pi ensures the transitivity property for the binary variables zi,j.

Ordering constraints on ri and r′i are expressed by (31) and (32), respectively. Two M3PP

processes cannot be in the same position due to (33); note that inequality constraints can be

handled for integer variables in MILP.

After solving the MILP, we have the parameters ri and r′i of each M3PP. Applying the

fitting formulas of Section 3 we obtain the remaining parameters of the embedded MMPP,

λi and λ′
i, taking care to swap the two values when states are in inverted order, i.e., bi = 1.

Then we compute the class parameters qi,k and q′i,k for each class of the i-th M3PP and build

the interposition of the J M3PPs as in Section 4.

6. Fitting Results

6.1. Fitting Random MMAPs

We begin by examining the applicability of two-state M3PPs and the interposition pro-

cess in fitting the characteristics of randomly generated processes. We consider random

M3PP[K]s, with m ∈ {4, 8, 16} states and K ∈ {2, 3, 4} classes. For each choice of m and

K, we generate 100 random M3PP[K] as follows. First, we generate a random infinitesimal

generator Q = D0 + D1 using uniform random numbers. Then, for each class k, we first

compute a vector of m uniform random numbers u and set D1,k = exp(diag(5u)). Lastly, we

set D1 =
∑

k D1,k and D0 = Q−D1. The expression used to compute D1,k provides a set

of processes with index of dispersion I that is 3-6 times larger than the squared coefficient

of variation (SCV), as shown in Table 1, which gives statistics for the randomly generated

M3PPs. The statistics in each row are averaged across the 100 random instances and we

report mean and standard deviation. The third columns gives the average ratio

Cov % = lim
t→∞

∑K

k=1

∑K

k′=1,k′ 6=k |Cov[nk(t), nk′(t)]|
∑K

c=1

∑K

c′=1 |Cov[nc(t), nc′(t)]|
, (34)

which quantifies the relative magnitude of cross-covariances.

M3PPs are fitted as follows. We first compute the statistical descriptors of the random

process using theoretical expressions. Two-state M3PPs are then obtained using the method

described in Section 3.2.1. The interposition process is fitted using the two methods de-

scribed in Section 5.1 and the feasibility method in Section 5.2. The latter is implemented
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m K Cov % SCV I(∞)
4 2 0.29 (5.25, 4.17) (32.06, 35.47)
8 2 0.31 (5.47, 2.54) (21.57, 11.99)
16 2 0.30 (4.55, 1.15) (11.43, 36.50)
4 4 0.57 (5.25, 3.90) (27.27, 22.12)
8 4 0.57 (5.28, 2.22) (19.93, 9.13)
16 4 0.56 (4.40, 1.07) (11.94, 3.42)

Table 1: Statistics for randomly generated M3PPs. Each row refers to 100 random instances. Mean µ and
standard deviation σ are reported as (µ, σ).

in MATLAB using YALMIP [25] and the CBC branch-and-cut solver [26]. Superposition is

implemented as by the definition after fitting an independent MMPP for each class. Here

and in the following sections, counts used to fit a class are obtained from inter-arrival times

between successive arrivals of that same class.

Let nk(t) be the number of arrivals of class k in t time units for the randomly-generated

M3PP and let ñk(t) be the same descriptor in the fitted model. The metrics used to assess

the quality of the fitting are the ability of the model to capture the asymptotic class variances

and covariances, as quantified by the absolute relative errors

ǫvar = lim
t→∞

∑K

k=1 |Var[nk(t)]−Var[ñk(t)]|∑K

c=1Var[nc(t)]
, (35)

ǫcov = lim
t→∞

∑K

k=1

∑K

k′=1,k′ 6=k |Cov[nk(t), nk′(t)]− Cov[ñk(t), ñk′(t)]|
∑K

c=1

∑K

c′=1,c′ 6=c |Cov[nc(t), nc′(t)]|
. (36)

We focus on second order class descriptors of the counting process since mean arrival rates

can always be fitted exactly. We also quantify the absolute relative error on the variance of

the underlying unmarked process

ǫunmark = lim
t→∞

∑K

k=1

∑K

k′=1 |Cov[nk(t), nk′(t)]− Cov[ñk(t), ñk′(t)]|∑K

c=1

∑K

c′=1 |Cov[nc(t), nc′(t)]|
. (37)

For randomly-generated models, the values of ǫvar, ǫcov and ǫunmark are averaged across all

the models. The corresponding standard deviations are indicated with σvar , σcov and σunmark,

respectively. Lastly, we assess the total number of states mfit of the fitted model and the

time T required for the fitting algorithm to return a valid M3PP. In applying the M3PP

fitting method of Section 3.2.1, we choose t = 10E[X ] as arbitrary timescale, being E[X ] the

mean of the random M3PP[K], and we approximate asymptotic values using the timescale

t∞ = 104E[X ]. We have also repeated the experiments with t = E[X ] and t = 100E[X ], but

the results closely resemble the ones reported in this section.
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Results. Results of the validation against random M3PPs are given in Table 2. Remarks

are as follows:

• The results indicate that interposition has the same efficiency of superposition in capturing

class variances, whereas two-state M3PPs are better at capturing class covariances. This

aligns with expectations, given that interposition matches marginal counting processes,

whereas the method presented in Section 3.2.1 for two-state M3PPs matches asymptotic

covariances.

• It is fairly surprising to note the good performance of two-state M3PPs in fitting even

large processes, with several states and classes. However, we conjecture this to be because

the arrivals have the same inter-arrival time distribution of the embedded MMPP. In fact,

we will show that when this assumption is removed in the fitting of real traces, two-state

M3PPs perform worse.

• Interposition is on most cases superior to superposition. The number of states is sig-

nificantly lower, without appreciable loss of accuracy in matching variances. It should

be noted that, while in some cases interposition performs worse than superposition in

matching covariances, superposition always return zero covariance, thus it is uninforma-

tive. Conversely, the error on covariance of interposition appears to decrease with growing

number of states and classes.

• The covariance-based fitting method used for interposition typically fares better than the

interposition of independent MMPPs. The approach has similar accuracy for variance

matching, it is generally more accurate in describing covariances, and requires less states.

• Computational times are small for all methods. However, there is an appreciable difference

in the time to compute an interposition for large processes, due to the cost of solving the

integer program introduced in Section 5.2. Still, it should be noted that when the number

of classes grows beyond K = 4, superposition requires tens or even hundreds of states,

thus it becomes far less tractable than interposition.

6.2. Fitting Real Traces

The analysis for random MMAPs is now repeated for fitting the BC-pAug89 and LBL-

TCP-3 traces from the Internet Traffic Archive1. While these traces are commonly used in

the literature of Markov-modulated processes, they are unmarked and thus cannot be readily

used for validation of marked processes. In order to do so, we introduce a labelling that

associates each arrival to a different bin of the histogram of packet sizes. We first consider

the case where arrivals belong only to one of K = 2 classes, putting the separator at the p-th

1http://ita.ee.lbl.gov/
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m K Method ǫunmark ǫvar ǫcov σunmark σvar σcov mfit T [s]
4 2 2-state 0.184 0.118 0.972 0.251 0.145 0.000 2.00 0.181
4 2 superpos 0.296 0.002 1.000 0.146 0.001 0.000 4.00 0.171
4 2 interpos-independent 0.218 0.002 2.103 0.220 0.001 0.000 3.00 1.722
4 2 interpos-covariance 0.197 0.048 1.870 0.212 0.084 0.500 2.55 1.533
8 2 2-state 0.197 0.129 0.805 0.204 0.116 0.000 2.00 0.183
8 2 superpos 0.310 0.001 1.000 0.134 0.000 0.000 4.00 0.177
8 2 interpos-independent 0.212 0.001 1.464 0.231 0.000 0.000 3.00 1.825
8 2 interpos-covariance 0.188 0.022 1.321 0.197 0.047 0.453 2.72 1.681
16 2 2-state 0.227 0.153 0.600 0.168 0.094 0.000 2.00 0.175
16 2 superpos 0.300 0.000 1.000 0.094 0.000 0.000 4.00 0.184
16 2 interpos-independent 0.202 0.000 1.024 0.160 0.000 0.000 3.00 1.814
16 2 interpos-covariance 0.197 0.018 0.858 0.135 0.062 0.327 2.88 1.705
4 4 2-state 0.160 0.117 0.216 0.204 0.133 0.000 2.00 0.187
4 4 superpos 0.573 0.002 1.000 0.105 0.001 0.000 16.00 0.333
4 4 interpos-independent 0.409 0.002 0.755 0.261 0.001 0.000 5.00 4.439
4 4 interpos-covariance 0.280 0.074 0.491 0.237 0.098 1.067 3.64 2.788
8 4 2-state 0.180 0.147 0.223 0.160 0.098 0.000 2.00 0.200
8 4 superpos 0.574 0.001 1.000 0.075 0.000 0.000 16.00 0.361
8 4 interpos-independent 0.306 0.001 0.569 0.210 0.000 0.000 5.00 5.157
8 4 interpos-covariance 0.275 0.042 0.477 0.179 0.056 0.756 4.02 3.700
16 4 2-state 0.222 0.201 0.246 0.114 0.081 0.000 2.00 0.175
16 4 superpos 0.560 0.000 1.000 0.059 0.000 0.000 16.00 0.331
16 4 interpos-independent 0.320 0.000 0.594 0.158 0.000 0.000 5.00 4.978
16 4 interpos-covariance 0.307 0.019 0.557 0.158 0.044 0.514 4.72 4.570

Table 2: Fitting results for randomly generated M3PPs (t = 10E[X ]).

percentile of the inter-arrival time distribution, where p ∈ {25, 50, 75, 90}. In addition, we

consider a separation of the histogram into five bins, defined by the same set of percentiles,

which leads to a model with K = 5 classes.

Results are given in tables 3 and 4. The trends in the two tables are qualitatively similar

and indicate that interposition can in most cases fit better the traces than a 2-state model or

superposition. There are also several instances on which the composed M3PPs have better

ǫcov than the 2-state M3PP. This suggests that the good results on random instances for

2-state models may be biased by the fact that inter-arrival times of different classes are

identically distributed in the random instances. This does not happen with the real traces,

where the histogram bins do not overlap with each other.

It can also be noted that, as the number of classes grows to K = 5, the performance of

the different methods get closer to each other, presumably due to the increased difficulty in

matching class covariances.
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Trace K Cut-points p Method ǫunmark ǫvar ǫcov m T
BC-pAug89 2 25 2-state 0.718 0.635 0.984 2 1.159
BC-pAug89 2 25 superpos 0.277 0.052 1.000 4 0.922
BC-pAug89 2 25 interpos-independent 0.278 0.052 1.005 3 1.436
BC-pAug89 2 25 interpos-covariance 0.163 0.052 0.519 3 1.489
BC-pAug89 2 50 2-state 0.358 0.357 0.360 2 1.263
BC-pAug89 2 50 superpos 0.377 0.048 1.000 4 1.156
BC-pAug89 2 50 interpos-independent 0.070 0.048 0.113 3 2.564
BC-pAug89 2 50 interpos-covariance 0.070 0.047 0.112 3 2.064
BC-pAug89 2 75 2-state 0.257 0.186 0.646 2 0.880
BC-pAug89 2 75 superpos 0.195 0.047 1.000 4 0.699
BC-pAug89 2 75 interpos-independent 0.083 0.047 0.278 3 1.435
BC-pAug89 2 75 interpos-covariance 0.082 0.046 0.277 3 1.642
BC-pAug89 2 90 2-state 0.257 0.186 0.646 2 0.963
BC-pAug89 2 90 superpos 0.195 0.047 1.000 4 0.777
BC-pAug89 2 90 interpos-independent 0.195 0.047 1.001 3 1.550
BC-pAug89 2 90 interpos-covariance 0.195 0.046 1.001 3 1.425
BC-pAug89 5 25, 50, 75, 90 2-state 0.382 0.399 0.363 2 1.342
BC-pAug89 5 25, 50, 75, 90 superpos 0.487 0.045 1.000 16 1.223
BC-pAug89 5 25, 50, 75, 90 interpos-independent 0.313 0.045 0.624 5 2.363
BC-pAug89 5 25, 50, 75, 90 interpos-covariance 0.680 0.045 1.416 5 2.380

Table 3: Fitting results for the BC-pAug89 trace for different percentile cut-points of the packet size
histogram.

6.2.1. Queueing Analysis

Lastly, we consider a queueing analysis application. We use again the LBL-TCP-3 trace,

but with the class marking defined in [8]. This marking defines 4 classes, each associated to

a different bin of the histogram of packet sizes, and having service rates µ1 = 300, µ2 = 250,

µ3 = 200, µ4 = 100. We simulate a queue with exponentially distributed service times,

infinite buffer capacity, first-come first-served scheduling, and arrivals fed by the LBL-TCP-3

trace. In the simulations, we use 108 samples and record mean queue-lengths for each class.

The results are compared with the predictions obtained from a MMAP/M/1 first-come first-

served queue fed by a MMAP obtained by the following fitting methods:

• 2-state: the fitting of a M3PP[4] (2 states)

• superpos: superposition of 4 MMPPs, one per class (16 states)

• interpos-indep: interposition of the independent MMPPs used for the superposition, one

per class (5 states)

• interpos-cov: interposed process obtained by the covariance-based method, which inter-

poses 3 M3PP[2], the first for classes 1 and 3, which have the largest covariances, the
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Trace K Cut-points p Method ǫunmark ǫvar ǫcov m T
LBL-TCP-3 2 25 2-state 0.468 0.661 0.185 2 1.768
LBL-TCP-3 2 25 superpos 0.426 0.034 1.000 4 1.600
LBL-TCP-3 2 25 interpos-independent 0.709 0.034 1.699 3 1.826
LBL-TCP-3 2 25 interpos-covariance 0.064 0.085 0.034 2 2.502
LBL-TCP-3 2 50 2-state 0.454 0.357 0.700 2 1.647
LBL-TCP-3 2 50 superpos 0.313 0.043 1.000 4 1.516
LBL-TCP-3 2 50 interpos-independent 0.032 0.042 0.005 3 1.765
LBL-TCP-3 2 50 interpos-covariance 0.324 0.060 0.995 3 1.845
LBL-TCP-3 2 75 2-state 0.563 0.383 1.207 2 1.661
LBL-TCP-3 2 75 superpos 0.252 0.043 1.000 4 1.428
LBL-TCP-3 2 75 interpos-independent 0.061 0.043 0.125 3 1.925
LBL-TCP-3 2 75 interpos-covariance 0.308 0.118 0.989 3 2.053
LBL-TCP-3 2 90 2-state 0.175 0.107 8.916 2 2.090
LBL-TCP-3 2 90 superpos 0.045 0.037 1.000 4 1.528
LBL-TCP-3 2 90 interpos-independent 0.045 0.037 1.009 3 2.200
LBL-TCP-3 2 90 interpos-covariance 0.045 0.037 1.009 3 2.650
LBL-TCP-3 5 25, 50, 75, 90 2-state 0.660 0.493 0.858 2 2.646
LBL-TCP-3 5 25, 50, 75, 90 superpos 0.482 0.047 1.000 32 2.484
LBL-TCP-3 5 25, 50, 75, 90 interpos-independent 0.663 0.047 1.397 6 3.690
LBL-TCP-3 5 25, 50, 75, 90 interpos-covariance 0.611 0.047 1.284 6 4.571

Table 4: Fitting results for the LBL-TCP-3 trace for different percentile cut-points of the packet size
histogram.

second for class 2, the third for class 4 (4 states)

We have observed that different choices of the timescales used for fitting have a quite visible

effect on the rate at which mean queue-lengths build up. Therefore, for complex traces

such as LBL-TCP-3, we recommend to perform some calibration tests in order to find the

best assignment of the arbitrary timescale t = t1 = t2 used in M3PP fitting. For this

trace we perform calibration by varying t in {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} seconds and

approximating the asymptotic timescale in each experiment as t∞ = 10t. Then we select the

optimal timescale as the value for which superposition predicts the most accurate aggregated

mean queue-length at 90% utilization. Using this calibration, we settle on t = 50s and

t∞ = 500s.

The resulting MMAP/M/1 queueing systems are analyzed using Q-MAM [2]. Results

are illustrated in Figure 1. The simulation results indicate that mean queue-lengths grow

exponentially, with classes 1–3 growing up to a few thousand jobs, whereas class 4 grows

up to 86 jobs. The trends indicate that are all methods are accurate in heavy-load, above

60% utilization. Interposed processes are the most effective in capturing the job growths

for the dominating classes 1–3. In heavy load interpos-cov is more accurate than interpos-
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Figure 1: LBL-TCP-3 trace – queueing analysis results.

indep, e.g., the mean class-2 queue length at 90% utilization predicted by interpos-cov is

3442 jobs, against a simulated value of 3881 jobs, whereas interpos-indep predicts 2196 jobs

and superposition predicts 2024 jobs; the 2-state M3PP is also accurate in heavy load, with

a prediction of 3416 jobs at 90% utilization, but this method is significantly worse than the

other methods at lower loads.

Summarizing, by comparing against superposition as a baseline, the interposition method

performs best in fitting real-world traces, delivering a more accurate estimate in loads that

exceed 60% utilization. Combined with the previous validations, this outcome suggests that

the interposition methods introduced in this paper can be helpful for real-world fitting and

queueing analyses.
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7. Conclusion

In this paper, we have presented novel methods to fit multiclass arrival processes using

marked Markov-modulated Poisson processes (M3PPs). We have defined exact and approx-

imate algorithms to fit two-state M3PPs with arbitrary number of classes and introduced

a new composition operator, called interposition, which enables composing several M3PPs

while preserving their marginal counting processes. The state space of the interposed process

grows linearly in the total number of composed M3PPs, instead than exponentially as in

ordinary superposition. Experiments reveal that the interposed process can be effective in

fitting real-world traces, in matching the descriptors of more complex marked processes, and

in queueing analysis.

Future work should also investigate how interposition and exact aggregations may be

fruitfully applied to MMPPs and the general class of MMAPs. Also, it would be interesting

to apply M3PPs to decomposition analysis of multiclass queueing networks, for example by

iterative matching of the departure flows of the marked requests from queues.
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[20] G. Horváth and M. Telek. On the canonical representation of phase type distributions. Per-

formance Evaluation, 66(8):396–409, Elsevier, 2009.

28



[21] A. Klemm, C. Lindemann, and M. Lohmann. Modeling IP traffic using the batch Markovian

arrival process. Performance Evaluation, 54(2):149 – 173, Elsevier, 2003.

[22] H. Li, M. Muskulus, and L. Wolters. Modeling job arrivals in a data-intensive grid. In Pro-

ceedings of JSSPP, pages 210–231, 2006.

[23] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Performance impacts of autocorrelated

flows in multi-tiered systems. Performance Evaluation, 64(9-12):1082–1101, Elsevier, 2007.

[24] M.F. Neuts. A Versatile Markovian Point Process. Journal of Applied Probability, 16(4):764–

779, 1979.

[25] J. Lfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of

the CACSD Conference, Taipei, Taiwan, 2004.

[26] Coin-or branch and cut project: https://projects.coin-or.org/Cbc.

[27] H. Okamura, T. Dohi, and K. S. Trivedi. Markovian arrival process parameter estimation with

group data. IEEE/ACM Transactions on Networking, 17(4):1326–1339, August 2009.
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