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CHAPTER 1

Introduction

1.1 Scope of the thesis

In almost every aspect of our everyday life, we are involved with queues. Sometimes
these queues are visible to us, for example when we stand in a supermarket line to
pay for our shopping or when we stop at a red traffic light. Sometimes, however, we
do not even realise that we are waiting in a queue, i.e. when we download a movie
from the internet or when we perform a call. In all cases, there exist various factors
that affect how fast a queue builds up or empties. In the end, these factors affect how
long delays we experience in a queue until we achieve our objective – e.g. cross a red
traffic light – or eventually abandon the queue – e.g. stop downloading the movie.

The field of mathematics that aims to study these phenomena is called queueing
theory. In broad terms, queueing theory deals with models that involve a number
of servers providing service to at least one queue of customers, where neither the
customers nor the servers are necessarily individuals. For example, consider the to-do-
lists most of us are familiar with, as a simple queueing model. In this model, a person
has the role of the server that needs to complete all different obligations, which play the
role of the customers. New customers (obligations) arrive one by one or in groups by
following a specific pattern – including also the appearance of unexpected obligations.
All arriving customers are first prioritised based on criteria such as the time they
demand by the server in order to be completed or their significance. Afterwards, some
of them are served only by one server, while others may require treatment by more
servers simultaneously or consecutively. In addition, the server may not serve some
customers e.g. because of overdue deadlines, lack of interest or perhaps because they
chose to abandon the queue.

A main objective of queueing theory is to measure the performance of queueing
systems. The performance of a queueing system can be expressed in terms of (mean)
waiting times of arriving customers, (mean) queue lengths, traffic intensities (i.e.
average occupancy of a server during a specified time period), or any other relevant
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2 Introduction

measure for the specific application we study. Traditionally, a major focus of queueing
theory was to find closed-form analytic solutions for those performance measures,
i.e. formulas involving the input parameters of the model such as the arrival process
and service times. Nonetheless, finding only closed-form solutions for performance
measures is not sufficient. The point is that by using these expressions one should be
able to calculate exact numerical estimates for the performance measures.

In an ideal situation with deterministic input parameters, the performance measures
of a queueing system are accurately computable. However, such deterministic behaviour
is not customary in nature, where randomness is most often the case. Queueing models
involving randomness are an example of stochastic models. In general, when analysing
stochastic models it is hard or even impossible to find closed-form solutions for their
performance measures. The more complicated the system, the harder it is to find such
closed-form solutions. Therefore, simplifying assumptions are usually imposed to the
input parameters so as to be able to (approximately) compute performance measures
of interest.

A common simplifying assumption is that the inter-arrival times (the time between
two successive arrivals of customers) and/or the service times are exponential. A basic
property of the exponential distribution is the memoryless or Markov property, which
is also transferred to stochastic processes involving exponential distributions. We say
that a stochastic process has the Markov property if the conditional (on both past
and present states) probability distribution of future states of the process depends
only upon the present state, but not on the sequence of events that preceded it. As a
consequence, exponential assumptions most often lead to models that can be analysed
with the aid of Markov processes, the theory of which provides many closed-form
expressions for performance measures.

Although exponential distributions are widely used in the analysis of queueing
models, they are not always a realistic assumption. Two important restrictions of
the exponential distribution are that it is not capable of modelling extremely long
times (highly variable) and that it does not allow for correlations between arrivals
of customers. Therefore, as a generalisation of the exponential distribution, for the
analysis of more complicated queueing models, the use of mixtures and convolutions
of exponentials has also been suggested. Models involving such constructions of
exponentials can be represented by Markov processes that have a block structure.
Although the Markov property suggests lack of memory and independence in the
stochastic process, such constructions can approximate properties such as long-range
dependence and high variability.

Typically, a block-structured Markov process is defined on a two-dimensional
countable state space, where the first coordinate is called level and the second phase.
An example is a tandem network with two queues, where customers join the waiting
line of the second queue upon completing their service in the first queue. Here, the
level corresponds to the number of customers in the second queue and the phase
represents the number of customers in the first queue. Performance measures for
this kind of block-structured models can be evaluated numerically in an algorithmic
way with the aid of techniques that combine probability and matrix theory (Bini
et al., 2005; Gail et al., 1996); sometimes closed-form expressions with probabilistic
interpretations for performance measures can also be found. These techniques are
widely known as Matrix-Analytic Methods (MAM) and they are very successful in the
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numerical analysis of systems arising not only in queueing (Breuer and Baum, 2005),
but also in applications like insurance (Badescu et al., 2009), telecommunications (Ost,
2001), supply chain management (He, 2014), and mathematical finance (Asmussen
et al., 2004).

To analyse block-structured Markov chains with MAM, the phase space should
be finite. However, there exist many practical situations with an infinite number of
phases. For example, if in the above described tandem queueing network all arriving
customers are admitted, then obviously the number of phases is unbounded. Another
example with an infinite background state space is when heavy-tailed random variables
are involved, where heavy-tailed distributions are ordinarily used to model long service
times. In order to preserve the heavy-tailed property within the context of block-
structured Markov processes, we should allow for an arbitrary number of phases.

Infinite phase spaces may be pragmatic because they usually reflect real-world
dynamics, but the matrices of infinite dimensions appearing in the analysis of the
corresponding systems do not allow for numerical investigation. MAM that work
efficiently with systems of realistic size, are applicable to systems of infinite state
space only under specific model restrictions. Truncation of the background state
space overcomes the issue of infinitely many phases. From an application point of
view, truncation of the background state space can be interpreted as approximating
general distributions with (finite) phase-type distributions, and/or infinite waiting
rooms (buffers) with finite ones. Truncation can also be done to overcome numerical
issues with finite, but large state spaces.

Such approximations are customary in practice (Feldmann and Whitt, 1998; Heindl
et al., 2004; Horváth and Telek, 2000; Nielsen, 2000), because truncations of the
background state space lead to an approximate model that can be analysed exactly or
numerically. However, they also introduce approximation errors. Most importantly,
truncations typically are done in an empirical way that is deprived of a solid theoretical
background. In other words, the truncation point may not be chosen in a constructive
way to yield approximations of performance measures with a guaranteed accuracy.

The goal of this dissertation is to obtain a rigorous understanding of these types of
errors for a number of practically relevant classes of stochastic systems. More precisely,
we extend the applicability of MAM by establishing algorithms that yield provably
accurate estimates for the performance of a wide class of systems, including systems
with heavy tails, financial models, and queueing networks. Our main focus is on
controlling the error of performance measures by strategically choosing the truncation
point of the approximations and relating it to the error incurred.

Outline

The rest of this chapter is organised as follows. All the models discussed in this
dissertation can be represented by Markov processes with a repetitive structure. Thus,
in Section 1.2, we first present simple Markov processes that have a repetitive structure.
Afterwards, we explain how a two-dimensional Markov process can retain a similar
structure based on the way its states are ordered, and we give the basic terminology
for block-structured Markov processes. Later, in Section 1.3, we focus on MAM. In
Section 1.3.1, we give a brief overview on solution methods for the basic models with
block structure. The approximations we derive in this dissertation rely heavily on
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the characteristics of phase-type (PH) distributions and Markovian Arrival Processes
(MArPs). Therefore, in Sections 1.3.2 and 1.3.3, we provide a detailed description for
each of them, respectively.

In Section 1.4, we discuss truncations of the state space. Typical examples where
MAM impose truncations are models involving heavy-tailed distributions and queueing
networks with more than one queue. In this dissertation, we consider truncations
of either type. Therefore, in Section 1.4.1, we provide an overview on the basic
characteristics of heavy-tailed distributions and related results, while in Section 1.4.2,
we do the same for queueing networks.

In Section 1.5, we provide background literature on alternative solution methods
for Markov processes, which may have a more general structure. Furthermore, in
Section 1.6, we explain the different models that we study and the derived results of
this dissertation. Finally, in Section 1.7, we introduce some general rules with respect
to the notation that we follow throughout the whole dissertation.

1.2 Block-structured Markov processes

In this dissertation, our focus is on infinite block-structured Markov processes. These
kind of Markov processes (or chains) have a repetitive structure that ordinarily occurs
when analysing queueing models via their embedded Markov chains. By embedding,
we mean that we consider the Markov process only at the moments upon which the
state of the system changes. In this section, we give an overview of the basic concepts
and terminology for Markov chains with repetitive structures. Note that we do not use
exclusively either continuous time Markov chains (CTMCs) or discrete time Markov
chains (DTMCs) for this overview, but we choose the form that makes the presentation
intuitively easier. Moreover, we present the aforementioned concepts in the context of
queueing theory. Therefore, as a first step it is important to introduce some notation
to describe the characteristics of a queueing system.

In queueing theory, the standard system that is used to describe and classify a
queue is Kendall’s notation (or simply Kendall notation). A three-factor notation was
initially proposed by Kendall (1953) that was later extended to its current form:

A/S/s/c/p/D

where

A: stands for the description of the arrival process,

S: stands for the service time distribution,

s: stands for the number of servers in the system and can be any integer greater
than or equal to 1 (including ∞),

c: stands for the capacity of the queue, i.e. the maximum number of customers
that can be queued in the system (c ≥ 0). If this argument is missing, the queue
capacity is by default infinity.

p: stands for the system population, i.e. the maximum number of customers that
can arrive in the queue. If this argument is missing, the system population is by
default infinity.
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D: stands for the queueing discipline, which can be FCFS (first come first served),
LCFS (last come first served), or any other queueing discipline. If this argument
is missing, then, by default, the queueing discipline is FCFS.

Some of the most commonly used symbols for the description of the inter-arrival
and service time processes are the M (Markovian, memoryless or exponential), D
(deterministic), and G (general), where in the case of independent arrivals of customers
we use the notation GI. Also, for single server queues, the disciplines FCFS and LCFS
are also noted as FIFO (first in first out) and LIFO (last in first out), respectively.

1.2.1 Basic queueing models

The simplest queueing system is the M/M/1 queue, where both arrival and service
processes are Markovian and the customers are served by a single server with FIFO
discipline. In this model, there is no restriction on the system population and queue
capacity. Therefore, the number of customers in the queue is described by a continuous
time Markov chain (CTMC) with state space the non-negative integers S = {0, 1, . . . }
representing the number of customers in the system, i.e. both those waiting in line
and the one receiving service. The upward transitions from n to n + 1 occur at an
exponential rate λ and describe customer arrivals, while transitions from n to n–1,
for n > 1 occur at an exponential rate µ and describe completed services (departures)
from the queue. The infinitesimal generator of the queue length process – i.e. the
matrix with entries the rates at which the process jumps from state to state – is equal
to

QM/M/1 =


−λ λ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 µ −(λ+ µ) λ 0 · · ·
0 0 µ −(λ+ µ) λ · · ·
...

...
...

...
...

. . .

 . (1.1)

Since transitions can occur only at the nearest neighbours, this model is known as a
pure birth-death stochastic process. The most important feature here is that Q is a tri-
diagonal matrix: the elements of the upper diagonal are all equal, as are those of the
lower diagonal and of the main diagonal, with the exception of the upper left corner.

Two other very basic queueing models are the GI/M/1 and the M/G/1 queues. To
study the steady state or limiting behaviour of the queue length for these models one
usually considers the embedded Markov chains at arrivals or departures of customers,
respectively. Observe that we could attempt to find the steady-state behaviour by
observing the queue length processes of these queues in continuous times, but the
analysis is easier with embedded Markov chains. For example, the state of M/G/1
queue in continuous time can be described by a two-dimensional vector, where the
first coordinate represents the number of customers in the system and the second
coordinate corresponds to the elapsed service time of the customer in service. The one
coordinate is discrete, but the other one continuous and this essentially perplexes the
analysis. However, when we observe the system after departures, the state description
simplifies to one-dimensional (only the number of customers in the system is required),
because the elapsed service time of a new customer (if any) is zero.
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The probability transition matrix of the GI/M/1 model – i.e. the matrix where
each row represents the transition flow out of the corresponding state – takes the form

PGI/M/1 =


p0 β0 0 0 0 · · ·
p1 β1 β0 0 0 · · ·
p2 β2 β1 β0 0 · · ·
p3 β3 β2 β1 β0 · · ·
...

...
...

...
...

. . .

 , (1.2)

where βn denotes the probability of serving n customers during an inter-arrival time
given that the server remains busy during this interval (thus there are more than n
customers present) and pn =

∑∞
i=n+1 βi. On the other hand, the transition probability

matrix of the M/G/1 queue is equal to

PM/G/1 =



α0 α1 α2 α3 α4 · · ·
α0 α1 α2 α3 α4 · · ·
0 α0 α1 α2 α3 · · ·
0 0 α0 α1 α2 · · ·
0 0 0 α0 α1 · · ·
...

...
...

...
...

. . .


, (1.3)

where αn denotes the probability that during a service time exactly n customers
arrive. Observe that the transition probability matrix of the GI/M/1 queue is a lower
Hessenberg matrix (Horn and Johnson, 1986), i.e. all the elements above the upper
diagonal are equal to zero, while the transition probability matrix of the M/G/1 queue
is an upper Hessenberg matrix, i.e. all the elements below the lower diagonal are equal
to zero.

These three queueing models are the stepping stones of queueing theory, where
the M/M/1 queue lies in the intersection of the other two. Consequently, these
basic models have been treated extensively in the literature; for a comprehensive
analysis of these models refer to Kleinrock (1976) and Asmussen (2003). However,
performance measures for the M/G/1 queue are less easy to find. As we shall see
later in Section 1.4.1, this is the case where the service times follow some heavy-
tailed distribution. Therefore, despite its simplicity, the M/G/1 queue is an intriguing
model, which we study in Chapters 2 and 3. The presentation of the GI/M/1 queue is
included here for completeness.

1.2.2 QBDs, GI/M/1–, and M/G/1–type processes

In this section, we give an overview of block-structured Markov chains. In addition,
we explain how the basic models of block-structured Markov chains relate to the basic
queueing models we presented in Section 1.2.1.

As we mentioned in Section 1.1, a block-structured Markov chain is defined on
a two-dimensional countable state space. As a result, its state space is of the form
S = {(i, j) : i ≥ 0, 1 ≤ j ≤ m}, where m is the dimension of the phase space. To
preserve some ordering among the states of such a chain, we partition its state space
S as ∪i≥0l(i), where l(i) = {(i, 1), (i, 2), . . . , (i,m)}, for i ≥ 0. Except for the first
coordinate, we also use the word level to denote the whole subset l(i).
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The most basic constructions of block-structured Markov chains are the GI/M/1–
and M/GI/1–type processes. These, processes are widely known as skip-free processes
in one direction. Specifically, the GI/M/1–type process is called skip-free to the right
to indicate that the chain can move up only by one level at a time, although it may
skip in the downward direction several levels in one transition. On the other hand,
the M/G/1–type process is called skip-free to the left, because the chain can move
down only by one level at a time, although it may skip in the upward direction several
levels in one transition.

If we use the letters “L”, “F”, and “B” to denote the “local”, “forward”, and
“backward” transition rates (Riska and Smirni, 2002b), the infinitesimal generator of
the GI/M/1–type process is

QGI/M/1 =


L̂ F̂ 0 0 0 · · ·

B̂(1) L F 0 0 · · ·
B̂(2) B(1) L F 0 · · ·
B̂(3) B(2) B(1) L F · · ·

...
...

...
...

...
. . .

 . (1.4)

Observe that the above infinitesimal generator is a lower block Hessenberg type
matrix and looks like the transition probability matrix of the simple GI/M/1 (see
Eq. (1.2)); except for the fact that now, the elements of the matrix are themselves
matrices. Therefore, the GI/M/1– type process is considered the matrix-equivalent of
its corresponding simple model. Examples of GI/M/1–type process include systems
that allow the customers to be served in groups and also systems that capture failure
of service nodes (Grassmann and Stanford, 2000).

On the other hand, the infinitesimal generator of the M/G/1–type process is

QM/G/1 =


L̂ F̂(1) F̂(2) F̂(3) F̂(4) · · ·
B̂ L F(1) F(2) F(3) · · ·
0 B L F(1) F(2) · · ·
0 0 B L F(1) · · ·
...

...
...

...
...

. . .

 . (1.5)

Analogously, this infinitesimal generator is an upper block Hessenberg type matrix
and the M/G/1–type process is considered the matrix equivalent of the simple M/G/1
queue (see Eq. (1.3)). Moreover, this type of processes usually characterise batch
arrivals, i.e. simultaneous arrivals of customers in the queueing system (Grassmann
and Stanford, 2000).

As the M/M/1 queue lies in the intersection of the GI/M/1 and the M/G/1 queues,
at the intersection of the GI/M/1– and M/G/1–type models lie the Quasi-Birth-Death
processes (QBDs). Therefore, QBDs are skip-free in both directions, which means
that jumps between levels are exclusively to the nearest neighbours. Therefore, the
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infinitesimal generator of QBDs takes the form

QQBD =


L̂ F̂ 0 0 0 · · ·
B̂ L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
...

. . .

 , (1.6)

which is a tridiagonal block-matrix (see Eq. (1.1)).
In Section 1.3.1, we provide details on solution methods for these block-structured

Markov chains. The benefit from their structure is that many algorithms from linear
algebra require significantly less computational effort when applied to Hessenberg type
matrices.

1.3 Matrix-Analytic Methods

In this dissertation, we construct algorithms for the numerical estimation of perfor-
mance measures that cannot be found explicitly. As we shall see in Section 1.6 (also
Chapters 2–4 in detail), MAM are on the basis of our derived approximations. Thus,
we devote this section on the presentation of MAM.

MAM have been thriving since the work of Neuts (1989, 1994). Historically, they
developed as two independent sets of techniques for the study the GI/M/1– and
M/G/1–type Markov chains. By using a matrix formalism, they provide a framework
that is widely used for the numerical analysis of various stochastic models described by
block-structured Markov chains (Bini et al., 2005; Latouche and Ramaswami, 1999). In
particular, MAM have been extensively applied to Markov chains on two-dimensional
state spaces for which one-step transitions are allowed across several levels in one
direction. Simple examples are queues with batch arrivals or group services.

The success of MAM is mainly attributed to the development of appealing al-
gorithms that obtain numbers for systems of realistic size without having to resort
to time-consuming simulations. A catalyst has been the ever-increasing ability of
computers to perform numerical calculations. With a high-speed computer, elementary
matrix operations can easily be programmed. In addition, software tools based on
MAM have been developed (Bini et al., 2006; Van Velthoven et al., 2007; Pérez et al.,
2008; Riska and Smirni, 2002a, 2007).

In Section 1.2.2, we presented the block structure of the GI/M/1– and M/G/1–
type processes. This special structure is exploited by MAM to provide recursive and
algorithmically tractable solutions for these types of processes. In Section 1.3.1, we
briefly discuss such solution methods. Additionally, the theory of MAM is inextricably
related to phase-type distributions and MArPs, which are usually perceived as the
building blocks of MAM. Therefore, in Sections 1.3.2 and 1.3.3, we give an overview
of phase-type distributions and MArPs, respectively.

1.3.1 Solutions for GI/M/1– and M/G/1–type processes

When estimating performance measures for the GI/M/1–type process, key to the
MAM is the computation of an auxiliary matrix, traditionally denoted by R. Similarly,
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the analysis of the M/G/1–type process is related to an auxiliary matrix G. The
approach of MAM is to calculate the matrices R and G by iteratively solving matrix
equations, where all the involved matrices have finite dimensions. In this section, we
give an overview of the existing algorithms for the computation of these auxiliary
matrices, their probabilistic interpretations, and other related results.

We start our analysis with the GI/M/1–type process and the auxiliary matrix R.
If F, L, and B(k), k = 1, 2, . . . , are according to Eq. (1.4), then matrix R is the unique
non-negative solution to the matrix equation (Neuts, 1994; Riska and Smirni, 2002b)

F + RL +

∞∑
k=1

Rk+1B(k) = 0

and can be computed using iterative numerical algorithms (Ramaswami and Latouche,
1986). Matrix R has an important probabilistic interpretation: We denote as ∆i the
mean sojourn time in the state (i− 1, k) of l(i− 1) for i ≥ 2. Then, the entry (k, n)
of R is the expected time spent in the state (i, n) of l(i), before the first visit into
l(i − 1), expressed in time unit ∆i, given the starting state in l(i − 1) is (i − 1, k)
(Neuts, 1994, pages 30–35).

The matrix R is also called geometric coefficient because of the matrix-geometric
relation that holds among the stationary probabilities of the sets l(i). To make this
clear, let π be the stationary probability vector of the GI/M/1–type process. If we
consider its partition into the sub-vectors πi, i ≥ 0, where πi = (πij)j=1,...,m, then
the following relation holds

πi = π0R
i, i = 1, 2, . . .

This property leads to significant algebraic simplifications that result in the very
elegant matrix-geometric solution that involves only the numerical evaluation of the
matrix R and the stationary probabilities π0 (Neuts, 1994).

For M/G/1–type processes there is no geometric relation among the various
probability vectors πi, i = 1, 2, . . . , as in the case of GI/M/1–type processes (Riska
and Smirni, 2002b). Therefore, although MAM have been proposed for the solution of
the basic equation πQM/G/1 = 0, they are significantly more complicated in this
case because there is no explicit or simple solution to this system of equations (Bini
et al., 2000; Meini, 1998; Neuts, 1989). Nonetheless, there exist recursive schemes
based on G to compute the steady state probability vector (Ramaswami, 1988).

The algorithms for M/G/1–type processes involve the computation of the matrix
G, which is the unique solution to the matrix equation

B + LG +

∞∑
k=1

F(k)Gk+1 = 0,

where B, L, and F(k), k = 1, 2, . . . , are according to Eq. (1.5). The matrix G can
be determined by using iterative algorithms (Latouche and Ramaswami, 1999; Meini,
1998) and has an important probabilistic interpretation: an entry (r, c) in G expresses
the conditional probability that the process first enters the level l(i− 1) through the
state (i− 1, c), given that it starts from state (i, r) of l(i) (Neuts, 1989, page 81).
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Finally, since QBDs are special cases of both GI/M/1– and M/G/1–type processes,
its stationary probabilities can be found by using existing algorithms for either type
of processes. However, because of its simplicity, the matrix-geometric solution is most
preferable. Moreover, for QBDs both matrices R and G are defined and they are
related through the fundamental equation (Latouche and Ramaswami, 1999, pages
137–8)

RB = FG,

where L and F are according to Eq. (1.6). Different types of duality between R and
G, can also be found in Asmussen and Ramaswami (1990) and Ramaswami (1990).
Due to the duality between the matrices R and G, calculating only one of them is
sufficient to have both. Ordinarily, the matrix G is computed first because it is easier
to control the calculation errors (He, 2014).

1.3.2 Phase-type distributions

Phase-type distributions play a very prominent role in the construction of our approx-
imations in Chapters 2–4. Thus, in this section, we give the definition of phase-type
distributions, we introduce the related terminology, and we list their basic properties,
which make the class of phase-type distributions a very popular class.

Phase-type distributions were first introduced by Neuts (1975) and they are
characterised by a finite and absorbing Markov chain. The number of phases in a
phase-type distribution is equal to the number of transient states in the associated
(underlying) Markov chain. More precisely, a distribution B on (0,∞) is phase-
type if B is the distribution of the time the Markov chain spends in the transient
states until absorption. In addition, if α is the initial probability vector for each of
its transient states, T is the square matrix representing the transitions among the
transient states, and E denotes the set of transient states, then B is said to be of
phase-type with representation (E,α,T ) or simply (α,T ) (Asmussen, 2003). The
infinitesimal generator of the underlying Markov chain of a phase-type distribution
then takes the form

Q =

(
0 0
t T

)
, (1.7)

where t is a column vector representing the transitions from the transient states to
the absorption state and satisfies the relation t = −T e. The basic characteristics of a
phase-type distribution are

• the cumulative distribution function: F (x) = 1−αeT e,

• the density function: f(x) = αeT t, and

• the nth moment: Mn = (−1)nn!αT−1e.

The simplest examples of phase-type distributions are mixtures and convolutions
of exponential distributions; in particular Erlang distributions, defined as Gamma
distributions with an integer shape parameter. More generally, the class of phase-type
distributions comprises all series/parallel arrangements of exponential distributions,
possibly with feedback (Fackrell, 2003). Since their first introduction, phase-type
distributions became extremely popular, because they constitute a very versatile class
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of distributions defined on the non-negative real numbers. Here, we explain the reasons
why this class of distributions thrives in the area of applied probability.

Properties of phase-type distributions

First, phase-type distributions are a natural generalisation of the exponential dis-
tribution. Thus, stochastic models where the exponential distribution is used to
model quantities (e.g. inter-arrival or service times) may admit extensions to phase-
type distributions with some extra computational effort. In other words, often the
underlying structure of a model can be preserved if the exponential distribution is
simply replaced by a phase-type distribution. A typical example is the PH/PH/1
queue, which generalises the M/M/1 queue and can be analysed in an analogous
manner.

Second, stochastic models involving phase-type distributions often lead to algo-
rithmically tractable performance measures. The matrices involved in phase-type
distributions consist entirely of real entries. Consequently, many performance mea-
sures, which are expressed in terms of the system parameters and exponentials of
these matrices, can be implemented in algorithms and can be computed numerically
with relative ease with the aid of a computer software. However, not only numerical
performance measures can be calculated, but also qualitative performance measures
can be established in stochastic models where phase-type distributions are used. For
example, Takahashi (1981) showed that the waiting time (delay) distribution of a
PH/PH/c queue has an exponential tail.

Third, the class of phase-type distributions is closed under a variety of operations
(finite mixture, convolutions, superpositions). As a consequence, systems with phase-
type inputs often generate phase-type outputs. This property is extremely useful
especially when networks of systems are studied, where the output of one system
is the input to another one. For example, Neuts (1994) showed that the stationary
waiting time distribution in an M/PH/1 queue is phase-type, while Asmussen (1992a)
extended this result to the G/PH/1 queue.

Fourth, the class of phase-type distributions is a proper subset of the class of
distributions with rational Laplace-Stieltjes transform (LST) (Lipsky, 2009), which are
widely known as matrix-exponential (ME) distributions (Asmussen and O’Cinneide,
2004; Bean et al., 2008; Fackrell, 2003, 2009). The ME distributions were first
introduced by Cox (1955a,b). Since the LST – and also the moment generating
function (m.g.f.) – of a ME distribution is expressed as a fraction of two polynomials,
various performance measures have exact closed-form expressions (Asmussen and
Bladt, 1997; Bladt and Neuts, 2003). Although ME distributions do not have simple
probabilistic interpretations, performance measures involving ME distributions have
ME representations. For example, the waiting time distribution of an G/ME/1 queue
has a zero-modified (it has an atom at zero) ME representation (Asmussen and Bladt,
1997).

Finally, phase-type distributions are dense in the class of all distributions defined
on the non-negative real numbers (Asmussen, 2000; Schassberger, 1973). In other
words, any distribution on a positive support can be approximated arbitrarily close by
a phase-type distribution in the sense of weak convergence. However, as Neuts (1994)
remarked, there exist a number of simple distributions (e.g. the delayed exponential
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distributions) where a prohibitive number of states is required to achieve a reasonable
approximation by a phase-type distribution. On the other hand, the parameters of the
underlying Markov chain that defines a phase-type distribution are very flexible, thus
making the phase-type distributions exhibit a quite versatile behaviour (O’Cinneide,
1999).

Fitting techniques for phase-type distributions

Since phase-type distributions can approximate any distribution on a positive support
arbitrarily close, many fitting techniques have been developed. These fitting techniques
are either based on moment-matching (Johnson and Taaffe, 1989; Horváth and Telek,
2007) or on maximum likelihood estimators (MLEs) (Asmussen et al., 1996; Law et al.,
1991). Moment matching techniques work efficiently, but they are not applicable in
general. For example, Johnson and Taaffe (1989) found that there exist distributions
that are impossible to approximate by a phase-type distribution so that the first
three moments match exactly. Among the techniques that are based on MLEs, the
most prevalent is the expectation-maximisation (EM) algorithm (Dempster et al.,
1977). Other techniques based on MLEs methods to fit long-tailed distributions
to special types of phase-type distributions like the Coxian (Horváth and Telek,
2000) and the hyperexponential (Feldmann and Whitt, 1998) distribution have also
been suggested. Another example of an MLEs approach is a divide-and-conquer
technique to fit data sets with non-monotone densities into a mixture of Erlang and
hyperexponential distributions and also data sets with completely monotone densities
into hyperexponential distributions (Riska et al., 2004). Finally, several tools have
been developed to help with the task of fitting phase-type distributions to data. Some
examples are: EMPHT (Asmussen et al., 1996), PhFit (Horváth and Telek, 2002),
G-FIT (Thuümmler et al., 2006), and HyperStar (Reinecke et al., 2013).

1.3.3 Markovian Arrival Processes

The MArP was introduced by Neuts (1979). In broad terms, the idea of a MArP is
to generalise the Poisson arrival process in a way to include non-exponential and/or
dependent inter-arrival times, and correlated arrivals, but keep the tractability of
the Poisson process. In Chapter 4, we consider approximations for the waiting
time distribution of a MArP/G/1 queue. Therefore, in this section, we explain the
mechanism of a MArP and we provide their properties and related results.

Similarly to phase-type distributions, a MArP is associated with a finite absorbing
Markov chain. However, for its description it requires not only one initial probability
vector α, but as many initial vectors as the number of transient states in the underlying
Markov chain, i.e. one α per transient state. To understand this, we explain here the
mechanism of a MArP. When the Markov chain enters the absorption state a new
customer arrives. Then, the process restarts from the transient part by remembering
the last transient state that reached absorption. Consequently, a MArP is formally
represented by two matrices (D0,D1), where matrix D0 describes the interactions
between the transient states of the underlying Markov chain and matrix D1 describes
how the transient states of the underlying Markov chain are re-entered once absorption
is reached.
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For example, the (i, j) element of matrix D0 simply represents the rate at which the
Markov chain moves from the transient state i to the transient state j. On the other
hand, the same element in the D1 matrix represents the rate at which the Markov
chain is absorbed from state i (where this absorption is accompanied by an arrival of
a customer) and is instantaneously re-entered in the transient state j. All off-diagonal
entries of D0 are non-negative, while matrix D1 has only non-negative entries. We
also note that D0 + D1 is the infinitesimal generator describing the transitions of the
transient states in the underlying Markov chain.

The class of MArPs is a very rich class of point processes, containing many well-
known arrival processes in the applied probability literature as special cases. A special
case of a MArP is the Markov Modulated Poisson Process (MMPP), which is a popular
model for bursty arrivals (Fischer and Meier-Hellstern, 1993). Intuitively, a “burst”
is a group of consecutive customers with shorter inter-arrival times than customers
arriving before or after the burst. For MMPPs, matrix D1 has all entries zero, except
for the diagonal ones. The class of MArPs contains also the class of phase-type renewal
processes, i.e. renewal processes with phase-type inter-arrivals (Neuts, 1978). The
phase-type distribution is a MArP where matrix D1 has equal rows. Moreover, the
class of MArPs also allows for correlated renewal distributions and is closed under
superposition, thinning, etc (Lucantoni, 1993).

A generalisation of the MArP is the Batch Markovian Arrival Process (BMArP),
which was initially known under the name N -process; see (Neuts, 1979; Ramaswami,
1980). The BMArP extends the concept of MArP by allowing simultaneous batch
arrivals of customers (batch absorptions) in the underlying Markov chain. Formally, a
BMArP is represented by an infinite number (allowing for arbitrary large batch sizes)
of matrices Dk, k ≥ 0, and its infinitesimal generator is

∑∞
k=0 Dk. The (i, j) element

of matrix Dk has a similar meaning to the (i, j) element of matrix D1, where instead
of an arrival of a single customer at absorption we have an arrival of a batch with size
k > 0.

The introduction of BMArPs was motivated by the need to describe arrival pro-
cesses that come from the superposition of many independent arrival streams of
compound phase-type renewal processes, batch MMPPs, and batch Poisson processes.
As the arrival streams are independent, it is natural to consider that the service time
distributions of customers in each stream may differ from one another. Thus, BMArPs
accommodate not only models with (correlated) batch arrivals (Lucantoni, 1991) but
also models that bear dependencies between arrival and service processes (Takine and
Hasegawa, 1994).

For the analysis of queueing models with MArP arrivals and i.i.d. service times,
MAM have been a very popular tool (Lucantoni et al., 1990; Lucantoni, 1991; Ra-
maswami, 1980). If we substitute the Markovian arrival process in the M/G/1 queue
to a MArP, then the MArP/G/1 queue lies in the context of M/G/1–type Markov
processes (see Sections 1.2.2 and 1.3.1). The most important benefit by such a sub-
stitution is that the entire model behaves like a matrix generalisation of the M/G/1
queue. In fact, many expressions for performance measures of interest are natural
matrix analogues of the corresponding expression in the M/G/1 queue. For example,
it has been shown that the Laplace transform of the waiting time of a MArP/G/1
queue has a matrix expression analogous to the Pollazceck-Khinchine equation of an
M/G/1 queue (Neuts, 1989; Ramaswami, 1980). Quite interestingly, many results that
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hold for the MArP/G/1 queue hold true also for the BMArP/G/1 queue (Lucantoni,
1993).

Finally, stationary BMArPs are dense in the family of all stationary Marked Point
Processes (MPPs) (Asmussen and Koole, 1993); overall, a MPP is a pure point process
defined on the product space of points and marks. This shows that BMArPs can
represent a wide range of behaviour although, from a practical point of view, the
dimension of the matrices may be restrictive. Thus, many fitting techniques have
developed for (B)MArPs, a brief overview of which we present below.

Fitting techniques for MArPs

Resembling the case of phase-type distributions, both moment-matching and MLE-
based approaches exist for fitting data sets into (B)MArPs. The moment matching
techniques on a large extend deal with two-state MMPPs (Gusella, 1991), while
Meier-Hellstern (1987) and Rydén (1996) also proposed MLE algorithms for two-state
MMPPs. Furthermore, the EM algorithm is used as an estimation procedure both for
MArPs (Horváth and Okamura, 2013) and their more general form BMArPs (Breuer,
2000, 2002).

1.4 Truncations of the background state space

In the previous section, we gave an overview for MAM and their building blocks, phase-
type distributions and MArPs. Particularly, in Section 1.3.1, we defined the auxiliary
matrices R and G, which are involved in the calculation of performance measures for
block-structured Markov chains. Since the dimension of the phase space of a block-
structured Markov chain determines the dimension of the matrices, the former should
be finite. However, as we already mentioned in Section 1.1, there are a lot of practical
situations where the phase space is infinite.

To overcome the issue with infinite phases, an appealing approach is to truncate
the background state space and find approximate performance measures through the
truncated model. Truncation of Markov chains, has already been considered before
the appearance of MAM (Seneta, 1981). Seneta presents sufficient conditions for the
convergence of the steady-state probability of the truncated Markov chain to the
original Markov chain. He also provides an error bound expression, but this bound
seems too cumbersome to be practical.

Two very classical examples with infinite phase spaces are models involving heavy-
tailed distributions and queueing networks with more than one queue. In Chapters 2–4,
we consider heavy-tailed models, while in Chapter 5 we deal with a tandem network
of two queues. Thus, in Sections 1.4.1 and 1.4.2, we examine these two examples,
respectively. For each of them, we give background literature and we explain how they
relate to MAM.

1.4.1 Heavy-tailed models

In real-world applications, the input parameters – e.g. inter-arrival and service time
distributions – are not explicitly known, but need to be estimated from data sets.
There is abundance of evidence that the empirical distribution of many data sets



1.4 Truncations of the background state space 15

bears characteristics like high variability, i.e. its coefficient of variation is greater than
the one of the exponential distribution (Bolotin, 1994; Duffy et al., 1994). Therefore,
in such applications, the classical assumption of exponentially decaying probability
distributions is not applicable (Embrechts et al., 1997).

An appropriate way to model highly-variable stochastic processes is by using
heavy-tailed distributions (Sigman, 1999). Such distributions decay more slowly than
any exponential function, which means that with such distributions there exists a
non-trivial probability of an extremely large observation (Asmussen, 2003; Rolski
et al., 1999). In the literature, the class of heavy-tailed distributions admits different
definitions. For a detailed classification of heavy-tailed distributions, special cases,
and their properties refer to Zwart (2001).

Data sets with heavy-tailed behaviour are commonly modelled by distributions
such as Pareto, Weibull, and Lognormal. In general, heavy-tailed distributions have
high coefficient of variation and sometimes infinite means. These characteristics
increase the complexity of the analysis of queueing systems with such heavy-tailed
input. Especially, the performance of queueing systems with heavy-tailed services is
affected considerably, since measures like average queue length, average waiting times,
and the corresponding distributions inherit the heavy-tailed behaviour (Feldmann and
Whitt, 1998). Therefore, under the presence of heavy-tailed distributions, evaluations
of performance measures become more challenging and sometimes even problematic
(Ahn et al., 2012; Asmussen and Pihlsg̊ard, 2005).

An attractive alternative to capture highly variable behaviour in data sets or
distribution functions is by using phase-type distributions. Many approximation
methods for heavy-tailed distributions have been proposed using special cases of phase-
type distributions (Bladt et al., 2014; Feldmann and Whitt, 1998; Horváth and Telek,
2000; Sasaki et al., 2004; Starobinski and Sidi, 2000). Although queueing models
become tractable and can be analysed with the aid of MAM, one disadvantage of
phase-type approximations is that the accuracy of the performance measures cannot
be pre-determined. Another drawback is that phase-type distributions require more
parameters (in other words, phases) than Lognormal or Weibull distributions to
capture the heavy-tailed behaviour, thus making estimation procedures more complex.
On the contrary, when approximating some light-tailed distribution with a phase-type
one, approximations for performance measures become highly accurate.

A different approach on evaluating performance measures for heavy-tailed models,
is to study their asymptotic behaviour. When probability distributions belong to
the class of subexponential distributions (Teugels, 1975), which is a special case of
heavy-tailed distributions, asymptotic approximations are available (von Bahr, 1975;
Borovkov and Foss, 1992; Embrechts and Veraverbeke, 1982; Foss et al., 2005; Olvera-
Cravioto et al., 2011; Pakes, 1975). The main disadvantage of such approximations is
that they provide a good fit only at the tail of the performance measure, especially in
heavy traffic, i.e. when the occupation rate of the system is close to 1. Finally, results
on error bounds (Kalashnikov, 2002) indicate that such bounds are rather pessimistic,
especially in terms of relative errors, and in case of heavy traffic. There exist also
bounds with the correct tail behaviour under subexponential claims (Kalashnikov and
Norberg, 2002; Korshunov, 2011), but these bounds are only accurate at the tail.

A conclusion that can be safely drawn from all the above is that, although the
literature is abundant with approximations for performance measures in the case of
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light-tailed distributions, accurate approximations for performance measure in the
case of heavy-tailed distributions are still an open topic. Therefore, in Chapters 2–4,
our focus is on finding accurate approximations for performance measures of heavy-
tailed models.

1.4.2 Networks of queues

Many important applications from manufacturing are involved with networks of
systems, and thus the models describing these systems become too complex. For
example, in Chapter 5, we study a simple network involving two queues in tandem.
The state space includes the number of customers in front of each queue and is thus
doubly-infinite. An approximation method is to truncate this state space by allowing
only for a finite number of customers in front of the first or second queue, while any
other customers who arrive and attempt to enter the queue are lost or block the
system.

In general, infinite-buffered queueing networks seem to be more manageable (van
Vuuren, 2007). This is due to the fact that the servers cannot get blocked and thus
the departure processes from the stations are completely described by the arrival
and service processes at the stations. In particular, there exist special cases of
infinite-buffered queueing networks that admit product-form solutions (Latouche and
Ramaswami, 1999). An example is a tandem queueing network with exponentially
distributed service times in all stations, where customers arrive at the first queue
according to a Poisson process, a model that is a special case of Jackson networks
(Jackson, 1963).

Tandem queueing networks may involve general service time distributions and/or
possibly finite buffers for different stations. Moreover, since traffic often exhibits
correlations and burstiness, the arrival process should be able to capture these charac-
teristics. However, queueing networks of this general type do not allow for an exact
analysis. This is mainly due to concurrent non-exponential activities in combination
with infinite state spaces.

A typical approach that may lead to a tractable model is to truncate the state
space by considering finite buffers for some or all the stations. Although truncation
seems a pragmatic approach, care is needed. For example, Kroese et al. (2004) analyse
a simple two-node tandem Jackson network with exponential servers and Poisson
arrivals directly and also approximate it via truncation techniques. They express the
model as a QBD and they show that when the truncation threshold is converging to
infinity, several quantities in the truncated system do not converge to the exact values.
Moreover, they find that the decay rate of the truncated system may converge, but
not necessarily to the decay rate of the original system.

1.5 Beyond Matrix-Analytic Methods

Although MAM are very powerful in the analysis of block-structured Markov chains,
they are not the only techniques available for this class of Markov chains. Moreover,
there exist more general Markov chains that MAM do not apply to. Therefore, in this
section, we give a brief overview of other techniques.
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As we mentioned in Section 1.3, technological advances were a catalyst to the
popularity of MAM. Before the advent of fast computers, problems in stochastic
modelling, particularly in queueing theory, were perceived as problems in analysis and
their analysis relied on LST and complex analysis techniques; see for example Cohen
(1982). Although these techniques are appropriate to produce numbers, they may
not provide probabilistic insights to the system being analysed. Moreover, there exist
situations where the evaluation of performance measures through LSTs is hard. An
example is the LST of the waiting time distribution of the M/G/1 queue. Although
this LST is given by the well-known Pollaczek-Khinchine formula (Asmussen, 2003;
Asmussen and Albrecher, 2010), when the Laplace transform of the service times does
not have a closed-form expression, then the Pollaczek-Khinchine formula cannot be
used to find the waiting time distribution.

Generating functions have also been used for the analysis of queueing problems
(Adan et al., 1993; Hofri, 1978). In particular, the equilibrium behaviour of two-
dimensional Markov processes has been extensively studied by techniques that are
based on generating functions. A classical example is the symmetric shortest queue
problem, where Flatto and McKean (1977) and Kingman (1961) use uniformisation
techniques to determine the generating function of the equilibrium of the joint queue
length distribution. By using a more general approach, Cohen and Boxma (1983) and
Fayolle and Iasnogorodski (1979) show that the analysis of the functional equation for
the generating function can be reduced to that of a Riemann-Hilbert boundary value
problem.

The analysis of the symmetric shortest queue problem initiated also the development
of the compensation approach (Adan, 1994). The equilibrium probabilities of the
shortest queue are well-known to satisfy two types of equations: the equations in the
interior points and the boundary conditions. In broad, the compensation approach
first finds the set of product form solutions that satisfy the equations in the interior
points, and afterwards constructs a linear product-form solution from the latter set
that satisfies also the boundary conditions. The name compensation is due to the fact
that after introducing the first term, terms are added alternatively so as to compensate
for errors on the two boundaries. The compensation approach leads to an explicit
characterisation of the equilibrium probabilities, which can easily be exploited for the
development of efficient algorithms, with the advantage of tight error bounds.

Queueing models with MArP arrivals and i.i.d. service times have also been analysed
with MAM (Lucantoni et al., 1990; Lucantoni, 1991; Ramaswami, 1980). However,
when service times of customers depend on the state of the underlying Markov chain
upon arrival, MAM can no longer be used to analyse such a system. This is because
the queue length and the state of the underlying Markov chain do not form a Markov
chain. Therefore, alternative methods to obtain performance measures in queueing
models with state-dependent service time distributions have been developed; e.g. by
examining the ladder height distribution (Asmussen, 1991; Asmussen and Perry, 1992)
or by a matrix-factorisation method that heavily relies on complex-plane methods
(Regterschot and de Smit, 1986).

Perturbation analysis is another technique that has been used in the analysis of
Markov chains (Altman et al., 2004). In broad terms, it involves the study of Markov
chains where “small” changes in its kernel have taken place. Perturbation analysis has
been used successfully to obtain error bounds for performance measures (Haviv and
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Ritov, 1993; Heidergott et al., 2009) and puts emphasis on the analysis of singular
perturbed Markov chains, i.e. the perturbation breaks down the class structure of the
original chain (Avrachenkov and Lasserre, 1999). Approximations involving series
expansions or performance measures have also been proposed. An example is the
Edgeworth series expansion (Wallace, 1958), which is a refinement of the central limit
theorem.

Another stream of research focuses on corrected diffusion approximations for stochas-
tic processes (Blanchet and Zwart, 2010; Silvestrov, 2004). These approximations
can be useful in applications where moments are computable, but the distribution
is not. A numerically-oriented method that applies to fairly general exponential
multidimensional queueing systems bas been developed by Hooghiemstra et al. (1988).
This method is based on calculating a power-series expansions for the equilibrium
probabilities as functions of the traffic intensity, and there is evidence that it works
satisfactory for several queueing problems (Blanc, 1987, 1991, 1992).

Finally, a numerical approach that is widely used for the performance analysis of
stochastic networks is simulation. In simulation models, the events that could occur
while a system operates by following a sequence of steps, are generated by a computer
program. The probabilistic nature of many events, such are arrivals of customers
and service times, can be represented by sampling from a distribution that reflects
the pattern with which the events occur. Thus, to capture the typical behaviour of
a system, it is necessary to run the simulation model for a sufficiently long time, so
that all events can occur a sufficiently large number of times. In principle, simulation
models can describe whatever level of complexity is desired. However, simulation of
heavy-tailed distributions for estimation of steady-state measures is not easy, as the
simulation must run exceptionally long in order to capture the effect of the distribution
tail, i.e., the rare events, which even with a small probability of occurrence can affect
the system performance significantly.

1.6 Our contribution

This section gives an overview of the results in this dissertation, which is organised
according to the different model that is studied. In Chapters 2 and 3, we consider the
classical Cramér-Lundberg risk model (Asmussen and Albrecher, 2010; Prabhu, 1961).
In this model, we have claims (for money) which arrive to an insurance company
according to a Poisson process and the total income (premium) rate is 1. Given that
the insurance company starts with some initial capital, we are interested in evaluating
the ultimate ruin probability that the risk reserve ever drops below zero. More precisely,
we focus on heavy-tailed claim sizes, which are known to make numerical evaluations
of the ruin probability challenging. In each chapter, we follow a different approach
to find numerical evaluations of the ruin probability under heavy-tailed claim sizes.
Due to the duality between the probability of eventual ruin for an insurance company
with an initial capital u and the stationary waiting probability P(W > u) of a G/G/1
queue, where service times in the queueing model correspond to the random claim
sizes (Asmussen, 2003; Asmussen and Albrecher, 2010), our approximations are also
valid for this model.

An attractive way to overcome the problem with heavy-tailed distributions is
to approximate the claim sizes with a phase-type distribution. However, it is not
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clear how many phases are enough in order to achieve a specific accuracy in the
approximation of the ruin probability. In Chapter 2, we investigate the number of
phases required so that we can achieve a pre-specified accuracy for the ruin probability
and we provide error bounds. Also, in the special case of a completely monotone
claim size distribution we develop an algorithm to estimate the ruin probability by
approximating the excess claim size distribution with a hyperexponential one. Finally,
we compare our approximation with two typical approximations for the ruin probability,
i.e. the heavy tail and the heavy traffic approximations, by performing an extensive
numerical study.

On the other hand, in Chapter 3, we provide approximations for the ruin probability
by combining both phase-type distributions and asymptotic results. Motivated by
statistical analysis, we describe how the claim sizes can be written as a mixture of
a phase-type and a heavy-tailed distribution. From this representation of the claim
size distribution, we derive with the aid of perturbation analysis a series expansion
for the ruin probability. Our proposed approximations consist of the first two terms
of this series expansion, where the first term has a phase-type representation. We
refer to our approximations collectively as corrected phase-type approximations and
we prove that they provide small absolute and relative errors. Finally, we show that
the corrected phase-type approximations exhibit such a nice behaviour both in finite
and infinite time horizon, and we check their accuracy through numerical experiments.
The results of Chapters 2 and 3 are based on the research papers Vatamidou et al.
(2014a) and Vatamidou et al. (2013b), respectively.

In Chapter 4, we investigate the applicability of the corrected phase-type approxi-
mations to a more involved queueing model. In particular, we consider a single server
queue with FIFO discipline where customers arrive according to a MArP and their
service times follow some general distribution. We explain how the general distribution
can be written as a mixture of a phase-type and a heavy-tailed distribution, and with
the aid of perturbation analysis we derive approximations for the queueing delay. We
show that the developed approximations capture the exact tail behaviour and provide
bounded relative errors. Moreover, we exhibit their performance with numerical
examples. The results of this chapter are based on Vatamidou et al. (2013a, 2014b)

Finally in Chapter 5, we consider the MX/M/1→ •/M/1 tandem queueing network.
Customers arrive in batches according to a Poisson stream and join the first queue,
while the service times in each queue are exponential. A customer leaves the system
after finishing service in both queues. In this model, the joint queue lengths can be
represented by a QBD with an infinite phase space. However, MAM can be applied
to find approximations for the joint queue length distribution only if the buffer size
in front of either queue is finite. Therefore, we truncate the buffer size of the first
queue and we find an asymptotic upper bound for our approximations. To derive
the bound, we connect our two-dimensional queueing process with a two-dimensional
random walk and with the aid of large deviations theory (LDT), we recognise three
possible cases for the bound.

1.7 Notation

While each chapter focuses on a different model, we follow some general rules with
respect to the notation throughout the whole dissertation, which we give below.
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1.7.1 General symbols

The standard sets are denoted as follows:

N = {0, 1, 2, . . . } the natural numbers,

Z = {0,±1,±2, . . . } the integer numbers,

R = (−∞,∞) the real numbers (or real line),

C = {x+ iy : x, y ∈ R} the complex numbers.

We also introduce the notation Nn for the natural numbers up to the integer n, i.e.
Nn = {0, 1, . . . , n}.

For a real number x, we call ceiling the smallest integer that is greater than or
equal to x and we denote it as dxe. On the other hand, we call the integer part of x
floor and we denote it as bxc. Moreover, we define the function (x)+ := max{0, x}
and we use lnx for the natural logarithm of x.

Some other symbols that we use are P and E for the probability and the expectation,
respectively. We also use the notation 1 for the indicator function and we denote the
Kronecker delta as δij , i.e. δij = 0 when i 6= j and δij = 1 when i = j. Finally, the
real part of a complex number s is denoted by <(s).

1.7.2 Distributions and random variables

Consider a cumulative distribution function (c.d.f.) F . The total mass of the distribu-
tion is denoted as ‖F‖ and it usually holds that ‖F‖ = 1. If ‖F‖ < 1, the distribution
F is called defective. Its complementary cumulative distribution function (c.c.d.f.) is

denoted by F and its nth convolution by F ∗n. Furthermore, we denote as F̃ its LST
and as F̂ the approximation of F . In addition, if µ is the mean of the distribution F ,
we define its stationary excess distribution F e as

F e(x) =
1

µ

∫ x

0

F (y)dy.

Some typical distributions are the exponential, the Erlang, the hyperexponential,
and the geometric. Therefore, we denote as Ek(λ) the Erlang distribution with k phases
and rate parameter λ. For simplicity, we write E(λ) for the exponential distribution
with rate parameter λ. Furthermore, we use the notation Hk for a hyperexponential
distribution with k phases. Finally, we write G(p) for the geometric distribution with
success probability p ∈ (0, 1] and probability distribution function (p.d.f) defined as
f(k) = (1 − p)k−1p, k = 1, 2, . . . By convention, we use the notation E(λ), Ek(λ),
Hk, and G(p), for the random variable (r.v.) that corresponds to each respective
distribution.

If two r.v.’s A,B are equal in distribution we write A
D
= B. If the r.v. A follows the

distribution D, we write A ∼ D. The symbol ∼ is also used between two functions as
f(x) ∼ g(x) to describe the relation limx→∞ f(x)/g(x) = 1; the meaning will always
be clear from the context. Finally, the sup-norm distance between two distributions F1

and F2 on a positive support is defined as D(F1, F2) := supx |F1(x)− F2(x)|, x ≥ 0.
Also, the sup-norm distance between two random variables is defined to be the sup-
norm distance between their distributions.
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1.7.3 Matrices and vectors

We denote the matrices and vectors with boldface. In addition, we use the superscript
T to denote the transpose of a vector or a matrix; e.g. AT is the transpose of matrix
A. Moreover, we denote the rank of A as rankA, while for a square matrix A, we
denote its determinant as det A.

Suppose now that A is a square matrix of dimension n and that U,W ⊂ {1, . . . , n},
where the symbol “⊂” does not imply strict subsets. Then AW

U is the sub-matrix of
A if we keep the rows in U and the columns in W . Whenever the notation becomes
very complicated, to avoid any confusion with the indices, we denote the ith column
and row of matrix A with A•i and Ai•, respectively.

Two more matrix operations that we use are the Hadamard product and a new
operator we introduce for the needs of Chapter 4. More precisely, we use the operator
◦ for the Hadamard product between two matrices of same dimensions; i.e. if B = (bij)
and C = (cij) are m× n matrices, then the (i, j) element of the m× n matrix B ◦C
is equal to bijcij .

For the second operator, suppose that A and B are two square matrices of dimension
n and Ω ⊂ {1, . . . , n}. If U and W are two disjoint sets such that U ∪W ⊂ Ω, we
use the notation AU

Ω on BW
Ω for the matrix that has as columns the union of the

columns U of matrix A and the columns W of matrix B, ordered according to the
index set U ∪W . For example, if n = 6, Ω = {1, . . . , 6}, U = {1, 2, 4}, and W = {3, 5},
then A

{1,2,4}
Ω on B

{3,5}
Ω = (A•1,A•2,B•3,A•4,B•5). Note that since the sets U

and W are disjoint, there is a unique ordering of their union, which means that
AU

Ω on BW
Ω = BW

Ω on AU
Ω .

Finally, the dimensions of the matrices (square or not) are clear from the context.
Therefore, we do not use any indices to indicate their dimension. Some standard
matrices and vectors are the following:

e: is the column vector with all elements equal to 1,

ei: is a column vector with the element in position i equal to 1 and all other elements
zero,

I: stands for the (square) identity matrix,

U: is the matrix with appropriate dimensions and all its elements equal to one, and

0: is the matrix with appropriate dimensions and all its elements equal to 0.





CHAPTER 2

Spectral approximations

2.1 Introduction

In this chapter, we consider the classical Cramér-Lundberg risk model, described in
Section 1.6, and we find approximations for the ruin probability. Since we assume
that the claim sizes arrive according to a Poisson process, the ruin probability can
be found by using the well-known Pollaczek-Khinchine formula; see Eq. (2.1). This
formula involves the convolutions of the excess claim size distribution, which cannot
be easily computed, and thus one usually resorts to Laplace transforms. However, as
we mentioned in Section 1.5, a major difficulty when analysing models with heavy-
tailed distributions is that Laplace transforms of such distributions often do not have
an analytic closed form. This is, in particular, the case for the Pareto and Weibull
distributions. Thus, analytic methods, which use the Laplace transform of the claim
sizes, are difficult (Abate and Whitt, 1999a) or even impossible to use in such cases.

As we explained in Section 1.4.1, a natural approach to provide approximations for
the ruin probability is by approximating the claim size distribution with a phase-type
one. We refer to these methods as phase-type approximations, because the approximate
ruin probability has a phase-type representation (Asmussen, 1992a; Ramaswami, 1990).
The main advantage of approximating a heavy-tailed claim size distribution with a
phase-type distribution is that, in the latter case, the Laplace transform of the claim
sizes has a closed form. However, in these cases, the exponential decay of phase-type
approximations gives a big relative error at the tail and the evaluation of the ruin
probability becomes more complicated.

Two approximations of the ruin probability based on the safety loading, which
is defined as the relative amount by which the premium rate exceeds the average
amount of claim per unit time, are the heavy traffic and light traffic. If, on average, the
premiums exceed only slightly the expected claims then most appropriate for modelling
is the heavy traffic approximation (Kalashnikov, 1997; Kingman, 1962). The drawback
of this approximation though is that it requires finite first two moments for the claim

23
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size distribution, a condition which may not be satisfied for several heavy-tailed
distributions. On the other hand, when on average, the premiums are much larger
than the expected claims, the light traffic approximation is used (Asmussen, 1992b;
Bloomfield and Cox, 1972; Daley and Rolski, 1984, 1991; Sigman, 1992). However,
in many applications, heavy traffic is most often argued to be the typical case rather
than light traffic, which makes the light traffic approximation only of limited interest.

A particularly effective approach in handling distributions with infinite moments
is the Transform Approximation Method (TAM). For some heavy-tailed distributions,
such as the Pareto, (higher-order) moments may be infinite, thus making conventional
moment-matching methods fail. The Laplace transform of a positive definite distribu-
tion, like the claim size distribution, exists always even if it does not have a closed
analytic form. The TAM is based on the idea of approximating the Laplace transform
of the claim sizes rather than directly their distribution (Harris et al., 2000; Harris
and Marchal, 1998; Shortle et al., 2004). A drawback of this method though is that
the accuracy of the approximation of the ruin probability cannot be predetermined.
Finally, two known approximations for the ruin probability, which are based on the
idea of matching the moments of a probability distribution, are the Beekman-Bower’s
(Beekman, 1969) and the De Vylder’s (De Vylder, 1978) approximations.

In this chapter, we develop a new approach for approximating the ruin probability,
when the claim sizes follow a heavy-tailed distribution. From the Pollaczek-Khinchine
formula (see Section 2.2) it is clear that in order to evaluate the ruin probability, we
only need to have a closed analytic form for the Laplace transform of the excess claim
size distribution. For this reason, instead of approximating the claim size distribution,
we approximate directly the stationary excess distribution with a hyperexponential
distribution, a special case of a phase-type distribution. Since the Laplace transform
of a hyperexponential distribution exists in a closed analytic form, we can numerically
evaluate the ruin probability by inverting its Laplace transform.

An advantage of our approximation, which we call the spectral approximation, is
that it has a predetermined accuracy. Thus, we first choose the accuracy we want to
achieve in our approximation, and later on we determine the number of states for the
hyperexponential distribution that are sufficient to guarantee this accuracy. Another
interesting feature is that the bound that we guarantee is valid for the whole domain of
the ruin probability and not only for a subset of it, contrary to other bounds that exist
in the literature (Kalashnikov and Tsitsiashvili, 1999; Starobinski and Sidi, 2000).

Outline

In Section 2.2.1, we find bounds for the nth convolution of the excess claim size
distribution. We prove that the bound for the convolution is linear with respect to the
chosen accuracy for the excess claim size distribution. We also give the main result of
this chapter, which is the error bound for the ruin probability.

Later, we focus on a class of heavy-tailed distributions that are in addition com-
pletely monotone, and we show that we can always approximate a completely monotone
distribution with a hyperexponential one for any desired accuracy. We also prove that
if the claim size distribution is completely monotone with finite mean, then the station-
ary excess distribution is also completely monotone. Furthermore, in Section 2.3, we
present the steps of the spectral approximation algorithm, which approximates a com-



2.2 Spectral approximation for the ruin probability 25

pletely monotone excess claim size distribution with a hyperexponential distribution
for any desired accuracy.

Later on, we also compare the spectral approximation with the heavy traffic and
the heavy tail approximations, where the latter is an asymptotic approximation for the
ruin probability under subexponential claim sizes (Embrechts and Veraverbeke, 1982;
Olvera-Cravioto et al., 2011). Thus, in Section 2.4, we give the basic characteristics of
the latter two approximations and mention their advantages and disadvantages.

We devote Section 2.5 to numerical results. We do a series of experiments in
order to compare the spectral approximation with the heavy traffic and the heavy
tail approximations. As test distributions we use the Pareto, the Weibull, and a class
of long-tail distributions introduced in Abate and Whitt (1999b). In addition, we
extend a bound that is given in the literature (Brown, 1990) for the heavy traffic
approximation to a specific case of the heavy traffic approximation that we use in our
experiments. Finally, in Section 2.6, we discuss the results.

2.2 Spectral approximation for the ruin probability

In this section, we first introduce the mathematical framework and the basic terminol-
ogy related to the classical Cramér-Lundberg risk model. We start our description
with the risk reserve process. In broad terms, a risk reserve process {R(t)}t≥0 is a
model for the time evolution of the reserve of an insurance company, where the initial
reserve is denoted by u = R(0). In this model, claims arrive according to a Poisson
process {N(t)}t≥0 with rate λ. The claim sizes U1, U2, . . . are i.i.d. with common
distribution G and independent of {N(t)}, and premiums flow in at a rate 1 per unit
time. Putting all these together we see that

R(t) = u+ t−
N(t)∑
k=1

Uk.

For mathematical purposes, it is frequently more convenient to work with the claim
surplus process {S(t)}t≥0, which is defined as S(t) = u − R(t); as one can see from
the expression above, this is merely a compound Poisson process with positive jumps
and negative drift, a process well studied in the literature. The probability ψ(u) of
ultimate ruin is the probability that the reserve ever drops below zero, or equivalently
the probability that the maximum M = sup0≤t<∞ S(t) ever exceeds u; i.e.

ψ(u) = P(M > u).

Since we consider Poisson arrivals for the claims, for the evaluation of the ruin
probability, the well-known Pollaczek-Khinchine formula (Asmussen, 2003; Asmussen
and Albrecher, 2010) can be used:

1− ψ(u) = (1− ρ)

∞∑
n=0

ρn
(
Ge
)∗n

(u), (2.1)

where ρ < 1 is the average amount of claims per unit time. Moreover, Ge is the
stationary excess claim size distribution, which is defined as

Ge(u) =
1

EU

∫ u

0

G(x)dx,
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where EU is the (finite) mean of the claim sizes. The nth moment of the claim sizes
is denoted by EUn.

For the evaluation of ψ(u), Eq. (2.1) is not entirely satisfying because the infinite
sum of convolutions at the right-hand side of the formula cannot be easily computed
analytically and sometimes not even numerically. In order to overcome this difficulty
we use Laplace transforms, which convert convolutions of distributions into powers
of their Laplace transform. In terms of Laplace transforms, the Pollaczek-Khinchine
formula can be written as

m̃(s) := Ee−sM = (1− ρ)

∞∑
n=0

ρn
(
G̃e(s)

)n
=

1− ρ
1− ρG̃e(s)

. (2.2)

From Eq. (2.2) it is clear why it is necessary to have a closed analytic form only for
the Laplace transform of the excess claim size distribution, rather than the claim size
distribution itself. Thus, the main idea of our algorithm is to approximate the excess
claim size distribution with a phase-type distribution, which has a closed analytic
Laplace transform, and apply Laplace inversion to evaluate the ruin probability.

Remark 2.1. In general, the premium rate of the Cramér-Lundberg risk model,
say p, is not equal to 1. Here, we assumed that p = 1 in order to make our model
comparable to the M/G/1 queue. However, when p 6= 1, we can normalise it to 1 by
defining the risk reserve process Ř(t) := R(t/p) and adapting the Poisson parameter.
According to Asmussen and Albrecher (2010, Proposition I.1.3), the ultimate ruin
probabilities in the original model and its time-scaled version coincide. Thus, without
loss of generality, we may always assume that p = 1.

2.2.1 Error bound for the ruin probability

In this section, we provide a bound for the ruin probability when we approximate the
excess claim size distribution with a known distribution, e.g. a phase-type distribution.
If we approximate Ge with a known distribution (not necessarily a phase-type) then
we can compute the ruin probability through the Pollaczek-Khinchine formula (2.1).
From Eq. (2.1) and the triangular inequality, the error between the ruin probability
and its approximation is then∣∣∣ψ(u)− ψ̂(u)

∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(1− ρ)ρn
((
Ge
)∗n

(u)−
(
Ĝe
)∗n

(u)
)∣∣∣∣∣

≤
∞∑
n=0

(1− ρ)ρn
∣∣∣(Ge)∗n(u)−

(
Ĝe
)∗n

(u)
∣∣∣ , (2.3)

where ψ̂ is the exact result we obtain from the Pollaczek-Khinchine formula for the
ruin probability when we use an approximate claim size distribution. From Eq. (2.3)
we see that as a first step to find a bound for the ruin probability is to find a bound

for the difference
∣∣∣(Ge)∗n(u)−

(
Ĝe
)∗n

(u)
∣∣∣. This is given in the following proposition.

Proposition 2.2. If supx

∣∣∣Ge(x)− Ĝe(x)
∣∣∣ ≤ η for x ∈ [0, u], then∣∣∣(Ge)∗n(u)−
(
Ĝe
)∗n

(u)
∣∣∣ ≤ nη.
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Proof. We prove this by induction. For n = 2,∣∣∣(Ge)∗2(u) −
(
Ĝe
)∗2

(u)
∣∣∣ =

∣∣∣Ge ∗Ge(u)− Ĝe ∗Ge(u) + Ĝe ∗Ge(u)− Ĝe ∗ Ĝe(u)
∣∣∣

≤
∣∣∣(Ge − Ĝe) ∗Ge(u)

∣∣∣+
∣∣∣(Ge − Ĝe) ∗ Ĝe(u)

∣∣∣
≤
∫ u

0

∣∣∣(Ge − Ĝe) (u− x)
∣∣∣︸ ︷︷ ︸

≤η

dGe(x) +

∫ u

0

∣∣∣(Ge − Ĝe) (u− x)
∣∣∣︸ ︷︷ ︸

≤η

dĜe(x)

≤ηGe(u) + ηĜe(u) ≤ 2η.

Assume now that the bound holds for a fixed n. We prove that it also holds for n+ 1.∣∣∣(Ge)∗(n+1)
(u) −

(
Ĝe
)∗(n+1)

(u)
∣∣∣

=
∣∣∣Ge ∗ (Ge)∗n(u)± Ĝe ∗

(
Ge
)∗n

(u)− Ĝe ∗
(
Ĝe
)∗n

(u)
∣∣∣

≤
∣∣∣(Ge − Ĝe) ∗ (Ge)∗n(u)

∣∣∣+
∣∣∣Ĝe ∗ ((Ge)∗n − (Ĝe)∗n) (u)

∣∣∣
≤
∫ u

0

∣∣∣(Ge − Ĝe) (u− x)
∣∣∣︸ ︷︷ ︸

≤η

d
(
Ge
)∗n

(u)

+

∫ u

0

∣∣∣((Ge)∗n − (Ĝe)∗n
)

(u− x)
∣∣∣︸ ︷︷ ︸

≤nη

dĜe(u)

≤η
(
Ge
)∗n

(u) + nη
(
Ĝe
)∗n

(u) ≤ (n+ 1)η.

In words, Proposition 2.2 says that if we bound the excess claim size distribution
with some accuracy η, then a bound for its nth convolution is linear with respect to
this accuracy η. Consequently, from Proposition 2.2, we have the following result.

Proposition 2.3. If supx

∣∣∣Ge(x)− Ĝe(x)
∣∣∣ ≤ η for x ∈ [0, u], then a bound for the

ruin probability is ∣∣∣ψ(u)− ψ̂(u)
∣∣∣ ≤ ηρ

1− ρ
.

Proof. ∣∣∣ψ(u)− ψ̂(u)
∣∣∣ ≤ ∞∑

n=0

(1− ρ)ρn
∣∣∣(Ge)∗n(u)−

(
Ĝe
)∗n

(u)
∣∣∣

≤
∞∑
n=0

(1− ρ)ρnnη = ηρ(1− ρ)

∞∑
n=0

nρn−1

= ηρ(1− ρ) · d
dρ

(
1

1− ρ

)
= ηρ(1− ρ)

1

(1− ρ)2

=
ηρ

1− ρ
.
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Notice that the bound in Proposition 2.3 is independent of u, for all u ≥ 0.
Thus, we conclude that the sup-norm distance between the ruin probability and its
approximation is bounded as D(ψ, ψ̂) ≤ ηρ/(1−ρ), whenever D(Ge, Ĝe) ≤ η. Observe
that the term 1−ρ at the denominator has as consequence that, higher load ρ requires a
more accurate approximation of the Ge to obtain tight bounds for the ruin probability.

To sum up, when the excess claim size distribution is approximated with some
desired accuracy η, then a bound for the ruin probability, which is linear with respect
to η, is guaranteed by Proposition 2.3. Thus, our next goal is to develop a way
to approximate the excess claim size distribution with a hyperexponential one, a
particular case of a phase-type distribution, with any desired accuracy. We complete
this step in the next section.

2.2.2 Completely monotone claim sizes

We are interested in evaluating the ruin probability when the claim sizes follow a
heavy-tailed distribution, such as Pareto or Weibull. These two distributions belong
also to the class of completely monotone (c.m.) distributions, which is defined below.

Definition 2.4. A p.d.f. is said to be c.m. if all derivatives of f exist and if

(−1)nf (n)(u) ≥ 0 for all u > 0 and n ≥ 1.

Completely monotone distributions can be approximated arbitrarily close by hyper-
exponentials (Feldmann and Whitt, 1998). Here, we provide a method to approximate
a completely monotone excess claim size distribution with a hyperexponential one in
order to achieve any desired accuracy for the ruin probability. The following result is
standard; see e.g. Feller (1971).

Theorem 2.5. A p.d.f. f is called c.m. if and only if it is a mixture of exponential
p.d.f.’s. That is,

f(u) =

∫ +∞

0

ye−yudA(y), u ≥ 0,

for some proper c.d.f. A on a positive support. We call A the spectral c.d.f. For the
tail or the c.c.d.f. F of a c.m. distribution it holds that

F (u) =

∫ +∞

u

f(x)dx =

∫ +∞

0

∫ +∞

u

ye−yxdxdA(y) =

∫ +∞

0

e−yudA(y).

An alternative way to define a c.m. distribution is by using Laplace transforms.
From Theorem 2.5, it is obvious that a p.d.f. f is c.m. if its tail can be written as the
Laplace transform of some positive-definite distribution A. The following lemma is an
immediate consequence.

Lemma 2.6. If the claim size distribution G is c.m. then the excess claim size
distribution Ge is c.m. too.

Proof. If G is a completely monotone distribution, then for some spectral function A
it holds that G(x) =

∫ +∞
0

e−yxdA(y). Thus,

Ge(u) =
1

EU

∫ +∞

u

G(x)dx =
1

EU

∫ +∞

u

∫ +∞

0

e−yxdA(y)dx
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=
1

EU

∫ +∞

0

dA(y)

∫ +∞

u

e−yxdx =

∫ +∞

0

e−yu
dA(y)

yEU
=

∫ +∞

0

e−yudAe(y),

where dAe(y) =
dA(y)

yEU
.

In this chapter, we are interested in finding a bound for the excess claim size
distribution. In order to achieve our goal, we approximate the spectral function of the
excess claim size distribution by a step function with some fixed (and pre-determined)
accuracy η and then calculate the error of the approximation for the excess claim size
distribution itself.

Lemma 2.7. Let Ae be the spectral function of the c.m. excess claim size distribution
Ge and let the step function Âe satisfy D(Ae, Âe) ≤ η. Then, D(Ge, Ĝe) ≤ η, where

Ĝe is the c.m. distribution with spectral function Âe.

Proof. Since the spectral c.d.f. Ae is proper, we have by definition that it has no atom
at 0 and that it is right continuous. Thus, Ae(0) = 0 and Ae(+∞) = 1 <∞. Then it
holds that ∫ +∞

0

e−uydAe(y) = e−uyAe(y)
∣∣∣+∞
0
−
∫ +∞

0

Ae(y)de−uy

=

∫ +∞

0

ue−uyAe(y)dy.

Suppose now that D(Ae, Âe) ≤ η. Then

∣∣∣Ge(u)− Ĝe(u)
∣∣∣ =

∣∣∣∣∫ +∞

0

(
Ae(y)− Âe(y)

)
ue−uydy

∣∣∣∣
≤
∫ +∞

0

∣∣∣A(y)− Âe(y)
∣∣∣︸ ︷︷ ︸

≤η

ue−uydy ≤ η,

for all u ≥ 0. So, D(Ge, Ĝe) ≤ η.

By definition, a hyperexponential distribution with l phases is a c.m. distribution
with spectral function a step function with l jumps. Summarising, if we want to
approximate the claim size distribution with a hyperexponential with some fixed
accuracy η, it is sufficient to approximate the spectral c.d.f. of the c.m. excess claim
size distribution with a step function with the same accuracy. In Section 2.3, we
present in detail our algorithm to approximate the ruin probability with guaranteed
error bound δ by approximating the claim size distribution with accuracy of at most
η = δ(1− ρ)/ρ, a result which is a consequence of Proposition 2.3. The exact relation
between the number of phases, the accuracy η, and the bound δ is given also in the
same section.
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2.3 Algorithm for the spectral approximation

We consider the compound Poisson model introduced in Section 2.2, where we assume
that the claim size distribution G is c.m. with finite mean. We denote by Ae the
spectral function (strictly increasing distribution) of the excess claim size distribution
Ge. Here, we develop an algorithm to evaluate the ruin probability by approximating
the excess claim size distribution with a hyperexponential one, where all phases have
equal weights.

Before we present the spectral approximation algorithm, it is necessary to give
an important property on which the Laplace inversion of the ruin probability will be
based on. The Pollaczeck-Khinchine formula (2.2) can be written equivalently in the
form

m̃(s) = 1− ρ+ ρ
(1− ρ)G̃e(s)

1− ρG̃e(s)
= 1− ρ+ ρm̃+(s),

where m̃+(s) is the Laplace transform of M+, which is defined by P
(
M+ ∈ A

)
=

P
(
M ∈ A

∣∣M > 0
)

for A ⊂ [0,∞). We have the following lemma.

Lemma 2.8. If Ge follows a hyperexponential distribution with l phases then M+

follows a hyperexponential distribution with l phases as well (with different exponential
rates and weights from the first one). In other words, m̃+(s) can be written in the

form
∑l
i=1 ci

Ri
Ri+s

for some ci, Ri, i = 1, . . . , l.

Proof. In Cohen (1982, Chapter II.5.10), it was proven that M+ follows a hyperex-
ponential distribution in the G/Kl/1 queue, where Kl denotes a matrix-exponential
distribution with l phases. Since the M/Hl/1 is a special case of the G/Kl/1 queue,
the result holds here too.

After this, we present our algorithm:

Begin algorithm

1. Write G(u) as a mixture of exponentials.

2. By using Lemma 2.6, find the spectral function Ae(y) of Ge(u).

3. Approximate Ge(u) by a hyperexponential distribution with l phases.

(a) Choose the number of phases l.

(b) Set the accuracy of the approximation η =
1

l + 1
, such that

∣∣∣Ge(u)− Ĝe(u)
∣∣∣

≤ η.

(c) Define l quantiles such that Ae(µi) = iη, i = 1, . . . , l.

(d) Approximate the spectral function by the step function

Âe(y) =


0, y ∈ [0, µ1),
i
l , y ∈ [µi, µi+1),

1, y ≥ µl.
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(e) Find the approximation of the excess claim size distribution as Ĝe(u) =

1− 1

l

l∑
i=1

e−yµi .

4. Calculate its Laplace transform
˜̂
Ge(s) =

1

l

l∑
i=1

µi
µi + s

.

5. Choose ρ.

6. Calculate the approximation of the Laplace transform of M+ through the formula

̂̃m+(s) =
(1− ρ)

˜̂
Ge(s)

1− ρ˜̂Ge(s) .

7. Split ̂̃m+(s) into simple fractions. Afterwards, estimate their roots Ri and
calculate also the coefficients ci, by using Lemma 2.8,

8. Invert the Laplace transform of ̂̃m(s) = 1− ρ+ ρ ̂̃m+(s) and find that ψ̂(u) =

1− ρ+ ρ
∑l
i=1 ci(1− e−Riu), u ≥ 0.

9. The accuracy for ψ̂(u) is then δ ≤ η ρ

1− ρ
.

End algorithm

Remark 2.9. At step (3b) of the algorithm, we approximate the spectral function
Ae with a step function where the jumps occur at the quantiles µi and they are all of
size η + η2/(1 − η). It can be very easily verified that, by this choice of jumps, we

avoid any atoms at 0 and we still achieve D(Ae, Âe) ≤ η.

Remark 2.10. Note that the algorithm was presented under the setting that we first
fix the accuracy η for the approximation of the excess claim size distribution and then
we evaluate the bound δ of the spectral approximation. With slight modifications, the
algorithm can be presented by first fixing the desired accuracy δ for the approximation
of the ruin probability. In this setting, we would have to set the number of required
phases as l = dρ/(1− ρ)δe − 1.

Remark 2.11. From the structure of the algorithm it is evident that we only need
to write the c.m. claim size distribution as a mixture of exponentials. In comparison
with the distributions used in the examples, there exist mixed distributions, such as
the hyperexponential, that have a spectral function which is not strictly increasing
and/or has jumps. In these cases, the algorithm cannot be applied as is and more
attention needs to be paid. The problem appears at step (3c), when we invert the
spectral function to find the quantiles. More precisely, for a non-strictly-increasing
spectral function we might have Ae(x) = iη, for x ∈ (a, b), with a 6= b, for some
i = 1, . . . , l. Therefore, since inversion will not give a unique value for the quantile
µi, there must be a concrete way to define it. Also, when there are jumps, we might
encounter the problem that Ae(x) 6= iη for all x ∈ (0,∞). In this case, µi could take
the value at which the jump occurred. All the above mentioned problems related to
the determination of the quantiles can be overcome with small modifications to the
algorithm.
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2.4 Heavy traffic and heavy tail approximations

In this section, we present the heavy traffic (Kingman, 1962) and the heavy tail
approximations (von Bahr, 1975; Borovkov and Foss, 1992; Embrechts and Veraverbeke,
1982; Pakes, 1975), which are most often used for the evaluation of the ruin probability.
We first start with the heavy traffic approximation.

Heavy traffic approximation

If the claim size distribution G has a finite second moment, then as ρ→ 1, M , which
was defined in Section 2.2, converges to an exponential random variable with mean EM ,
i.e. E(1/EM). This result is known as the heavy traffic approximation (Kalashnikov,
1997). In other words,

ψ(u) ≈ ψh(u) := e−u/EM ,

where EM = ρEU2/2(1− ρ)EU . Although the heavy traffic approximation is given
through a simple exponential, its biggest drawback is that it requires the first two
moments of the claim size distribution to be finite, which is not always the case for
heavy-tailed distributions, e.g. the Pareto.

Eq. (2.1) shows that M can be written as a geometric random sum with terms
distributed according to Ge. Bounds for exponential approximations of geometric
convolutions have been obtained by Brown (1990). Thus, we can acquire a bound
for the ruin probability by applying Brown (1990, Theorem 2.1), which states that
the sup-norm distance between M and an exponential random variable with the same
mean, namely E(1/EM), is

D(M,E(1/EM)) = (1− ρ) max(2γ, γ/ρ) =

{
2(1− ρ)γ, if ρ ≥ 1

2

(1− ρ)γ/ρ, if 0 < ρ < 1
2 ,

(2.4)

where γ = 2EU3EU/3(EU2)2. Thus, a finite third moment is required for the claim
sizes in order to guarantee a bound for the heavy traffic approximation.

Heavy tail approximation

When the claim sizes belong to the subexponential class of distributions (Teugels,
1975), e.g. Weibull, lognormal, Pareto, etc., the heavy tail approximation can also be
used. For u→∞, the heavy tail approximation is defined as

ψ(u) ≈ ψt(u) :=
ρ

1− ρ
Ge(u).

This approximation is also given by a simple formula, which requires only the first
moment of the claim size distribution to be finite. Its drawback though is that for
values of ρ close to 1, or equivalently in the heavy traffic regime, the heavy tail
approximation is useful only for extremely big values of u. For the heavy traffic
setting, there exists a comparative analysis between the heavy traffic and the heavy
tail approximations (Olvera-Cravioto et al., 2011) in which the point at which the
heavy tail approximation becomes more suitable than the heavy traffic is examined.

In the following section, we compare the accuracy of the spectral approximation to
the accuracy of the heavy traffic and the heavy tail approximations. An interesting
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observation with respect to the spectral approximation is that, since it decays expo-
nentially, it converges faster to zero than any heavy-tailed distribution. Thus, at the
tail the spectral approximation is expected to underestimate the ruin probability. But
an overestimation of the ruin probability for small values of u, compensates for the
underestimation at the tail, as it will be apparent in Section 2.5.2.

2.5 Numerical experiments

In this section we implement our algorithm in order to check the accuracy of the
spectral approximation. We test the spectral approximation in 3 different classes of
c.m. heavy-tailed distributions: a class of long-tail distributions introduced in Abate
and Whitt (1999b), the Weibull distribution, and the Pareto distribution.

2.5.1 Test distributions

First we present the three test distributions and thereafter we do a series of experiments
to compare the accuracy of the spectral approximation with the accuracy of heavy
tail approximation and when applicable with the heavy traffic approximation too.

Abate-Whitt distribution

Consider a claim size distribution with Laplace transform

G̃(s) = 1− s

(κ+
√
s)(1 +

√
s)
,

which has mean κ−1 and all higher moments infinite. The parameter κ can range
over the positive values. This class of long-tailed distributions was introduced in
Abate and Whitt (1999b), where it was also proven that the explicit formula for the
ruin probability of the compound Poisson model with arrival rate for claims λ and
ρ = λ/κ < 1 is

ψ(u) = P(M > u) =
ρ

v1 − v2

(
v1ζ

(
v2

2u
)
− v2ζ

(
v2

1u
) )

where

ζ (u) ≡ eu 2√
π

∫ ∞
√
u

e−x
2

dx and v1,2 =
1 + κ

2
±

√(
1 + κ

2

)2

− (1− ρ)κ.

The existence of an exact formula for the ruin probability makes this distribution very
interesting because we can compare the spectral approximation with the exact ruin
probability and not with the outcome of a simulation.

For this model we have that the c.c.d.f. of the the claim size distribution is given
by the formula

G(u) =

(
1

1− κ

)(
ζ (u)− κζ

(
κ2u

) )
.
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With simple calculations we can verify that ζ (u) is c.m. since it can be written as a
mixture of exponentials

ζ (u) = eu
2√
π

∫ ∞
√
u

e−x
2

dx
z=x2

=
2eu√
π

∫ +∞

u

e−z

2
√
z
dz

=
1√
π

∫ +∞

u

e−(z−u)

√
z

dz
t=z−u

=
1√
π

∫ +∞

0

e−t√
t+ u

dt

=
1√
π

∫ +∞

0

e−t√
u

(
u

t+ u

) 1
2

dt =
1√
π

∫ +∞

0

e−t√
u

(
1√
π

∫ +∞

0

√
u
√
y
e−(u+t)ydy

)
dt

=
1

π

∫ +∞

0

e−uy
√
y

(∫ +∞

0

e−(y+1)tdt

)
︸ ︷︷ ︸

1
y+1

dy =

∫ +∞

0

ye−uy
1

πy3/2(y + 1)
dy.

The c.c.d.f. of the claim sizes is also c.m. That is,

G(u) =

(
1

1− κ

)(
ζ (u)− κζ

(
κ2u

) )
=

1

1− κ

∫ +∞

0

ye−uy
[

1

πy3/2(y + 1)
− κ2

πy3/2(y + κ2)

]
dy

=

∫ +∞

0

e−uy
√
y(1 + κ)

π(y + 1)(y + κ2)
dy.

Note that for the heavy traffic approximation a finite second moment is required,
which does not hold for this case. Therefore, for this distribution the heavy traffic
approximation for the ruin probability cannot be evaluated. As a result, we compare
the spectral approximation only with the heavy tail approximation.

Weibull

The c.c.d.f. of the Weibull(c,a) distribution with c and a the positive shape and scale
parameters respectively is given by G(u) = e−(u/a)c . It can be verified (Jewell, 1982)
that the c.c.d.f. of the Weibull(0.5,a) distribution with fixed shape parameter 1/2
arises as a mixture of exponentials, where the mixing measure (measure of the spectral
function) A is given by

dA(y) =
ae−a

2/4y

2
√
πy3

dy.

For this case we do not have an explicit formula for the ruin probability, thus we
compare the spectral approximation to simulation results. Since the second moment of
Weibull(c,a) is finite, namely EU2 = 24a2, we can compare the spectral approximation
with the heavy traffic approximation as well, contrary to the Abate-Whitt distribution,
where only comparisons with the heavy tail approximation were possible.

Pareto

The third test function we use is the Pareto(a,b) distribution with shape parameter
a > 0 and scale parameter b > 0. The Pareto(a,b) distribution with p.d.f. g(u) =
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ab/(1 + bu)a+1, u > 0 is c.m. Its c.c.d.f. G(u) = (1 + bu)−a can be written as a mixture
of exponentials in the form

(1 + bu)−a =

∫ +∞

0

e−yue−y/b
(
y
b

)a−1

bΓ(a)
dy.

Also for this distribution the ruin probability does not exist in closed form. Therefore,
we compare our approximation for this case to simulation results.

It is known that the nth moment of the Pareto distribution exists if and only if
the shape parameter is greater than n. Since it would be interesting to compare the
spectral approximation, not only with the heavy tail one, but with the heavy traffic
too, it is necessary to have a finite second moment for the claim sizes. Moreover, as
stated in Section 2.4, a bound for the heavy traffic approximation is guaranteed as
long as the third moment of the distribution is finite. For these reasons, if we want to
evaluate the heavy traffic approximation with a guaranteed bound for the Pareto(a,b),
the shape parameter a must be chosen to be greater than 3.

2.5.2 Numerical results

The goal of this section is to implement our algorithm to check the accuracy of the
spectral approximation and the tightness of its accompanying bound, which is given
in Proposition 2.3.

Since the only restriction we have for the parameters of the three test distributions
is that the shape parameter of the Pareto(a,b) must be greater than 3, we randomly
select the parameters and thus we deal with the Abate-Whitt distribution with κ = 2,
the Weibull(0.5,3) distribution, and the Pareto(4,3) distribution. We form and answer
here the following questions:

Impact of phases. The bound of the spectral approximation is conversely pro-
portional to the number of phases of the hyperexponential with which we approximate
the excess claim size distribution (see Section 2.3). So, for a fixed claim rate ρ, the
bound becomes tighter when the number of phases increases. Does this also mean that
the spectral approximation becomes more accurate as the number of phases increases?
Experiment: We fix ρ and we compare three different spectral approximations
with number of phases 10, 20, and 100 respectively, with the exact value of the ruin
probability. For the Abate-Whitt distribution, we present the exact ruin probability
with the three approximations in one graph; see Figure 2.1. For the Weibull and the
Pareto distributions we compare the three approximations to the exact ruin probability
that we obtain through simulation and display our results in Tables 2.1 and 2.2. As
for all different values of ρ we get a similar results, we present our findings only for
ρ = 0.7.
Answer: The conclusion is that, while the number of phases increases, a more accurate
spectral approximation is achieved. This result is in line with our expectations, and we
can safely conclude that for a fixed claim rate ρ more phases lead to a more accurate
spectral approximation.

Quality of the bound. Is the bound strict or pessimistic? How far is the bound
from the real error of the spectral approximation?
Experiment: We fix the bound of the spectral approximation to be equal to δ = 0.02
and we evaluate the error functions (in absolute values) for the spectral approximation
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when the claim rate ρ takes the values 0.1, 0.5, and 0.9. For these three cases we need
5, 49, and 449 phases respectively for the spectral approximation. We compare the
guaranteed bound with the exact maximum error that is achieved; see Figures 2.2(a)
to 2.2(c).

Also, for various combinations of the number of phases and the claim rate ρ, we
calculate the ratios between the predicted bound of the spectral approximation and
the achieved maximum error; see Table 2.3. We set out this experiment only for the
Abate-Whitt distribution, because the existence of the exact ruin probability gives
more accurate results.

Answer: An interesting observation that arises from Figure 2.2(a) is that the achieved
maximum error of the spectral approximation seems to be almost half of the guaranteed
bound. In order to verify that the bound is twice as big as the achieved maximum
error we look at Table 2.3.

We first read the table horizontally, namely we fix the claim rate ρ. We observe that
while we let the number of phases increase, the ratio between the predicted bound and
the real maximum error becomes smaller and converges to 2. As it was mentioned
earlier, the spectral approximation becomes more accurate when we increase the
number of phases. Therefore, we conclude that the bound becomes tighter when for a
fixed ρ we increase the number of phases.

We read now the table vertically, namely we fix the number of phases and we let the
claim rate ρ increase. We observe that while we let ρ increase, both the predicted
bound and the maximum error increase. Since the ratios between the bound and the
maximum error increase too, we can conclude that the bound becomes less tight when
the claim rate increases.

However, from Figures 2.2(b) and 2.2(c), we see that the achieved maximum error is
not only 2 times smaller than the guaranteed bound but 4 times smaller! Gathering
all the above together, we can conclude that the bound seems to be at least twice as
big as the the achieved maximum error of the spectral approximation.

Comparison of Spectral, Heavy tail, Heavy traffic approximations. The
accuracy of the spectral approximation can be predetermined through its bound. For
a fixed range of u, which of the three approximations – spectral, heavy tail, and heavy
traffic (when applicable) – is better than the others as ρ → 1 or ρ → 0, when the
bound predicts accuracy of at most δ for the spectral approximation?

Experiment: We fix the bound of the spectral approximation to be equal to δ = 0.02,
and for ρ = 0.1, 0.5, and 0.9 we compare the spectral (with 5, 49, and 449 phases
respectively), the heavy tail and the heavy traffic (when applicable) approximations.
We present the distributions in a graph, where the displayed range of u is such that
ψ(u) > δ, because after this point the error is smaller than δ. The level δ is denoted
on the graphs with a dashed horizontal line; see Figures 2.3(a) to 2.5(c).

Answer: We observe that the spectral approximation behaves nicely for all values of
u. For small values of u, the spectral approximation is more accurate than the heavy
tail approximation, where the second fails to provide us with a good estimation of the
ruin probability, especially when ρ→ 1.

On the other hand, the heavy tail approximation is slightly more accurate than the
spectral approximation at the tail. Although we cannot give an estimation for the point
u∗ at which the heavy tail approximation becomes more suitable than the spectral
approximation, we observe that this point takes greater values as ρ increases and it
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sometimes can be extremely big; i.e. see Figure 2.3(c).

Furthermore, according to our expectations, the spectral approximation overestimates
the ruin probability for small values of u (this is more clear for small values of ρ) and
underestimates it for large values of u. In all cases, the heavy traffic approximation
is worse than the other two, since it exhibits a sharper behaviour than the spectral
approximation. Namely, for small values of u it overestimates the ruin probability
more than the spectral approximation, and for large values of u it underestimates the
ruin probability more than the spectral approximation. Note also that, at the tail,
the spectral approximation and the heavy traffic approximation are almost identical,
which can be explained by the fact that both of them have an exponential decay.

Comparison between Spectral and Heavy traffic bounds. For the Weibull
and the Pareto distributions, the heavy traffic approximation can be evaluated and
it also has a guaranteed bound (Brown, 1990). So, is there a rule of thumb to help
us choose between the spectral and the heavy traffic approximation, when they both
guarantee the same bound?

Experiment: For various values of ρ, we compare the spectral approximation with
the heavy traffic approximation when they both guarantee the same bound. More
precisely, we fix ρ and determine the number of phases l∗ of the spectral approximation
for which both approximations guarantee the same bound. We calculate the two
approximations and evaluate their maximum errors. We present our findings in a
table, only for some values of ρ that the heavy traffic bound has a meaning, namely
when it is smaller than 1; see Tables 2.4 and 2.5.

We can easily verify that for the Pareto(a,b) distribution, the heavy traffic bound
depends on the shape parameter a, since γ = (a−2)/(a−3). An interesting experiment
that arises from this observation is to check whether we have a clearer picture on
which of the spectral and heavy traffic approximations is the best in terms of accuracy,
if we choose a big enough such that γ → 1, namely if we make the heavy traffic bound
tighter (for Pareto(4,3), γ = 2). For this reason, we repeat our last experiment for
Pareto(15.6,2.7), which has γ = 1.079.

Answer: From Table 2.4, which gives the results for Weibull(0.5,3), we see that
whenever the bounds are equal, the spectral approximation is more accurate than the
heavy traffic approximation for all number of phases greater or equal than l∗. On the
other hand, from Table 2.4, which gives the results for Pareto(4,3), we get a different
picture. The conclusion that we draw from this table is that for a small number of
phases (relatively smaller than 20) the heavy traffic approximation is better, while for
a number of phases greater than 20 the conclusion reverses.

For Pareto(15.6,2.7), more phases were needed in the corresponding spectral approxi-
mation for the same values of ρ, because the heavy traffic bound is now tighter. The
picture from Table 2.6 is not that clear. More precisely, even when the number of
phases becomes relatively big we cannot draw a safe conclusion that the spectral
approximation is better than the heavy traffic approximation.

At this point it is interesting to observe the following. The heavy traffic approxima-
tion as presented in Section 2.4 has no atoms. It is known (Asmussen and Albrecher,
2010) that the ruin probability has an atom of mass ρ at 0. Thus, the heavy traffic
approximation is not very accurate for small values of u, especially when ρ takes
relatively small values. For this reason, a more suitable heavy traffic approximation
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Figure 2.1: The spectral approximation for different number of phases, when ρ = 0.7 and the claims
follow the Abate-Whitt distribution with κ = 2.

u exact sa 10 phases sa 20 phases sa 100 phases
0 0.70000 0.70000 (0.00000) 0.70000 (0.00000) 0.70000 (0.00000)
5 0.60745 0.61023 (0.00279) 0.60823 (0.00079) 0.60754 (0.00009)
10 0.54574 0.54696 (0.00122) 0.54569 (0.00005) 0.54527 (0.00047)
15 0.49580 0.49558 (0.00022) 0.49502 (0.00078) 0.49485 (0.00095)
20 0.45312 0.45172 (0.00139) 0.45181 (0.00130) 0.45189 (0.00122)
25 0.41603 0.41334 (0.00269) 0.41405 (0.00198) 0.41436 (0.00167)

Table 2.1: The spectral approximation for different number of phases, when the claims follow the
Weibull(0.5,3) distributions. The numbers in the brackets correspond to the absolute error of the
exact ruin probability from its respective approximations.

u exact sa 10 phases sa 20 phases sa 100 phases
0.00 0.70000 0.70000 (0.00000) 0.70000 (0.00000) 0.70000 (0.00000)
0.10 0.54805 0.55012 (0.00207) 0.55008 (0.00203) 0.55005 (0.00200)
0.55 0.23572 0.22698 (0.00873) 0.23218 (0.00353) 0.23435 (0.00137)
1.00 0.11499 0.10194 (0.01305) 0.10851 (0.00648) 0.11146 (0.00352)
1.45 0.05983 0.04695 (0.01287) 0.05265 (0.00718) 0.05545 (0.00437)
1.90 0.03215 0.02187 (0.01028) 0.02609 (0.00606) 0.02838 (0.00377)

Table 2.2: The spectral approximation for different number of phases, when the claims follow the
Pareto(4,3) distributions. The numbers in the brackets correspond to the absolute error of the exact
ruin probability from its respective approximations.
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(a) The claim size distribution is the Abate-Whitt distribution with
κ = 2.
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(b) The claim size distribution is Weibull(0.5, 3).
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(c) The claim size distribution is Pareto(4, 3).

Figure 2.2: Error functions for the spectral approximation with guaranteed bound δ = 0.02, when
the claims follow each of the above distributions.



40 Spectral approximations

r
u
i
n
p
r
o
b
a
b
i
l
i
t
y

0 10 20 30 40

0.02

0.04

0.06

0.08

0.10

heavy tail approximation

spectral approximation

exact ruin probability

initial capital

(a)

r
u
i
n
p
r
o
b
a
b
i
l
i
t
y

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

heavy tail approximation

spectral approximation

exact ruin probability

initial capital

(b)

r
u
i
n
p
r
o
b
a
b
i
l
i
t
y

0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

heavy tail approximation

spectral approximation

exact ruin probability

initial capital

(c)

Figure 2.3: The spectral approximation for guaranteed bound δ = 0.02, when the claims follow the
Abate-Whitt distribution with κ = 2 and the average claim rate ρ is: (a) 0.1, (b) 0.5, and (c) 0.9.
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Figure 2.4: The spectral approximation for guaranteed bound δ = 0.02, when the claims follow the
Weibull(0.5,3) distribution and the average claim rate ρ is: (a) 0.1, (b) 0.5, and (c) 0.9.
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Figure 2.5: The spectral approximation for guaranteed bound δ = 0.02, when the claims follow the
Pareto(4,3) distribution and the average claim rate ρ is: (a) 0.1, (b) 0.5, and (c) 0.9.
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(a) 10 phases

ρ bound max error ratio
0.1 0.010 0.0048 2.11
0.2 0.023 0.0106 2.13
0.3 0.039 0.0180 2.17
0.4 0.061 0.0275 2.21
0.5 0.091 0.0401 2.27
0.6 0.136 0.0580 2.35
0.7 0.212 0.0849 2.50
0.8 0.364 0.1299 2.80
0.9 0.818 0.2263 3.61

(b) 20 phases

ρ bound max error ratio
0.1 0.005 0.0026 2.06
0.2 0.012 0.0057 2.08
0.3 0.020 0.0097 2.09
0.4 0.032 0.0150 2.12
0.5 0.048 0.0222 2.15
0.6 0.071 0.0326 2.19
0.7 0.111 0.0490 2.27
0.8 0.190 0.0787 2.42
0.9 0.429 0.1479 2.90

(c) 100 phases

ρ bound max error ratio
0.1 0.001 0.0005 2.02
0.2 0.002 0.0012 2.02
0.3 0.004 0.0021 2.02
0.4 0.007 0.0033 2.03
0.5 0.010 0.0049 2.04
0.6 0.015 0.0073 2.05
0.7 0.023 0.0112 2.06
0.8 0.040 0.0189 2.10
0.9 0.089 0.0406 2.19

Table 2.3: Ratios between the guaranteed bound and the maximum error of the spectral approxima-
tion, when the claims follow the Abate-Whitt distribution with κ = 2.

ρ HT bound l∗ sp bound max HT error max sp error
0.82 0.78 5 0.76 0.0438 0.0312
0.85 0.65 8 0.63 0.0403 0.0253
0.88 0.52 13 0.52 0.0361 0.0196
0.91 0.39 25 0.39 0.0304 0.0139
0.94 0.26 59 0.26 0.0234 0.0081
0.97 0.13 248 0.13 0.0144 0.0013

Table 2.4: Comparison between the maximum heavy traffic and spectral errors, when the claims
follow the Weibull(0.5,3) distribution.
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ρ HT bound l∗ sp bound max HT error max sp error
0.82 0.90 4 0.91 0.0392 0.0453
0.85 0.75 7 0.71 0.0365 0.0387
0.88 0.60 11 0.61 0.0326 0.0330
0.91 0.45 21 0.46 0.0279 0.0261
0.94 0.30 51 0.30 0.0226 0.0166
0.97 0.15 215 0.15 0.0156 0.0074

Table 2.5: Comparison between the maximum heavy traffic and spectral errors, when the claims
follow the Pareto(4,3) distribution.

ρ HT bound l∗ sp bound max HT error max sp error
0.82 0.568 7 0.569 0.0051 0.0068
0.85 0.473 11 0.472 0.0060 0.0066
0.88 0.379 18 0.386 0.0044 0.0044
0.91 0.284 35 0.281 0.0047 0.0026
0.94 0.190 82 0.189 0.0047 0.0014
0.97 0.095 340 0.095 0.0024 0.0025

Table 2.6: Comparison between the maximum heavy traffic and spectral errors, when the claims
follow the Pareto(15.6,2.7) distribution.

(ψh) for our comparisons for all values of ρ seems to be

ψ(u) ≈ ψh(u) := ρe−ρu/EM , (2.5)

for which is easy to verify that it also has mean equal to EM and an atom of mass ρ
at 0. Since we used a different heavy traffic approximation in all of our experiments
than the one Brown (1990) compares the ruin probability with, we extended Brown’s
bound, given in Eq. (2.4), to this situation. Applying the triangular inequality to the
sup-norm distance we get

D(ψ,ψh) ≤ D(ψ,E(1/EM)) +D(E(1/EM), ψh).

It is easy to verify that D(E(1/EM), ψh) = 1− ρ, so the sup-norm distance between
the ruin probability and the heavy traffic approximation we use for comparisons is

D(ψ,ψh) ≤ (1− ρ) max(2γ, γ/ρ) + 1− ρ = (1− ρ) ·

{
2γ + 1, if ρ ≥ 1

2

γ/ρ+ 1, if 0 < ρ < 1
2 ,

(2.6)

where γ = 2EU3EU/3(EU2)2. When we referred to the heavy traffic approximation
and its accompanying bound, in all of our experiments we meant those given from
Eqs. (2.5) and (2.6), respectively.

2.6 Conclusions

In this chapter, we address the problem of how many phases are needed to approximate
a heavy-tailed distribution with a phase-type distribution in such a way that one
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can obtain a guaranteed bound on the approximation of the ruin probability (see
Section 2.3). In doing so, we developed an explicit bound using the geometric random
sum representation, which was combined with a spectral approximation of the excess
claim size distribution.

The conclusions that we can draw, both for the spectral approximation and its
bound, can be summarised as follows:

• The spectral approximation provides a good fit for all values of the initial
capital u, especially for the small ones, where the heavy traffic and heavy tail
approximations fail. Also, for small values of u the spectral approximation
exhibits a behaviour of overestimating the ruin probability, while for larger
values of u we have an underestimation of the ruin probability by the spectral
approximation. Finally, for a fixed claim rate ρ, the more the phases we have
for the approximate hyperexponential of the excess claim size distribution, the
more accurate spectral approximation we achieve.

• The spectral bound, guaranteed by Proposition 2.3, becomes tighter when for a
fixed claim rate ρ the number of phases is increased, while it becomes less tight
when for a fixed number of phases the claim rate increases. Moreover, the bound
seems to be at least twice as big as the achieved maximum error of the spectral
approximation. But, based on the numerical examples we performed, we cannot
conclude that this is the general rule.

• Based on existing analytical results and extensive experiments it is hard to
draw a definitive conclusion on which approximation should be preferred: the
heavy traffic approximation or the spectral approximation. We believe that
obtaining more mathematical as well as experimental insights in this problem is
an important topic for future research.

To sum up, the spectral approximation provides a good fit for all values of u and
has a guaranteed accuracy, while it requires only a finite mean for the claim sizes.





CHAPTER 3

Corrected phase-type approximations

3.1 Introduction

In the previous chapter, we defined the spectral approximation for the ruin probability
under heavy-tailed claim sizes, by approximating the claim size distribution with a
hyperexponential one. We showed that the accuracy of our approximation is guaranteed
by an upper bound and it can also be pre-determined by strategically choosing the
number of phases of the hyperexponential distribution. However, being a phase-type
approximation, the spectral approximation gives a big relative error at the tail of the
ruin probability. Therefore, in this chapter, we develop a new method to construct
accurate approximations for performance measures of heavy-tailed risk models that
capture the correct tail behaviour. We use the classical risk model as a context
and vehicle to demonstrate our key ideas, which we expect to have a much wider
applicability in insurance.

The approximations we develop for ruin probabilities under heavy-tailed claims,
combine desirable characteristics of the following three main approximation directions:
phase-type approximations, asymptotic approximations, and error bounds. First, our
approximations maintain the computational tractability of phase-type approximations.
Additionally, they capture the correct tail behaviour, which so far could only be
captured by asymptotic approximations, and have the advantage that finite higher-
order moments are not required for the claim sizes. Last, they provide a provably
small absolute error, independent of the initial capital, and a small relative error.

The idea of our approach stems from fitting procedures of the claim size distribution
to data. Heavy-tailed statistical analysis suggests that for a sample with size n only a
small fraction (kn/n→ 0) of the upper-order statistics is relevant for estimating tail
probabilities (Davis and Resnick, 1984; Hill, 1975; Resnick, 2007b). More information
about the optimal choice of the knth upper-order statistic can be found in Haeusler
and Teugels (1985). The remaining data set may be used to fit the bulk of the
distribution. Since the class of phase-type distributions is dense in the class of all

47
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positive definite probability distributions (Asmussen, 2003), a natural choice is to fit a
phase-type distribution to the remaining data set (Asmussen et al., 1996). As a result,
a mixture model for the claim size distribution is a natural assumption. Thus, our
key idea is to use a mixture model for the claim size distribution in order to construct
approximations of the ruin probability that combine the best elements of phase-type
and asymptotic approximations.

We now sketch how to derive our approximations when the claim size distribution
is a mixture of a phase-type distribution and a heavy-tailed one. Interpreting the
heavy-tailed term of the claim size distribution in the mixture model as perturbation
of the phase-type one and using perturbation theory, we can find the ruin probability
as a complete series expansion. The first term of the expansion is the phase-type
approximation of the ruin probability that occurs when we “remove” the heavy-tailed
claim sizes from the system, either by discarding them or by replacing them with
phase-type ones. We consider the model that appears when all heavy-tailed claims are
removed as the “base” model. Due to the two different approaches of removing the
heavy-tailed claim sizes, the ruin probability connects to two different base models
and consequently to two different series expansions.

We show that adding the second term of the respective series expansions is sufficient
to construct improved approximations, compared to their phase-type counterparts,
the discard and the replace approximations, respectively. Since the second term of
each series expansion works as a correction to its respective phase-type approximation,
motivated by the terminology corrected heavy traffic-approximations (Asmussen, 2003),
we refer to our approximations as corrected phase-type approximations. Therefore, in
this chapter, we propose the corrected discard approximation and the corrected replace
approximation. Both approximations have appealing properties: the corrected replace
approximation tends to give better numerical estimates, while the corrected discard
approximation is simpler and yields guaranteed upper and lower bounds.

Besides the ruin probability, we also find approximations for the Value at Risk
(VaR), which is a very popular tool in real-world applications to measure the operational
risk (McNeil et al., 2005). For a given portfolio, a VaR with a probability level α
and fixed time horizon is defined as the threshold value such that the loss on the
portfolio over the given time horizon exceeds this value with probability 1− α. It is of
interest to quantify the operational risk through the statistical analysis of operational
loss data (Embrechts and Samorodnitsky, 2004; Klugman et al., 2008) and to provide
error bounds for the aggregate loss probability (Cox et al., 2008). Similarly to the
ruin probability, things become more complicated under the presence of heavy-tailed
data (Embrechts et al., 1997). Thus, in this chapter, we also provide the form of the
corrected phase-type approximations for the aggregate loss over a fixed time period,
and we show that they have the same appealing properties also for finite time.

Outline

The rest of the chapter is organised as follows. In Section 3.2, we introduce the
model and we derive two series expansions for the ruin probability. From these series
expansions we deduce approximations for the ruin probability, in Section 3.3, and we
study their basic properties. In Section 3.4, we find the exact formula of the ruin
probability for a specific mixture model and we study the extent of the achieved
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improvement when we compare our approximations with phase-type approximations
of their related base model through numerical experiments. In Section 3.5, we provide
corrected phase-type approximations of the aggregate loss in finite time and we show
through a numerical study that our approximations give excellent VaR estimates.

3.2 Series expansions of the ruin probability

As proof of concept, we apply our technique to the classical Cramér-Lundberg risk
model, which was also introduced in Sections 1.6 and 2.2. Here, we assume that
premiums flow in at a rate 1 per unit time and claims arrive according to a Poisson
process {Nε(t)}t≥0 with rate λ, where ε ∈ [0, 1] is a parameter to be explained soon.

The claim sizes Uε,k
D
= Uε are i.i.d. with common distribution Gε and independent of

{Nε(t)}. Motivated by statistical analysis, which proposes that only a small fraction
of the upper-order statistics is relevant for estimating tail probabilities, we consider
that an arbitrary claim size Uε is phase-type (Neuts, 1994) with probability 1− ε and
heavy-tailed (Rolski et al., 1999) with probability ε, where ε→ 0. In the forthcoming
analysis, we use as general rule that all parameters depending on ε bear a subscript

with the same letter. We assume that the phase-type claim sizes Bk
D
= B and the

heavy-tailed claim sizes Ck
D
= C have both finite means, EB and EC, respectively. If

u is the initial capital, our risk reserve process takes the form

Rε(t) = u+ t−
Nε(t)∑
k=1

Uε,k.

Using this model, we first examine in Sections 3.2–3.4 the ruin probability in
infinite time horizon, and later on, in Section 3.5, we move to finite time horizon and
we examine the aggregate loss.

For our model, we also define the claim surplus process Sε(t) = u−Rε(t) and its
maximum Mε = sup0≤t<∞ Sε(t). The probability ψε(u) of ultimate ruin is then

ψε(u) = P(Mε > u).

In addition, we assume that the average amount of claim per unit time ρε = λEUε
is strictly smaller than 1 and thus the well-known Pollaczek-Khinchine formula (see
Eq. (2.1)) can be used for the evaluation of the ruin probability

1− ψε(u) = (1− ρε)
∞∑
n=0

ρnε (Geε)
∗n(u), (3.1)

where Geε is the distribution of the stationary excess claim sizes Ueε . The infinite sum
of convolutions at the right-hand side of (3.1) makes the evaluation of ψε(u) difficult
or even impossible for our mixture model. For this reason, one typically resorts to
Laplace transforms. We use the notation G̃eε(s), F̃

e
p (s), and F̃ eh(s) for the Laplace

transforms of the stationary excess claim sizes Ueε,k
D
= Ueε , Bek

D
= Be, and Cek

D
= Ce,

respectively. Moreover, we set ρ0 = λEB and ρ1 = λEC, which means that the phase-
type claims are responsible for average claim (1− ε)ρ0 per unit time and the heavy-
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tailed claims are responsible for average claim ερ1 per unit time. Using this notation,
we obtain ρε = (1−ε)ρ0 +ερ1. In terms of Laplace transforms, the Pollaczek-Khinchine
formula can be written now as:

m̃ε(s) : = Ee−sMε = (1− ρε)
∞∑
n=0

ρnε
(
G̃eε(s)

)n
=

1− ρε
1− ρεG̃eε(s)

=
1− (1− ε)ρ0 − ερ1

1− (1− ε)ρ0F̃ ep (s)− ερ1F̃ eh(s)
. (3.2)

Applying Laplace inversion to Eq. (3.2) in order to find ψε(u) is difficult (Abate

and Whitt, 1999a) or even impossible, because the heavy-tailed component F̃ eh(s)
often does not have an analytic closed form. To overcome this difficulty, a phase-type
approximation would suggest to “remove” the heavy-tailed claim sizes and find an
explicit phase-type representation for the ruin probability of the resulting simpler
model, which we use as base model for our analysis. In broad terms, we view the
heavy-tailed claim sizes as perturbation of the phase-type claim sizes and we interpret
ε as the perturbation parameter. With the aid of perturbation analysis, we find the
ruin probability of our mixture model as a complete series expansion with first term
the phase-type approximation that results from its base model.

As mentioned in the introduction, we remove the heavy-tailed claims either by
discarding them or by replacing them with phase-type ones. Therefore, the ruin
probability ψε(u) has two different series expansions, the discard and the replace
expansions. We first derive the discard series expansion.

Discard series expansion for the ruin probability

From a mathematical point of view, when we discard the heavy-tailed claim sizes, we
simply consider that Gε(x) = (1− ε)Fp(x) + ε, x ≥ 0. This base model, for which the
claim size distribution has an atom at zero, is equivalent to the compound Poisson
risk model in which claims arrive with rate (1− ε)λ and follow the distribution of B.
We denote by M•ε the supremum of its corresponding claim surplus process. Thus,
the Pollaczek-Khinchine formula for this base model takes the form

m̃•ε (s) := Ee−sM
•
ε =

1− (1− ε)ρ0

1− (1− ε)ρ0F̃ ep (s)
. (3.3)

We denote by ψ•ε (u) the discard phase-type approximation of ψε(u) that appears when
we apply Laplace inversion to the above formula. For this base model, the series
expansion of ψε(u) can be found in the following theorem.

Theorem 3.1. Discard expansion. If ψ•ε (u) is the phase-type approximation of the
exact ruin probability ψε(u) that occurs when we discard the heavy-tailed claim sizes

and M•ε,k
D
= M•ε , a series expansion of the exact ruin probability is given by

ψε(u) = ψ•ε (u) +

∞∑
n=1

(
ερ1

1− ρ0 + ερ0

)n (
Lε,n(u)− Lε,n−1(u)

)
,

where Lε,n(u) = P(M•ε,0 + M•ε,1 + · · · + M•ε,n + Ce1 + · · · + Cen > u) and Lε,0(u) =
P(M•ε,0 > u) = ψ•ε (u). The discard series expansion convergences for all values of u
and ε.
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Proof. From Eqs. (3.2) and (3.3) we find

m̃ε(s) =
1− (1− ε)ρ0 − ερ1

1− (1− ε)ρ0F̃ ep (s)− ερ1F̃ eh(s)
=

(
1− (1− ε)ρ0

)
− ερ1

1−(1−ε)ρ0
m̃•ε (s) − ερ1F̃ eh(s)

=
1− ερ1

1−(1−ε)ρ0
1

m̃•ε (s) −
ερ1

1−(1−ε)ρ0 F̃
e
h(s)

=m̃•ε (s)

(
1− ερ1

1− ρ0 + ερ0

)
1

1− ερ1
1−ρ0+ερ0

m̃•ε (s)F̃
e
h(s)

=m̃•ε (s)

(
1− ερ1

1− ρ0 + ερ0

) ∞∑
n=0

(
ερ1

1− ρ0 + ερ0

)n (
m̃•ε (s)F̃

e
h(s)

)n
=m̃•ε (s)

∞∑
n=0

(
ερ1

1− ρ0 + ερ0

)n (
m̃•ε (s)F̃

e
h(s)

)n
−
∞∑
n=0

(
ερ1

1− ρ0 + ερ0

)n+1 (
m̃•ε (s)

)n+1(
F̃ eh(s)

)n
=m̃•ε (s)

+

∞∑
n=1

(
ερ1

1− ρ0 + ερ0

)n [(
m̃•ε (s)

)n+1(
F̃ eh(s)

)n − (m̃•ε (s))n(F̃ eh(s)
)n−1

]
.

By using Laplace inversion we obtain

ψε(u) = ψ•ε (u) +

∞∑
n=1

(
ερ1

1− ρ0 + ερ0

)n (
Lε,n(u)− Lε,n−1(u)

)
,

where Lε,n(u) = P(M•ε,0 + M•ε,1 + · · · + M•ε,n + Ce1 + · · · + Cen > u). Note that this
power series expansion is valid if and only if∣∣∣∣ ερ1

1− ρ0 + ερ0
m̃•ε (s)F̃

e
h(s)

∣∣∣∣ < 1.

We know that
∣∣∣m̃•ε (s)F̃ eh(s)

∣∣∣ ≤ 1. Moreover, for stability reasons we assumed that

ρε < 1. Consequently, ερ1 < 1−ρ0 + ερ0. Thus, the above condition is always satisfied
and the series converges for all values of ε.

Replace series expansion for the ruin probability

To find the replace series expansion, observe that the action of replacing the heavy-
tailed claim sizes with phase-type ones translates into ε = 0. For this base model, the
Pollaczeck-Khinchine formula takes the form

m̃0(s) := Ee−sM0 =
1− ρ0

1− ρ0F̃ ep (s)
, (3.4)

where M0 = Mε|ε=0. Laplace inversion of m̃0(s) gives the phase-type approximation
ψ0(u) of the ruin probability ψε(u). The series expansion of ψε(u) in this case is given
below.
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Theorem 3.2. Replace expansion. If ψ0(u) is the phase-type approximation of
the exact ruin probability ψε(u) that occurs when we replace the heavy-tailed claim

sizes with phase type ones and M0,k
D
= M0, then a series expansion of the exact ruin

probability is

ψε(u) =ψ0(u) + ρ1

∞∑
n=1

(
ε

1− ρ0

)n n−1∑
k=0

(
n− 1

k

)
ρk1(−ρ0)n−1−k

×
(
Ln,k+1,n−1−k(u)− Ln−1,k,n−1−k(u)

)
−ρ0

∞∑
n=1

(
ε

1− ρ0

)n n−1∑
k=0

(
n− 1

k

)
ρk1(−ρ0)n−1−k

×
(
Ln,k,n−k(u)− Ln−1,k,n−1−k(u)

)
,

where Ll,m,r(u) = P(M0,0 +M0,1 + · · ·+M0,l + Ce1 + · · ·+ Cem +Be1 + · · ·+Ber > u)
and L0,0,0(u) = ψ0(u). A sufficient condition for the convergence of the replace series
expansion for all values of u is ε < |1− ρ0| /max{ρ0, ρ1}.

Proof. We set D(s) = ρ1F̃
e
h(s)− ρ0F̃

e
p (s). By using (3.2) and (3.4) we find

m̃ε(s) =
1− (1− ε)ρ0 − ερ1

1− (1− ε)ρ0F̃ ep (s)− ερ1F̃ eh(s)
=

(1− ρ0)− ε(ρ1 − ρ0)

1− ρ0F̃ ep (s)− ε
(
ρ1F̃ eh(s)− ρ0F̃ ep (s)

)
=

(1− ρ0)− ε(ρ1 − ρ0)
1−ρ0
m̃0(s) − εD(s)

=
1− ερ1−ρ01−ρ0

1
m̃0(s) −

ε
1−ρ0D(s)

=m̃0(s)

(
1− ερ1 − ρ0

1− ρ0

)
1

1− ε
1−ρ0 m̃0(s)D(s)

=m̃0(s)

(
1− ερ1 − ρ0

1− ρ0

) ∞∑
n=0

(
ε

1− ρ0

)n (
m̃0(s)D(s)

)n
=m̃0(s)

∞∑
n=0

(
ε

1− ρ0

)n (
m̃0(s)D(s)

)n
− (ρ1 − ρ0)

∞∑
n=0

(
ε

1− ρ0

)n+1 (
m̃0(s)

)n+1(
D(s)

)n
=m̃0(s) +

∞∑
n=1

(
ε

1− ρ0

)n (
m̃0(s)

)n [
m̃0(s)

(
D(s)

)n − (ρ1 − ρ0)
(
D(s)

)n−1
]
.

But,

m̃0(s)
(
D(s)

)n − (ρ1 − ρ0)
(
D(s)

)n−1

=m̃0(s)

n∑
k=0

(
n

k

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−k
− (ρ1 − ρ0)

n−1∑
k=0

(
n− 1

k

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k
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=m̃0(s)

[
n−1∑
k=1

((
n− 1

k

)
+

(
n− 1

k − 1

))(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−k
+
(
ρ1F̃

e
h(s)

)n
+
(
− ρ0F̃

e
p (s)

)n ]

− (ρ1 − ρ0)

n−1∑
k=0

(
n− 1

k

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k

=ρ1

n−1∑
k=0

(
n− 1

k

)(
m̃0(s)F̃ eh(s)− 1

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k

− ρ0

n−1∑
k=0

(
n− 1

k

)(
m̃0(s)F̃ ep (s)− 1

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k
.

Therefore,

m̃ε(s) =m̃0(s)

+ρ1

∞∑
n=1

(
ε

1− ρ0

)n ((
m̃0(s)

)n+1
F̃ eh(s)−

(
m̃0(s)

)n)
×
n−1∑
k=0

(
n− 1

k

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k

− ρ0

∞∑
n=1

(
ε

1− ρ0

)n ((
m̃0(s)

)n+1
F̃ ep (s)−

(
m̃0(s)

)n)
×
n−1∑
k=0

(
n− 1

k

)(
ρ1F̃

e
h(s)

)k(− ρ0F̃
e
p (s)

)n−1−k
.

By applying Laplace inversion we find

ψε(u) =ψ0(u) + ρ1

∞∑
n=1

(
ε

1− ρ0

)n n−1∑
k=0

(
n− 1

k

)
ρk1(−ρ0)n−1−k

×
(
Ln,k+1,n−1−k(u)− Ln−1,k,n−1−k(u)

)
−ρ0

∞∑
n=1

(
ε

1− ρ0

)n n−1∑
k=0

(
n− 1

k

)
ρk1(−ρ0)n−1−k

×
(
Ln,k,n−k(u)− Ln−1,k,n−1−k(u)

)
,

where Ll,m,r(u) = P(M0,0 +M0,1 + · · ·+M0,l + Ce1 + · · ·+ Cem +Be1 + · · ·+Ber > u).
Similarly to the discard expansion, the replace series converges for a given value of s
if and only if ∣∣∣∣ ε

1− ρ0
m̃0(s)

(
ρ1F̃

e
h(s)− ρ0F̃

e
p (s)

)∣∣∣∣ < 1.

If σ = maxs

∣∣∣m̃0(s)
(
ρ1F̃

e
h(s)− ρ0F̃

e
p (s)

)∣∣∣, then a necessary and sufficient condition for

the convergence of the replace series for all values of s is ε < |1− ρ0| /σ. However, we do
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not have exact formulas for the Laplace transforms m̃0(s), F̃ eh(s), and F̃ ep (s), and thus
we can only find a sufficient condition for the convergence of the series. The Laplace
transform of a distribution on a positive support, such as F̃ eh(s) and F̃ ep (s), is a positive

function bounded by one. Therefore, it is immediate that max
s≥0

∣∣∣ρ1F̃
e
h(s)− ρ0F̃

e
p (s)

∣∣∣ ≤
max{ρ0, ρ1}. In addition, since |m̃0(s)| ≤ 1, a sufficient condition for the convergence
of the replace series is ε < |1− ρ0| /max{ρ0, ρ1}.

Note that Theorem 3.2 gives only a sufficient condition for the convergence of the
replace series expansion. If all parameters involved are explicitly known, one can find
a necessary condition in the way indicated in the proof of Theorem 3.2. In the next
section, we propose two explicit approximations for the ruin probability based on these
series expansions.

3.3 Corrected phase-type approximations of the ruin
probability

The goal of this section is to provide approximations that maintain the numerical
tractability but improve the accuracy of the phase-type approximations and that are
able to capture the tail behaviour of the exact ruin probability. Large deviations theory
suggests that a single catastrophic event, i.e. a heavy-tailed stationary claim size Ce,
is sufficient to cause ruin (Embrechts et al., 1997). Observe that, for both the discard
and replace series expansions, the second term contains a single appearance of Ce.
For this reason, the proposed approximations for the ruin probability are constructed
by the first two terms of their respective series expansions for the ruin probability (see
Theorems 3.1 and 3.2), where the second term of each approximation is referred to as
its correction term. We have the following definitions for the proposed approximations.

Definition 3.3. The corrected discard approximation of exact ruin probability ψε(u)
is defined as

ψ̂d,ε(u) := ψ•ε (u) +
ερ1

1− ρ0 + ερ0

(
P(M•ε,0 +M•ε,1 + Ce1 > u)− P(M•ε,0 > u)

)
, (3.5)

where ψ•ε (u) is the discard phase-type approximation of ψε(u).

In a similar manner, we define the approximation that connects to the replace
expansion.

Definition 3.4. The corrected replace approximation of the exact ruin probability
ψε(u) is given by the formula

ψ̂r,ε(u) := ψ0(u) +
ερ1

1− ρ0

(
P(M0,0 +M0,1 + Ce1 > u)− P(M0,0 > u)

)
− ερ0

1− ρ0

(
P(M0,0 +M0,1 +Be1 > u)− P(M0,0 > u)

)
, (3.6)

where ψ0(u) is the replace phase-type approximation of ψε(u).

In the following sections, we study characteristics of the corrected discard and the
corrected replace approximations.
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3.3.1 Approximation errors

Due to the construction of the two corrected phase-type approximations, the discard
and the replace, their difference from the exact ruin probability is the sum of the
remaining terms, namely the terms for n ≥ 2. For the error of the corrected discard
approximation, we have the following theorem.

Theorem 3.5. The error of the corrected discard approximation is bounded from
above and below as follows:(

ερ1

1− ρ0 + ερ0

)2 (
Lε,2(u)− Lε,1(u)

)
≤ ψε(u)− ψ̂d,ε(u) ≤

(
ερ1

1− ρ0 + ερ0

)2

.

Proof. An interesting observation is that we can interpret the terms Lε,n(u)−Lε,n−1(u)
in Theorem 3.1 in terms of a renewal process {ND,ε(u), u ≥ 0} with a delayed first
renewal M•ε,0. Consequently, P(ND,ε(u) = 0) = Lε,0(u) and P(ND,ε(u) = n) =
Lε,n(u)− Lε,n−1(u), for n ≥ 1. As a result,

ψε(u)− ψ̂d,ε(u) =

∞∑
n=2

(
ερ1

1− ρ0 + ερ0

)n
P(ND,ε(u) = n)

=

(
ερ1

1− ρ0 + ερ0

)2

E

[(
ερ1

1− ρ0 + ερ0

)ND,ε(u)−2

1 (ND,ε(u) ≥ 2)

]

≤
(

ερ1

1− ρ0 + ερ0

)2

,

where the latter inequality holds because
ερ1

1− ρ0 + ερ0
< 1. Thus, an upper bound

for the approximation error is

(
ερ1

1− ρ0 + ερ0

)2

. Due to the renewal argument, all

terms in the discard series expansion are positive. Consequently, the corrected
discard approximation always underestimates the exact ruin probability and the term(

ερ1

1− ρ0 + ερ0

)2

×
(
Lε,2(u)− Lε,1(u)

)
is a lower bound for the achieved error.

Remark 3.6. Theorem 3.5 shows that the corrected discard approximation always
underestimates the exact ruin probability, and its error is O(ε2). Thus, the corrected
discard approximation is a lower bound for the exact ruin probability.

As done in the proof of Theorem 3.5, similar probabilistic interpretations can also
be given to the terms of the replace series expansion. However, due to the sign changes
in the formula of the replace expansion (see Theorem 3.2), it is not immediate whether
the corrected replace approximation underestimates or overestimates the exact ruin
probability. This depends on the characteristics of the distributions involved. As we
see in Section 3.4, both overestimation and underestimation are possible. Studying
the areas of over- or underestimation of the ruin probability is beyond the scope of
this chapter. In the sequel, we provide only absolute error bounds for the corrected
replace approximation.
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There are many possible ways to bound the error of the corrected replace approx-
imation. For example, one could ignore all negative terms for n ≥ 2 in the replace
expansion and bound all positive terms. Of course, different techniques give different
bounds. Among the different bounds we found, we present in Theorem 3.7 the one
that is valid for the biggest range of the perturbation parameter ε.

Theorem 3.7. When ε < |1− ρ0| /(ρ0 + ρ1), an upper bound for the absolute error
that we achieve with the corrected replace approximation is∣∣∣ψε(u)− ψ̂r,ε(u)

∣∣∣ ≤ ( ε

1− ρ0

)2

(ρ0 + ρ1)2 1− ρ0

1− ρ0 − ε(ρ0 + ρ1)
.

Proof. Using the triangular inequality and the fact that the distance between two
distributions is smaller than or equal to 1, we obtain∣∣∣ψε(u)− ψ̂r,ε(u)

∣∣∣ ≤ (ρ0 + ρ1)

∞∑
n=2

(
ε

1− ρ0

)n n−1∑
k=0

(
n− 1

k

)
ρk1ρ

n−1−k
0

= (ρ0 + ρ1)2

(
ε

1− ρ0

)2 ∞∑
n=2

(
ε

1− ρ0
(ρ0 + ρ1)

)n−2

=

(
ε

1− ρ0

)2

(ρ0 + ρ1)2 1− ρ0

1− ρ0 − ε(ρ0 + ρ1)
,

where the result holds only for ε(ρ0 + ρ1)/ |1− ρ0| < 1.

Remark 3.8. Theorem 3.7 shows that the absolute error of the replace approximation
is O(ε2). Note that the expression(

ε

1− ρ0

)2 1∑
k=0

ρk1(−ρ0)1−k
[
ρ1

(
L2,k+1,1−k(u)−L1,k,1−k(u)

)
− ρ0

(
L2,k,2−k(u)− L1,k,1−k(u)

)]
,

which corresponds to the term of the replace expansion (see Theorem 3.2) for n = 2,
is O(ε2) and it could be used alternatively as an approximation of the real error.

An advantage of the corrected discard approximation over the corrected replace
is the following. The fact that the corrected discard approximation underestimates
the exact ruin probability gives a positive sign for its error, namely its difference
from the exact ruin probability, which according to Theorem 3.5 is bounded from
above and below. This information with respect to the nature of its error makes the
corrected discard approximation much more controllable than the corrected replace
approximation. In the next section, we study the tail behaviour of both corrected
phase-type approximations.

3.3.2 Tail behaviour

To study the tail behaviour of the two approximations, we assume that the distribution
of Ce belongs to the class of subexponential distributions S; see Appendix A.1. Before
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studying the tail behaviour of the approximations, we first give the tail behaviour of
the exact ruin probability in the next theorem.

Theorem 3.9. When Ce ∈ S, the exact ruin probability ψε(u) has the following tail
behaviour:

ψε(u) ∼ ερ1

1− ρ0 + ερ0 − ερ1
F eh(u).

Proof. When B has a phase-type distribution, then Be has also a phase-type distribu-
tion (Asmussen and Albrecher, 2010), and consequently it has an exponential decay
rate. Thus, by the definition of the stationary excess claim sizes Ueε (see Sections 3.2
and 1.7.2) and Property A.3, we have

Geε(u) =
(1− ε)ρ0

(1− ε)ρ0 + ερ1
F ep (u) +

ερ1

(1− ε)ρ0 + ερ1
F eh(u)

∼ ερ1

(1− ε)ρ0 + ερ1
F eh(u), (3.7)

which implies by Property A.2 that Ueε ∈ S. When Ueε ∈ S, it is known (Asmussen
and Albrecher, 2010) that

ψε(u) ∼ ρε
1− ρε

Geε(u), (3.8)

where ρε = (1− ε)ρ0 + ερ1 < 1. Combining (3.7) and (3.8) yields the result.

For the tail behaviour of the corrected discard approximation, the following result
holds.

Theorem 3.10. When Ce ∈ S, we have for the corrected discard approximation the
following tail behaviour:

ψ̂d,ε(u) ∼ ερ1

1− ρ0 + ερ0
F eh(u).

Proof. The discard approximation ψ•ε (u) has a phase-type representation; therefore, it
is of o

(
F eh(u)

)
. The same holds for the tail of the distribution of M•ε,0+M•ε,1. Moreover,

since Ce ∈ S, from Property A.3 we obtain P(M•ε,0 +M•ε,1 + Ce1 > u) ∼ F eh(u), which
leads to the result by inserting these asymptotic estimates into (3.5).

Theorem 3.10 shows that the corrected discard approximation captures the heavy-
tailed behaviour of the exact ruin probability, but is off by a term ερ1 in the denominator.
In fact, for all values of parameters, the tail of the discard approximation is always
below the tail of the exact ruin probability, which is expected since the discard
approximation gives an underestimation of the exact ruin probability.

On the other hand, for the tail behaviour of the corrected replace approximation
of the ruin probability, the following result holds.

Theorem 3.11. When Ce ∈ S, we have for the corrected replace approximation of
the ruin probability the following tail behaviour:

ψ̂r,ε(u) ∼ ερ1

1− ρ0
F eh(u).
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Proof. The class of phase-type distributions is closed under convolutions (Asmussen
and Albrecher, 2010), which means that both M0,0 +M0,1 and M0,0 +M0,1 +Be1 follow
some phase-type distribution. Therefore, due to their exponential decay rate, ψ0(u),
P(M0,0 +M0,1 > u) and P(M0,0 +M0,1 +Be1 > u) are all of the order o

(
F eh(u)

)
. In

addition, since Ce ∈ S, we obtain from Property A.3 that P(M0,0 +M0,1 +Ce1 > u) ∼
F eh(u). Inserting these asymptotic estimates into (3.6) leads to the result.

Comparing the coefficients of F eh(u) in Theorems 3.10 and 3.11, we observe that
the tail of the corrected replace approximation is always above the tail of the corrected
discard approximation. To compare the tail behaviour of the corrected replace
approximation to that of the exact ruin probability, we only need to compare the
coefficients of F eh(u), and more precisely their denominators, as the expression with
the largest denominator converges to zero faster. Therefore, the tails have the same
behaviour when EB = EC, while the tail of the corrected replace approximation is
above the tail of the exact ruin probability when EB > EC and below when EB < EC.

3.3.3 Relative error

Following the results of Section 3.3.2, we show that the relative error at the tail for
both approximations is O(ε).

Lemma 3.12. When Ce ∈ S, the relative error at the tail of the corrected discard
approximation is

Rd,ε(u) = 1− ψ̂d,ε(u)

ψε(u)
→ ερ1

1− ρ0 + ερ0
, as u→∞.

Recall that for the corrected replace approximation, different values of parameters
lead to both over- and under-estimation of the exact ruin probability. Thus, for this
approximation it is more appropriate to evaluate the absolute relative error at its tail.

Lemma 3.13. When Ce ∈ S, the absolute relative error at the tail of the corrected
replace approximation is

|Rr,ε(u)| =

∣∣∣∣∣1− ψ̂r,ε(u)

ψε(u)

∣∣∣∣∣→
∣∣∣∣ε(ρ1 − ρ0)

1− ρ0

∣∣∣∣ , as u→∞,

and it goes asymptotically to zero when EB = EC.

Remark 3.14. Lemmas 3.12 and 3.13 indicate that the relative errors of both
corrected phase-type approximations do not converge to 0 as u → ∞. However,
the approximations give the exact value of the ruin probability at the origin and
have guaranteed bounds of the order O(ε2) for all values of u. On the other hand,
the asymptotic result of Theorem 3.9 has the correct tail behaviour but it gives
relatively inaccurate estimates of the ruin probability for small values of u for some
combinations of the involved parameters. In order to provide a compromise between
our approximations and the asymptotic result of Theorem 3.9, one can simply change
the coefficients ερ1/(1 − ρ0 + ερ0) and ερ1/(1 − ρ0) of the correction terms (see
Definitions 3.3 and 3.4, respectively) to ερ1/(1 − ρ0 + ερ0 − ερ1), so that their tail
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behaviour matches the correct tail behaviour. Of course, one should also multiply the
first terms of the approximations with proper coefficients to obtain ψ•ε (0) = ψ0(0) =
ψε(0). Such adjustments will lead to approximations with relative error at the tail
that is asymptotically equal to zero. Moreover, the approximations work well for all
values of the involved parameters, but may give worse results for small values of u
when they are compared with the original corrected phase-type approximations.

The fact that the discard approximation always underestimates the ruin probability
raises the question if it is possible to develop a result for its relative error for arbitrary
values of u. The next theorem, which can be seen as the main technical contribution
of this chapter, shows that this is indeed possible.

Theorem 3.15. When Ce ∈ S, there exists an η > 0, such that for all ε < η, the
relative error Rd,ε(u) of the discard approximation at the point u can be bounded by

Rd,ε(u) ≤ ερ1

1− ρ0 + ερ0
Hε(u) + ε2K,

with Hε(u) =

(
P(M•ε,0 +M•ε,1 +M•ε,2 + Ce1 + Ce2 > u)

P(M•ε,0 +M•ε,1 + Ce1 > u)
− 1

)
and K a finite constant.

In order to prove Theorem 3.15, we first need the following lemma.

Lemma 3.16. Let Xε,k be an i.i.d. sequence such that Xε,k
D
= M•ε,0 + M•ε,k + Cek.

There exists a constant K0 independent of ε, such that

P(Xε,1 + · · ·+Xε,n > u)

P(Xε,1 > u)
≤ Kn

0 ,

for all u and for all n.

Proof. We follow a similar idea as the proof of Embrechts et al. (1997, Lemma 1.3.5),
which is not directly applicable, asXε,k depends on ε. Let F be the distribution function
of Xε,k. Since Cek is subexponential, and M•ε,0, M•ε,k are light-tailed, according to

Property A.3, Xε,k is subexponential as well. We set αn = supu F
∗n(u)/F (u). Observe

that

F ∗(n+1)(u)

F (u)
= 1 +

∫ u

0

F ∗n(u− x)

F (u)
dF (x) = 1 +

∫ u

0

F ∗n(u− x)

F (u− x)

F (u− x)

F (u)
dF (x)

≤ 1 +
αn

F (u)

(
F ∗2(u)− F (u)

)
≤ 1 + αn(α2 − 1).

Recursively, we find that

αn+1 ≤
n−2∑
k=0

(α2 − 1)k + α2(α2 − 1)n−1.

From Definition A.1, we know that α2 − 1 ≥ 1. So,

αn+1 ≤
n−2∑
k=0

αk2 + αn2 ≤
n∑
k=0

αk2 ≤ αn+1
2 ,
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therefore it suffices to show that α2 is bounded in ε > 0.
To this end, observe that M•ε,k is stochastically decreasing in ε as it is the supremum

of a compound Poisson process with arrival rate λ(1− ε). Therefore, the supremum
that corresponds to the compound Poisson process with arrival rate λ (ε = 0) is
stochastically larger than all other suprema with ε > 0 and we denote it by M0,k.

Letting S =
∑4
k=1M0,k, we see that

F ∗2(u)

F (u)
=
P(Xε,1 +Xε,2 > u)

P(Xε,1 > u)
≤ P(S + Ce1 + Ce2 > u)

P(Ce1 > u)

=
P(S > u)

P(Ce1 > u)
+

∫ u

0

P(Ce1 + Ce2 > u− x)

P(Ce1 > u− x)

P(Ce1 > u− x)

P(Ce1 > u)
dP(S ≤ x)

≤ P(S > u)

P(Ce1 > u)

+ sup
u>0

P(Ce1 + Ce2 > u)

P(Ce1 > u)︸ ︷︷ ︸
>1

1

P(Ce1 > u)

∫ u

0

P(Ce1 > u− x)dP(S ≤ x)

≤ sup
u>0

P(Ce1 + Ce2 > u)

P(Ce1 > u)
sup
u>0

P(S + Ce1 > u)

P(Ce1 > u)
.

Both suprema are finite since Ce1 is subexponential and S has a lighter tail than Ce1 .
This completes the proof of the lemma.

We now proceed with the proof of Theorem 3.15.

Proof of Theorem 3.15. Similarly to Xε,k, let Yε,k be an i.i.d. sequence such that

Yε,k
D
= M•ε,k + Cek, and set pε =

ερ1

1− ρ0 + ερ0
. Let η be such that pηK0 = 1/2 and

suppose ε < η. In addition, letN be a random variable such that P(N = n) = (1−pε)pnε
and observe that Mε

D
= M•ε,0 +

∑N
k=1 Yε,k. For notational convenience, we assume that

this equality holds almost surely through this proof. This enables us to write

ψε(u)− ψ̂d,ε(u) = P(Mε > u;N ≥ 2)− p2
εP(M•ε,0 + Yε,1 > u),

so that

Rd,ε(u) =
P(Mε > u;N ≥ 2)− p2

εP(M•ε,0 + Yε,1 > u)

P(Mε > u)

=
P(Mε > u;N ≥ 2)− p2

εP(M•ε,0 + Yε,1 > u)

P(Mε > u;N ≥ 1)
· P(Mε > u;N ≥ 1)

P(Mε > u)
. (3.9)

Note that P(Mε > u;N ≥ 1)/P(Mε > u) ≤ 1, where this ratio actually converges to
1 as u→∞. To analyse the other fraction of (3.9), from the memoryless property of
N we obtain P(Mε > u;N ≥ k) = pkεP(Mε + Yε,1 + · · ·+ Yε,k > u) so

P(Mε > u;N ≥ 2)

P(Mε > u;N ≥ 1)
=pε

P(Mε + Yε,1 + Yε,2 > u)

P(Mε + Yε,1 > u)
≤ pε

P(Mε + Yε,1 + Yε,2 > u)

P(Xε,1 > u)

≤pεP(N = 0)
P(Xε,1 + Yε,2 > u)

P(Xε,1 > u)
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+ pε

∞∑
n=1

P(N = n)
P(Xε,1 + · · ·+Xε,n+2 > u)

P(Xε,1 > u)

≤pε
P(Xε,1 + Yε,2 > u)

P(Xε,1 > u)
+ p2

ε(1− pε)K3
0

∞∑
n=1

(pεK0)n−1

≤ pε
P(Xε,1 + Yε,2 > u)

P(Xε,1 > u)
+ p2

ε2K
3
0 .

Finally, note that

p2
εP(M•ε,0 + Yε,1 > u)

P(Mε > u;N ≥ 1)
= pε

P(M•ε,0 + Yε,1 > u)

P(Mε + Yε,1 > u)
.

As before, we can show there exists a constant K1 such that
P(Mε + Yε,1 > u)

P(M•ε,0 + Yε,1 > u)
≤

1 + pεK1. Putting everything together, we conclude that

Rd,ε(u) ≤ pε
P(Xε,1 + Yε,2 > u)

P(Xε,1 > u)
+ p2

ε2K
3
0 − pε

1

1 + pεK1

≤ pε
(
P(Xε,1 + Yε,2 > u)

P(Xε,1 > u)
− 1

)
+ p2

εK,

for some constant K, completing the proof.

The bound is sharp in the sense that Hε(u) → 1 as u → ∞, which recovers the
relative error at the tail, up to a term O(ε2). Moreover, Hε(u) is uniformly bounded
in u and ε.

3.4 Numerical experiments

In Section 3.2, we pointed out that the first terms of the discard and the replace
expansions are phase-type approximations of ψε(u). The goal of this section is to
show numerically that adding the second term of these expansions leads to improved
approximations (corrected discard and corrected replace approximations respectively)
that are significantly more accurate than their phase-type counterparts. Moreover, the
additional term has a great impact on the accuracy of the improved approximations
even for small values of the perturbation parameter.

Therefore, in this section we check the accuracy of the corrected discard (see
Definition 3.3) and the corrected replace approximations (see Definition 3.4) by
comparing them with the exact ruin probability and their corresponding phase-type
approximations. Since it is more meaningful to compare approximations with exact
results than with simulation outcomes, we choose the general claim size distributions
Gε such that there exists an exact formula for the ruin probability ψε(u).

In Section 3.4.1, we derive the exact formula for the ruin probability ψε(u) for a
specific choice of the claim size distribution. Using the latter claim size distribution,
in Section 3.4.2, we perform our numerical experiments and we draw our conclusions.
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3.4.1 Test distribution

As claim size distribution we use a mixture of an exponential distribution with rate ν
and a heavy-tailed one that belongs to a class of long-tailed distributions introduced
in Abate and Whitt (1999b) (see also Section 2.5.1). The Laplace transform of the
latter distribution is

F̃h(s) = 1− s

(κ+
√
s)(1 +

√
s)
,

where EC = κ−1 and all higher moments are infinite. Furthermore, the Laplace
transform of the stationary heavy-tailed excess claim size distribution is

F̃ eh(s) =
κ

(κ+
√
s)(1 +

√
s)
,

which for κ 6= 1 can take the form

F̃ eh(s) =

(
κ

1− κ

)(
1

κ+
√
s
− 1

1 +
√
s

)
.

For this combination of claim size distributions, the ruin probability can be found
explicitly:

Theorem 3.17. Assume that claims arrive according to a Poisson process with rate
λ, the premium rate is 1, and the Laplace transform of the claim size distribution is

G̃ε(s) = (1− ε) ν

s+ ν
+ ε

(
1− s

(κ+
√
s)(1 +

√
s)

)
,

with ρε =
λ

κν

(
κ+ ε(ν − κ)

)
< 1. For this mixture model, the ruin probability is

ψε(u) =
λ

κν

(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)

ζ
(
v2
i (ε)u

)
,

where

ζ (u) := eu
2√
π

∫ ∞
√
u

e−x
2

dx,

and −vi(ε), i = 1, . . . , 4, are the roots of the polynomial

d(x) = x4 + (κ+ 1)x3 + (κ+ ν−λ)x2 + (κ+ 1)(ν−λ+λε)x+
(
κ(ν−λ) +λε(κ− ν)

)
.

Finally, the coefficients ai satisfy ai = lim
x→−vi(ε)

n(x)

d(x)

(
x+ vi(ε)

)
, i = 1, . . . , 4, where

n(x) = (1− ε)(κ+ x)(1 + x) + ε(x2 + ν).

Proof. The Laplace transform of the ruin probability L{ψε(u)} satisfies the equation

L{ψε(u)} =
ρε
s

(
1− (1− ρε)G̃eε(s)

1− ρεG̃eε(s)

)
, (3.10)
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where ρε =
λ

κν

(
κ+ ε(ν − κ)

)
and

G̃eε(s) =
1

EUε

(
(1− ε)EBF̃ ep (s) + εECF̃ eh(s)

)
=

κν

κ+ ε(ν − κ)

(
(1− ε) 1

ν

ν

s+ ν
+ ε

1

κ

κ

(κ+
√
s)(1 +

√
s)

)
=

κν

κ+ ε(ν − κ)
· (1− ε)(κ+

√
s)(1 +

√
s) + ε(s+ ν)

(s+ ν)(κ+
√
s)(1 +

√
s)

.

If we set w(s) = (1− ρε)G̃eε(s)/
(
1− ρεG̃eε(s)

)
, then with simple calculations we find

that

w(s) =
κν − λ

(
κ+ ε(ν − κ)

)
κ+ ε(ν − κ)

× (1− ε)(κ+
√
s)(1 +

√
s) + ε(s+ ν)

(s+ ν)(κ+
√
s)(1 +

√
s)− λ(1− ε)(κ+

√
s)(1 +

√
s)− λε(s+ ν)

.

The denominator of w(s),

d(
√
s) = s2 +(κ+1)s

√
s+(κ+ν−λ)s+(κ+1)(ν−λ+λε)

√
s+
(
κ(ν−λ)+λε(κ−ν)

)
,

is a fourth degree polynomial with respect to
√
s. Let its roots be given by −vi(ε),

i = 1, . . . , 4, and let n(s) denote the numerator of w(s). Then,

n(s)

d(s)
=

4∑
i=1

ai√
s+ vi(ε)

. (3.11)

Finally, the coefficients ai are determined by the following equations

ai = lim√
s→−vi(ε)

n(s)

d(s)

(√
s+ vi(ε)

)
, i = 1, . . . , 4.

For s = 0, we get from Eq. (3.11)

0 = n(0)− d(0)

4∑
i=1

ai
vi(ε)

= κ+ ε(ν − κ)−
(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)

.

Substituting everything in Eq. (3.10), we find

L{ψε(u)} =
1

s

λ

κν

(
κ+ ε(ν − κ)

)(
1−

κν − λ
(
κ+ ε(ν − κ)

)
κ+ ε(ν − κ)

4∑
i=1

ai√
s+ vi(ε)

)

=
λ

κν

(
κ+ ε(ν − κ)

s
−
(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai

s
(√
s+ vi(ε)

))

=
λ

κν

(
κ+ ε(ν − κ)

s
−
(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)s

)
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+
λ

κν

(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)

1(√
s+ vi(ε)

)√
s

=
λ

κν

(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)

1(√
s+ vi(ε)

)√
s
.

Laplace inversion to L{ψε(u)} gives,

ψε(u) =
λ

κν

(
κν − λ

(
κ+ ε(ν − κ)

)) 4∑
i=1

ai
vi(ε)

ζ
(
v2
i (ε)u

)
.

3.4.2 Numerical results

In this section, we fix values for the parameters of the mixture model described in
the previous section and we perform our numerical experiments. Although we do
not have any restrictions for the parameters of the involved claim size distributions,
from a modelling point of view, it is counter-intuitive to fit a heavy-tailed claim
size distribution with a mean smaller than the mean of the phase-type claim size
distribution. For this reason, we select κ = 2 and ν = 3.

For the perturbation parameter ε, the only restriction arises from the condition
for the convergence of the replace series expansion (see Theorem 3.2). If we assume
that ρ1 > ρ0, then the convergence condition for the replace expansion simplifies to
ε < (1 − ρ0)/ρ1. A closer look at the formula reveals that, in the case of unequal
means, for every value of ε there exists a value for the arrival rate λ such that the
condition is satisfied. However, a logical constraint for the perturbation parameter is
ε ≤ 0.1. The reason for this constraint is that in the case of phase-type approximations
it is not natural to remove more than 10% of the data.

To start our experiments, we first choose the “worst case scenario” for the pertur-
bation parameter, which is ε = 0.1. It seems that this “worst case scenario” for the
perturbation parameter is the “best case scenario” for the improvement we can achieve
with the corrected phase-type approximations. When the perturbation parameter
is big enough, a lot of information with respect to the tail behaviour of the ruin
probability is missing from its phase-type approximations. So, it is quite natural to
expect a great improvement when we add the second term of the respective series
expansion, which contains a big part of this missing information. In this scenario, we
compare the corrected phase-type approximations with their respective phase-type
approximations when ρ0.1 takes the values 0.5, 0.7, and 0.9.

From Figure 3.1, we conclude that the corrected discard and the corrected replace
approximations manage to reduce the “gap” between their respective phase-type
approximations and the exact ruin probability. Although the scale of the graphs is
different, it is evident that the gap closes more efficiently for small values of ρε, a
conclusion that can be also supported theoretically by Section 3.3.2. Furthermore, the
corrected replace approximation overestimates the ruin probability for small values of
u and, as expected, it is better at the tail than the corrected discard approximation.

For small values of ρε and small values of ε, one could argue that the gap between
the exact ruin probability and its phase-type approximations is so small that the
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Figure 3.1: Exact ruin probability with phase-type and corrected phase-type approximations for
perturbation parameter 0.1 and average claim rate: (a) 0.5, (b) 0.7, and (c) 0.9.
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corrected phase-type approximations do not improve on the accuracy of their phase-type
counterparts. For this reason, we choose ε = 0.001 and ρ0.001 = 0.5, and we compare
all approximations with the exact ruin probability. We show that the improvement we
achieve with the corrected phase-type approximations is still significant, even for this
seemingly “bad scenario”.

u exact ruin pr. discard replace cor. discard cor. replace
0 0.50000000 0.49925037 0.49975012 0.50000000 0.50000000
1 0.11211000 0.11114757 0.11142576 0.11210955 0.11211017
2 0.02557910 0.02474466 0.02484381 0.02557847 0.02557930
3 0.00621454 0.00550887 0.00553925 0.00621386 0.00621466
4 0.00184042 0.00122643 0.00123504 0.00183975 0.00184047
5 0.00082276 0.00027304 0.00027536 0.00082212 0.00082275
6 0.00056334 0.00006078 0.00006139 0.00056273 0.00056329
7 0.00047969 0.00001353 0.00001368 0.00047910 0.00047962
8 0.00043993 3.01× 10−6 3.05× 10−6 0.00043937 0.00043985
9 0.00041336 6.70× 10−7 6.80× 10−7 0.00041284 0.00041329
10 0.00039235 1.49× 10−7 1.51× 10−7 0.00039183 0.00039225

a.r.e. - 0.54664293 0.54471025 0.00067719 7.24× 10−5

Table 3.1: Exact ruin probability with phase-type and corrected phase-type approximations for
perturbation parameter 0.001 and average claim rate 0.5. The last line corresponds to the average
relative errors of each approximation, calculated from the provided values only.

From Table 3.1, we observe that even for this small value of ε the corrected
discard and the corrected replace approximations yield significant improvements for
their respective phase-type approximations. The difference between the exact ruin
probability and the corrected phase-type approximations is O(10−6), while for the
phase-type approximations it is O(10−3). In order to understand the magnitude of
the improvement we achieve with the corrected phase-type approximations we need to
look also at the relative errors of all the approximations involved. It is evident that
the relative error of the phase-type approximations easily reaches values close to 1
(approximately after value 5 of the initial capital in this example), while the corrected
phase-type approximations give a relative error O(ε).

An interesting observation is that the corrected replace approximation gives better
numerical estimations than the corrected discard approximation, both in absolute and
relative errors. This observation is also supported by the last line of Table 3.1, which
provides the average relative errors (a.r.e.) of each approximation for the displayed
values of the initial capital u. However, due to the sign changes in the formula of
the replace expansion (see Theorem 3.2) it is difficult to find tight bounds for this
approximation.

Finally, note that we performed extensive numerical experiments for various values
of the perturbation parameter ε in the interval [0.001, 0.1]. We chose to present only
the extreme cases, since the qualitative conclusions for the intermediate values of ε
are similar to those of the extreme cases.
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3.5 Total loss and Value at Risk

In this section, we give a brief overview of how our technique works when we calculate
quantities in finite time horizon. As test example, we use the aggregate loss in
a fixed period, and we provide the corrected phase-type approximations when the
aggregate loss is a compound Poisson sum. Moreover, we extend our technique in case
the aggregate loss is a compound mixed Poisson sum. Finally, we perform a small
numerical experiment to compare the Value at Risk (VaR) for a given level α that we
obtain from the original distribution, the corrected phase-type approximation and its
corresponding phase-type approximation.

Suppose that we are interested in evaluating the aggregate loss in a fixed period [0, t].
The number Nε(t) of claims Uε over this fixed period follows a Poisson distribution
with rate λt. Observe that Nε(t) can be seen as a superposition of two independent
Poisson processes NP

ε (t) and NH
ε (t), with rates λ(1− ε)t and λεt for the phase-type

and the heavy-tailed claims sizes, respectively. Thus, we write

Lossε(x, t) := P

(
Nε(t)∑
k=1

Uε,k > x

)
= P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

)
.

To find Lossε(x, t), we condition on the number NH
ε (t) of the heavy-tailed claim

sizes and we get

Lossε(x, t) =P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

)

=

∞∑
n=0

P

(NPε (t)∑
k=1

Bk +

n∑
k=1

Ck > x

)
P
(
NH
ε (t) = n

)
=P

(NPε (t)∑
k=1

Bk > x

)
P
(
NH
ε (t) = 0

)
+ P

(NPε (t)∑
k=1

Bk + C > x

)
P
(
NH
ε (t) = 1

)
+ P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

∣∣∣∣∣ NH
ε (t) ≥ 2

)
P
(
NH
ε (t) ≥ 2

)
=P

(NPε (t)∑
k=1

Bk > x

)
︸ ︷︷ ︸

PH-approximation

e−λεt + P
(
NH
ε (t) ≥ 1

)
P

(NPε (t)∑
k=1

Bk + C > x

)

+ P
(
NH
ε (t) ≥ 2

)[
P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

∣∣∣∣∣ NH
ε (t) ≥ 2

)

− P

(NPε (t)∑
k=1

Bk + C > x

)]
.
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As in the case of ruin probabilities, we define the corrected phase-type approxi-
mation by keeping only the terms that contain at most one appearance of the heavy-
tailed claim sizes. Thus, we have the following definition.

Definition 3.18. The corrected discard approximation of the tail of the aggregated
claim sizes in a fixed time interval [0, t] is defined as

Lossd,ε(x, t) := e−λεtP

(NPε (t)∑
k=1

Bk > x

)
+ (1− e−λεt)P

(NPε (t)∑
k=1

Bk + C > x

)
.

Observe that the coefficient of the correction term in Definition 3.18 is equal
to P

(
NH
ε (t) ≥ 1

)
and not P

(
NH
ε (t) = 1

)
as one would expect. We used this

modification in order to achieve more accurate estimates of the aggregate loss, without
losing the main characteristic of the corrected discard approximation, which is the
fact that it underestimates the exact distribution. According to the next theorem,
the approximation error of Lossd,ε(x, t) is of order O(ε2). As it was the case for
Theorem 3.7, there are many ways to find a lower bound for the error. In the next
theorem, we present a bound yielding a simple expression.

Theorem 3.19. The error of the corrected discard approximation Lossd,ε(x, t) is
bounded as follows:

P
(
NH
ε (t) ≥ 2

)[
P

(NPε (t)∑
k=1

Bk + C1 + C2 > x

)
− P

(NPε (t)∑
k=1

Bk + C1 > x

)]
≤ Lossε(x, t)− Lossd,ε(x, t) ≤ ε2(λt)2.

Proof. By using that conditional probabilities are less than or equal to 1, an upper
bound for the error of the approximation Lossd,ε(x, t) is found as

P
(
NH
ε (t) ≥ 2

)[
P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

∣∣∣∣∣ NH
ε (t) ≥ 2

)
− P

(NPε (t)∑
k=1

Bk + C > x

)]

≤ P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

∣∣∣∣∣ NH
ε (t) ≥ 2

)
P
(
NH
ε (t) ≥ 2

)
≤ P

(
NH
ε (t) ≥ 2

)
=

∞∑
k=2

(
λt
)k
k!

εke−λεt = ε2(λt)2
∞∑
k=2

(
λt
)k−2

k!
εk−2e−λεt

≤ ε2(λt)2
∞∑
k=2

(
λt
)k−2

(k − 2)!
εk−2e−λεt = ε2(λt)2.

By using the obvious relation

P

(NPε (t)∑
k=1

Bk +

NHε (t)∑
k=1

Ck > x

∣∣∣∣∣ NH
ε (t) ≥ 2

)
≥ P

(NPε (t)∑
k=1

Bk + C1 + C2 > x

)
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≥ P

(NPε (t)∑
k=1

Bk + C1 > x

)
,

it is easy to verify that the error is non-negative, which completes the proof.

Remark 3.20. The corrected replace approximation can be constructed in a similar
manner. However, special attention should be paid to the fact that we need to condition
not only on the number NH

ε (t) of heavy-tailed claims but also on the total number of
claims, namely Nε(t). This of course will lead to expressions with the same order of
complexity with that of the approximation in Definition 3.4.

If the time t we are interested in is not fixed but a random variable, e.g. T , the total
aggregate loss is a compound mixed Poisson r.v. The corrected discard approximation
takes the form

Lossd,ε(x, T ) =

∫ ∞
0

e−λεtP

(NPε (t)∑
k=1

Bk > x

)
dP(T ≤ t)

+

∫ ∞
0

(1− e−λεt)P

(NPε (t)∑
k=1

Bk + C > x

)
dP(T ≤ t),

and an upper bound for its error is ε2λ2ET 2. As a last result, we find a compact
formula for the LST of the Lossd,ε(x, T ). We use the notation F̃p(s), F̃h(s), and τ (s)
for the Laplace transforms of the phase-type claim sizes, the heavy-tailed claim sizes,
and the r.v. T , respectively.

Theorem 3.21. The LST of Lossd,ε(x, T ) is given by the formula

L{Lossd,ε(x, T )} =
1

s
− 1− F̃h(s)

s
τ
(
λ
(
1− (1− ε)F̃p(s)

))
− F̃h(s)

s
τ
(
λ(1− ε)

(
1− F̃p(s)

))
.

Proof. First, we define the LST of SNPε (t) =

NPε (t)∑
k=1

Bk as

F̃SNPε (t)
(s) =

∫ ∞
0

e−sxdP
(
SNPε (t) ≤ x

)
=

∞∑
k=0

P
(
NP
ε (t) = k

)(
F̃p(s)

)k
= exp{−λ(1− ε)t

(
1− F̃p(s)

)
}.

Consequently, the LST of Lossd,ε(x, T ) satisfies

L{Lossd,ε(x, T )} =

∫ ∞
x=0

e−sx
∫ ∞
t=0

e−λεtdP

(NPε (t)∑
k=1

Bk > x

)
dP(T ≤ t)

+

∫ ∞
x=0

e−sx
∫ ∞
t=0

(
1− e−λεt

)
dP

(NPε (t)∑
k=1

Bk + C > x

)
dP(T ≤ t)
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t simulation discard corrected discard
1 4.16 4.09 4.14
5 9.77 9.54 9.74
10 15.24 14.89 15.22
15 20.27 19.73 20.17
20 24.99 23.76 24.30

Table 3.2: Comparison of VaR values we obtain from simulation results and the phase-type and
corrected phase-type approximations. The VaR level is α = 0.99, the perturbation parameter 0.01,
and the average claim rate 0.67.

=

∫ ∞
t=0

e−λεtdP(T ≤ t)
∫ ∞
x=0

e−sxdP

(NPε (t)∑
k=1

Bk > x

)

+

∫ ∞
t=0

(
1− e−λεt

)
dP(T ≤ t)

∫ ∞
x=0

e−sxdP

(NPε (t)∑
k=1

Bk + C > x

)

=

∫ ∞
t=0

e−λεt
1− e−λ(1−ε)t

(
1−F̃p(s)

)
s

dP(T ≤ t)

+

∫ ∞
t=0

(
1− e−λεt

)1− e−λ(1−ε)t
(

1−F̃p(s)
)
F̃h(s)

s
dP(T ≤ t)

=
1

s
− 1− F̃h(s)

s

∫ ∞
t=0

e−λ
(

1−(1−ε)F̃p(s)
)
tdP(T ≤ t)

− F̃h(s)

s

∫ ∞
t=0

e−λ(1−ε)
(

1−F̃p(s)
)
tdP(T ≤ t)

=
1

s
− 1− F̃h(s)

s
τ
(
λ
(
1− (1− ε)F̃p(s)

))
− F̃h(s)

s
τ
(
λ(1− ε)

(
1− F̃p(s)

))
,

which completes the proof.

One can find the corrected discard approximation analytically (or numerically) by
applying Laplace inversion to L{Lossd,ε(x, T )}.

A widely used risk measure that connects to the aggregate loss, is the Value at Risk
(VaR), which is defined as the threshold value such that the probability of the aggregate
loss to exceed this value is less than a given level α. In other words, the VaR is equal
to the (1− α)-quantile of Lossε(x, t). We show through a small numerical experiment
that the VaR that is estimated with the corrected discard approximation is closer to
the original VaR, than the one we obtain with the discard phase-type approximation.
For our example, we choose the arrival rate λ = 1, the claim size distribution a mixture
of an exponential distribution with rate 3/2 and a Pareto distribution with scale and
shape parameters 1 and 2 respectively, and ε = 0.01. We estimate the VaR values
at level 0.99 for the interval [0, t], for the values of t = 1, 5, 10, 15, 20. Note that we
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simulated the system in order to estimate the exact VaR values. We summarise our
results in Table 3.2.

We want to point out here that this numerical study differs from our previous
examples. Although in all other examples we were comparing tail probabilities at
given values, here we compare the values at which the original distribution and its
approximations give us the same tail probability. This observation explains why the
difference between the values in Table 3.2 are not of order O(ε2).





CHAPTER 4

Corrected phase-type approximations in a Markovian
environment

4.1 Introduction

In the previous chapter, we constructed the corrected phase-type approximations for
heavy-tailed risk models. We showed that our approximations maintain the computa-
tional tractability of phase-type approximations, capture the correct tail behaviour,
and provide provably small absolute and relative errors. Since our approximations
combine such desirable characteristics, it is interesting to explore their applicability in
more involved models. In many applications, significant correlations between arrivals
of load-generating events make the numerical evaluation of performance measures a
challenging problem. Therefore, in this chapter, we consider the MArP/G/1 queue
with heavy-tailed service times and FIFO discipline and we develop the corrected
phase-type approximations for the delay (waiting time) distribution. We find that our
approximations capture the exact tail behaviour and provide bounded relative errors.

Recall from Section 1.3.3, that the Laplace transform of the delay of a MArP/G/1
queue has a matrix expression analogous to the Pollazceck-Khinchine equation of
an M/G/1 queue (Neuts, 1989; Ramaswami, 1980). However, these closed-form
expressions are only practical in case of phase-type service times (Asmussen, 2000,
2003). In particular, under phase-type service times it has been found that the delay
distribution has a phase-type representation (Ramaswami, 1990; Sengupta, 1990) in a
form which is explicit up to the solution of a matrix fixed point problem. Therefore,
to construct our approximations, we exploit the latter property and we connect our
model with a phase-type one.

Motivated by statistical analysis (see Section 3.1 for an explanation), we consider
the service times as a mixture of a phase-type and a heavy-tailed distribution. As
“base” model we use the model appearing when all heavy-tailed customers are removed,
and we interpret the heavy-tailed term of the mixture model as perturbation of the

73
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phase-type one. Using perturbation analysis, we find our approximations for the
queueing delay in the mixture model as a sum of the delay of the base model, which
itself is a phase-type approximation of the delay, and a heavy-tailed component that
depends on the perturbation parameter. Large deviations theory suggests that a
single catastrophic event, i.e. a stationary heavy-tailed service time, is sufficient to
give a non-zero tail probability for the queueing delay (Embrechts et al., 1997). Since
the heavy-tailed component contains such a catastrophic event, the second term of
our approximation makes the phase-type approximation more robust so that the
relative error at the tail does not explode. More details on the construction of our
approximations are found in Section 4.2.2.

In Section 1.6, we noted that there exists duality between the stationary waiting
probability P(W > u) of a G/G/1 queue and the probability of eventual ruin for an
insurance company with an initial cash reserve u, where the claims in the risk model
correspond to the service times of the queueing model (Asmussen, 2003; Asmussen
and Albrecher, 2010). Thus, the corrected phase-type approximations can also be used
to estimate the ruin probabilities in the risk model with arrival process of claims the
time-reversed MArP of the MArP/G/1 queue. Finally, our technique can be applied
to more general queueing models, i.e. queueing models with dependencies between
inter-arrival and service times (Boxma and Perry, 2001; Smits et al., 2004), and also to
models that allow for customers to arrive in batches (Lucantoni, 1991, 1993; Lucantoni
et al., 1994).

A closely related work is Adan and Kulkarni (2003). They consider a single server
queue, where the inter-arrival and service times depend on a common discrete Markov
chain. In addition, they assume that a customer arrives in each phase transition and
they find a closed form expression for the delay distribution under general service time
distributions. However, by using the standard techniques of including dummy customers
in a model, i.e. customers with zero service times, the arrivals of dummy customers in
their model correspond to phase transitions not related to arrivals of customers in the
typical MArP/G/1 queue (see Section 1.3.3). Thus, their results remain valid for the
evaluation of the workload. In this chapter, we exploit this connection and, based on
their results, we derive the corrected phase-type approximations for the delay of the
MArP/G/1 queue.

Outline

The rest of the chapter is organised as follows. In Section 4.2, we introduce the
model under consideration without assuming any special form for the service time
distribution, and in Section 4.2.1, we find the general expressions for the Laplace
transforms of the queueing delay a customer experiences upon arrival in each state.

In Section 4.2.2, we consider service time distributions that are a mixture of a
phase-type distribution and a heavy-tailed one, and we explain the idea to construct
our approximations. Later in Section 4.3.1, we specialise the results of Section 4.2.1 for
phase-type service times. We use as a base model the phase-type model of Section 4.3.1,
and we apply perturbation analysis to find in Section 4.3.2 the perturbed parameters
and in Section 4.3.3 the desired Laplace transforms of the queueing delay in the mixture
model. By using the latter results, we construct in Section 4.3.4 the approximations
and we discuss their properties. In Section 4.4, we discuss an alternative way to
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construct approximations for the queueing delay.

Furthermore, in Section 4.5, we use a specific mixture service time distribution
for which the exact delay distribution can be calculated and we exhibit the accuracy
of our approximations through numerical experiments. Due to the complexity of the
formulas, we use a simple running example in order to explain the idea behind the
calculations. Finally, the necessary theory on perturbation analysis and other related
results can be found in Appendix A.2.

4.2 Presentation of the model

We consider a single server queue with FIFO discipline, where customers arrive
according to a MArP. The arrivals are regulated by a Markov process {Jt}t≥0 with a
finite state space N , say with N states. We assume that the service time distribution
of a customer is independent of the state of {Jt} upon his arrival. For this model, we
are interested in finding accurate approximations for the delay distribution.

The intensity matrix D governing {Jt} is denoted by the decomposition D =
D(1) + D(2), where the matrix D(1) is related to arrivals of dummy customers, while
transitions in D(2) are related to arrivals of real customers. Note that the diagonal
elements of the matrix D(2) may not be identically equal to zero. This means that if

d
(2)
ii > 0, then a real customer arrives with rate d

(2)
ii and we have a transition from

state i to itself. However, phase transitions not associated with arrivals (dummy
customers) from any state to itself are not allowed. Since the matrix D is an intensity
matrix, its rows sum up to zero. Therefore, the diagonal elements of the matrix D(1)

are negative and they are defined as d
(1)
ii = −

∑
k 6=i d

(1)
ik −

∑N
k=1 d

(2)
ik .

For this model, we are interested in modelling heavy-tailed service times. As stated
earlier, motivated by statistical analysis, we assume that the service time distribution
of a real customer is a mixture of a phase-type distribution, Fp(t), and a heavy-tailed
one, Fh(t). Namely, the service time distribution of a real customer has the form

Gε(t) = (1− ε)Fp(t) + εFh(t), (4.1)

where ε is typically small.

Our goal is to find the delay distribution for this mixture model. Towards this
direction, we present in the next section existing results (Adan and Kulkarni, 2003) for
the evaluation of the delay distribution under the assumption of generally distributed
service times. Ultimately, we wish to specialise these results to service times of the
aforementioned form (4.1).

4.2.1 Preliminaries

Since the results of this section are valid for any service time distribution, we suppress
the index ε and we use the notation G(t) for the service time distribution of a real
customer. We consider now the embedded Markov chain {Zn}n≥0 on the arrival
epochs of customers (real and dummy) and we denote by P the transition probability
matrix of the regulating Markov chain {Zn}, which we assume to be irreducible. If λi
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is the exponential exit rate from state i, i.e.

λi =
∑
k 6=i

d
(1)
ik +

N∑
k=1

d
(2)
ik , (4.2)

the transition probabilities can be calculated by

pij =
d

(1)
ij (1− δij) + d

(2)
ij

λi
.

In addition, an arriving customer at a transition from state i to state j is tagged i. If
pij > 0, then we define the probability

q
(1)
ij =

d
(1)
ij (1− δij)

d
(1)
ij (1− δij) + d

(2)
ij

,

which is the probability of an arriving customer to be dummy conditioned on the
event that there is a phase transition from state i to j. Similarly, conditioned on the
event that there is a phase transition from i to j, the arriving customer is real with
probability

q
(2)
ij =

d
(2)
ij

d
(1)
ij (1− δij) + d

(2)
ij

. (4.3)

If pij = 0, then we define q
(1)
ij = q

(2)
ij = 0. Consequently, the conditional service time

distribution of an arriving customer at a transition from i to j is Gij(t) = q
(1)
ij +q

(2)
ij G(t),

and its LST is G̃ij(s) = q
(1)
ij + q

(2)
ij G̃(s), i, j = 1, . . . , N , where G̃(s) is the LST of the

service time distribution G(t) of a real customer. In matrix form, the above quantities
can be written as

Λ = diag(λ1, . . . , λN ),

Q(1) =
(
q

(1)
ij

)
,

Q(2) =
(
q

(2)
ij

)
,

G̃(s) = Q(1) + G̃(s)Q(2). (4.4)

We also define the matrix
H(s) = G̃(s) ◦PΛ, (4.5)

which we will need later. Finally, let π = [π1, . . . , πN ] be the stationary distribution of
{Zn}n≥0, and µ be the mean of the service time distribution G(t). Then the system is
stable if the mean service time of a customer is less than the mean inter-arrival times
between two consecutive customers in steady state. Namely,

π
(
Λ−1 −M

)
e > 0, (4.6)

where M = µQ(2) ◦ P. Note that the (i, j) element of the matrix Q(2) ◦ P is the
unconditional probability that a real customer arrives at a transition from i to j.

From this point on, we use a simple running example so that we display the involved
parameters and the derived formulas. The running example evolves progressively,
which means that its parameters are introduced only once and the reader should
consult a previous block of the example to recall the notation.



4.2 Presentation of the model 77

Running example. For our running example, we consider a MArP with Erlang-2
distributed inter-arrival times, where the exponential phases have both rate λ (N = 2).
Therefore, the matrices D(1) and D(2) are given as follows:

D(1) =

(
−λ λ
0 −λ

)
and D(2) =

(
0 0
λ 0

)
.

In this case, we have that λ1 = λ2 = λ, pij = 1 − δij , q(1)
12 = q

(2)
21 = 1, and all other

elements of the matrices Q(1) and Q(2) are equal to zero. Observe that we only have
transitions from state 1 to state 2 and from state 2 to state 1. Therefore, in state 1
we always have arrivals of dummy customers while in state 2 we only have arrivals of
real customers. Thus, only the diagonal elements of the matrix G̃(s) are not equal to

zero, so that G̃11(s) = 1 and G̃22(s) = G̃(s). Finally, the stability condition takes its
known form λµ/2 < 1. �

Let now V denote the steady-state workload of the system just prior to an arrival
of a customer. If the arriving customer is real, then the workload just prior to its
arrival equals the delay or waiting time of the customer in the queue, which we denote
by W . In terms of Laplace transforms, the steady-state workload of the system just
prior to an arrival of a customer in state i is found as

φ̃i(s) = E(e−sV ;Z = i), <(s) ≥ 0, i = 1, . . . , N,

where Z is the steady-state limit of Zn. Gathering all the above Laplace transforms
φ̃i(s), i = 1, . . . , N , we construct the transform vector

Φ̃(s) =
(
φ̃1(s), . . . , φ̃N (s)

)
.

We first provide some general theorems for the transform vector Φ̃(s) and we give
its connection to w̃(s), which is defined as the Laplace transform of the queueing delay
W of real customers. Later on we refine these results in order to provide more detailed
information regarding the form of the elements φ̃i(s), i = 1, . . . , N .

Theorem 4.1. Provided that the stability condition (4.6) is satisfied, the transform

vector Φ̃(s) satisfies

Φ̃(s)
(
H(s) + sI −Λ

)
= su, (4.7)

Φ̃(0)e = 1, (4.8)

where u = [u1, . . . , uN ] is a vector with N unknown parameters that needs to be
determined.

Note that the above theorem is similar to Adan and Kulkarni (2003, Theorem 3.1)
and so is its proof. Therefore, we omit here the proof and we refer the reader to Adan
and Kulkarni (2003, Theorem 3.1) for more details. Moreover, according to Takine
and Hasegawa (1994), the ith element of the vector u represents the probability that,
in steady state, the system is idle and the underlying Markov chain is in state i.

A real customer arrives in state i with probability
∑N
j=1 pijq

(2)
ij =

∑N
j=1 d

(2)
ij /λi,

and consequently a real customer arrives in the system with probability
∑N
i=1 πi ·
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∑N
j=1 d

(2)
ij /λi. Therefore, the following relation holds

N∑
i=1

πi

∑N
j=1 d

(2)
ij

λi
w̃(s) =

N∑
i=1

∑N
j=1 d

(2)
ij

λi
φ̃i(s).

Thus, if ω is a column vector of dimension N such that

ω =
Λ−1D(2)e

πΛ−1D(2)e
,

the Laplace transform of the queueing delay is found as

w̃(s) = Φ̃(s)ω, <(s) ≥ 0. (4.9)

If det
(
H(s) + sI−Λ

)
denotes the determinant of the square matrix H(s) + sI−Λ,

then for the determination of the unknown vector u, we have the following theorem.

Theorem 4.2. The next two statements hold:

1. The equation det
(
H(s) + sI −Λ

)
= 0 has exactly N solutions s1, . . . , sN , with

s1 = 0 and <(si) > 0 for i = 2, . . . , N .

2. Suppose that the stability condition (4.6) is satisfied and that the above mentioned
N − 1 solutions s2, . . . , sN are distinct. Let ai be a non-zero column vector
satisfying (

H(si) + siI −Λ
)
ai = 0, i = 2, . . . , N.

Then u is given by the unique solution to the following N linear equations:

uΛ−1e = π
(
Λ−1 −M

)
e, (4.10)

uai = 0, i = 2, . . . , N. (4.11)

Again, Theorem 4.2 is similar to Adan and Kulkarni (2003, Theorems 3.2 and 3.3),
and therefore, its proof is omitted. Alternatively, the vector u can be estimated by
following the iterative approach presented in Takine and Hasegawa (1994).

Theorem 4.2 on the one hand provides us with an algorithm to calculate the vector
u and on the other hand it guarantees that all elements of the transform vector Φ̃(s)
are well-defined on the positive half-plane. To understand the latter remark observe
the following. For simplicity, we set

E(s) = H(s) + sI −Λ. (4.12)

Let E(s) be the adjoint matrix of E(s), so E(s)E(s) = det E(s)I. Post-multiplying

Eq. (4.7) with E(s), we have that Φ̃(s) det E(s) = suE(s), and consequently

Φ̃(s) =
1

det E(s)
suE(s). (4.13)

The first statement of Theorem 4.2 says that the determinant det E(s) has the factors

s− si, i = 1, . . . , N , in its expression. This means that the transform vector Φ̃(s) has
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N potential singularities on the positive half plane, since the determinant appears in
the denominator. However, the second statement of Theorem 4.2 explains that the
vector u is such that these problematic factors are canceled out.

Observe that Theorem 4.2 does not give us any information about the form of the
elements of the transform vector Φ̃(s), which is the stepping stone for the construction
of our approximations. For this reason, we proceed by finding an analytic expression
for the aforementioned elements. It is apparent from Eq. (4.13) that for the evaluation

of Φ̃(s), we only need det E(s) and the adjoint matrix E(s). For the determination of
these quantities, we introduce the following notation:

• As before, we denote the set of all states of the Markov process {Jt} as N =
{1, . . . , N} .

• If S ⊂ Ω, for some set Ω ⊂ N , then Sc is the complementary set of S with
respect to Ω. The number of elements in a set S is denoted as |S|.

• For a subset S of N , we define λS =
∏
i∈S λi and ζS(s) =

∏
i∈S(s − λi). We

also define λ∅ = ζ∅(s) = 1 and det A∅∅ = 1, where ∅ is the empty set.

• Suppose that S is a subset of Ω, for some set Ω ⊂ N , and that it follows some
properties, i.e. “Property 1”, etc. If we want to sum with respect to S, then we
write under the symbol of summation first S ⊂ Ω, followed by the properties.
Namely, we write

∑
S⊂Ω

Property 1
etc

. In some cases, to avoid lengthy expressions we will

write instead of
∑

S⊂Ω
Properties of S

∑
R⊂Ω1

Properties of R
the double sum

∑
S⊂Ω

Properties of S;
R⊂Ω1

Properties of R

,

where R is a subset of Ω1, for some set Ω1 ⊂ N . We apply the same rule also
for multiple sums.

By using the above notation, we proceed with refining the desired quantities.
More precisely, we first find det E(s), then the adjoint matrix E(s), and finally the

vector suE(s) that appears in the numerator of the transform vector Φ̃(s) (see

Eq. (4.13)). Combining these results, one can easily derive Φ̃(s). We start by
finding the determinant of the matrix E(s) (see Eq. (4.12)).

Theorem 4.3. The determinant of the matrix E(s) can be explicitly calculated as
follows:

det E(s) =
∑
S⊂N

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N∑
k=1

G̃k(s)
∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
.

Proof. To prove the theorem, we need formulas that result from the properties of
the determinants. We define the sets Fi = {1, . . . , i} and Li = {i, . . . , N}, where
F0 = LN+1 = ∅. Expansion by minors along the first row and the additive property of
determinants give for i ∈ N ,

det E(s)LiLi =G̃(s)λi det
((

Q(2) ◦P
){i}
Li
,E(s)

Li+1

Li

)
+ λi det

((
Q(1) ◦P

){i}
Li
,E(s)

Li+1

Li

)



80 Corrected phase-type approximations in a Markovian environment

+ (s− λi) det E(s)
Li+1

Li+1
.

Suppose now that V = {i1, . . . , in} and W = {j1, . . . , jk} are two non-overlapping
(V ∩W = ∅) collections of n and k elements from N , respectively, with 1 ≤ n+ k ≤
N − 1. Furthermore, we choose j such that j > max{l : l ∈ V ∪W}. Then, the

determinant of the (N+1−j+n+k)-dimensional square matrix
((

Q(1)◦P
)V
V ∪W∪Lj

on(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj
V ∪W∪Lj

)
satisfies,

det
((

Q(1) ◦P
)V
V ∪W∪Lj

on
(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj
V ∪W∪Lj

)
=G̃(s)λj det

((
Q(1) ◦P

)V
V ∪W∪Lj

on
(
Q(2) ◦P

)W∪{j}
V ∪W∪Lj

,E(s)
Lj+1

V ∪W∪Lj

)
+ λj det

((
Q(1) ◦P

)V ∪{j}
V ∪W∪Lj

on
(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj+1

V ∪W∪Lj

)
+ (s− λj) det

((
Q(1) ◦P

)V
V ∪W∪Lj+1

on
(
Q(2) ◦P

)W
V ∪W∪Lj+1

,E(s)
Lj+1

V ∪W∪Lj+1

)
.

Note that det E(s) = det E(s)L1

L1
. The theorem is proven by applying recursively the

above formulas.

Observe that the determinant det E(s) is an at most N degree polynomial with

respect to the LST of the service time distribution G̃(s) of a real customer. Moreover,
the coefficients of this polynomial are all polynomials with respect to s. Therefore, in
case G̃(s) is a rational function in s, then det E(s) is also a rational function in s and
its eigenvalues can be easily calculated. Furthermore, all subsets Γ of N that appear
in the second summand have at least one element, thus in the formula of det E(s) it
always holds that Γ 6= ∅.

Running example (continued). The matrix E(s) has elements Eii(s) = s − λi,
i = 1, 2, E12(s) = λ, and E21(s) = λG̃(s). We will calculate its determinant by using

Theorem 4.3. It holds that det
(
Q(1) ◦ P

)S
S

= 0 for all subsets S of N , except for

S = ∅. Since Γ 6= ∅, it is evident that det
((

Q(1) ◦ P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
6= 0 only for

Γ = {1} and S = N , because the 1st column of the matrix Q(1) and the 2nd column
of the matrix Q(2) are zero. Combining all these we obtain

det E(s) =λ∅ζN (s) det
(
Q(1) ◦P

)∅
∅

+ G̃(s)λN ζ∅(s) det
((

Q(1) ◦P
){2}
N on

(
Q(2) ◦ P

){1}
N

)
=(s− λ)2 − λ2G̃(s).

�
In a similar manner, we find the explicit form of the adjoint matrix E(s) in the

following theorem.
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Theorem 4.4. The adjoint matrix E(s) has elements

Eij(s) =



∑N−1
k=0 G̃k(s)

∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s)

×det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
, i = j,

(−1)i+j
∑N−1
k=1 G̃k(s)

∑
Γ⊂N\{i,j}
|Γ|=k−1

∑
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

×det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)
+(−1)i+j

∑N−2
k=0 G̃k(s)

∑
Γ⊂N\{i,j}
|Γ|=k

∑
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

×det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
, i 6= j,

where mij = min{i, j}, Mij = max{i, j}, and Tij = {mij + 1, . . . ,Mij − 1}.

Proof. We use the definition Eij(s) = (−1)i+j det E(s)
N\{i}
N\{j} and we find recursive

formulas for det E(s)
N\{i}
N\{j}, as in Theorem 4.3, by distinguishing between the cases

i = j and i 6= j. The case i = j is merely an application of Theorem 4.3, where instead
of the state space N we have N \ {i}. Therefore,

Eii(s) =
∑

S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
.

When i 6= j, we need to separate the two cases i < j and i > j. We first deal with the
case i < j. We then have,

Eij(s) =(−1)i+jG̃(s)λj det
(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(2) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
+(−1)i+jλj det

(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
.

We find Eij(s) by expanding the determinants that appear above by minors along
their first row. For this reason, it is important to know what is the position of
the elements Enn(s) = G̃nn(s)pnnλn + s − λn, n ∈ N \ {i, j}, in the above re-
duced matrix. Note that the elements Enn(s) with n = i + 1, . . . , j − 1, are on
the diagonal of matrix E(s). However, when j 6= i + 1 these elements drop to the

lower-diagonal of the square matrices
(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(2) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
and(

E(s)
Fj−1\{i}
N\{j} ,

(
Q(1) ◦ P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
.

It is immediately obvious that if this displacement takes place, it will result in a
change of sign for the determinants. For this reason, we split the columns of the latter
matrices in the subsets Fi−1, T , {j}, and Lj+1, where T = {i+ 1, . . . , j − 1}. We fix
some m ∈ N \ {i, j} and we separate the following cases:
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1. m ∈ Fi−1. For every two non-overlapping collections of n and k elements from
Fm−1, say V = {i1, . . . , in} and W = {j1, . . . , jk}, with 1 ≤ n+ k ≤ m− 1, it holds
that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm∩Fi−1)∪T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
(Lm+1∩Fi−1)∪T
Ω ,(

Q(2) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm+1∩Fi−1)∪T
Ω ,(

Q(2) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ (s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

(Lm+1∩Fi−1)∪T
Ω\{m} ,(

Q(2) ◦P
){j}

Ω\{m},E(s)
Lj+1

Ω\{m}

)
,

and,

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm∩Fi−1)∪T
Ω

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
(Lm+1∩Fi−1)∪T
Ω ,(

Q(1) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm+1∩Fi−1)∪T
Ω ,(

Q(1) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ (s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

(Lm+1∩Fi−1)∪T
Ω\{m} ,(

Q(1) ◦P
){j}

Ω\{m},E(s)
Lj+1

Ω\{m}

)
,

where Ω = V ∪W ∪ (Lm ∩ Fi−1) ∪ {i} ∪ T ∪ Lj+1.
2. m ∈ T with T 6= ∅ (note that T 6= ∅ when j 6= i + 1). For every two non-

overlapping collections of n and k elements from Fm−1 \ {i}, say V = {i1, . . . , in} and
W = {j1, . . . , jk}, with 1 ≤ n+ k ≤ m− 2, it holds that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)Lm∩TΩ ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1∩T
Ω ,(

Q(2) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1∩T
Ω ,(

Q(2) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
− (s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1∩T
Ω\{m} ,



4.2 Presentation of the model 83

(
Q(2) ◦P

){j}
Ω\{m},E(s)

Lj+1

Ω\{m}

)
,

and

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)Lm∩TΩ ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1∩T
Ω ,(

Q(1) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
+ λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1∩T
Ω ,(

Q(1) ◦P
){j}

Ω
,E(s)

Lj+1

Ω

)
− (s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1∩T
Ω\{m} ,(

Q(1) ◦P
){j}

Ω\{m},E(s)
Lj+1

Ω\{m}

)
,

where Ω = V ∪W ∪ {i} ∪ (Lm ∩ T ) ∪ Lj+1.
3. m ∈ Lj+1. For every two non-overlapping collections of n and k elements from

Fm−1 \ {i}, say V = {i1, . . . , in} and W = {j1, . . . , jk}, with 1 ≤ n + k ≤ m − 2, it
holds that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)LmΩ

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1

Ω

)
+ λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1

Ω

)
+ (s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1

Ω\{m}

)
,

where Ω = V ∪W ∪ Lm.
By using the above formulas to evaluate all the involved determinants, we find that

Eij(s) =(−1)i+jG̃(s)

N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;
R⊂S∩T

(−1)|R|λS∪{j}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)
+(−1)i+j

N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;
R⊂S∩T

(−1)|R|λS∪{j}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
,

which holds even when T = ∅.
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We assume now that i > j, and we have to calculate

Eij(s) =(−1)i+jG̃(s)λj det
(
E(s)

Fj−1

N\{j},
(
Q(2) ◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
+(−1)i+jλj det

(
E(s)

Fj−1

N\{j},
(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
.

In this case, T = {j + 1, . . . , i− 1}. When T 6= ∅, for n = j + 1, . . . , i− 1, the elements

Enn(s) = G̃nn(s)pnnλn + s− λn, which are on the diagonal of matrix E(s), move to

the upper-diagonal of the matrices
(
E(s)

Fj−1

N\{j},
(
Q(2) ◦ P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
and(

E(s)
Fj−1

N\{j},
(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
.

The formula is exactly the same, with T = {i+ 1, . . . , j − 1}. Thus, gathering all
the above, for i 6= j

Eij(s) =(−1)i+j
N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k−1;
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)
+(−1)i+j

N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;

R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
,

where mij = min{i, j}, Mij = max{i, j}, and Tij = {mij + 1, . . . ,Mij − 1}.

The adjoint matrix E(s) is equal to the transpose of the cofactor matrix of E(s).
Therefore, similarly to det E(s), each element of E(s) is an at most N − 1 degree

polynomial with respect to G̃(s). This observation explains also the similarity between
the formula of det E(s) and the diagonal elements of E(s).

Running example (continued). Recall that so far we have calculated det E(s). By
using the same arguments as for the evaluation of the determinant, from Theorem 4.4,
we have for the adjoint matrix

Eii(s) =G̃0(s)λ∅ζN\{i}(s) det
((

Q(1) ◦P
)∅
∅ on

(
Q(2) ◦P

)∅
∅

)
= s− λ, i = 1, 2,

E12(s) =(−1)1+2(−1)|∅|λ∅∪{2}ζ∅(s) det
((

Q(1) ◦P
){2}
{1} on

(
Q(2) ◦P

)∅
{1}

)
= −λ,

E21(s) =(−1)2+1G̃(s)(−1)|∅|λ∅∪{1}ζ∅(s) det
((

Q(1) ◦P
)∅
{2} on

(
Q(2) ◦P

){1}
{2}

)
=− λG̃(s).
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�
For the evaluation of the Laplace transform w̃(s) of the queueing delay, it is only

left to calculate suE(s)ω (see Eqs. (4.9) and (4.13)). Observe that the elements of

the transform vector Φ̃(s) are defined as φ̃i(s) = suE(s)ei/ det E(s). The outcome
of suE(s)ei is the inner product of the vector su with the ith column of the matrix
E(s). Therefore, as a first step we calculate the quantities suE(s)ei, and we have the
following theorem.

Theorem 4.5. The numerator of the ith element of the transform vector Φ̃(s) takes
the form

suE(s)ei =sui

N−1∑
k=0

G̃k(s)
∑

Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+s

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+s

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
.

Proof. We calculate the inner product of the vector su with the ith column of the

matrix E(s), namely suE(s)ei = s

N∑
l=1

ulEli(s) = s

N∑
l=1
l 6=i

ulEli(s) + suiEii(s). By using

the definition of Eij(s), ∀i, j ∈ N , and Theorem 4.4, the result is straightforward.

By combining now the results of the Theorems 4.3 and 4.5 using Eq. (4.13), one

can find the transform vector Φ̃(s).

Running example (continued). To find the transform vector Φ̃(s), we need to
calculate the vector uE(s)e. For each state we have

uE(s)e1 =u1E11(s) + u2E21(s) = u1(s− λ)− u2λG̃(s),

uE(s)e2 =u1E12(s) + u2E22(s) = −u1λ+ u2(s− λ).

The transform vector Φ̃(s) is then

Φ̃(s) =

(
su1(s− λ)− su2λG̃(s)

(s− λ)2 − λ2G̃(s)
,
−su1λ+ su2(s− λ)

(s− λ)2 − λ2G̃(s)

)
.
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�
The following remark connects the system of equations that is required for the

evaluation of u, which was introduced in Theorem 4.2, to the adjoint matrix E(s).

Remark 4.6. The second statement of Theorem 4.2 practically says that each si,
i = 2, . . . , N , is a simple eigenvalue of the matrix H(s) + sI − Λ. Therefore, the
column vector ai belongs to the null space of the matrix H(si) + siI −Λ. Based on
some general results with respect to the form of the null space of a singular matrix (see
Theorem A.4, Remark A.6, and Corollary A.7 for details), without loss of generality
we can assume that the vector ai is any non-zero column of the matrix E(si). Namely,
if the mth column of E(si) is such a column, then

ai := ai(si) =
(
E(si)

){m}
N , i = 2, . . . , N. (4.14)

This observation is very useful because it allows us to calculate in a straightforward
way the desired system of equations and find closed form expressions for the vector u.
In addition, since the vectors ai, i = 2, . . . , N , are matrix functions evaluated at the
point s = si we define the derivative of each ai as

ai
(1) =

d

ds
ai(s)

∣∣∣∣∣
s=si

, i = 2, . . . , N.

The usefulness of the latter definition will be apparent in Section 4.3.2, where we
provide an extension of Theorem 4.2 that helps us to calculate our approximations.

Running example (continued). The transform vector Φ̃(s) found in the previous
block is expressed in terms of the vector u. Here, we find an exact expression for u.
If s2 is the only positive (and real) root of the equation det E(s) = 0, the vector u
satisfies the system of Eqs. (4.10)–(4.11)

1

λ
u1 +

1

λ
u2 =

1

λ
− µ

2
,

−λu1 + (s2 − λ)u2 = 0,

where for the derivation of the second equation we used the second column of the

matrix E(s). Namely, we used a2 =
(
E(s2)

){2}
N . It is easy to verify that the solution

to the above system is given by

u =

((
1− λ

s2

)(
1− λµ

2

)
,
λ

s2

(
1− λµ

2

))
.

�
Although Theorems 4.4 and 4.5 provide explicit expressions for the transform vector,

they may not be practical in cases where the LST of the service time distribution
of a real customer G̃(s), which is involved in the formulas, does not have a closed
form; i.e. Pareto distribution. In such cases, one would have to either consort to a
numerical evaluation of G̃(s) or approximate the transform vector Φ̃(s) in some other
fashion. This chapter focuses on the latter approach, which we work out in detail in
the following section by taking as starting point a mixture model for the service time
distribution of a real customer.
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4.2.2 Construction of the corrected phase-type approximations

We assume now that the service time distribution of a real customer is Gε(t), which
was defined in Eq. (4.1) as a mixture of a phase-type distribution and a heavy-tailed
one. We will eventually show that the queueing delay can be written also as a mixture,
in the sense that we can identify the queueing delay of a model with purely phase-
type service times and some additional terms that involve the heavy-tailed service
times. As a result, in order to derive our approximations, we first need to compute
the delay in a MArP/PH/1 queue and afterwards use this as a base to further develop
our approximations involving a heavy-tailed component. In the sequel, we give a more
detailed description of our technique.

In terms of Laplace transforms, we get for our mixture service time distribution
G̃ε(s) = (1− ε)F̃p(s) + εF̃h(s). As observed in Section 4.2.1, when the service time
distribution of a real customer is of phase type, then the determinant det E(s) and
the elements of the adjoint matrix E(s) are all rational functions in s. Therefore,
after the cancelation of the problematic factors s− si, i = 1, . . . , N , that appear in
the denominator (see the analysis below Theorem 4.2), the elements of the transform

vector Φ̃(s) are also rational functions in s and they can easily be inverted to find the
delay distribution.

Note now that the LST of the service time distribution of a real customer G̃ε(s)
can be written in the following two ways:

G̃ε(s) = F̃p(s) + ε
(
F̃h(s)− F̃p(s)

)
or G̃ε(s) = (1− ε)F̃p(s) + ε+ ε

(
F̃h(s)− 1).

In both formulas, the LST of the service time distribution G̃ε(s) can be seen as
perturbation of a phase-type distribution by a term that contains the heavy-tailed
component F̃h(s). The index ε is interpreted as the perturbation parameter and it
is used for all the parameters of the system that depend on it. Next, we explain
how these two different representations of the same formula can lead with the aid of
perturbation analysis to two different approximations for the queueing delay.

We start our discussion with the first formula. We set F̃h(s) ≡ F̃p(s) in the formula,
or in other words, we assume that all of the customers come from the same phase-
type distribution or equivalently that we replace all the heavy-tailed customers with
phase-type ones. Therefore, one can find with G̃ε(s) = F̃p(s) the delay of a simpler
MArP/PH/1 queue, by specialising the formulas of Section 4.2.1 to phase-type service
times. As a next step, we find all the parameters of the mixture model as perturbation
of the simpler phase-type model, which we use as base. Then, we write the queueing
delay of the mixture model in a series expansion in ε, where the constant term is the
delay of the MArP/PH/1 queue we used as base and all other terms contain the heavy-
tailed service times.

We define our approximation by taking the first two terms of the aforementioned
series, namely the up to ε-order terms. We call this approximation corrected replace
approximation. The characterisation “corrected” comes from the fact that the ε-
order term corrects the tail behaviour of the constant term, which as a phase-type
approximation of the queueing delay is incapable of capturing the correct tail behaviour.
Finally, the characterisation “replace” is due to the phase-type base model we used.
This approximation is the extension of Approximation 3.4 to MArPs. We give
analytically all the steps to derive the corrected replace approximation in Section 4.3.
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In a similar manner, we construct the corrected discard approximation by using the
second formula; see also Approximation 3.3. We first discard the heavy-tailed customers
from the system by simply setting F̃h(s) ≡ 1. Afterwards, we derive the queueing delay

of the phase-type base model with service time distribution G̃•ε (s) = (1− ε)F̃p(s) + ε
for a real customer, which has an atom of size ε at zero. Throughout the chapter,
we use G̃•ε (s) for the LST of the service time distribution of a real customer in the

discard base model instead of G̃ε(s) to avoid confusion with the mixture model. We
briefly discuss the details for the construction of the corrected discard approximation
in Section 4.4.

In the next sections, we provide the steps to construct the corrected replace and
the corrected discard approximations, which we call collectively corrected phase-type
approximations.

4.3 Corrected replace approximation

In this section, we construct the corrected replace approximation. First, we calculate
the queueing delay for the phase-type model that appears when we replace all the
heavy-tailed customers with phase-type ones in Section 4.3.1, i.e. we specialise the
results of Section 4.2.1 to phase-type service times. Later, in Section 4.3.2, we calculate
the parameters of the mixture model with service time distribution G̃ε(s) given by
Eq. (4.1) as perturbation of the parameters of the corresponding phase-type model,
with perturbation parameter ε. In Section 4.3.3, we find a series expansion in ε of
the queueing delay in the mixture model with constant term the queueing delay in
the phase-type base model and all higher terms involving the heavy-tailed services.
Finally, in Section 4.3.4, we construct the corrected replace approximation by keeping
only the first two terms of the aforementioned series. We start in the next section
with the analysis of the replace base model; i.e. the one containing only phase-type
service times.

4.3.1 Replace base model

When we replace the heavy-tailed customers with phase-type ones, we consider the
service time distribution G̃ε(s) = F̃p(s) for our phase-type base model. Observe that
this service time distribution is independent of the parameter ε, and so will be all the
other parameters of this simpler model. Thus, from a mathematical point of view, the
action of replacing the heavy-tailed service times with phase-type ones is equivalent
to setting ε = 0 in the mixture model.

To avoid overloading the notation, we omit the subscript “0” (which is a consequence
of the fact that ε = 0) from the parameters of the replace phase-type model and
we assume that the service time distribution of a real customer is some phase-type
distribution with LST G̃(s) := F̃p(s) = q(s)/p(s), where q(s) and p(s) are appropriate
polynomials without common roots. The degree of p(s) is M , and without loss of
generality, we choose the coefficient of its highest order term to be equal to 1. Finally,
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the degree of the polynomial q(s) is less than or equal to M − 1. Define

K = max
k 6=0

{
max
Γ⊂N

{
rank

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)}
: k =| Γ |, and Γ ⊂ S ⊂ N

}
.

(4.15)

Then, the following result holds.

Proposition 4.7. There exist xj and yj, with <(xj) > 0, <(yj) > 0, j = 1, . . . , rM ,
such that the Laplace transform w̃(s) of the queueing delay takes the form

w̃(s) =
uω
∏rM
j=1(s+ yj)∏rM

j=1(s+ xj)
,

where the vector u is calculated according to Theorem 4.2 with the LST of the service
times being equal to F̃p(s), and r is some positive integer less than or equal to K
defined by Eq. (4.15).

Proof. The main idea here is to find w̃(s) by taking G̃(s) = q(s)/p(s). In this case,
the determinant det E(s) (see Theorem 4.3) takes the form

det E(s) =
∑
S⊂N

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N∑
k=1

(
q(s)

p(s)

)k ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
,

(4.16)

and the numerator of w̃(s) (see Eq. (4.9) and Theorem 4.5) becomes

suE(s)ω =s

N∑
i=1

uiωi

N−1∑
k=0

(
q(s)

p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

(
q(s)

p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

(
q(s)

p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k;

S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)
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× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
. (4.17)

Observe that both the denominator (4.16) and the numerator (4.17) of w̃(s) are
rational functions with denominators the polynomial p(s) raised to some power. To
simplify as much as possible the expression of w̃(s), we multiply Eqs. (4.16) and (4.17)
with

(
p(s)

)r
, where r ∈ N is the highest possible power of p(s) that is involved in

the formulas. It is immediately obvious that r ≤ K. Therefore, we multiply both
Eqs. (4.16) and (4.17) with

(
p(s)

)r
When multiplied with

(
p(s)

)r
, the denominator of w̃(s) becomes

(
p(s)

)r
det E(s) =

(
p(s)

)r ∑
S⊂N

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
. (4.18)

The term
(
p(s)

)r∑
S⊂N λ

SζS
c

(s) det
(
Q(1)◦P

)S
S

is a polynomial of degree rM+N .

The coefficient of srM+N is found when we set S = ∅, and it is equal to 1.

Let now n be the degree of the polynomial q(s). Therefore, the second term of the
right hand side of Eq. (4.18) is a polynomial of degree at most n+ (r − 1)M +N − 1
(the highest order of s is found when |S| = 1). Since n ≤ M − 1, it is immediately
obvious that

(
p(s)

)r
det E(s) is a polynomial of degree N + rM , thus it has exactly

N + rM roots. From Theorem 4.2, we know that exactly N − 1 of its roots have
positive real part and that zero is also a root. We denote these roots as s1 = 0 and
s2, . . . , sN , and we assume them to be simple. We denote the remaining rM roots
with negative real part as −xj , j = 1, . . . , rM . Consequently, the denominator of w̃(s)
is written as (

p(s)
)r

det E(s) = s

N∏
k=2

(s− sk)

rM∏
j=1

(s+ xj). (4.19)

Similarly, the numerator of w̃(s) becomes

(
p(s)

)r
suE(s)ω =s

N∑
i=1

uiωi
(
p(s)

)r ∑
S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+s

N∑
i=1

uiωi

N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
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+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k;

S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
.

It is easy to verify that
(
p(s)

)r
suE(s)ω is also a polynomial of degree rM + N .

The coefficient of srM+N is equal to uω and it is determined by the term s
∑N
i=1 uiωi(

p(s)
)r∑

S⊂N\{i} λ
SζS

c

(s) det
(
Q(1) ◦ P

)S
S

for S = ∅. We know from Theorem 4.2,
that the vector u is such that the numbers sk, k ∈ N , are also roots of the numerator of
w̃(s). We denote the rest rM roots of the numerator as −yj , j = 1, . . . , rM . Therefore,
the numerator of w̃(s) is written as

(
p(s)

)r
suE(s)ω = uωs

N∏
k=2

(s− sk)

rM∏
j=1

(s+ yj). (4.20)

Combining Eqs. (4.19) and (4.20), the result is immediate.

The formula of w̃(s) is a rational function that corresponds to a phase-type
distribution. Applying Laplace inversion to w̃(s), we can find the exact tail probabilities
of the queueing delay; namely we can find P(W > t).

Running example (continued). Given that we have already calculated the trans-

form vector Φ̃(s), we can now calculate the Laplace transform w̃(s) of the queueing
delay for phase-type customers, by using Proposition 4.7. In our example, K = 1 and
consequently r = 1. In addition, ωT = (0, 2). Thus, w̃(s) under phase-type service
times is

w̃(s) =2φ̃2(s) = 2
s2u2 − sλ(u1 + u2)

(s− λ)2 − λ2F̃p(s)
= 2

s2p(s)u2 − sp(s)λ(u1 + u2)

(s− λ)2p(s)− λ2q(s)
.

Observe that both the numerator and the denominator of w̃(s) are polynomials of
degree M + 2. Moreover, Theorem 4.2 guarantees that 0 and s2 are common roots of
them. If −yj and −xj , j = 1, . . . ,M , <(xj),<(yj) > 0, are the remaining roots of the
numerator and the denominator, respectively, the Laplace transform of the queueing
delay can be written as

w̃(s) =
2u2s(s− s2)

∏M
j=1(s+ yj)

s(s− s2)
∏M
j=1(s+ xj)

=
2u2

∏M
j=1(s+ yj)∏M

j=1(s+ xj)
.
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�
As pointed out in Section 4.2.2, the LST of the service time distribution G̃ε(s)

(see Eq. (4.1)) can be seen as perturbation of F̃p(s) by the term ε
(
F̃h(s)− F̃p(s)

)
. In

the next section we write the parameters of the mixture model as perturbation of the
parameters of the replace base model.

4.3.2 Perturbation of the parameters of the replace base model

In order to find the queueing delay in the mixture model as a series expansion in ε with
constant term the queueing delay in the replace base model, we apply perturbation
analysis to the parameters of the mixture model that depend on ε. Thus, we first check
which of the parameters in the mixture model depend on ε and then we represent
them as perturbation of the parameters of the replace base model.

Since the matrices P, Q(1), Q(2), and Λ (see Section 4.2.1) depend only on
the arrival process, they are invariant under any perturbation of the service time
distribution. However, the matrix G̃ε(s), and consequently Hε(s) change, and so does

the stability condition (see Eqs. (4.4)–(4.6)). Let now F̃ ep (s) and F̃ eh(s) be the LSTs
of the stationary-excess service time distributions Fp(t) and Fh(t), and µp and µh be
the finite means of the phase-type and heavy-tailed service times, respectively. Then,
we obtain

G̃ε(s) =G̃(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2),

and

Hε(s) =G̃ε(s) ◦PΛ = H(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦Λ.

Finally, the stability condition takes the form

π(Λ−1 −Mε)e > 0, (4.21)

where Mε = M + εs
(
µh − µp

)
Q(2) ◦P.

Under the stability condition (4.21), Theorem 4.1 holds for the transform vector

Φ̃ε(s), for some row vector uε. More precisely, there exists a unique vector uε such

that the transform vector Φ̃ε(s) satisfies the system of equations:

Φ̃ε(s)
(
Hε(s) + sI −Λ

)
= suε, (4.22)

Φ̃ε(0)e = 1, (4.23)

where the vector uε is calculated according to Theorem 4.2.
Recall that the evaluation of uε goes through the evaluation of the positive

eigenvalues of the matrix

Eε(s) =Hε(s) + sI −Λ = E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦Λ. (4.24)

Observe that the above representation of the matrix Eε(s) is a linear perturbation in
ε of the matrix E(s) of the base model. Thus, according to results on perturbation
of analytic matrix functions (De Terán, 2011; Lancaster et al., 2003), we have that
the positive eigenvalues of the matrix Eε(s) and their corresponding eigenvectors are
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analytic functions in ε. Consequently, one can find a series representation in ε for
all the involved quantities that are necessary for the evaluation of the vector uε (see
Theorem 4.2). By using these parameters, we can find a complete series representation

for the transform vector Φ̃ε(s) and by applying Laplace inversion to each term of this
series we can find a formal expression for the queueing delay that is a series expansion
in ε. As we stated earlier, we only need the first two terms of the latter series to define
the corrected replace approximation. Therefore, in our analysis, we keep only the
terms up to order ε of each involved perturbed parameter.

In the next theorem, we provide an algorithm to calculate the first order approxi-
mation in ε of the vector uε, given that we have already calculated the vector u of the
replace base model, by specialising Theorem 4.2 to phase-type service times.

Theorem 4.8. Let u be the unique solution to the Eqs. (4.10)–(4.11) for the replace
base model. If the roots s2, . . . , sN of det

(
H(s) + sI −Λ

)
= 0 with positive real part

are simple, then

1. the equation det
(
Hε(s) + sI − Λ

)
= 0 has exactly N non-negative solutions

sε,1, . . . , sε,N , with sε,1 = 0 and sε,i = si − εδi +O(ε2) for i = 2, . . . , N , where

δi : = δ(si) =

∑N
j=1 det

(
E(si)•1, . . . ,K(si)•j , . . . ,E(si)•N

)∑N
j=1 det

(
E(si)•1, . . . ,E(1)(si)•j , . . . ,E(si)•N

) ,
and K(s) = s

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦Λ.

2. We assume that the stability condition (4.21) is satisfied and we set A =(
Λ−1e,a2, . . . ,aN

)
(see Eq. (4.14)) and c =

(
π(Λ−1 −M)e, 0, . . . , 0

)
. Then,

the vector uε is the unique solution to the system of N linear equations

uε
(
A − εB +O(ε2U)

)
= c + εd, (4.25)

where B =
(
0, δ2a2

(1)−k2, . . . , δNaN
(1)−kN

)
and d =

(
(µp−µh)πQ(2)◦ Pe, 0,

. . . , 0
)
, with ki, i = 2, . . . , N , being a column vector with coordinates

ki,j =(−1)m+j
N−1∑
k=1

det

((
E(si)

N\{j}
N\{m}

)
•1
, . . . ,

(
K(si)

N\{j}
N\{m}

)
•k
, . . . ,

(
E(si)

N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

and the choice of m explained in Remark 4.6.

Proof. For the first part, we write det
(
Hε(s) + sI −Λ

)
as a perturbed function of

det
(
H(s) + sI − Λ

)
and we apply perturbation analysis to show that the eigenvalues

with positive real part of the first determinant are perturbation of the latter’s eigenval-
ues with positive real part. Namely, since K(0) is an N ×N zero matrix, it is evident
that sε,1 = 0 is an eigenvalue of the matrix Hε(s) + sI−Λ (see Eq. (4.24)). According
to Corollary A.11, the numbers sε,i, i = 2, . . . , N , are also simple eigenvalues of this
matrix. Thus, according to Theorem 4.2, there are no other roots of the equation
det
(
E(s) + εK(s)

)
= 0 with non-negative real part besides the values sε,i, i ∈ N .
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For the second part of the proof, by using Remark 4.6 and perturbation analysis,
we find the form of the right eigenvectors of det

(
Hε(s)+sI−Λ

)
that correspond to its

eigenvalues with positive real part. Then, we follow closely the proof of Theorem 4.2
to find the system of equations that the vector uε satisfies. More precisely, by using
Theorem A.12, we can evaluate N − 1 column vectors wε,i such that(

Hε(sε,i) + sε,iI −Λ
)
wε,i = 0, i = 2, . . . , N.

Since sε,i 6= 0, i = 2, . . . , N , post-multiplying Eq. (4.22) with s = sε,i by wε,i, we
obtain

uεwε,i = 0, i = 2, . . . , N.

To derive the remaining equation, we take the derivative of Eq. (4.22) with respect to
s, yielding

Φ̃ε(s)
(
H(1)
ε (s) + I

)
+ Φ̃(1)

ε (s)
(
Hε(s) + sI −Λ

)
= uε.

By setting s = 0, we get

Φ̃ε(0)
(
H(1)
ε (0) + I

)
+ Φ̃(1)

ε (0)
(
P− I

)
Λ = uε.

Post-multiplying by Λ−1e gives

Φ̃ε(0)
(
H(1)
ε (0) + I

)
Λ−1e + Φ̃(1)

ε (0)
(
P− I

)
ΛΛ−1e = uεΛ

−1e.

Finally, by using (P−I)e = 0, H
(1)
ε (0) = −MΛ+ε

(
µp−µh

)
Q(2)◦PΛ, and Φ̃ε(0) = π

(where the latter follows from Eq. (4.22) with s = 0 and the normalisation Eq. (4.23)),
the above can be simplified to

π
(
Λ−1 −M

)
e + ε(µp − µh)πQ(2) ◦Pe = uεΛ

−1e.

The uniqueness of the solution follows from the general theory of Markov chains that
under the condition of stability, there is a unique stationary distribution and thus also
a unique solution Φ̃ε(s) to the Eqs. (4.22) and (4.23). This completes the proof.

Remark 4.9. When the number of states is N = 2, the column vector k2 of Theo-
rem 4.8 is equal to

k2 =
(
K22(s2),−K21(s2)

)T
or k2 =

(
−K12(s2),K11(s2)

)T
,

depending on whether m = 1 or m = 2, respectively. The case N = 1 is merely the
M/G/1 queue, which was treated in Chapter 2 (due to the duality between the two
models).

Running example (continued). In order to evaluate vector uε, we first need to
calculate the perturbed root sε,2, and more precisely the term δ2. Observe that in our

case only element K21(s) = sλ
(
µpF̃

e
p (s) − µhF̃ eh(s)

)
of matrix K(s) is not equal to

zero. Then, the numerator of δ2 becomes

det
(
E(s2)

{1}
N ,K(s2)

{2}
N
)

+ det
(
K(s2)

{1}
N ,E(s2)

{2}
N
)

= −s2λ
2
(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
,
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and its denominator takes the form

det
(
E(s2)

{1}
N ,E(1)(s2)

{2}
N
)

+ det
(
E(1)(s2)

{1}
N ,E(s2)

{2}
N
)

= 2(s2 − λ)− λ2F̃ (1)
p (s2),

because the first derivative of matrix E(s) is

E(1)(s) =

(
1 0

λF̃
(1)
p (s) 1

)
.

Combining the above, we have

δ2 =
−s2λ

2
(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
2(s2 − λ)− λ2F̃

(1)
p (s2)

.

Recall that for the determination of the vector a2 we had used the second column of
the adjoint matrix, namely we had chosen m = 2. Thus, according to Remark 4.9
vector k2 is a zero column vector of dimension 2. Since a2

(1) is the second column of
matrix E(1)(s), it holds that B22 = δ2 and all other elements of B are equal to zero.
Finally, d =

(
1
2 (µp − µh), 0

)
. �

By matching the coefficients of ε on the left and right side of Eq. (4.25), we can
write the vector of unknown parameters uε as uε = u + εz +O(ε2e). The exact form
of vector z is given in the following lemma, which we give without proof.

Lemma 4.10. Vector uε can be written in the form

uε = u + εz +O(ε2e),

where

z =
(
cA−1B + d

)
A−1.

Running example (continued). For the evaluation of z we need to find the inverse
of matrix A, namely we need

A−1 =
λ

s2

(
s2 − λ λ
− 1
λ

1
λ

)
.

By observing that cA−1 = u and following the calculations of Lemma 4.10 we obtain

z =
λ

s2

[
1

2
(µp − µh)(s2 − λ)− 1

s2

(
1− λµp

2

)
δ2,

λ

2
(µp − µh) +

1

s2

(
1− λµp

2

)
δ2

]
.

�
In our analysis, we used first order perturbation with respect to the parameter

ε. The exact same procedure can be followed if higher order terms of ε are desired.
However, this would result to the increase of the complexity of the formulas. In the
next section, we provide the formulas for the evaluation of the perturbed transform
vector Φ̃ε(s) and the Laplace transform w̃ε(s) of the queueing delay.
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4.3.3 Delay distribution of the perturbed model

If Eε(s) is the adjoint matrix of Eε(s) (see Eq. (4.24)), then the ith element of the

transform vector Φ̃ε(s) is defined as

φ̃ε,i(s) =
suεEε(s)ei
det Eε(s)

.

Therefore, to find the exact formula of φ̃ε,i(s) we need to find det Eε(s) and suεEε(s)ei.
By using the binomial identity and omitting higher order powers of ε, we have that(
F̃p(s)+ εs

(
µpF̃

e
p (s)−µhF̃ eh(s)

))k
=
(
F̃p(s)

)k
+ εk

(
F̃p(s)

)k−1
s
(
µpF̃

e
p (s)−µhF̃ eh(s)

)
+

O(ε2). We give the following lemmas without proof. The first one gives the formula
for the evaluation of the denominator of the desired quantity.

Lemma 4.11. If det E(s) is evaluated according to Theorem 4.3 with G̃(s) = F̃p(s),
then det Eε(s) can be written as perturbation of det E(s) as follows

det Eε(s) = det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

) N∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c

(s)

×det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+O(ε2).

Running example (continued). To find the perturbed determinant det Eε(s),
observe that only the combination k = 1 with Γ = {1} and S = N gives a non-zero
coefficient for ε. Therefore,

det Eε(s) = det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
λN ζ∅(s)

× det
((

Q(1) ◦P
){2}
N on

(
Q(2) ◦P

){1}
N

)
= det E(s)− ελ2s

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
.

�
The next lemma gives the numerator of each φ̃ε,i(s), i ∈ N .

Lemma 4.12. If suE(s)ei is evaluated according to Theorem 4.5 with G̃(s) = F̃p(s),
then suεEε(s)ei can be written as perturbation of suE(s)ei as follows

suεEε(s)ei =suE(s)ei

+εs

[
zi

N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+zi
∑

S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S
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+

N∑
l=1
l 6=i

zl(−1)l+i
N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

zl(−1)l+i
N−2∑
k=0

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
+s
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
ui

N−1∑
k=1

k
(
F̃p(s)

)k−1

×
∑

Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

))]
+O(ε2),

where zi, i ∈ N , are the coordinates of the vector z given in Lemma 4.10.

Running example (continued). By doing the calculations for each state without
taking into account terms that are equal to zero, we obtain:

suεEε(s)e1 =suE(s)e1 + εs

[
z1λ
∅ζ{2}(s) det

(
Q(1) ◦P

)∅
∅

+ s
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
u2(−1)2+1(−1)|∅|λ∅∪{1}ζ∅(s)q

(2)
21 p21

)
+ z2(−1)2+1F̃p(s)(−1)|∅|λ∅∪{1}ζ∅(s)q

(2)
21 p21

]
+O(ε2)

=suE(s)e1 + εs
(
z1(s− λ)− z2λF̃p(s) + s

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
(−λu2)

)
+O(ε2),
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and

suεEε(s)e2 =suE(s)e2 + εs

[
z2λ
∅ζ{1}(s) det

(
Q(1) ◦P

)∅
∅

+ z1(−1)1+2(−1)|∅|λ∅∪{2}ζ∅(s)q
(1)
12 p12

]
+O(ε2)

=suE(s)e2 + εs
(
− z1λ+ z2(s− λ)

)
+O(ε2).

�
By combining the results of Lemmas 4.11–4.12, we have the following proposition

for the Laplace transform w̃ε(s) of the queueing delay.

Proposition 4.13. If w̃(s) is calculated according to Proposition 4.7 for the replace
base model, then there exist unique coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and
α′′j,l, β

′′
j,l, γ

′′
j,l, j = 1, . . . , σ, l = 1, . . . , rj , such that the Laplace transform w̃ε(s) of the

queueing delay of the mixture model satisfies

w̃ε(s) =w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+

σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2),

where the vector z given in Lemma 4.10.

Proof. First, we show how we can factorise the numerator and the denominator of
w̃ε(s) so that we recognise w̃(s) as a factor of w̃ε(s). The remaining factors of w̃ε(s)
form a series expansion in ε, from which we keep only the ε-order terms. The latter
terms involve the Laplace transforms of rational functions to which we apply simple
fraction decomposition to complete the proof.

Recall now that r is the maximum power of p(s) that appears in the formulas.
Therefore, to use perturbation analysis, we multiply both det Eε(s) and suεEε(s)ω
with

(
p(s)

)r
. So, if we set

ξrM+N−1(s) =

N∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1 ∑
Γ⊂N
|Γ|=k;
S⊂N
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
, (4.26)

then,(
p(s)

)r
det Eε(s) =

(
p(s)

)r
det E(s) + εs

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξrM+N−1(s) +O(ε2).
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Note that the polynomial ξrM+N−1(s) is of degree at most rM + N − 1, and the

coefficient of srM+N−1 is equal to γ =
∑N
i=1 λi det

(
Q(2) ◦ P

){i}
{i} =

∑N
i=1 λiq

(2)
ii pij .

Theorem 4.8 guarantees that the function
(
p(s)

)r
det Eε(s) has exactly N − 1 roots

with positive real part and it also has sε,1 = 0. The roots with positive real part are
of the form sε,k = sk − εδk +O(ε2), k = 2, . . . , N , where

δk =

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
ξrM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + xj)

=

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
ξrM+N−1(sk)w̃(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

. (4.27)

Thus, if we set

d(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξrM+N−1(s)w̃(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δk
s− sk

, (4.28)

the denominator of w̃ε(s) multiplied by
(
p(s)

)r
can be written as

(
p(s)

)r
det Eε(s) = s

rM∏
j=1

(s+ xj)

N∏
k=2

(s− sk + εδk +O(ε2))
(
1 + εd(s) +O(ε2)

)
.

(4.29)

Note that the function d(s) is well defined in the positive half plane due to the definition
(4.27) of δk, k = 2, . . . , N . Similarly, if we set

ξi,l,rM+N−2(s) =1{l=i}

N−1∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1 ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+1{l 6=i}

[
(−1)l+i

N−1∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1 ∑
Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+ (−1)l+i

N−2∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1 ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)]
,

(4.30)
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and

ξ′i,l,rM+N−1(s) =1{l=i}

[(
p(s)

)r ∑
S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)]

+1{l 6=i}

[
(−1)l+i

N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+(−1)l+i

N−2∑
k=0

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)]
, (4.31)

then

(
p(s)

)r
suεEε(s)ω =

(
p(s)

)r
suE(s)ω + εs

[
N∑
i=1

ωi

N∑
l=1

zlξ
′
i,l,rM+N−1(s)

+ s
(
µpF̃

e
p (s)− µhF̃ eh(s)

) N∑
l=1

ωi

N∑
l=1

ulξi,l,rM+N−2(s)

]
+O(ε2).

Note that the polynomial
∑N
l=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(s) is of degree rM + N − 1,

and the coefficient of srM+N−1 is zω. Analogously, the polynomial s
∑N
l=1 ωi

∑N
l=1 ul

× ξi,l,rM+N−2(s) is of degree at most rM + N − 1, and the coefficient of srM+N−1

is equal to β =
∑N
l=1 ωi

∑N
l=1 ul ×

(
1{l=i}

∑N
j=1
j 6=i

λjq
(2)
jj pjj + 1{l 6=i}(−1)l+iλiq

(2)
li pli

)
.

The first part is for S = Γ = {j}, and the second part for S = Γ = ∅. Theorem 4.8
guarantees that the roots sε,k, k ∈ N , are also roots of the numerator of w̃ε(s).
Therefore, applying perturbation analysis to

(
p(s)

)r
suεEε(s)ω results in an equivalent

definition for each δk, k = 2, . . . , N , as

δk =

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
sk
∑N
i,l=1 ωiulξi,l,rM+N−2(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)
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+

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

. (4.32)

Now, if we set

n(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
s
∑N
i,l=1 ωiulξi,l,rM+N−2(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

+

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δk
s− sk

, (4.33)

the numerator of w̃ε(s) multiplied by
(
p(s)

)r
can be written as

(
p(s)

)r
suεEε(s)ω = uωs

rM∏
j=1

(s+ yj)

N∏
k=2

(
s− sk + εδk +O(ε2)

)
×
(
1 + εn(s) +O(ε2)

)
.

(4.34)

Note that the function n(s) is well defined in the positive half plane due to the
definition (4.32) of δk, k = 2, . . . , N . Combining (4.29) and (4.34), we obtain

w̃ε(s) =
uω
∏rM
j=1(s+ yj)∏rM

j=1(s+ xj)
· 1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)

=w̃(s)
(
1 + εn(s) +O(ε2)

)(
1− εd(s) +O(ε2)

)
=w̃(s) + εw̃(s)

(
n(s)− d(s)

)
+O(ε2)

=w̃(s) + ε
1

uω
w̃(s)

(∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)s∑N
i=1 ωi

∑N
l=1 ulξi,l,rM+N−2(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

ξrM+N−1(s)∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

)
+O(ε2)

=w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

rM∑
j=1

α′j · yj
s+ yj

)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+

rM∑
j=1

β′j · yj
s+ yj

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+

rM∑
j=1

γ′j · yj
s+ yj

)]
+O(ε2),

where the last equality comes from simple fraction decomposition under the assumption
that the roots −yj , j = 1, . . . , rM , are simple. The coefficients αk, βk, γk, k = 2, . . . , N ,
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and α′j , β
′
j , γ
′
j , j = 1, . . . , rM , are as follows

αk =

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (4.35)

βk =
sk
∑N
i=1 ωi

∑N
l=1 ulξi,l,rM+N−2(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (4.36)

γk =
ξrM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (4.37)

α′j =

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(−yj)

yi,j
∏N
k=2(−yj − sk)

∏rM
l=1
l 6=j

(−yj + yl)
,

β′j =
−
∑N
i=1 ωi

∑N
l=1 ulξi,l,rM+N−2(−yj)∏N

k=2(−yj − sk)
∏rM
l=1
l 6=j

(−yj + yl)
,

γ′j =
ξrM+N−1(−yj)

yj
∏N
k=2(−yj − sk)

∏rM
l=1
l 6=j

(−yj + yl)
.

The above results hold when all roots −yj , j = 1, . . . , rM , are simple. Suppose now
that only σ of the roots are distinct and that the multiplicity of root −yj , j = 1, . . . , σ,
is rj , such that

∑σ
j=1 rj = rM . In this case,

w̃ε(s) =w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+

σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yi,j)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2), (4.38)

where αk, βk, and γk, k = 2, . . . , N , are defined through (4.35)–(4.37). For each
j = 1, . . . , σ, the coefficients α′′j,p, p = 1, . . . , rj , are the unique solution to the
following linear system of rj equations

d

dsn

[
N∑
i=1

ωi

N∑
l=1

zlξ
′
i,l,rM+N−1(s)

] ∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

α′′j,p (yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣
s=−yj

,

for n = 0, . . . , rj . Similarly, for each j = 1, . . . , σ, the coefficients β′′j,p and γ′′j,p,
p = 1, . . . , rj , are the respective unique solutions to the following two linear system of
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rj equations

d

dsn

[
s

N∑
i=1

ωi

N∑
l=1

ulξi,l,rM+N−2(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

β′′j,p(yj)
rj−p+1(s+ yj)

p−1

] ∣∣∣∣∣
s=−yj

,

d

dsn

[
ξrM+N−1(s)

] ∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

γ′′j,p(yj)
rj−p+1(s+ yj)

p−1

] ∣∣∣∣∣
s=−yj

,

for n = 0, . . . , rj .

Before we evaluate w̃ε(s) in our running example, we apply Laplace inversion to
the coefficient of ε in the series expansion of w̃ε(s). Finally, let Be and Ce be the
generic stationary excess phase-type and heavy-tailed service times, respectively.

Theorem 4.14. If θ̃(s) is the coefficient of ε in the series expansion of w̃ε(s) in

Proposition 4.13, its Laplace inversion Θ(t) = L−1{θ̃(s)} is equal to the expression

Θ(t) = 1
uω

(
Θ1(t) + Θ2(t)

)
, where Θ1(t),Θ2(t) are given as follows

Θ1(t) =
(
zω −

N∑
k=2

αk
sk

)
P(W > t)

+
(
β −

N∑
k=2

βk
sk

)(
µpP(W +Be > t)− µhP(W + Ce > t)

)
−
(
γ −

N∑
k=2

γk
sk

)(
µpP(W +W

′
+Be > t)− µhP(W +W

′
+ Ce > t)

)
−

σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W

′
+Be + Erj−l+1(yj) > t

)
− µhP

(
W +W

′
+ Ce + Erj−l+1(yj) > t

))
− β′′j,l

(
µpP

(
W +Be + Erj−l+1(yj) > t

)
− µhP

(
W + Ce + Erj−l+1(yj) > t

))
− α′′j,lP

(
W + Erj−l+1(yj) > t

))
,

Θ2(t) =−
N∑
k=2

1

sk

(
γk

(
µpP

(
t < W +W

′
+Be < t+ E(sk)

)
− µhP

(
t < W +W

′
+ Ce < t+ E(sk)

))
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− βk
(
µpP

(
t < W +Be < t+ E(sk)

)
− µhP

(
t < W + Ce < t+ E(sk)

))
− αkP

(
t < W < t+ E(sk)

))
,

and W
′

is independent and follows the same distribution of W .

Proof. Here, we follow the notation we introduced in Proposition 4.13. We denote by
θ̃(s) the correction term (the coefficient of ε) in the expression of w̃ε(s). In order to

apply Laplace inversion to θ̃(s), we first reorder the involved terms (see Eq. (4.38)) as

θ̃(s) =
1

uω
w̃(s)

[(
zω + β

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γ
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

)

+

N∑
k=2

1

s− sk

(
αk + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

)

+

σ∑
j=1

rj∑
l=1

1

(s+ yj)rj−l+1

(
α′′j,l + β′′j,l

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γ′′j,l

(
µpF̃

e
p (s)

− µhF̃ eh(s)
)
w̃(s)

)]
. (4.39)

From the above formula it is evident that only the terms in the middle bracket cannot
be inverted directly as they are, because of the singularities they seem to have in the
positive half plane; i.e. they contain the factors (s− sk)−1, k = 2, . . . , N . Thus, we
treat them separately in the next lines. From the two equivalent definitions (4.27) and
(4.32) of the perturbation terms δk, k = 2, . . . , N , and the relations (4.35)–(4.37) we
obtain that

αkw̃(sk) + βk
(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
w̃(sk)− γk

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)(
w̃(sk)

)2
= 0,

for k = 2, . . . , N . With the aid of the above equations, we show that eventually all
the problematic factors (s− sk)−1, k = 2, . . . , N cancel and the simplified terms we
obtain from this cancelation are well defined on the positive half. The above equations
are equivalent to

0 =αk

∫ ∞
x=0

e−skxdP(W ≤ x) + βi,k

(
µp

∫ ∞
x=0

e−skxdP(W +Be ≤ x)

− µh
∫ ∞
x=0

e−skxdP(W + Ce ≤ x)
)
− γk

(
µp

∫ ∞
x=0

e−skxdP(W +W
′
+Be ≤ x)

− µh
∫ ∞
x=0

e−skxdP(W +W
′
+ Ce ≤ x)

)
, (4.40)

k = 2, . . . , N . We first show that

L−1

(
N∑
k=2

1

s− sk

(
αkw̃(s) + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)
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− γk
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
w̃(s)

)2))

=

N∑
k=2

[
γk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +W
′
+Be ≤ y)

− µh
∫ ∞
y=x

esk(x−y)dP(W +W
′
+ Ce ≤ y)

)
− αk

∫ ∞
y=x

esk(x−y)dP(W ≤ y)

− βk
(
µp

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)− µh
∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)

)]
.

(4.41)

Since Laplace transforms turn convolutions of functions into their product, using the
property

∫∞
y=0

f(y)dy =
∫ x
y=0

f(y)dy +
∫∞
y=x

f(y)dy and the Eqs. (4.40) we obtain

L

{
N∑
k=2

[
γk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +W
′
+Be ≤ y)

− µh
∫ ∞
y=x

esk(x−y)dP(W +W
′
+ Ce ≤ y)

)

− βk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)− µh
∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)

)

− αk
∫ ∞
y=x

esk(x−y)dP(W ≤ y)

]}

=L

{
N∑
k=2

[
− γk

(
µp

∫ x

y=0

esk(x−y)dP(W +W
′
+Be ≤ y)

− µh
∫ x

y=0

esk(x−y)dP(W +W
′
+ Ce ≤ y)

)

+ βk

(
µp

∫ x

y=0

esk(x−y)dP(W +Be ≤ y)− µh
∫ x

y=0

esk(x−y)dP(W + Ce ≤ y)

)]

+ αk

∫ x

y=0

esk(x−y)dP(W ≤ y)

}

=

N∑
k=2

1

s− sk

(
αkw̃(s) + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

− γk
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
w̃(s)

)2))
,

which proves (4.41).

To find the tail probabilities that correspond to the terms in the middle bracket
of Eq. (4.39), we integrate the inverted Laplace transform in Eq. (4.41) from t to ∞,



106 Corrected phase-type approximations in a Markovian environment

and we obtain

N∑
k=2

[
γk

(
µp

∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +W
′
+Be ≤ y)dx

− µh
∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +W
′
+ Ce ≤ y)dx

)

− βk

(
µp

∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)dx

− µh
∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)dx

)
− αk

∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W ≤ y)dx

]

=

N∑
k=2

[
γk

(
µp

∫ ∞
y=t

e−skydP(W +W
′
+Be ≤ y)

∫ y

x=t

eskxdx

− µh
∫ ∞
y=t

e−skydP(W +W
′
+ Ce ≤ y)

∫ y

x=t

eskxdx

)

− βk

(
µp

∫ ∞
y=t

e−skydP(W +Be ≤ y)

∫ y

x=t

eskxdx

− µh
∫ ∞
y=t

e−skydP(W + Ce ≤ y)

∫ y

x=t

eskxdx

)

− αk
∫ ∞
y=t

e−skydP(W ≤ y)

∫ y

x=t

eskxdx

]

=

N∑
k=2

[
γk
sk

(
µp

∫ ∞
y=t

dP(W +W
′
+Be ≤ y)− µh

∫ ∞
y=t

dP(W +W
′
+ Ce ≤ y)

)

− βk
sk

(
µp

∫ ∞
y=t

dP(W +Be ≤ y)− µh
∫ ∞
y=t

dP(W + Ce ≤ y)

)

− γk
sk

(
µp

∫ ∞
y=t

e−sk(y−t)dP(W +W
′
+Be ≤ y)

− µh
∫ ∞
y=t

e−sk(y−t)dP(W +W
′
+ Ce ≤ y)

)

+
βk
sk

(
µp

∫ ∞
y=t

e−sk(y−t)dP(W +Be ≤ y)− µh
∫ ∞
y=t

e−sk(y−t)dP(W + Ce ≤ y)

)

+
αk
sk

∫ ∞
y=t

e−sk(y−t)dP(W ≤ y)− αk
sk

∫ ∞
y=t

dP(W ≤ y)

]

=

N∑
k=2

1

sk

[
− γk

(
µpP

(
t < W +W

′
+Be < t+ E(sk)

)
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− µhP
(
t < W +W

′
+ Ce < t+ E(sk)

))

+ βk

(
µpP

(
t < W +Be < t+ E(sk)

)
− µhP

(
t < W + Ce < t+ E(sk)

))

+ αkP
(
t < W < t+ E(sk)

)]

+

N∑
k=2

1

sk

[
γk

(
µpP(W +W

′
+Be > t)− µhP(W +W

′
+ Ce > t)

)

− βk

(
µpP(W +Be > t)− µhP(W + Ce > t)

)
− αkP(W > t)

]
.

By using now the property L−1{an+1/(s + a)n+1} =
1

n!
an+1tn × e−at, t ≥ 0, of

the inverse Laplace transform, we see that the terms
(yj)

rj−l+1

(s+ yj)rj−l+1
in Eq. (4.39)

correspond to the Laplace transform of an Erj−l+1(yj) r.v. Combining all the above,
the result in immediate, which completes the proof of the theorem.

Remark 4.15. Note that an Ek(λ) distribution (k ≥ 1) is defined for a non-negative
real valued rate λ. To state Theorem 4.14, we assumed that all the roots sk, k =
2, . . . , N , and −yj , j = 1, . . . , rM , are real-valued. In most systems, this assumption in
not always true. Recall that the previously mentioned roots are roots of a polynomial
with real coefficients (see also the analysis above Eq. (4.20)). Therefore, from the
Complex Conjugate Root Theorem it holds that if e.g. s2 is complex, then its complex
conjugate s2 is also a root. Thus, we write E<(s2) instead of Es2 and Es2 , because
every parameter or function that depends on s2 appears as a complex conjugate of
the corresponding quantity that depends on s2, and their imaginary parts cancel out.
The same result holds for all other roots.

Running example (continued). For the evaluation of the Laplace transform

w̃ε(s) = Φ̃ε(s)ω of the queueing delay Wε, we follow the steps in the proof of Proposi-
tion 4.13. Here we show how the expressions of the proof are simplified for our running
example.

Recall that in our example, r = 1, and assume that only σ of the roots −yj are
distinct and that the multiplicity of each of them is rj , such that

∑σ
j=1 rj = M .

Therefore, we first find p(s) det Eε(s) and p(s)suεEε(s)ω. If we set ξ(s) = −λ2p(s),
ξ′1(s) = −2λp(s), and ξ′2(s) = 2(s− λ)p(s), then we obtain

p(s) det Eε(s) = p(s) det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξ(s) +O(ε2),

p(s)suεEε(s)ω = p(s)suE(s)ω + εs

2∑
l=1

zlξ
′
l(s) +O(ε2).
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We define the functions d(s) and n(s) (see Eqs. (4.28) and (4.33) respectively) as

d(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξ(s)w̃(s)

uω(s− s2)
∏σ
j=1(s+ yj)rj

− δ2
s− s2

,

n(s) =

∑2
l=1 zlξ

′
l(s)

uω(s− s2)
∏σ
j=1(s+ yj)rj

− δ2
s− s2

,

where the two equivalent definitions of δ2 (see Eqs. (4.27) and (4.32)) take the form

δ2 =

(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
ξ(s2)w̃(s2)

uω
∏σ
j=1(s2 + yj)rj

=

∑2
l=1 zlξ

′
l(s2)

uω
∏σ
j=1(s2 + yj)rj

.

Following the calculations after Eq. (53) we get that

w̃ε(s) = w̃(s) + ε
1

uω
w̃(s)

( ∑2
l=1 zlξ

′
l(s)

(s− s2)
∏σ
j=1(s+ yj)rj

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

ξ(s)

(s− s2)
∏σ
j=1(s+ yj)rj

)
+O(ε2). (4.42)

Now, we apply simple fraction decomposition to the rational functions∑2
l=1 zlξ

′
l(s)

(s− s2)
∏σ
j=1(s+ yj)rj

,
ξ(s)

(s− s2)
∏σ
j=1(s+ yj)rj

.

Thus, we calculate

α2 =

∑2
l=1 zlξ

′
l(s2)∏σ

j=1(s2 + yj)rj
, γ2 =

ξ(s2)∏σ
j=1(s2 + yj)rj

,

and for j = 1, . . . , σ, p = 1, . . . , rj , the coefficients α′′j,p and γ′′j,p, are respectively the
unique solutions to the following two linear systems of rj equations

d

dsn

[
2∑
l=1

zlξ
′
l(s)

] ∣∣∣∣∣
s=−yj

=
d

dsn

[
(s− s2)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

α′′j,p(yj)
rj−p+1(s+ yj)

p−1

] ∣∣∣∣∣
s=−yj

,

d

dsn

[
ξ(s)

] ∣∣∣∣∣
s=−yj

=
d

dsn

[
(s− s2)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

γ′′j,p(yj)
rj−p+1(s+ yj)

p−1

] ∣∣∣∣∣
s=−yj

,
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n = 0, . . . , rj . In addition, the polynomial ξ(s) is of degree M and the polynomial∑2
l=1 zlξ

′
l(s) is of degree M + 1, with the coefficient of sM+1 equal to 2z2. Combining

all these, we write Eq. (4.42) as

w̃ε(s) =w̃(s) + ε
1

2u2
w̃(s)

[(
2z2 +

α2

s− s2
+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ2

s− s2
+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2).

Observe that in this case γ = 0 and all β coefficients are also equal to zero. Thus, if
θ̃(s) is the coefficient of ε in the series expansion of w̃ε(s), we apply Theorem 4.14 to
find its Laplace inversion as

Θ(t) =
1

2u2

[(
2z2 −

α2

s2

)
P(W > t)

+
γ2

s2

(
µpP(W +W

′
+Be > t)− µhP(W +W

′
+ Ce > t)

)
− 1

s2

(
γ2

(
µpP

(
t < W +W

′
+Be < t+ E(s2)

)
− µhP

(
t < W +W

′
+ Ce < t+ E(s2)

))
− α2P

(
t < W < t+ E(s2)

))

−
σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W

′
+Be + Erj−l+1(yj) > t

)
− µhP

(
W +W

′
+ Ce + Erj−l+1(yj) > t

))
− α′′j,lP

(
W + Erj−l+1(yj) > t

))]
,

where W
′

is independent and follows the same distribution of W . �
By applying Laplace inversion to the first two terms of the series expansion in ε of

the queueing delay, we obtain that the first term is a phase-type approximation of
the queueing delay that results from the replace base model (see Section 4.3.1). In
addition, the second term, which we refer to as correction term and is found explicitly
in Theorem 4.14, involves linear combinations of terms that have a probabilistic
interpretation. More precisely, these terms are either tail probabilities of convoluted
r.v. or probabilities for some of the aforementioned convoluted r.v. that lie between a
fixed value t and the same value t shifted by an exponential time. Finally, observe
that these convoluted r.v. involve the heavy-tailed stationary-excess service time r.v.
Ce at most once. Combining the results of Proposition 4.13 and Theorem 4.14, in the
next section we define our approximations.

4.3.4 Corrected replace approximations

The goal of this section is to provide approximations that maintain the numerical
tractability of the phase-type approximations, but improve their accuracy, and that
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are able to capture the tail behaviour of the exact delay distribution. As we pointed
out in Section 3.3, a single appearance of a stationary excess heavy-tailed service time
Ce is sufficient to capture the correct tail behaviour of the exact queueing delay. As we
observed in Section 4.3.3, the correction term contains terms with single appearances of
Ce. For this reason, the proposed approximation for the queueing delay is constructed
by the first two terms of its respective series expansion for the queueing delay. We
propose the following approximation:

Approximation 4.16. The corrected replace approximation of the survival function
P(Wε > t) of the exact queueing delay is defined as

ϕ̂r,ε(t) := P(W > t) + ε
1

uω

(
Θ1(t) + Θ2(t)

)
,

where P(W > t) is the replace phase-type approximation of P(Wε > t), and
Θ1(t),Θ2(t) are given in Theorem 4.14.

The following result shows that the corrected replace approximation makes sense
rigorously.

Proposition 4.17. If P(W > t) is the replace approximation of the exact queueing
delay P(Wε > t), then as ε→ 0, it holds that

P(Wε > t)− P(W > t)

ε
→ Θ(t),

where Θ(t) is given in Theorem 4.14.

Proof. In Proposition 4.13, we found that

w̃ε(s) = w̃(s) + εθ̃(s) +O(ε2),

where θ̃(s) is the LST of the signed measure Θ(t) introduced in Proposition 4.14. The
above equation implies that

w̃ε(s)− w̃(s)

ε
= θ̃(s) + o(1). (4.43)

We set n =
1

ε
and we define the sequence of functions

χ̃n(s) :=
1

ε

(
w̃ε(s)− w̃(s)

)
,

where χ̃n(s) is the LST of the measure Xn(t) =
(
P(Wε > t)−P(W > t)

)
/ε. By using

Eq. (4.43), we obtain that χ̃n(s) → θ̃(s), for all s > 0 as n → ∞ (or equivalently
ε→ 0). Thus, it follows from the Extended Continuity Theorem (Feller, 1971, Theorem
XIII.2) that

P(Wε > t)− P(W > t)

ε
→ Θ(t),

which completes the proof.
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Although Approximation 4.16 gives an approximation of the queueing delay that
can be calculated explicitly and is computationally tractable, it involves the evaluation
of many terms. Therefore, to simplify the formula of the approximation, it makes
sense to ignore terms that do not contribute significantly to the accuracy of the
corrected replace approximation. Such terms seem to be the probabilities in Θ2(t),
which is defined in Theorem 4.14. Therefore, we define the simplified corrected replace
approximation as follows.

Approximation 4.18. The simplified corrected replace approximation of the survival
function P(Wε > t) of the exact delay is defined as

ϕ̂sr,ε(t) := P(W > t) + ε
1

uω
Θ1(t),

where P(W > t) is the replace phase-type approximation of P(Wε > t) and Θ1(t) is
given in Theorem 4.14.

4.4 Corrected discard approximation

In this section, we construct the corrected discard approximation. There are two
different approaches to obtain this approximation. In the first one, we follow the same
steps as in the construction of the corrected replace approximation. Namely, we first
calculate the queueing delay for the simpler phase-type model when we discard the
heavy-tailed customers and then we write the queueing delay of the mixture model as
perturbation of the queueing delay in the discard base model. However, here we use
an alternative approach that connects the discard base model with the replace base
model.

As we mentioned in Section 4.2.2, when we discard the heavy-tailed customers we
simply consider that

G̃•ε (s) = (1− ε)F̃p(s) + ε = F̃p(s) + ε
(
1− F̃p(s)

)
= F̃p(s) + εsµpF̃

e
p (s).

Although the service time distribution G̃•ε (s) has an atom at zero, the resulting
delay distribution has a phase-type representation and consequently it can be directly
calculated through Laplace inversion of its LST w̃•ε (s). However, it is difficult to apply
perturbation analysis to find the connection between w̃•ε (s) and w̃ε(s), because both
of them depend on ε.

Observe that G̃•ε (s) can be expressed as perturbation of F̃p(s) by the term εsµpF̃
e
p (s).

Therefore, we can apply perturbation analysis to find a connection between w̃•ε (s) and
w̃(s), which is the Laplace transform of the queueing delay in the replace base model,
and then use the connection of w̃(s) with w̃ε(s) to establish a connection between
w̃ε(s) and w̃•ε (s). Thus, as a first step we express the matrices in the discard base

model as perturbation of the ones in the replace base model, by setting F̃h(s) ≡ 1 in
the results of Section 4.3.2. So, we define the matrices

G̃•ε (s) =G̃(s) + εsµpF̃
e
p (s)Q(2),

H•ε (s) =H(s) + εsµpF̃
e
p (s)Q(2) ◦PΛ,

E•ε (s) =E(s) + εsµpF̃
e
p (s)Q(2) ◦PΛ,
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M•
ε =M − εsµpQ(2) ◦P.

Now, we provide a series of results, which occur as corollaries of their corresponding
results in Sections 4.3.2 and 4.3.3, for the evaluation of the Laplace transform w̃•ε (s) =
su•εE•ε (s)ω/ det E•ε (s). The first two corollaries are for the evaluation of the vector u•ε
of unknown parameters.

Corollary 4.19. Let u be the unique solution to the Eqs. (4.10)–(4.11) for the replace
base model. If the roots s2, . . . , sN of det

(
H(s) + sI −Λ

)
= 0 with positive real part

are simple, then

1. the equation det
(
H•ε (s) + sI − Λ

)
= 0 has exactly N non-negative solutions

s•ε,1, . . . , s
•
ε,N , with s•ε,1 = 0 and s•ε,i = si − εδ•i +O(ε2) for i = 2, . . . , N , where

δ•i : = δ•(si) =

∑N
j=1 det

(
E(si)•1, . . . ,K(si)•j , . . . ,E(si)•N

)∑N
j=1 det

(
E(si)•1, . . . ,E(1)(si)•j , . . . ,E(si)•N

) ,
and K(s) = sµpF̃

e
p (s)Q(2) ◦PΛ.

2. We assume that the stability condition π(Λ−1 −M•
ε )e > 0 is satisfied and we

set A =
(
Λ−1e,a2, . . . ,aN

)
(see Eq. (4.14)) and c =

(
π(Λ−1 −M)e, 0, . . . , 0

)
.

Then, the vector u•ε is the unique solution to the system of N linear equations

u•ε
(
A − εB• +O(ε2U)

)
= c + εd•,

where B• =
(
0, δ•2a2

(1)−k•2, . . . , δ
•
NaN

(1)−k•N
)

and d• =
(
µpπQ(2)◦Pe, 0, . . . , 0

)
,

with k•i , i = 2, . . . , N , being a column vector with coordinates

k•i,j =(−1)m+j
N−1∑
k=1

det

((
E(si)

N\{j}
N\{m}

)
•1
, . . . ,

(
K(si)

N\{j}
N\{m}

)
•k
, . . . ,

(
E(si)

N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

and the choice of m explained in Remark 4.6.

Corollary 4.20. The vector u•ε can be written in the form

u•ε = u + εz• +O(ε2e),

where
z• =

(
cA−1B• + d•

)
A−1.

The next corollary gives us the denominator of w̃•ε (s).

Corollary 4.21. If det E(s) is evaluated according to Theorem 4.3 with G̃(s) = F̃p(s),
then det E•ε (s) can be written as perturbation of det E(s) as follows

det E•ε (s) = det E(s) + εsµpF̃
e
p (s)

N∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+O(ε2).
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For the evaluation of the numerator of w̃•ε (s), we need the following result.

Corollary 4.22. If suE(s)ei is evaluated according to Theorem 4.5 with G̃(s) = F̃p(s),
then su•εE•ε (s)ei can be written as perturbation of suE(s)ei as follows

su•εEε(s)ei =suE(s)ei

+εs

[
z•i

N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+z•i
∑

S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+

N∑
l=1
l 6=i

z•l (−1)l+i
N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

z•l (−1)l+i
N−2∑
k=0

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
+sµpF̃

e
p (s)

(
ui

N−1∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=1

k
(
F̃p(s)

)k−1 ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

))]
+O(ε2),

where z•i , i ∈ N , are the coordinates of the vector z• given in Corollary 4.20.
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By combining Corollaries 4.21–4.22 and Proposition 4.13, we have the following
proposition that connects the delay in the discard model w̃•ε (s) and the delay in the
mixture model w̃ε(s).

Proposition 4.23. If w̃•ε (s) is the Laplace transform of the queueing delay of the
discard base model that is calculated as perturbation of w̃(s) (see Proposition 4.7),
then there exist unique coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and α′′j,l, β

′′
j,l, γ

′′
j,l,

j = 1, . . . , σ, l = 1, . . . , rj , such that the Laplace transform w̃ε(s) of the queueing delay
of the mixture model satisfies

w̃ε(s) =w̃•ε (s) + ε
1

u•εω
w̃•ε (s)

[(
(z− z•)ω +

N∑
k=2

αk
s− sk

+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

− µhF̃ eh(s)

(
β +

N∑
k=2

βk
s− sk

+

σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

+ µhF̃
e
h(s)w̃•ε (s)

(
γ +

N∑
k=2

γk
s− sk

+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2),

where the vector z• given in Corollary 4.20.

Proof. The steps are exactly the same as in Proposition 4.13, but with different
parameters that are in accordance to the discard base model. We first write the
denominator and the numerator of w̃•ε (s) multiplied by

(
p(s)

)r
as perturbation of the

respective quantities in the replace base model, and we have that(
p(s)

)r
det E•ε (s) =

(
p(s)

)r
det E(s) + εsµpF̃

e
p (s)ξrM+N−1(s) +O(ε2),

and,

(
p(s)

)r
su•εE•ε (s)ω =

(
p(s)

)r
suE(s)ω + εs

[
N∑
i=1

N∑
l=1

zlωiξ
′
i,l,rM+N−1(s)

+ sµpF̃
e
p (s)

N∑
i=1

N∑
l=1

ulωiξi,l,rM+N−2(s)

]
+O(ε2),

where the polynomials ξrM+N−1(s), ξi,l,rM+N−2(s), and ξ′i,l,rM+N−1(s) are defined
according to the Eqs. (4.26), (4.30), and (4.31), respectively, and r is the maximum
power of p(s) that appears in the formulas. The N −1 common roots of the numerator
and the denominator of w̃•ε (s) with positive real part are of the form s•ε,k = sk − εδ•k +

O(ε2), k = 2, . . . , N , where the two equivalent definitions of δ•k are as follows

δ•k =
µpF̃

e
p (sk)ξrM+N−1(sk)w̃(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

=
µpF̃

e
p (sk)sk

∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

+

∑N
i=1

∑N
l=1 zlωiξ

′
i,l,rM+N−1(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

.
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If we set now

d•(s) =
µpF̃

e
p (s)ξrM+N−1(s)w̃(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δ•k
s− sk

and

n•(s) =
µpF̃

e
p (s)s

∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

+

∑N
i=1

∑N
l=1 zlωiξ

′
i,l,rM+N−1(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δ•k
s− sk

,

the denominator and the numerator of w̃•ε (s) multiplied by
(
p(s)

)r
can be written

respectively as(
p(s)

)r
det E•ε (s)

= s

rM∏
j=1

(s+ xj)

N∏
k=2

(s− sk + εδ•k +O(ε2))
(
1 + εd•(s) +O(ε2)

)
(4.44)

and(
p(s)

)r
su•εE•ε (s)ω

= uωs

rM∏
j=1

(s+ yj)

N∏
k=2

(
s− sk + εδ•k +O(ε2)

)(
1 + εn•(s) +O(ε2)

)
. (4.45)

Note that both functions d•(s) and n•(s) are well-defined in the positive half-plane
due to the definitions of δ•k (page 114). By combining Eqs. (4.44) and (4.45), we obtain

w̃•ε (s) = w̃(s)
1 + εn•(s) +O(ε2)

1 + εd•(s) +O(ε2)
⇒ w̃(s) = w̃•ε (s)

1 + εd•(s) +O(ε2)

1 + εn•(s) +O(ε2)
.

So,

w̃ε(s) =w̃(s)
1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)
= w̃•ε (s)

1 + εd•(s) +O(ε2)

1 + εn•(s) +O(ε2)
· 1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)

=w̃•ε (s)

(
1 + ε

(
(n(s)− n•(s))− (d(s)− d•(s))

)
+O(ε2)

)
=w̃•ε (s) + ε

1

uω
w̃•ε (s)

(∑N
i=1

∑N
l=1(zl − z•l )ωiξ

′
i,l,rM+N−1(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

− µhF̃ eh(s)
s
∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

+ µhF̃
e
h(s)w̃(s)

ξrM+N−1(s)∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

)
+O(ε2)
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=w̃•ε (s) + ε
1

uω
w̃•ε (s)

[(
(zi − z•l ) +

N∑
k=2

α•k
s− sk

+

rM∑
j=1

α•
′

j · yj
s+ yj

)

− µhF̃ eh(s)

(
β +

N∑
k=2

βk
s− sk

+

rM∑
j=1

β′j · yj
s+ yj

)

+ µhF̃
e
h(s)w̃•ε (s)

(
γ +

N∑
k=2

γi,k
s− sk

+

rM∑
j=1

γ′j · yj
s+ yj

)]
+O(ε2).

By using similar arguments as in the definition of the corrected replace approxima-
tions (see Section 4.3.4), we define the corrected discard approximations as follows.

Approximation 4.24. The corrected discard approximation of the survival function
P(Wε > t) of the exact queueing delay is defined as

ϕ̂•d,ε(t) :=P(W •ε > t) + ε
1

u•εω

(
Θ•1(t) + Θ•2(t)

)
, where

Θ•1(t) =

(
(z− z•)ω −

N∑
k=2

αk
sk

)
P(W •ε > t)−

(
β −

N∑
k=2

βk
sk

)
µhP(W •ε + Ce > t)

+

(
γ −

N∑
k=2

γk
sk

)
µhP(W •ε +W •

′

ε + Ce > t)

+

σ∑
j=1

rj∑
l=1

(
γ′′j,lµhP

(
W •ε +W •

′

ε + Ce + Erj−l+1(yj) > t
)

− β′′j,lµhP
(
W •ε + Ce + Erj−l+1(yj) > t

)
+ α′′j,lP

(
W •ε + Erj−l+1(yj) > t

))
,

Θ•2(t) =

N∑
k=2

1

sk

(
γkµhP

(
t < W •ε +W •

′

ε + Ce < t+ E(sk)
)

− βkµhP
(
t < W •ε + Ce < t+ E(sk)

)
+ αkP

(
t < W •ε < t+ E(sk)

))
,

P(W •ε > t) is the discard phase-type approximation of P(Wε > t), W •
′

ε is independent
and follows the same distribution of W •ε , and the coefficients β, γ, αk, βk, γk, k =
2, . . . , N , and α′′j,l, β

′′
j,l, γ

′′
j,l, j = 1, . . . , σ, l = 1, . . . , rj , are calculated according to

Proposition 4.13.

Approximation 4.24 can be made rigorous along the same lines as in Proposition 4.17.
The simplified version of this approximation is found in the following lines.

Approximation 4.25. The simplified corrected discard approximation of the survival
function P(Wε > t) of the exact queueing delay is defined as

ϕ̂•sd,ε(t) := P(W •ε > t) + ε
1

u•εω
Θ•1(t),
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where P(W •ε > t) is the replace phase-type approximation of P(Wε > t) and Θ•1(t) is
defined in Approximation 4.24.

In the next section, we perform numerical experiments to check the accuracy of
the corrected phase-type and the simplified corrected phase-type approximations. In
addition, we show that indeed the corrected approximations do not differ significantly
from their simplified versions.

4.5 Numerical experiments

In Section 4.3.3, we pointed out that the first term of the corrected replace expansion
is already a phase-type approximation of the queueing delay, a result that holds also
for the discard expansion. In this section, we show that the addition of the correction
term leads to improved approximations that are significantly more accurate than their
phase-type counterparts. Therefore, we check the accuracy of the corrected phase-type
approximations (see Approximations 4.16, 4.18, 4.24, and 4.25) by comparing them
with the exact delay distribution and their corresponding phase-type approximations.

For the MArP arrival process of customers, we choose either a MMPP with two
states or a MMPP with five states. What is left now is to fix values for the parameters
of the mixture models and perform our numerical experiments. Thus, for the MMPP(2)
arrival process we choose the parameters such that λ1 = 10, λ1 = 1/2, p11 = 8/9, and
p22 = 3/100 (the rest of the parameters can be calculated by using Eqs. (4.2)–(4.3)).
For the MMPP(5) model we choose:

P =


7
27

5
27 0 0 5

9
0 1

29
20
29

8
29 0

3
25

2
5

3
10

9
50 0

0 0 7
36

5
18

19
36

12
47

20
47

20
47

5
47

10
47

 ,

and Λ = diag{11, 11, 13, 10, 8}.
Since it is more meaningful to compare approximations with exact results than

with simulation outcomes, we choose the service time distribution such that we can
find an exact formula for the queueing delay. As service time distribution we use a
mixture of an exponential distribution with rate ν and a heavy-tailed one that belongs
to a class of long-tailed distributions introduced in Abate and Whitt (1999b), i.e. the
same mixture distribution we used in Section 3.4.1. For this combination of service
time distributions, the survival queueing delay can be found explicitly, by following
the same ideas as in Theorem 3.17. Although we do not have any restrictions for
the parameters of the involved service time distributions, from a modelling point of
view, it is counter-intuitive to fit a heavy-tailed service-time distribution with a mean
smaller than the mean of the phase-type service-type distribution. For this reason, we
select κ = 2 and ν = 3.

Finally, note that we performed extensive numerical experiments for various values
of the perturbation parameter ε in the interval [0.001, 0.1]. We chose to present only
the case ε = 0.01, since the qualitative conclusions for all other values of ε are similar
to those presented in this section. For this choice of parameters, the load of the first
system is equal to 0.909336 and of the second is 0.812845.
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Figure 4.1: Exact queueing delay, phase-type and corrected phase-type approximations for perturba-
tion parameter 0.01, MMPP(2) arrivals, and load of the system 0.908336.
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Figure 4.2: Exact queueing delay, phase-type and corrected phase-type approximations for perturba-
tion parameter 0.01, MMPP(5) arrivals, and load of the system 0.812845.
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As we observe from Figures 4.1–4.2, the phase-type approximations (replace and
discard) give accurate estimates for small values of the queueing delay, while they are
incapable of capturing the correct tail behaviour of the exact survival function of the
queueing delay. On the contrary, both corrected phase-type approximations are highly
accurate and give a small relative error at the tail. More precisely, we can observe the
following:

• The corrected replace approximation gives better numerical estimates than the
corrected discard approximation. Especially, in Figure 4.2 the corrected-replace
approximation is hardly distinguishable from the exact distribution.

• The corrected discard approximation always underestimates the exact tail proba-
bility of the queueing delay. On the contrary, the corrected replace approximation
may overestimate the exact survival function for small values, but always under-
estimates the tail of the exact queueing delay.

• The corrected phase-type approximations do not differ significantly from their
simplified versions. The maximum observed absolute error between the two
corrected replace approximations is smaller than 0.0011 for the MMPP(2) model
and smaller than 0.00069 for the MMPP(5) model. The corresponding numbers
for the corrected discard approximations are 0.0052 and 0.00167.

• Finally, we estimated the relative error at the tail for all four corrected phase-
type approximations. We found that in the MMPP(2) model the relative error
is smaller than 10% for all the approximations, while this number reduces to 7%
in the MMPP(5) model.

4.6 Conclusions

To conclude, all corrected phase-type approximations are highly accurate and there
is no significant difference between the Approximations 4.16 and 4.24 and their
respective simplified versions 4.18 and 4.25. For this reason, the simplified versions
of the approximations serve as excellent substitutes to their original corrected phase-
type approximations for estimating the queueing delay. Finally, the corrected phase-
type approximations give a small relative error at the tail, which can easily be verified
to be O(ε).





CHAPTER 5

Truncated buffer approximations

5.1 Introduction

In Chapters 2–4, our main focus was on heavy-tailed models. More precisely, we
truncated the heavy-tailed distributions in a way not only to construct accurate
approximations for the performance measures under consideration, but also to derive
error bounds. In this chapter, however, we no longer focus on heavy-tailed distributions.
As we mentioned in Chapter 1, another example where truncations of the state space
are involved is when considering networks of queues. Therefore, in this chapter, we
aim at deriving error bounds for the queue lengths of a tandem queueing network
when we truncate its state space.

Specifically, we consider the MX/M/1→ •/M/1 tandem queueing network, where
customers arrive in batches in the first queue. When the batch size distribution is
degenerate at one – in other words, when customers arrive one at a time – this network
is a special case of Jackson networks and admits a product form solution (Kelly, 1979;
Latouche and Ramaswami, 1999; Lavenberg, 1983; Ramaswami and Taylor, 1996).
This product form property may be interpreted as if the number of customers in the
various queues are independent random variables in steady state. However, for general
batch size distributions, a product form solution does not exist and neither has any
other solution been identified.

In the absence of exact solutions, the queue lengths may be evaluated numerically.
In Chapter 1, we briefly presented a number of techniques for the analysis of two-
dimensional Markov processes. Here we focus on MAM and we consider the embedded
Markov process at the moments upon which the state of the system changes. The
embedded Markov chain giving the evolution of the queue lengths at each of the queues
can be expressed as a QBD and a matrix-geometric solution can be found for the joint
queue length distribution as long as either of the buffer sizes (waiting rooms in front
of the queues) is finite (see Section 1.3.1). Thus, for the application of MAM, the
finiteness of either one buffer is sufficient.

121
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Besides the joint queue length distribution, it is also interesting to study the
marginal queue lengths. For example, we could consider the case of truncating the
buffer size of the second queue, so as the customer that finishes service in the first
queue is lost if the truncated buffer of the second queue is full. Note that in this
case, the number of customers in the first queue forms on its own a Markov chain
(embedded on the same transition epochs as the two-dimensional Markov chain), which
has a stationary distribution that can be found irrespectively of the truncation to the
buffer size of the second queue (Kleinrock, 1976). On the other hand, if we only allow
customers to enter the system until the number of customers in the first queue reaches
a predetermined high level, the output process from the first queue is affected, and
consequently this has an effect to the second queue. Therefore, it makes more sense
to truncate the buffer size of the first queue to study the effect of truncation on the
marginal queue length of the second queue.

Although the truncation of the state space leads to an approximate model that
can be analysed numerically, it also introduces approximation errors. The goal of this
chapter is to obtain a clear understanding of these types of errors. We explain now
how to derive error bounds for the approximations of the queue lengths. Observe that
even if we choose the truncation level relatively high, for the evaluation of the queue
length distribution we exclude all sample paths where the number of customers in
the first queue exceeds the truncation level. This means that these omitted sample
paths are responsible for the observed approximation error. Therefore, with the aid of
extreme value theory (EVT), which aims at providing statistical models for rare events
(De Haan and Ferreira, 2007; Resnick, 2007a), we study the behaviour of the system
under the assumption that the first queue reached a level greater than or equal to the
truncation level and we derive an asymptotic upper bound for the approximations
derived with MAM. Moreover, as we shall see in Section 5.6, the analysis forces us to
distinguish three different cases in this model that relate to the arrival and service
rates, which we study separately.

Outline

The rest of the chapter is organised as follows. In Section 5.2, we introduce the model
under consideration and in Section 5.3, we truncate the state space of the first queue.
We write the joint queue length probabilities as a sum of two terms that depend on
the truncation level, where both terms are discussed in Section 5.3.1. We find that
the first term relates to the steady state probabilities of the truncated model and we
provide its connection with the exact probabilities. For the second term we prove that
it is bounded by the mean cycle length during which the number of customers in the
first queue exceeds the truncation level.

Afterwards, in Section 5.3.2, we combine the results of Section 5.3.1 to derive error
bounds for the queue length distribution of the truncated system. In particular, the
upper bound is an asymptotic bound expressed as a product of three factors. For the
evaluation of these factors, we first perform in Section 5.4 an exponential change of
measure. In addition, in Section 5.4.1, we relate the number of customers in the first
queue with a random walk and we introduce the accompanying notation.

The first factor involved in the asymptotic upper bound is equal to the probability
that the maximum number of the customers in the first queue exceeds the truncation
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level, while the second is equal to the mean cycle length. An asymptotic result that
links these two factors is derived in Section 5.5. The third factor, which is equal to
the conditional mean cycle length given that number of customers in the first queue
exceeds the truncation level, is discussed in Section 5.6. Since this factor requires a
lot of different techniques for its evaluation, we first explain intuitively in Section 5.6.1
its asymptotic behaviour and later, in Section 5.6.2, we study it rigorously.

In Section 5.7, we perform numerical experiments to check the quality of the
asymptotic error bound and we provide our conclusions in Section 5.8. Finally, in
Appendix A.3, we provide useful results on random walks that we extend in the lattice
case.

5.2 Presentation of the model

We consider an MX/M/1→ •/M/1 tandem queueing network. Customers arrive in
batches according to a Poisson stream with rate λ and join the first queue. The service
times for each queue are exponential with rates µ1 and µ2, respectively. A customer
that finishes service in the first queue moves to the second. The customer leaves the
system after finishing his service in the second queue. We describe the system by a
two-dimensional CTMC {(Xt, Yt)}t≥0, where Xt and Yt are the queue lengths at time
t of the first and the second queue, respectively, including customers in service in
either queue. For this system, we are interested in evaluating its limiting distribution
(X∞, Y∞); namely, the behaviour of the Markov process when t→∞.

We assume that an arriving batch is of size i with probability bi, where
∑∞
i=1 bi = 1.

We denote by B the generic r.v. of the batch sizes and we assume that its mean
EB =

∑∞
i=1 ibi is finite. Moreover, we concentrate exclusively on the case where(

Xt, Yt
)

has a limit (X∞, Y∞) in distribution as t→∞. Thus, for stability reasons,
we assume that λEB/µi < 1, i = 1, 2.

Without loss of generality, we may take λ + µ1 + µ2 = 1 and assume that the
servers always work (also when there is no job). However, service completions only
lead to a departure if there is a customer in the corresponding queue. Otherwise,
we assume that the customer in service is fictitious (and fictitious customers will be
interrupted as soon as a real customer arrives). The artificial assumption of working
on fictitious customers implies that in each state the outgoing transition rates add
up to 1, and thus, the mean time spent in a state is 1 for all states. This trick of
uniformisation allows us to convert the CTMC into a DTMC. The mean time between
jump epochs is always 1 and, as a consequence, the embedded DTMC at jumps has
the same equilibrium distribution as the original CTMC. Therefore, from now on, we
only consider the DTMC (embedded at jump epochs) instead of the CTMC.

We introduce now some notation for our embedded Markov chain. We denote by
(Xn, Yn) the state of the Markov chain at the nth jump and we have that (Xn, Yn) ∈
(Ω1,Ω2), where Ω1 = Ω2 = N. We denote the netput between the (n− 1)st and the
nth jump epoch in the first and second queue as Zn and Wn, respectively, where

Zn =


0, with probability µ2,

−1, with probability µ1,

m, with probability λbm,m = 1, 2, . . . ,

(5.1)
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and

Wn =


−1, if Zn = 0,

1, if Zn = −1 and Xn−1 > 0,

0, otherwise.

(5.2)

Recall that due to uniformisation, λ, µ1, µ2 < 1 and the rates λ, µ1, µ2 can be seen as
probabilities.

The number of customers Xn in the first queue satisfies the following Lindley
recursion

X0 = 0, Xn+1 =
(
Xn + Zn+1

)+
, n = 0, 1, . . . (5.3)

Thus, {Xn}n=0,1,... evolves as a reflected at 0 discrete version of a random walk with
increments Z1, Z2, . . . Similarly, the number of customers Yn in the second queue
satisfies the recursion

Y0 = 0, Yn+1 =
(
Yn +Wn+1

)+
, n = 0, 1, . . . (5.4)

The initial state of the system is (X0, Y0) = (0, 0) and we define the first return
time to the origin as T(0,0) = inf{n ≥ 1 : Xn = Yn = 0 | X0 = Y0 = 0}, which is
also called cycle length. Therefore, since we have a two-dimensional positive recurrent
irreducible Markov chain, it is known that

P
(
X∞ ≥ x, Y∞ ≥ y

)
=

1

ET(0,0)
E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y)

]
.

From Eqs. (5.1) and (5.2), we can easily verify that the two-dimensional Markov
chain (Xn, Yn) is a QBD with an infinite state space. Therefore, MAM cannot be
applied to evaluate the joint queue length distribution. Moreover, the model does not
admit a product form solution (Latouche and Ramaswami, 1999, Theorem 15.1.1).
Thus, we truncate the state space to find an approximation by using MAM. In the next
section, we truncate the state space and we find error bounds for the approximation
of the joint queue length distribution that stems from this truncation.

5.3 State space truncation and error bounds

As we mentioned in Section 5.1, truncation of the buffer in the second queue (considering
lost customers) does not influence the Markov chain of the first queue. Thus, since we
are interested in the effect of truncation to the marginal queue length distribution of
the second queue, we truncate the space Ω1 of the first queue at level N , which we

call truncation level. In other words, {Xn}n≥0 takes values in the space Ω
(N)
1 = NN .

The arriving customers are admitted in the system by applying the Partial Batch
Acceptance Strategy (PBAS), i.e. if the batch size is larger than the number of available
free positions in the buffer (which has capacity N − 1) then we accept only so
many customers until they are in total N customers waiting in front of the first

queue and we dismiss the remaining ones. Moreover, we denote by
(
X

(N)
n , Y

(N)
n

)
the

approximate Markov chain associated with the truncation level N and by
(
Z

(N)
n ,W

(N)
n

)
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the corresponding netput process. Observe that definitions (5.1), (5.2), (5.3), and
(5.4) are still valid (but with the notation adapted to the truncated system) for the

processes X
(N)
n , Y

(N)
n , and W

(N)
n , respectively. However, the definition of Z

(N)
n+1 takes

two alternative forms depending on the value of X
(N)
n . More precisely, if X

(N)
n = N ,

then

Zn+1 =

{
0, with probability λ+ µ2,

−1, with probability µ1,
(5.5)

while in case X
(N)
n = N −m, m ∈ {1, . . . , N}

Zn+1 =


0, with probability µ2,

−1, with probability µ1,

k, with probability λbk for k < m,

m, with probability λ
∑∞
i=m bi.

(5.6)

The steady state probability can then be split as follows

P
(
X∞ ≥ x, Y∞ ≥ y

)
=

1

ET(0,0)
E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl < N

)]
︸ ︷︷ ︸

=I

+
1

ET(0,0)
E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N
)]

︸ ︷︷ ︸
=II

.

In Section 5.3.1, we discuss each of the terms I and II separately, while in Sec-
tion 5.3.2, we explain how the results of Section 5.3.1 can be combined to generate
error bounds.

5.3.1 Partition of the queue length probabilities

Term I

We denote by m = (m1,m2) the two-dimensional states of the Markov chain (Xn, Yn),
where m1 and m2 are non-negative integers. If P is the transition probability matrix
of the Markov chain and P (N) its truncation, then we have that

P (N) (m,n) = P (m,n) , ∀m,n with m1, n1 ∈ NN−1. (5.7)

In other words, the entries in the two matrices P (N) and P coincide as long as both
two-dimensional Markov chains (original and truncated) live within the boundaries.

Therefore, if we set ν = inf{n ≥ 0 : Xn ≥ N} and ν(N) = inf{n ≥ 0 : X
(N)
n ≥ N},

then it holds that (Xn : n < ν)
D
= (X

(N)
n : n < ν(N)). Finally, we define as

T
(N)
(0,0) = inf{n ≥ 1 : X

(N)
n = Y

(N)
n = 0 | X(N)

0 = Y
(N)
0 = 0} the first return

time to the origin for the truncated system. Observe that T(0,0) = T
(N)
(0,0) when
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1
(
max1≤l≤T(0,0)

Xl < N
)

= 1. Thus, since term I contains the sample paths of the
truncated system, we obtain:

I =E

[ T (N)

(0,0)∑
n=1

1
(
X(N)
n ≥ x, Y (N)

n ≥ y
)
· 1

(
max

1≤l≤T (N)

(0,0)

X
(N)
l < N

)]

≤E

[ T (N)

(0,0)∑
n=1

1
(
X(N)
n ≥ x, Y (N)

n ≥ y
)]

= ET
(N)
(0,0)P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
.

Due to monotonicity, the mean return time to the origin of the truncated system is
smaller than the corresponding mean return time of the original system; i.e. ET(0,0) ≥
ET

(N)
(0,0). Moreover, the truncation is done in a way such that P

(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
≤

P
(
X∞ ≥ x, Y∞ ≥ y

)
. We formulate these properties in the following theorem.

Theorem 5.1. If N is the level at which we truncate the state space Ω1, then the
following inequalities hold:

P
(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
≤ P

(
X∞ ≥ x, Y∞ ≥ y

)
, ∀(x, y) ∈ (Ω1,Ω2), and (5.8)

ET
(N)
(0,0) ≤ ET(0,0). (5.9)

Proof. Since the number of customers in the first queue of the truncated system cannot
exceed N , it is immediately obvious that inequality (5.8) holds true for all x ≥ N + 1
and y ∈ Ω2. Therefore, we are only interested in the cases where x ≤ N . We prove the
theorem, by using techniques from cost structure models (van Houtum et al., 1998).

For some appropriately chosen cost structure, most performance characteristics of
Markovian systems can be represented by average costs. Thus, if π is the stationary
distribution of the two-dimensional Markov chain (Xn, Yn) and c(m) represent the
costs per period of time the system is in state m, then the average costs g are given by

g =
∑
m

c(m)π(m). (5.10)

If we define g = P
(
X∞ ≥ x, Y∞ ≥ y

)
, then an appropriate cost structure is c(m) = 1

when m ∈ D, and c(m) = 0 otherwise, for D = {(m1,m2) : m1 ≥ x and m2 ≥ y}. In

addition, if we set g̃ = P
(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
, then our goal is to prove that g̃ is a

lower bound for g; namely g̃ ≤ g. To do so, we study the expected costs over a finite
number of periods. We denote by ut(m) the expected costs in the first t ≥ 0 periods
when starting in state m. Similar to ut(m), we define ũt(m) as the expected costs
over the first t periods in the truncated model when starting in state m. Defining
u0 = ũ0 = 0, we will prove by induction that for all t = 0, 1, 2, . . . and all recurrent
states m in the truncated model

ũt(m) ≤ ut(m). (5.11)

From this, it follows that

g̃ = lim
t→∞

1

t
ũt(m) ≤ lim

t→∞

1

t
ut(m) = g. (5.12)
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Thus, we first need to establish precedences between states in the original model. We
say that state m has precedence over state n, or is more attractive than state n, if m
and n satisfy the following precedence relation:

ut(m) ≤ ut(n), for all t = 0, 1, 2, . . . (5.13)

In other words, starting in m yields lower total expected costs than starting in n.
Now, the first and crucial step is the determination of a set P of pairs (m,n) satisfying
(5.13). These pairs are called precedence pairs. We prove (5.13) for the set of pairs
P = {(m,n) : m1 ≤ n1 & m2 ≤ n2} by induction over t. Taking t = 1 in (5.13)
directly leads to

c(m) ≤ c(n), ∀(m,n) ∈ P. (5.14)

Assume (5.13) holds for t. To prove inequality (5.13) for t+1 for all pairs in P , it suffices
to do so for the pairs in the smaller set P = {(m,n) : n = m+ e1 or n = m+ e2},
where ei the ith unit vector. Clearly P is a subset of P and it is easily seen that the
inequalities (5.13) for the pairs in P generate the ones for all pairs in P, by using
transitivity of the operation ≤. To establish (5.13) for t+ 1, we have to show for each
(m,n) ∈ P that

ut+1(m) = c(m) +
∑
i

p(m, i)ut(i) ≤ c(n) +
∑
j

p(n, j)ut(j) = ut+1(n). (5.15)

Because of (5.14), it suffices to show that∑
i

p(m, i)ut(i) ≤
∑
j

p(n, j)ut(j). (5.16)

We prove (5.16) for the pairs (m,m+ ej), j = 1, 2, together. We consider first the
case m = (m1,m2) with m1 ≥ 1 and m2 ≥ 1. Therefore, Eq. (5.16) takes the form

λ

∞∑
i=1

biut(m+ ie1) + µ1ut(m− e1 + e2) + µ2ut(m− e2)

≤ λ

∞∑
i=1

biut(m+ ej + ie1) + µ1ut(m+ ej − e1 + e2)

+ µ2ut(m+ ej − e2), j = 1, 2. (5.17)

Now, we compare both sides of inequality (5.17). The first terms of each side,
both corresponding to arrivals of customers, are ordered as desired by the induction
hypothesis. The same holds for the second and third terms, which correspond to
service completions at the first and the second queue, respectively. So, (5.17) holds.
We also consider the cases m1 = 0 and m2 = 0 separately. If m1 = 0, then the
coefficient of µ1 on the left hand side of (5.17) is identically equal to zero. Similarly,
if m2 = 0, then the coefficient of µ2 on the left hand side of (5.17) is identically equal
to zero. Therefore, (5.17) holds also for these two cases and the proof of (5.13) is
complete.

The last step is to prove (5.11) by induction. For t = 0, inequality (5.11) trivially
holds. Assuming (5.11) holds for t, we prove it for t+ 1. The expected costs over t+ 1
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periods are equal to

ut+1(m) = c(m) +
∑
n

p(m,n)ut(n). (5.18)

By using the PBAS, the transitions from m to n with n1 > N and n2 = m2 are
redirected to the state ñ with n1 = N and n2 = m2. The new transition probability to
n is zero and to ñ it is increased by p(m,n). We denote the new transition probabilities
by p̃(m,n). The costs per state are not altered. It follows that ut+1(m) ≥ ũt+1(m)
since we have constructed the truncated model by redirecting outgoing transitions to
more attractive states; i.e. (ñ,n) ∈ P. Namely, we have

ut+1(m) ≥ c(m) +
∑
n

p̃(m,n)ut(n) ≥ c(m) +
∑
n

p̃(m,n)ũt(n) = ũt+1(m),

where the second inequality follows from the induction hypothesis.

Last, we need to prove the inequality ET
(N)
(0,0) ≤ ET(0,0). Observe that ET

(N)
(0,0)

and ET(0,0) are by definition the expected first return times to the state (0, 0) in
the original and the truncated system, respectively. By applying the strong law of

large numbers for ergodic Markov chains (Kijima, 1997), we obtain that ET
(N)
(0,0) =

1/P
(
X

(N)
∞ = 0, Y

(N)
∞ = 0

)
and ET(0,0) = 1/P

(
X∞ = 0, Y∞ = 0

)
. Therefore, it is

sufficient to show that the inequality P
(
X

(N)
∞ = 0, Y

(N)
∞ = 0

)
≥ P

(
X∞ = 0, Y∞ = 0

)
holds. To prove this inequality, we use again a cost structure approach. More
precisely, we set c(m) = 1 when m = (0, 0) and c(m) = 0 otherwise. As a result,

g = P
(
X∞ = 0, Y∞ = 0

)
and g̃ = P

(
X

(N)
∞ = 0, Y

(N)
∞ = 0

)
. By repeating the steps we

followed to prove the inequality P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
≤ P

(
X∞ ≥ x, Y∞ ≥ y

)
, we

can now prove that g̃ is an upper bound for g. This can easily be seen, since with
these costs we redirect transitions to less attractive states. The precedence set for this
cost model is Ṕ = {(m,n) : m1 ≥ n1 & m2 ≥ n2}.

We now turn our attention to the second term.

Term II

We set MT(0,0) = max1≤n≤T(0,0)
Xn for the maximum queue length of the first queue

before the first return time to the state (0, 0). Thus, we have

II = E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N
)]

≤ E

[
T(0,0) · 1

(
max

1≤l≤T(0,0)

Xl ≥ N
)]

= E
[
T(0,0) · 1

(
MT(0,0) ≥ N

) ]
= E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
P
(
MT(0,0) ≥ N

)
,

which shows that term II evolves in some sense like MT(0,0) .
In the next section, we combine the results we have derived so far in order to derive

error bounds for the truncated steady state probability P
(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
.
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5.3.2 Error bounds

In this section, we provide error bounds for the steady state probability of the

truncated system, i.e. the probability P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
. From Theorem 5.1,

and more precisely from Eq. (5.8), we obtain that the truncated probability is always
underestimating the exact probability P

(
X∞ ≥ x, Y∞ ≥ y

)
. To construct an upper

bound for the difference P
(
X∞ ≥ x, Y∞ ≥ y

)
− P

(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
, we combine

the results for the upper bounds of terms I and II (see pages 126 and 128, respectively)
with Eq. (5.9) and we get

0 ≤ P
(
X∞ ≥ x, Y∞ ≥ y

)
− P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

≤ E
[
T(0,0)

∣∣MT(0,0) ≥ N
]P(MT(0,0) ≥ N

)
ET(0,0)

. (5.19)

The error between the exact steady state probability and its truncated approxima-
tion is upper bounded by E

[
T(0,0)

∣∣ MT(0,0) ≥ N
]
P
(
MT(0,0) ≥ N

)
/ET(0,0) according

to Eq. (5.19). All factors involved in the upper bound are hard to evaluate exactly.
Instead, we derive an asymptotic upper bound by examining the behaviour of the
factors E

[
T(0,0)

∣∣MT(0,0) ≥ N
]

and P
(
MT(0,0) ≥ N

)
as N →∞.

To study the asymptotic behaviour of the factors E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

and

P
(
MT(0,0) ≥ N

)
, an exponential change of measure is first required. Therefore, in

Section 5.4, we perform such an exponential change of measure. Afterwords, in
Section 5.5, we provide asymptotic results for the probability P

(
MT(0,0) ≥ N

)
, where

the latter is treated in conjunction with the factor ET(0,0). Asymptotic results for

the conditional expectation E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

are derived in Section 5.6. The
expression for the asymptotic upper bound is then formulated in Eq. (5.44).

Remark 5.2. The probabilities P
(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

can be calculated numerically
with the aid of MAM by interpreting the truncated Markov chain as a QBD. As we
explained in Chapter 1, algorithms to solve for the stationary distribution of a QBD
exist if the phase space is finite. Therefore, for the numerical implementation of existing
algorithms (Ramaswami and Latouche, 1986; Latouche and Ramaswami, 1999), we
conveniently interchange the coordinates of the state space. In other words, the states
now have the form (m2,m1), where m2 is the number of customers in the second
queue and m1 is the number of customers in the fist queue. In this case, the phase
coordinate takes values m1 ∈ {0, 1, . . . , N}, and consequently the (N + 1)-dimensional
levels l(m2) take the form l(m2) = {(m2, 0), (m2, 1), . . . , (m2, N)}, m2 = 0, 1, . . .

5.4 Exponential change of measure

Recall that the conditional expectation E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

and the probability

P
(
MT(0,0) ≥ N

)
involved in the upper bound, which is given in Eq. (5.19), relate to

the event that the number of customers in the first queue exceeds the truncation level
during a cycle. According to Large Deviations Theory (LDT) (Shwartz and Weiss,
1995), the number of customers in the first queue reaches a very high level due to a
‘conspiracy’, where the arrival and service rates change so as to make the probability
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of crossing level N a more likely event. Thus, in order to estimate these two terms,
we need to perform first an exponential change of measure.

To perform an exponential change of measure, we define as κ(α) the cumulant
generating function (c.g.f.) of the r.v.’s Z1, Z2, . . . Then, the c.g.f. κ(α) takes the form

κ(α) = lnEeαZ1 = ln
(
µ2 + µ1e

−α + λEeαB
)

= ln
(
µ2 + µ1e

−α + λMB(α)
)
,

where MB(α) is the moment generating function (m.g.f.) of the batch sizes. By
differentiating with respect to α, it is ease to verify that κ′(0) = λEB − µ1 < 0. We
assume now that there exists a solution γ > 0 to the Lundberg equation κ(γ) = 0. The
parameter γ is called the adjustment coefficient and conditions for its existence can be
found in Asmussen and Albrecher (2010, page 91).

If F is the distribution of the Z
D
= Zn, we define F̆ to be the probability distribution

with density eγx w.r.t. F , i.e. F̆ (dx) = eγxF (dx) (obvious notations like κ̆(α), P̆, Ĕ,
etc, are used for quantities under the exponential change of measure). In the next
theorem, we show that, under this exponential change of measure, the r.v. Z has a
positive mean, thus making the event of crossing the level N in the first queue more
probable.

Theorem 5.3. Under the probability measure P̆ the arrival rate of the batches is equal
to λ̆ = λ+ (1− e−γ)µ1, the batch size distribution is equal to

P̆(B = n) =
eγn

MB(γ)
P(B = n), n = 1, 2, . . . , (5.20)

and the customers are served with rates µ̆1 = e−γµ1 and µ̆2 = µ2 in each server,
respectively. In addition, it holds that ĔZ = λ̆ĔB − µ̆1 > 0.

Proof. According to Asmussen (2003, Proposition XIII.1.1) the c.g.f. of F̆ is equal to

κ̆(α) = κ(α+ γ)− κ(γ) = ln
(
µ2 + µ1e

−α−γ + λMB(α+ γ)
)

= ln

(
µ2 + e−γµ1e

−α + λMB(γ)
MB(α+ γ)

MB(γ)

)
= ln

(
µ2 + e−γµ1e

−α + λMB(γ)M̆B(α)
)
.

By substituting in the above relation α = 0, we obtain that

κ̆(0) = 0 ⇒ µ2 + e−γµ1 + λMB(γ) = 1 ⇒ λMB(γ) = λ+ (1− e−γ)µ1.

Therefore,

κ̆(α) = ln
(
µ2 + e−γµ1e

−α +
(
λ+ (1− e−γ)µ1

)
M̆B(α)

)
,

which shows that the arrival rate of the batches under P̆ is equal to λ̆ = λ+(1−e−γ)µ1,
the customers are served with rates µ̆1 = e−γµ1 and µ̆2 = µ2 in each queue, respectively,
and the density function of the batch sizes is given by Eq. (5.20).

As a last step, we need to show that ĔZ = λ̆ĔB − µ̆1 > 0. First observe that
since κ(α) is a strictly convex function and its slope at 0 is negative, this means that
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κ′(γ) > 0. Now, according to Asmussen (2003, Proposition XIII.1.1), it holds that
ĔZ = κ′(γ) = κ̆′(0). We calculate,

κ̆′(α) =
−µ̆1e

−α + λ̆ d
dαM̆B(α)

µ̆2 + µ̆1e−α + λ̆M̆B(α)
,

where the substitution of α = 0 in the above formula gives κ̆′(0) = λ̆ĔB − µ̆1, and the
result is immediate.

Remark 5.4. In the special case that the batches are of size 1, the equation κ(γ) = 0

simplifies to e−γ = λ/µ1. Thus, we find λ̆ = µ1 and µ̆1 = λ, which means that the
service and arrival rates are interchanged.

With the aid of the above change of measure, our goal is to provide estimates
for E

[
T(0,0)

∣∣ MT(0,0) ≥ N
]

and P
(
MT(0,0) ≥ N

)
. To achieve our objective, we

define a random walk with increments Zn. As we shall see in Section 5.5, the event
{MT(0,0) ≥ N} connects with the first passage time of the random walk above the
truncation level N . We proceed with introducing the notation for the random walk in
the next section.

5.4.1 Random walk notation

We define the random walk Un = Z1 + · · ·+Zn, with U0 = 0. It is easy to see that the
Lindley process {Xn} has the same transition mechanism as the random walk {Un}
except when the random walk crosses from positive to negative values (the Lindley
process then stays at 0). With the aid of the random walk {Un} we derive our results.
Inspired by Asmussen (2003, page 221), we use the following notation:

τ+ the first (strict) ascending ladder epoch or the entrance time to (0,∞); namely,
τ+ = inf{n ≥ 1 : Un > 0}. The distribution of τ+ may be defective, i.e.
P(τ+ =∞) = P(Un ≤ 0 for all n ≥ 1) > 0.

Uτ+ the first (strict) ascending ladder height (defined on {τ+ <∞} only).

H+ the (strict) ascending ladder height distribution H+(x) = P(Uτ+ ≤ x).
Here H+ is concentrated on (0,∞) and may be defective, i.e. ‖H+‖ =
P(τ+ < ∞ ) < 1.

τ− the first (weak) descending ladder epoch or the entrance time to (∞, 0]; namely,
τ− = inf{n ≥ 1 : Un ≤ 0}.

Uτ− the first (weak) descending ladder height (defined on {τ− <∞} only).

H− the (weak) descending ladder height distribution H−(x) = P(Uτ− ≤ x).
Here H− is concentrated on (−∞, 0] and may be defective, i.e. ‖H−‖ =
P(τ− < ∞ ) < 1.

τ(N) the time inf{n ≥ 1 : Un > N} of first passage to level N ≥ 0 or the entrance
to (N,∞). The distribution of τ(N) may be defective. Clearly, τ(0) = τ+.
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B(N) the overshoot Uτ(N) −N . Clearly, B(0) is the ascending ladder height Uτ+ .
Moreover, since Uτ(N) is strictly greater than N , the overshoot B(N) can
only take positive values.

B(∞) a r.v. having the limiting distribution (if it exists) of B(N).

We also define as τ+(n) the ladder epoch at which the nth record Uτ+(n) is achieved.
Formally,

τ+(n+ 1) = inf{k > τ+(n) : Uk > Uτ+(n)}. (5.21)

In this definition, we use the convention that τ+(0) = 0 and consequently we have
Uτ+(0) = 0. Finally, if we let Fn = σ(Z1, . . . , Zn) be the σ-algebra generated by
Z1, . . . , Zn, then Fτ(N) follows the usual definition of a stopping time σ-algebra.

Since the results of Sections 5.5 and 5.6 are based on the connection between the
probability space P with P̆, we provide in Appendix A.3 some background theory on
the latter connection.

5.5 Asymptotic approximation for the maximum

In this section, we derive an asymptotic approximation for P
(
MT(0,0) ≥ N

)
, with

the aid of extreme value theory. Observe that the number of customers in the first
queue {Xn}n=0,1,... forms a one-dimensional Markov chain on its own. Therefore, we
denote as T0 = inf{n ≥ 1 : Xn = 0 | X0 = 0} the return time to the origin of the
first queue only and we define MT0 = max1≤n≤T0

Xn. We show that the probability
P
(
MT(0,0) ≥ N

)
exhibits a similar tail behaviour with the probability P

(
MT0 ≥ N

)
.

Thus, we first discuss the behaviour of P
(
MT0 ≥ N

)
as N →∞.

We define τ1 = inf{n : Xn ≥ N}. Observe that if the maximum MT0 before the
first return time to the origin is greater than or equal to N , this means that τ1 is
smaller than T0. In other words, P

(
MT0 ≥ N

)
= P(τ1 < T0). Moreover, the Lindley

process Xn has the same transition mechanism as the random walk Un until T0 because
Xn does not hit zero before T0. Thus, it also holds that {τ1 < T0} = {τ(N − 1) < τ−},
and consequently P

(
MT0 ≥ N

)
= P(τ(N − 1) < τ−). For the latter probability, a

variant of the Cramér-Lundberg approximation is already known by Asmussen (2003,
Corrolary XIII.5.9). Therefore, we provide the following lemma without proof.

Lemma 5.5. If B(N) converges in P̆ as N →∞, say to B(∞), then

eγ(N−1)P
(
MT0 ≥ N

)
= Ĕe−γB(N−1)1 (τ1 < T0)→ C1,

where C1 = P̆(τ− =∞)C0 and C0 = Ĕe−γB(∞).

We continue with showing that the tail behaviour of P
(
MT(0,0) ≥ N

)
is similar to

the tail behaviour of P
(
MT0 ≥ N

)
. For this purpose, note that both T(0,0) and T0

are regeneration cycles for the Markov chain Xn. Thus, if we denote MT0
i

D
= MT0 as

the maximum of Xn in the ith cycle T0, where MT0 is the generic cycle maximum,

and similarly M
T(0,0)

i
D
= MT(0,0) as the maximum of Xn in the ith cycle T(0,0), we have

that (Iglehart, 1972; Rootzén, 1988; Asmussen, 1998)

max
i=1,..., n

ET(0,0)

M
T(0,0)

i ≈ max
i=1,...,n

Xi ≈ max
i=1,..., n

ET0

MT0
i . (5.22)
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From Lemma 5.5, we know the tail behaviour of MT0 . Therefore, we can derive
asymptotics for the maximum maxi=1,...,nXi. As such, Eq. (5.22) indicates that
in order to study the asymptotic behaviour of MT(0,0) , we first need to study the
asymptotics of maxi=1,...,nXi, as n→∞.

Classically, extreme value theory focuses on finding constants an, bn, such that

maxi=1,...,nXi − an
bn

D→ H, (5.23)

where H is some non-degenerate r.v. and
D→ denotes convergence in distribution. This

is equivalent to showing that the probability P
(

maxi=1,...,nXi ≤ anx + bn
)

has a
limit, for any x. In our case, we prove that given the tail behaviour of MT0 from
Lemma 5.5, there exist constants an, bn, such that (5.23) holds with H following the

Gumbel function Λ(x) = e−e
−x

, x ∈ R (Gümbel, 1958).
The asymptotic behaviour of the probability P

(
MT(0,0) ≥ N

)
is given in the

following theorem. To establish this asymptotic result, we use Eq. (5.22) to first derive
the asymptotics of maxi=1,...,nXi, as n → ∞, and later connect these asymptotics
with the probability P

(
MT(0,0) ≥ N

)
.

Theorem 5.6. It holds that

P
(
MT(0,0) ≥ N

)
∼
ET(0,0)

ET0
C1e

−γ(N−1), N →∞,

where C1 is defined in Lemma 5.5.

Proof. We first find the asymptotics for maxi=1,...,nXi. We set bn = 1/γ and an =(
ln(n/ET0) + lnC1

)
/γ. Thus, from Asmussen (1998, Lemma 1.1), we obtain that as

n→∞

P
(

max
i=1,...,n

Xi ≤ an + bnx
)

= P
(
MT0 ≤ an + bnx

) n
ET0

= exp

{
n

ET0
lnP

(
MT0 ≤ an + bnx

)}
= exp

{
n

ET0
ln
(

1− P
(
MT0 > an + bnx

))}
≈ exp

{
− n

ET0
C1e

−γ(an+bnx)
(
1 + o(1)

)}
→ e−e

−x
, n→∞,

where at the third step we used P
(
MT0 ≥ N

)
= C1e

−γ(N−1)
(
1+o(1)

)
and ln(1−x) ≈ x.

From Asmussen (1998, Lemma 1.1), we also have that as n→∞

P
(
MT(0,0) ≤ an + bnx

) n
ET(0,0) = P

(
max

i=1,...,n
Xi ≤ an + bnx

)
⇒ P

(
MT(0,0) ≤ an + bnx

) n
ET(0,0) = e−e

−x

⇒ n

ET(0,0)
lnP

(
MT(0,0) ≤ an + bnx

)
= −e−x
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⇒ n

ET(0,0)
ln
(

1− P
(
MT(0,0) > an + bnx

))
= −e−x

⇒ n

ET(0,0)
P
(
MT(0,0) > an + bnx

)
= e−x

(
1 + o(1)

)
⇒ P

(
MT(0,0) > an + bnx

)
=
ET(0,0)

n
e−x

(
1 + o(1)

)
.

By setting now y = an + bnx, we write

P
(
MT(0,0) > y

)
=
ET(0,0)

n
e
−y+an
bn

(
1 + o(1)

)
=
ET(0,0)

n
e−γyelnn ln

C1
ET0

(
1 + o(1)

)
=
ET(0,0)C1

ET0
e−γy

(
1 + o(1)

)
, y →∞,

which completes the proof.

Remark 5.7. Practically, Theorem 5.6 states that, as N →∞,

P
(
MT(0,0) ≥ N

)
ET(0,0)

∼
P
(
MT0 ≥ N

)
ET0

.

Therefore, if we replace P
(
MT(0,0) ≥ N

)
/ET(0,0) with P

(
MT0 ≥ N

)
/ET0 in Eq. (5.19),

then we can derive an asymptotic bound, where the constant term ET0 is computable.

At this point, observe that the limiting distribution of the overshoot B(∞) is
required for the evaluation of the constants C0 and C1, which were defined in Lemma 5.5.
Since, the distribution B(∞) is found in Lemma A.17, we can find explicit expressions
for these constants, by using properties of lattice random walks. Thus, we conclude
this section by providing explicit expressions for the constants C0 and C1. We also
calculate the mean ET0.

Evaluation of the constants C0 and C1

For the evaluation of the constants C0 and C1 we need the limiting distribution of
the overshoot B(∞). According to Lemma A.17, the distribution of B(∞) is found
through the ladder height distribution under the probability measure P̆. For this
reason, let H̆+ be the distribution function of the ascending ladder height with respect
to P̆ and l̆+ be its corresponding mean. We have the following result.

Proposition 5.8. For a discrete-time lattice random walk, B(∞) exists with respect
to P̆. In this case, C0 is given in terms of the ladder height distributions by

C0 = Ĕe−γB(∞) =

(
1− ‖H+‖

)(
1−

∥∥∥H̆−∥∥∥ )
(eγ − 1)κ′(γ)

.

Proof. By using Proposition 5.8 and Lemma A.17, we obtain that

C0 = Ĕe−γB(∞) =

+∞∑
n=1

e−γnP̆(B(∞) = n) =
1

l̆+

+∞∑
n=1

e−γn
(
1− H̆+(n− 1)

)
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=
1

l̆+

+∞∑
n=1

e−γn
+∞∑
k=n

h̆+(k) =
1

l̆+

+∞∑
k=1

h̆+(k)

k∑
n=1

e−γn

=
1

l̆+(eγ − 1)

+∞∑
k=1

h̆+(k)(1− e−γk) =
1

l̆+(eγ − 1)

(∥∥∥H̆+

∥∥∥− +∞∑
k=1

e−γkh̆+(k)
)

=
1

l̆+(eγ − 1)

(
1−

+∞∑
k=1

h+(k)
)

=
1

l̆+(eγ − 1)
(1− ‖H+‖),

where we interchanged the infinite summations due to Tonelli’s theorem (Tonelli, 1909),

and the last equality holds because of Eq. (A.10). Finally, we need to calculate l̆+.
From Wald’s equation (Wald, 1944) we have that

l̆+ = Ĕτ+ĔZ.

But, from Asmussen (2003, Theorem VIII.2.4(ii)), we know Ĕτ+ =
(
1 −

∥∥∥H̆−∥∥∥ )−1
.

Also, recall from Theorem 5.3 that ĔZ = κ′(γ). Combining all these, the result is
immediate.

Lemma 5.9. For a downward skip-free (or left-continuous) random walk, the constant
C1 in Lemma 5.5 is equal to

C1 = −EZ
ĔZ

(1− e−γ)e−γµ1 = −κ
′(0)

κ′(γ)
(1− e−γ)e−γµ1.

Proof. From Proposition 5.8, it is evident that we need to find exact values for the

terms 1− ‖H+‖ and 1−
∥∥∥H̆−∥∥∥. Observe that the random walk Un is downward skip-

free.
We start with the evaluation of the term 1−‖H+‖. We set fn = P(Z = n). Under

the probability measure P, it holds that EZ = κ′(0) < 0. Therefore, according to
Asmussen (2003, Corollary VIII.5.6), ‖H+‖ = 1 + EZ/f−1, where from Eq. (5.2) we
know that f−1 = P(Z = −1) = µ1.

By the definition of the descending ladder height distribution, we have that

1−
∥∥∥H̆−∥∥∥ = P̆(τ− =∞) = P̆(Un ≥ 1 for all n ≥ 1).

We set now f̆n = P̆(Z = n) and T1 = inf{n : Un = −1}. Since Un is a downward skip-
free random walk with an upward drift under the probability measure P̆, it holds from
Brown et al. (2010, Proposition 11) that

1−
∥∥∥H̆−∥∥∥ = f̆−1 ·

1− P̆(T1 <∞)

P̆(T1 <∞)
.

Thus, it is left to find the probability P̆(T1 <∞), which according to Brown et al. (2010,
Lemma 2) is equal to the unique value s ∈ (0, 1) that satisfies the equation ĔsZ = 1.
From Theorem 5.3, we know that ĔeαZ1 = eκ(α+γ). Therefore, Ĕe−γZ = eκ(0) = 1,
and consequently s = e−γ ∈ (0, 1) is the unique solution to the equation ĔsZ = 1. As

a result, P̆(T1 <∞) = e−γ . We also find f̆−1 = P̆(Z = −1) = e−γµ1. Combining all
the above and Lemma 5.5, the result is immediate.
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The mean return time ET0

We turn now our attention to the evaluation of the mean return time ET0. Observe
that the Markov chain Xn is ergodic, because λEB < µ1. Therefore, as we already
saw in the proof of Theorem 5.1, the ergodicity of Xn results in ET0 = 1/P

(
X∞ = 0

)
.

Since Xn corresponds to an MX/M/1 queue, P
(
X∞ = 0

)
is the probability that the

queue will be empty in the long-run. By applying Little’s formula (Little, 1961), we
find that the fraction of time the server is busy (and consequently the queue is not
empty) is equal to ρ1 = λEB/µ1, with λEB being the average number of customers
entering the system per unit time. Consequently, P

(
X∞ = 0

)
= 1− ρ1 = 1− λEB/µ1.

Thus, we proved the following lemma.

Lemma 5.10. The mean return time ET0 is calculated by the formula

ET0 =
1

1− λEB/µ1
.

Remark 5.11. In this section, we provided an asymptotic approximation for the
probability P

(
MT0 ≥ N

)
. Alternatively, the same probability could be found numer-

ically by solving a system of linear equations for first passage probabilities. More
precisely, if we define qi = P

(
Xn hits N before it hits 0

∣∣ X0 = i
)
, then we get by first

step analysis a system of linear equations where q0 is the desired probability.

5.6 Asymptotics for the conditional mean return
time

The goal of this section is to study the asymptotic behaviour of the conditional mean
E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
, i.e. to study the limit limN→∞

1
NE
[
T(0,0)

∣∣MT(0,0) ≥ N
]
. As

we pointed out in Section 5.1, we recognise three different scenarios for this conditional
expectation. The analysis involved in the estimation of its asymptotic behaviour for
all three cases requires a variety of techniques and is thus complicated. Therefore, in
order to increase the readability of this section, we split it in two parts: the intuitive
and the rigorous part.

In the intuitive part, first we explain how the three different scenarios for the
asymptotic behaviour appear. We use graphs as a visual aid to explain our arguments
and we provide estimates for the asymptotic behaviour. The intuitive part is covered
in Section 5.6.1. Finally, in Section 5.6.2, the rigorous part provides the mathematical
proofs of the findings in Section 5.6.1.

Before continuing with our analysis, we introduce the following notation:

τ1: for the time at which the first queue reaches or exceeds level N . Recall that is
was defined in Section 5.5 as τ1 = inf{n : Xn ≥ N}.

τ2: for the return time to 0 in the first queue after reaching its maximum value.

τ3: for the first time the second queue empties after the first queue reaches its
maximum value. The time τ3 can either coincide with or happen before T(0,0).
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5.6.1 Intuitive illustrations

In this section, our goal is to describe the behaviour of both queues, given that the
number of customers in the first queue has reached a very high level before the first
return time T(0,0) to the empty state (0, 0). Our description is based on intuition and
common sense. Therefore, neither the graphs nor the notation we use in this section
are very precise. We explain these conventions in the following lines.

With respect to the graphs, we want to point out that they depict only qualitative
behaviours between the slopes but not quantitative ones. For example, in Figure 5.4,
the difference in the slopes µ̆1 − µ2 and µ1 − µ2 indicates that the former is smaller
than the latter, but it does not indicate how much smaller it is. With respect to
the notation, we write a ≈ b to denote that a is approximately equal to b, without
explicitly determining the degree of accuracy. Finally, we denote as #Q1 and #Q2

the number of customers in the first and the second queue, respectively.

The behaviour of the first queue

Observe that the behaviour of the fist queue is not affected by what happens in the
second queue. Therefore, we describe in Figure 5.1 the behaviour of the first queue
until time T(0,0), given that #Q1 reached or exceeded level N .

time

#Q1

λ̆Ĕ
B
−
µ̆ 1

λEB
−
µ
1

µ̆1
µ1 λEB

N

0 τ1 τ2 T(0,0)

Figure 5.1: The asymptotic behaviour of Q1, given that the number of customers before the first
return time T(0,0) has reached (and possibly exceeded) the truncation level N .

We have the following observations. Since N →∞, the time its takes the queue
from τ1 to reach its maximum value (something above N) before T(0,0) is negligible
(compared to τ1). Moreover, until τ1, the departure rate of the customers is asymp-

totically equal to µ̆1 because the system is overloaded (λ̆ĔB > µ̆1). On the other
hand, after τ1 all the rates are back to normal. As we have already mentioned, τ2 is
the point at which the first queue reaches 0 after reaching its maximum value within
cycle T(0,0). Since during the time interval [τ1, τ2] the first queue is always full, the
departure rate of customers is equal to µ1.

Next, we describe the behaviour of the second queue before time T(0,0). To do so,
we recognise three different cases that arise from the relation between the rates µ1,
µ2, and µ̆1.
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Case 1: µ1 < µ2

time

#Q1

λ̆Ĕ
B
−
µ̆ 1

λEB
−
µ
1

µ̆1
µ1 λEB

N

0 τ1 τ2 T(0,0)

time

#Q2

0 τ1 τ2 T(0,0)

Figure 5.2: The asymptotic behaviours of Q1 and Q2, given that the number of customers in Q1

before the first return time T(0,0) has reached (and possibly exceeded) the truncation level N , when
µ1 < µ2.

From Theorem 5.3, it always holds that µ̆1 < µ1. Therefore, in this case, the second
queue behaves asymptotically as a stable M/M/1 queue in all time intervals (but with
different arrival rates of customers). Thus, the number of customers in the second
queue is bounded by the number of customers in a stable M/M/1 queue until T(0,0);
see Figure 5.2. As a consequence, the time interval [τ2, T(0,0)] is negligible compared

to [0, τ2] and we expect that E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈ E

[
τ2
∣∣ MT(0,0) ≥ N

]
, where

from Euclidean geometry we can easily verify that

τ1 ≈
N

λ̆ĔB − µ̆1

, τ2 − τ1 ≈
N

µ1 − λEB
. (5.24)

Case 2: µ̆1 < µ2 < µ1

Since µ̆1 < µ2, the second queue behaves asymptotically as a stable M/M/1 queue
with arrival rate µ̆1 and service rate µ2 until time τ1; see Figure 5.3. This means that
the number of customers in the second queue at time τ1 is bounded by the number of
customers in the latter M/M/1 queue. From τ1 onwards, the arrival rate of customers
in the second queue is equal to µ1, which is greater than the service rate µ2. Therefore,
the number of customers in the second queue grows linearly with rate µ1−µ2 up until
τ2. After τ2, the output rate from the first queue is equal to λEB and the customers
in the second queue reduce linearly with rate λEB − µ2 until the queue empties at
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time

#Q1

λ̆Ĕ
B
−
µ̆ 1

λEB
−
µ
1

µ̆1
µ1 λEB

N

0 τ1 τ2 T(0,0)

time

#Q2

µ1
− µ

2
λEB −

µ
2

h2

0 τ1 τ2 τ3 T(0,0)

Figure 5.3: The asymptotic behaviours of Q1 and Q2, given that the number of customers in Q1

before the first return time T(0,0) has reached (and possibly exceeded) the truncation level N , when
µ̆1 < µ2 < µ1.

time τ3. We calculate

h2 ≈ (µ1 − µ2)
N

µ1 − λEB
,

τ3 − τ2 ≈
h2

µ2 − λEB
=

µ1 − µ2

µ2 − λEB
· N

µ1 − λEB
.

(5.25)

Obviously, in this case E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈ E

[
τ3
∣∣ MT(0,0) ≥ N

]
, because

the time interval [τ3, T(0,0)] is negligible compared to [0, τ3].

Case 3: µ2 < µ̆1 < µ1

Since µ̆1 > µ2, the number of customers in the second queue grows linearly with rate
µ̆1 − µ2 up until time τ1; see Figure 5.4. For the remaining time intervals, the second
queue behaves in a similar manner as in Case 2. Therefore, E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
≈

E
[
τ3
∣∣MT(0,0) ≥ N

]
, where

h1 ≈ (µ̆1 − µ2)
N

λ̆ĔB − µ̆1

,

h2 ≈ h1 + (µ1 − µ2)
N

µ1 − λEB
= N ·

(
µ̆1 − µ2

λ̆ĔB − µ̆1

+
µ1 − µ2

µ1 − λEB

)
, (5.26)
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time

#Q1

λ̆Ĕ
B
−
µ̆ 1

λEB
−
µ
1

µ̆1
µ1 λEB

N

0 τ1 τ2 T(0,0)

time

#Q2

µ̆1 − µ2

µ1
− µ2 λEB −

µ
2

h1

h2

0 τ1 τ2 τ3 T(0,0)

Figure 5.4: The asymptotic behaviours of Q1 and Q2, given that the number of customers in Q1

before the first return time T(0,0) has reached (and possibly exceeded) the truncation level N , when
µ2 < µ̆1 < µ1.

τ3 − τ2 ≈
h2

µ2 − λEB
=

N

µ2 − λEB
·

(
µ̆1 − µ2

λ̆ĔB − µ̆1

+
µ1 − µ2

µ1 − λEB

)
.

We now proceed with making the above results rigorous in the next section.

5.6.2 Rigorous proofs

In this section, we prove rigorously the results presented earlier in an intuitive way.
From Section 5.6.1, we understand that we need to find estimates for the conditional
expectations E

[
τ1
∣∣MT(0,0) ≥ N

]
, E
[
τ2−τ1

∣∣MT(0,0) ≥ N
]
, E
[
τ3−τ2

∣∣MT(0,0) ≥ N
]
,

and E
[
T(0,0) − τ3

∣∣ MT(0,0) ≥ N
]
. Thus, we split the time interval [0, T(0,0)] in the

following four sub-intervals: [0, τ1], [τ1, τ2], [τ2, τ3], and [τ3, T(0,0)]. In the following, we
consider each of these intervals separately. At the end, we sum all these conditional
expectations to find an expression for E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
.

The sub-interval [0, τ1]

To find an approximation for E
[
τ1
∣∣MT(0,0) ≥ N

]
, we need to show that the number

of customers in the first queue grows linearly with rate 1/
(
λ̆ĔB − µ̆1

)
. We prove this

in the next theorem by using Renewal Theory arguments and the relation between
the probability measures P and P̆.
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Theorem 5.12. If τ1 is the first time the number of customers in the first queue
reaches or exceeds level N , then it holds that

E
[
τ1
∣∣MT(0,0) ≥ N

]
=

1

λ̆ĔB − µ̆1

(
N + o(N)

)
.

To prove the above theorem, we need the following two lemmas.

Lemma 5.13. Let {F (N)}N≥0 be any family of events with F (N) ∈ Fτ(N−1) that

satisfies P̆
(
F (N)

)
→ 1, as N →∞. It then holds that P

(
F (N)

∣∣ τ1 < T(0,0)

)
→ 1.

Proof. We follow the idea of Asmussen and Albrecher (2010, Theorem V.7.1). Thus,
the goal is to prove that the complement F (N) conditioned on the event {τ1 < T(0,0)}
converges to zero. First observe that {τ1 < T(0,0)} ∩ {τ(N − 1) <∞} = {τ1 < T(0,0)},
because {τ1 < T(0,0)} ⊂ {τ(N − 1) < T(0,0)} ⊂ {τ(N − 1) < ∞}. To this end, we

define GN−1 = F (N) ∩ {τ1 < T(0,0)} and we apply Lemma A.14 to get

P
(
F (N); τ1 < T(0,0)

)
=P
(
F (N); τ1 < T(0,0); τ(N − 1) <∞

)
=e−γ(N−1)Ĕe−γB(N−1)1 (GN−1)

≤e−γ(N−1)Ĕ1 (GN−1) = e−γ(N−1)P̆
(
F (N); τ1 < T(0,0)

)
≤e−γ(N−1)P̆

(
F (N)

)
.

Conditioning now on the event {τ1 < T(0,0)}, we obtain

P
(
F (N)

∣∣ τ1 < T(0,0)

)
=
P
(
F (N); τ1 < T(0,0)

)
P(τ1 < T(0,0))

≤ e−γ(N−1)P̆(F (N))

P(τ1 < T(0,0))

∼e
−γ(N−1)P̆(F (N))
ET(0,0)

ET0
C1e−γ(N−1)

→ 0,

where in the last step we used Theorem 5.6.

Lemma 5.14. For z > 1/
(
λ̆ĔB − µ̆1

)
, it holds that

(a) lim
N→∞

∫ z

0

P̆
(
τ1 > yN

)
dy =

1

λ̆ĔB − µ̆1

, and

(b) lim
N→∞

∫ z

0

P
(
τ1 > yN

∣∣∣ τ1 < T(0,0)

)
dy =

1

λ̆ĔB − µ̆1

.

Proof. To prove the lemma, we first need to show that

τ1
N

P̆→ 1

ĔZ
, a.s. N →∞. (5.27)

For this reason, we define the fluid scaled process (Whitt, 2002)

XN (t) =
XbNtc

N
.
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We know from Doney et al. (2009, Theorem 2.1) that limN∞ Ĕτ1/N = 1/ĔZ. Thus,
it holds that limN→∞XN (t) = ĔZt. Since the infimum is a continuous function, from
the Continuous Mapping Theorem (Mann and Wald, 1943), we obtain

τ1
N

= inf{t : XN (t) ≥ 1} → inf{t : ĔZt ≥ 1} =
1

ĔZ
.

We now prove (a). If we set θ = 1/
(
λ̆ĔB − µ̆1

)
, then for all ε > 0, we know from

Eq. (5.27) that

lim
N→∞

P̆
(
τ1 ∈

(
(θ − ε)N, (θ + ε)N

))
= 1.

However,

P̆
(
τ1 ∈

(
(θ − ε)N, (θ + ε)N

))
≤ P̆

(
τ1 > (θ − ε)N

)
≤ 1,

which results in
lim
N→∞

P̆
(
τ1 > yN

)
= 1, ∀y < θ.

In other words, we obtain

lim
N→∞

P̆
(
τ1 > yN

)
= 1 (y < θ) . (5.28)

By the Bounded Convergence Theorem (BCT) (Wade, 1974) and the fact that z > θ,
we have

lim
N→∞

∫ z

0

P̆
(
τ1 > yN

)
dy =

∫ z

0

1 (y < θ) dy = θ,

which completes the proof. For (b), we combine Eq. (5.28) and Lemma 5.13, and we
get

lim
N→∞

P
(
τ1 > yN

∣∣∣ τ1 < T(0,0)

)
= 1 (y < θ) .

Thus, by applying here again the BCT and taking into account the relation z > θ, the
result is immediate.

We proceed now with the proof of Theorem 5.12.

Proof of Theorem 5.12. Observe that it is sufficient to show

E

[
τ1
N

∣∣∣∣ τ1 < T(0,0)

]
=

1

λ̆ĔB − µ̆1

(
1 + o(1)

)
.

Let z be a value such that z > 1/
(
λ̆ĔB − µ̆1

)
; namely z is greater than the value we

want to show that τ1/N converges to. The expectation E

[
τ1
N

∣∣∣∣ τ1 < T(0,0)

]
can be

split in two terms as follows

E

[
τ1
N

∣∣∣∣τ1 < T(0,0)

]
=

∫ z

0

P
(
τ1 > yN

∣∣∣ τ1 < T(0,0)

)
dy

+

∫ ∞
z

P
(
τ1 > yN

∣∣∣ τ1 < T(0,0)

)
dy. (5.29)
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From Lemma 5.14, we know that the first term of Eq. (5.29) gives the desired
convergence. Thus, we only need to prove that the second term of Eq. (5.29) vanishes
as N →∞. We write∫ ∞
z

P
(
τ1 > yN

∣∣ τ1 < T(0,0)

)
dy

=

∫ ∞
z

P
(
τ1 > yN ; τ1 < T(0,0)

)
dy
/
P
(
τ1 < T(0,0)

)
=

∫ ∞
z

Ĕ
[
e−γUτ(N−1) ; τ1 > yN ; τ1 < T(0,0)

]
dy
/
P
(
τ1 < T(0,0)

)
=

∫ ∞
z

Ĕ
[
e−γ
(
B(N−1)+N−1

)
; τ1 > yN ; τ1 < T(0,0)

]
dy
/
P
(
τ1 < T(0,0)

)
≤e−γ(N−1)

∫ ∞
z

P̆
(
τ1 > yN ; τ1 < T(0,0)

)
dy
/
P
(
τ1 < T(0,0)

)
≤e−γ(N−1)

∫ ∞
z

P̆
(
τ1 > yN

)
dy
/
P
(
τ1 < T(0,0)

)
=e−γ(N−1)

(
Ĕ
[ τ1
N

]
−
∫ z

0

P̆
(
τ1 > yN

)
dy

) /
P
(
τ1 < T(0,0)

)
,

where the second equality holds because of the relation (A.6). From Doney et al.

(2009, Theorem 2.1), we have that lim
N→∞

Ĕ
[ τ1
N

]
=

1

λ̆ĔB − µ̆1

, while from Lemma 5.14,

we also know that for N →∞ the integral

∫ z

0

P̆
(
τ1 > yN

)
dy converges to the same

number. Combining all the above, we obtain∫ ∞
z

P
(
τ1 > yN

∣∣∣ τ1 < T(0,0)

)
dy

≤
e−γ(N−1)

(
Ĕ
[
τ1
N

]
−
∫ z

0
P̆
(
τ1 > yN

)
dy

)
P
(
τ1 < T(0,0)

)
∼
e−γ(N−1)

(
Ĕ
[
τ1
N

]
−
∫ z

0
P̆
(
τ1 > yN

)
dy

)
ET(0,0)

ET0
C1e−γ(N−1)

→ 0, N →∞,

where at the last step we used Theorem 5.6.

In the next theorem, we find the mean number of customer in the second queue at
time τ1.

Theorem 5.15. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N , then the number of customers in the second queue at time
τ1 satisfies

E
[
Yτ1

∣∣MT(0,0) ≥ N
]

=
(µ̆1 − µ2)+

λ̆ĔB − µ̆1

(
N + o(N)

)
.
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Proof. We follow the same idea as in the proof of Theorem 5.12. Thus, we let z be a
value such that z > 1/

(
λ̆ĔB − µ̆1

)
and we write

E

[
Yτ1
N

∣∣∣∣MT(0,0) ≥ N
]

=

∫ z

0

P
(
Yτ1 > yN

∣∣ τ1 < T(0,0)

)
dy

+

∫ ∞
z

P
(
Yτ1 > yN

∣∣ τ1 < T(0,0)

)
dy. (5.30)

The goal is to show that the first term in Eq. (5.30) gives the desired convergence,
while the second term vanishes as N →∞.

We start our discussion with the first term in Eq. (5.30). To prove this part, we
construct a process stochastically larger than Yn. Recall from Eq. (5.2) that Wn = 1
if Zn = −1 and Xn−1 > 0. This means that customers arrive in the second queue only
if there is a real departure of a customer from the first queue. This dependence of Wn

on Xn−1 only makes the analysis harder. Therefore, we eliminate this dependence by
constructing a stochastically larger process that allows the fictitious departures from
the first queue to generate real arrivals in the second queue. This auxiliary process Y ′n
satisfies the Lindley recursion Y ′n+1 = (Y ′n +W ′n+1)+, where the netput process W ′n is
constructed such that

W ′n =


−1, if Zn = 0,

K, if Zn = −1,

0, otherwise,

with K ≥ 1. More precisely, when µ̆1 > µ2, which happens in Case 3, K is equal to
one, giving ĔW ′n = µ̆1 − µ2. However, in Cases 1 and 2, where µ̆1 < µ2, K is greater
than one so as to have ĔW ′n = ε > 0, for some ε > 0. This trick allows us to focus only
on the case ĔW ′n > 0 and thus have a uniformised treatment for all different cases.

Let now V ′n =
∑n
i=1W

′
n be the random walk defined by the increments W ′n. To

prove the desired convergence, we first find a connection between V ′n and Y ′n, and then
between the processes Y ′n and Yn. To this end, observe that the random walk V ′n is
skip-free in both directions. Consequently, we can easily verify for every sample path
that

∣∣V ′k1 − V ′k2 ∣∣ ≤ |k1 − k2| and we write

V ′τ1
N

=
V ′τ(N)

N
+
V ′τ1 − V

′
τ(N)

N
≥
V ′τ(N)

N
+
τ1 − τ(N)

N
. (5.31)

We have from Gut (2009, Theorem 4.2.1.(iii)) that

V ′τ(N)

N

P̆→ ĔW ′

ĔZ
, a.s. N →∞, (5.32)

and also from Ross (1996, Proposition 3.3.1) we obtain

τ(N)

N

P̆→ 1

ĔZ
, a.s. N →∞. (5.33)

Combining now Eqs. (5.27), (5.31), (5.32), and (5.33), we write for θ2 = ĔW ′/ĔZ

P̆
(
V ′τ(N) + τ1 − τ(N) ∈

(
(θ2 − ε)N, (θ2 + ε)N

))
≤ P̆

(
V ′τ1 > (θ2 − ε)N

)
≤ 1,
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which results in
lim
N→∞

P̆
(
V ′τ1 > yN

)
= 1 (y < θ2) . (5.34)

Moreover, it holds that Y ′τ1 ≥ V ′τ1 , because the Lindley process Y ′n dominates the
random walk V ′n. Thus, from the inequality

P̆
(
V ′τ1 > (θ2 − ε)N

)
≤ P̆

(
Y ′τ1 > (θ2 − ε)N

)
≤ 1

and Eq. (5.34), we obtain

lim
N→∞

P̆
(
Y ′τ1 > yN

)
= 1 (y < θ2) . (5.35)

Similarly, between the processes Yn and Y ′n, the inequality Yn ≤ Y ′n holds. Conse-
quently, for the first term of Eq. (5.30), by applying the BCT we have∫ z

0

P
(
Yτ1 > yN

∣∣ τ1 < T(0,0)

)
dy ≤

∫ z

0

P
(
Y ′τ1 > yN

∣∣ τ1 < T(0,0)

)
dy

→
∫ z

0

1 (y < θ2) dy = θ2, N →∞

where limN→∞P
(
Y ′τ1 > yN

∣∣ τ1 < T(0,0)

)
= 1 (y < θ2) because of Lemma 5.13 and

Eq. (5.35).
For the second term of Eq. (5.30), we observe that Yτ1 ≤ τ1, because Yn is a skip-

free process in both directions. As a result,∫ ∞
z

P
(
Yτ1 > yN

∣∣ τ1 < T(0,0)

)
dy ≤

∫ ∞
z

P
(
Yτ1 > yN

∣∣ τ1 < T(0,0)

)
dy.

However, in Theorem 5.12, we already proved that the right hand side of the above
inequality converges to zero as N →∞, which completes the proof.

The sub-interval [τ1, τ2]

So far, we studied the behaviour of both queues until time τ1. We proceed with
studying their behaviour in the next rime interval.

Theorem 5.16. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N and τ2 is the first time the first queue empties after τ1, then
it holds that

E
[
τ2 − τ1

∣∣MT(0,0) ≥ N
]

=
1

µ1 − λEB
(
N + o(N)

)
.

Proof. To study the asymptotic behaviour of the expectation E
[
τ2−τ1

∣∣MT(0,0) ≥ N
]
,

we condition on the number of customers in front of the first queue at time τ1 and we
define the function

g(k) = E
[
τ2 − τ1

∣∣MT(0,0) ≥ N ;Xτ1 = k
]
.

By conditioning on the first jump after τ1, it is apparent that the function g(k) satisfies
the equation

g(k) = 1 +

∞∑
i=−1

P(Z1 = i)g(k + i), k ≥ 1, (5.36)
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where g(0) = 0. We can rewrite Eq. (5.36) as follows:

∞∑
i=−1

P(Z1 = i)
(
g(k)− g(k + i)

)
= 1 ⇒ Eh(Z) = 1,

where h(i) = g(k)− g(k + i). Therefore, it is immediately obvious that Eq. (5.36) has
the following solution

g(k) = − k

EZ1
=

k

µ1 − λEB
.

Thus, since the number of customers in front of the first queue at time τ1 is equal to
Xτ1 = N − 1 +B(N − 1) and the system is saturated until τ1, we can write

E
[
τ2 − τ1

∣∣MT(0,0) ≥ N
]

=

∞∑
k=1

E
[
τ2 − τ1;B(N − 1) = k

∣∣MT(0,0) ≥ N
]

=

∞∑
k=1

E
[
τ2 − τ1

∣∣MT(0,0) ≥ N ;Xτ1 = N − 1 + k
]
· P̆
(
B(N − 1) = k

)
=

∞∑
k=1

N − 1 + k

µ1 − λEB
· P̆
(
B(N − 1) = k

)
=

N − 1

µ1 − λEB
+
Ĕ
(
B(N − 1)

)
µ1 − λEB

.

However, from Lemma A.17, we obtain that Ĕ
(
B(N − 1)

)
→ Ĕ

(
B(∞)

)
. Conse-

quently, we have that

lim
N→∞

1

N
E
[
τ2 − τ1

∣∣MT(0,0) ≥ N
]

=
1

µ1 − λEB
,

which completes the proof.

Theorem 5.17. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N and τ2 is the first time the first queue empties after τ1, then
the number of customers in the second queue at time τ2 satisfies

E
[
Yτ2

∣∣MT(0,0) ≥ N
]

=

(
(µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ̆1 − µ2)+

µ1 − λEB

)(
N + o(N)

)
.

Proof. There are always customers in the first queue during the time interval [τ1+1, τ2],
so every departure from the first queue is an arrival to the second one. Therefore, the
dynamics of the second queue in the time interval [τ1 + 1, τ2] are expressed by the sum∑τ2
n=τ1+1W

′
n, where the process W ′n was introduced in Theorem 5.15. Observe that

the sum
∑τ2
n=τ1+1W

′
n can become smaller than −Yτ1 . Thus, to compensate for the

negative ‘positions’ of the random walk V ′n and avoid the situation Yτ2 < 0, we write

Yτ2 = Yτ1 +

τ2∑
n=τ1+1

W ′n +

τ2∑
n=τ1+1

1 (Y ′n = 0) .

Conditioning on {MT(0,0) ≥ N} and taking expectations yields

E
[
Yτ2

∣∣MT(0,0) ≥ N
]

= E
[
Yτ1

∣∣MT(0,0) ≥ N
]

+ E

[
τ2∑

n=τ1+1

W ′n

∣∣∣∣∣MT(0,0) ≥ N

]
︸ ︷︷ ︸

Wald’s equation
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+ E

[
τ2∑

n=τ1+1

1 (Y ′n = 0)

∣∣∣∣∣MT(0,0) ≥ N

]
= E

[
Yτ1

∣∣MT(0,0) ≥ N
]

+ E
[
τ2 − τ1

∣∣MT(0,0) ≥ N
]
· EW ′

+ E

[
τ2∑

n=τ1+1

1 (Y ′n = 0)

∣∣∣∣∣MT(0,0) ≥ N

]
≤ E

[
Yτ1

∣∣MT(0,0) ≥ N
]

+ E
[
τ2 − τ1

∣∣MT(0,0) ≥ N
]
· EW ′

+ E

[ ∞∑
n=τ1+1

1 (Y ′n = 0)

∣∣∣∣∣MT(0,0) ≥ N

]
,

where

∞∑
n=τ1+1

1 (Y ′n = 0) follows a geometric distribution and is independent of N . By

dividing with N , we get that

E

[
Yτ2
N

∣∣∣∣MT(0,0) ≥ N
]
≤ E

[
Yτ1
N

∣∣∣∣MT(0,0) ≥ N
]

+ E

[
τ2 − τ1
N

∣∣∣∣MT(0,0) ≥ N
]
· EW ′

+
1

N
E

[ ∞∑
n=τ1+1

1 (Y ′n = 0)

∣∣∣∣∣MT(0,0) ≥ N

]

→ (µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
EW ′

µ1 − λEB
=

(µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB
,

as N →∞, and the proof is complete.

The sub-interval [τ2, τ3]

Recall that τ2 is the time the fist queue hit zero after the number of its customers
reached or exceeded the truncation level. In the next theorem, we find how long it
takes for the second queue to empty starting at τ2.

Theorem 5.18. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N , τ2 is the first time the first queue empties after τ1, and τ3
is the time the second queue empties after τ2, then it holds that

E
[
τ3 − τ2

∣∣MT(0,0) ≥ N
]

=
1

µ2 − λEB
·

(
(µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB

)(
N + o(N)

)
.

Proof. Note that at time τ2 the first queue is empty and from Theorem 5.17, we know
that there exists some y0 > 0 such that Yτ2 = y0N . Moreover, time τ3 is defined as
τ3 = inf{n > τ2 : Yn = 0}. The idea is to see our two-dimensional Markov chain as a
Markov Additive Process (MAP) (Çinlar, 1972) during the time interval [τ2, τ3]. For
notational convenience, we shift the time index and we assume that the process starts
at 0 instead of τ2. Therefore, we observe the system in the time interval [0, τY (0)],
with X0 = 0, Y0 = y0N , and τY (0) = inf{n > 0 : Yn = 0}.

Observe that the second queue never hits zero until time τY (0). This means that
Yn = (Yn)+ for n ∈ [0, τY (0)], which shows that the increments Wn+1 = Yn+1 − Yn
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are conditionally independent given (Zi)i≥0. Thus, the process (Xn, Sn)n≥0, with
Sn = −

∑n
i=1Wi and X0 = S0 = 0, defines a MAP (or Markov Random Walk (MRW))

that satisfies

P
(
Xn+1 ∈ A,Sn+1 − Sn ∈ B

∣∣ Xn,Wn

)
= P

(
Xn, A×B

)
,

for all n ≥ 0 and A ∈ B(N), B ∈ B(Z), with B denoting the Borel σ-algebra on a
given state space. For this auxiliary process, τY (0) = inf{n > 0 : Sn = y0N}. We are
interested in finding E[τY (0)].

Since {Xn}n≥0 is an ergodic Markov chain with some stationary distribution
πi, i = 0, 1, . . . , the Markov Renewal Theorem as formulated in Alsmeyer (1994,
Theorem 2.1) takes the form (with d = 1, shift function γ(·) = 0, ξ the unique
stationary distribution of Xn, and µ(x) = E[S1|X0 = x])

lim
k→∞

E
(∑
n≥0

g(Xn, k − Sn)
)

=
1

µ2 − λEB

∞∑
m=0

∑
n∈Z

πmg(m,n), (5.37)

for every measurable function g : N×Z → R that satisfies

∞∑
m=0

∑
n∈Z

πm |g(m,n)| <∞. (5.38)

Letting now g(m,n) = 1 (n = 0) and k = y0N in Eq. (5.37) gives

E
(∑
n≥0

1 (Sn = y0N)
)
→ 1

µ2 − λEB
, (5.39)

which shows that the mean number of renewals at y0N converges at 1/(µ2 − λEB).
We use now the following elementary result: if ak = E[number of renewals at k] with
limk→∞ ak = 1/(µ2 − λEB) then it holds that

1

y0N

y0N−1∑
k=1

ak →
1

µ2 − λEB
, N →∞.

In other words,
E[τY (0)]

y0N
→ 1

µ2 − λEB
, N →∞. (5.40)

which completes the proof.

The following theorem shows that asymptotically the mean number of customers
in the first queue is finite when the second queue empties.

Theorem 5.19. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N , τ2 is the first time the first queue empties after τ1, and τ3
is the time the second queue empties after τ2, then it holds that

E
[
Xτ3

∣∣MT(0,0) ≥ N
]

=
λEB + µ2

2(µ2 − λEB)2

(
1 + o(1)

)
.
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Proof. To prove the theorem, the idea is to consider the total number of customers
in the system without taking into account the internal transitions between the two
queues. As long as the second queue does not empty, the total number of customers in
the system can be described in a simple way. Following the proof of Theorem 5.18, we
also assume here for notational convenience that the process starts at 0 instead of τ2
with X0 = 0, Y0 = y0N , and τY (0) = inf{n > 0 : Yn = 0}. Therefore, for n ≤ τY (0),
we write

Xn + Yn = X0 + Y0 +

n∑
i=1

Zi1 (Zi > 0)−
n∑
i=1

1 (Zi = 0) . (5.41)

We define now the process

An =

n∑
i=1

Zi1 (Zi > 0)−
n∑
i=1

1 (Zi = 0)− (λEB − µ2)n,

for n ≤ τY (0). Observe that E
[
Z11 (Z1 > 0) − 1 (Z1 = 0) − (λEB − µ2)

]
= 0 and

E
[
Zn+11 (Zn+1 > 0) − 1 (Zn+1 = 0) − (λEB − µ2)

∣∣ Z1, . . . , Zn
]

= 0. As a result,

{Zn1 (Zn > 0)−1 (Zn = 0)
]
−(λEB−µ2)}n≥1 is a sequence of absolutely fair random

variables and An is a martingale with respect to the filtration generated by
(
Zn
)
n≥0

(Feller, 1971, page 210). Consequently, E|An| < ∞. In addition, since τY (0) is a
stopping time with finite expectation for fixed N according to Eq. (5.40), we apply
Doob’s optional sampling theorem to get EAτY (0) = EA0 = 0. Moreover, we have that
X0 = YτY (0) = 0. Thus, setting n = τY (0) in Eq. (5.41) and taking expectation yields

EXτY (0) = EX0 + EAτY (0) + (λEB − µ2)E[τY (0)]

= y0N − (µ2 − λEB)E[τY (0)].

As a last step, we want to show that the right hand side of the above equation converges
to a constant. To this end, we follow the notation introduced for the MAP defined in
Theorem 5.18 and we write

SτY (0) = y0N +RτY (0), (5.42)

where RτY (0) is the overshoot of Sn at time τY (0). From Wald’s equation for Markov
random walks (Fuh and Lai, 1998; Moustakides, 1999), by taking expectations in
Eq. (5.42), we obtain

SτY (0) = (µ2 − λEB)E[τY (0)] ⇒ E[τY (0)] =
y0N

µ2 − λEB
+
ERτY (0)

µ2 − λEB
.

To find now ERτY (0), we use Eq. (5.37) with g(m,n) = E
[
S1 − n;S1 > n

∣∣ X0 = m
]
,

for n ≥ 0, and g(m,n) = 0 otherwise. Therefore, we have

ERτY (0) →
1

µ2 − λEB

∞∑
m=0

∞∑
n=0

πmE
[
S1 − n;S1 > n

∣∣ X0 = m
]

=
1

µ2 − λEB

∞∑
m=0

∞∑
n=0

∞∑
k=n

πmP
(
S1 > k

∣∣ X0 = m
)
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=
1

µ2 − λEB

∞∑
m=0

πm

∞∑
k=0

k−1∑
n=0

P
(
S1 > k

∣∣ X0 = m
)

=
1

µ2 − λEB

∞∑
m=0

πm

∞∑
k=0

kP
(
S1 > k

∣∣ X0 = m
)

=
1

µ2 − λEB

∞∑
m=0

πm
E
[
S2

1

∣∣ X0 = m
]

2
=

λEB + µ2

2(µ2 − λEB)
,

where πi, i = 0, 1, . . . , is the stationary distribution of the Markov chain {Xn}n≥0.
Moreover, the function g satisfies the condition (5.38) since

∞∑
m=0

∑
n∈Z

πm |g(m,n)| =
∞∑
m=0

∞∑
n=0

πmE
[
S1 − n;S1 > n

∣∣ X0 = m
]

=
E
[
S2

1

]
2

<∞.

Combining all the above, we have

E[τY (0)]− y0N

µ2 − λEB
→ λEB + µ2

2(µ2 − λEB)2
,

and the proof is complete.

The sub-interval [τ3, T(0,0)]

At time τ3, the system is in state (Xτ3 , 0), where Xτ3 is a finite r.v. with finite
expectation according to Theorem 5.19. Therefore, since (0, 0) is a recurrent state for
our ergodic Markov chain (Xn, Yn), it holds that the hitting time of (0, 0) is finite. We
formulate this result in the following proposition.

Proposition 5.20. If τ1 is the first time the number of customers in the first queue
reaches of exceeds level N , τ2 is the first time the first queue empties after τ1, and τ3
is the time the second queue empties after τ2, then it holds that

E
[
T(0,0) − τ3

∣∣MT(0,0) ≥ N
]

= O(1).

Adding the results of Theorems 5.12, 5.16, and 5.18 and Proposition 5.20 yields

E
[
T(0,0)

∣∣MT(0,0) ≥ N
]

=

(
1

µ2 − λEB
·
( (µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB

)
+

1

λ̆ĔB − µ̆1

+
1

µ1 − λEB

)(
N + o(N)

)
. (5.43)

To sum up, we have studied the asymptotic behaviour of all the factors involved in
the upper bound (5.19). Thus, by combining the results of Theorem 5.6, Lemma 5.10,
and Eq. (5.43), we derive the following expression for the asymptotic upper bound.
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Asymptotic upper bound. As N →∞,

P
(
X∞ ≥ x, Y∞ ≥ y

)
− P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

.(
1

µ2 − λEB
·
( (µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB

)
+

1

λ̆ĔB − µ̆1

+
1

µ1 − λEB

)

×NC1e
−γ(N−1)

(
1− λEB

µ1

)
, (5.44)

where C1 is calculated according to Lemma 5.9. N

5.7 Numerical experiments

In this section, we perform numerical experiments to check the quality of our asymp-
totic upper bound (5.44). As we explained in Section 5.1, the queue lengths have a
product form solution only for single arrivals. Since it is more meaningful to compare
approximations with exact results than with simulation outcomes, we choose single
arrivals for the batch size distribution. By using Eq. (5.44), we first derive the exact
expression for the asymptotic upper bound of this particular model in Section 5.7.1.
Afterwards, in Section 5.7.2, we fix values for the parameters to perform our numerical
experiments.

5.7.1 Special case: single arrivals

When we assume single arrivals, our tandem network reduces to the M/M/1→ •/M/1
queue. Thus, the exact joint queue length distribution is found by the formula

P
(
X∞ ≥ x, Y∞ ≥ y

)
= ρx1ρ

y
2, x, y ≥ 0,

where ρi = λ/µi. Let now N be the truncation level for the number of customers in
the first queue. To find the asymptotic upper bound (5.44), we perform an exponential
change of measure according to Section 5.4. Therefore, from Remark 5.4, we have
that the adjustment coefficient is equal to γ = ln

(
µ1/λ) and the rates under the new

measure P̆ take the form λ̆ = µ1 and µ̆1 = λ. Using Lemma 5.9, we also find that
C1 = λ(1− ρ1).

Note that for single arrivals it always holds that µ̆1 = λ < µ2, because of stability.
Thus, Case 3 does not appear in the case of single arrivals. From Eq. (5.43), we get

E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
∼ N

µ1 − λ

(
2 +

(µ1 − µ2)+

µ2 − λ

)
.

From all the above, we conclude that the asymptotic upper error bound (a.u.e.b.)
in Eq. (5.44) takes the form

a.u.e.b. := N

(
2 +

(µ1 − µ2)+

µ2 − λ

)
ρN1 (1− ρ1)
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= N

(
2 +

(
ρ2
ρ1
− 1
)+

1− ρ2

)
ρN1 (1− ρ1). (5.45)

Moreover, we call here constant coefficient bound (c.c.b) the part of the a.u.e.b
that does not depend on the truncation level N . Thus,

c.c.b. =

(
2 +

(
ρ2
ρ1
− 1
)+

1− ρ2

)
ρ1(1− ρ1). (5.46)

The usefulness of this term will become clear in the next section. We proceed now
with our numerical experiments.

5.7.2 Numerical results

For our numerical experiments, we focus on the marginal distribution of the second
queue. As we explained in Section 5.7.1, only Cases 1 and 2 appear for this choice
of the batch size distribution. Therefore, we fix the parameters λ, µ1, and µ2, to
have examples of both cases. Note that for a given combination of {ρ1, ρ2} there
exists a unique combination of {λ, µ1, µ2}, because due to uniformisation, the rates
are connected through the equation λ+ µ1 + µ2 = 1. Thus, instead of deciding on 3
parameters (arrival and service rates), we decide on combinations of {ρ1, ρ2}.

For each combination of the loads, we choose a number of truncation levels N . Since
we assumed throughout the chapter that ρ1 < 1, we know that limN→∞ ρN1 = 0 and we
choose N such that it is a multiple of (1−ρ1)−1. Therefore, we take N = dn(1−ρ1)−1e,
n = 1, . . . , 7, and we calculate for each N the truncated approximation P

(
Y

(N)
∞ ≥ y

)
of P

(
Y∞ ≥ y

)
= ρy2, y ≥ 0, according to Remark 5.2. In addition, note that we

performed extensive numerical experiments for various combinations {ρ1, ρ2} of the
loads. We chose to present here the combinations {ρ1 = 0.7, ρ2 = 0.6} (Case 1) and
{ρ1 = 0.7, ρ2 = 0.8} (Case 2), since the qualitative results were similar among the
various combinations we tested.

To check the quality of our asymptotic upper error bound, we calculate the
differences between the exact and the truncated approximation of the marginal queue
length distribution and we compare them with the a.u.e.b. (5.45). We summarise
our findings in Tables 5.1 and 5.2. The last line of these tables represents the a.u.e.b.
From the tables, we observe that the truncated approximations become more accurate
as N increases, which is in accordance with our expectations. The same also holds
for the asymptotic bound. However, the bound is at least 5 times greater than the
observed error, which makes it rather pessimistic.

In an attempt to understand why the bound is pessimistic, we perform another
numerical experiment. More precisely, we calculate the standardised differences

eγ(N−1)
(
P(Y∞ ≥ y)− P(Y

(N)
∞ ≥ y)

)
/N and we compare them with the c.c.b., which

is the factor of the bound that does not depend on N ; see Eq. (5.46). The results from
this experiment are displayed in Tables 5.3 and 5.4. We observe that for each value of
y, the standardised differences seem to converge to a constant, which is different for
every y. Moreover, the c.c.b. is far from realistic and at least 5 times greater than the
exact standardised differences. This is an indication that most probably the inaccuracy
of the bound is due to an overestimation of this constant factor c.c.b. Moreover, even



5.8 Conclusions 153

though the c.c.b. is smaller when ρ1 = 0.7 and ρ2 = 0.6, as expected from Eq. (5.46),
it does not mean that it captures better the behaviour of the standardised differences.

y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.043164 0.016910 0.006206 0.001578 0.000557 0.000195 0.000047
10 0.005249 0.003332 0.001684 0.000542 0.000212 0.000080 0.000020
15 0.000451 0.000359 0.000239 0.000108 0.000051 0.000022 6.5×10−6

20 0.000036 0.000032 0.000024 0.000014 8.3×10−6 4.3×10−6 1.5×10−6

25 2.8×10−6 2.6×10−6 2.2×10−6 1.5×10−6 1.1×10−6 6.2×10−7 2.7×10−7

30 2.2×10−7 2.1×10−7 1.9×10−7 1.4×10−7 1.1×10−7 7.4×10−8 3.8×10−8

a.u.e.b. 0.432180 0.296475 0.152537 0.052901 0.022332 0.009096 0.002643

Table 5.1: Observed errors between the original marginal distribution of the second queue and its
QBD approximation for ρ1 = 0.7 and ρ2 = 0.6. The last line corresponds to the asymptotic upper
error bound for each truncation level.

y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.153260 0.055785 0.019824 0.004957 0.001843 0.000669 0.000169
10 0.081620 0.040864 0.017412 0.004932 0.001725 0.000600 0.000146
15 0.031387 0.019249 0.009657 0.003277 0.001343 0.000525 0.000143
20 0.010969 0.007716 0.004334 0.001695 0.000769 0.000329 0.000099
25 0.003695 0.002865 0.001752 0.000759 0.000373 0.000173 0.000058
30 0.001225 0.001019 0.000667 0.000312 0.000163 0.000081 0.000029

a.u.e.b. 0.782040 0.469420 0.230016 0.077317 0.032202 0.012994 0.003744

Table 5.2: Observed errors between the original marginal distribution of the second queue and its
QBD approximation for ρ1 = 0.7 and ρ2 = 0.8. The last line corresponds to the asymptotic upper
error bound for each truncation level.

y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.031460 0.020534 0.015380 0.011637 0.009867 0.008570 0.007292
10 0.003825 0.004046 0.004175 0.004002 0.003764 0.003509 0.003186
15 0.000329 0.000436 0.000592 0.000796 0.000903 0.000965 0.000996
20 0.000026 0.000038 0.000061 0.000106 0.000147 0.000188 0.000234
25 2.1×10−6 3.2×10−6 5.5×10−6 0.000011 0.000018 0.000027 0.000041
30 1.6×10−7 2.5×10−7 4.7×10−7 1.1×10−6 1.9×10−6 3.2×10−6 5.9×10−6

c.c.b. 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Table 5.3: Standardised observed errors between the original marginal distribution of the second
queue and its QBD approximation for ρ1 = 0.7 and ρ2 = 0.6. The last line corresponds to the
constant coefficient bound, which is independent of the truncation level.

Last, we calculate the differences eγ(N−1)
(
P(Y∞ ≥ y) − P(Y

(N)
∞ ≥ y)

)
. From

Tables 5.5 and 5.6, we view that these differences grow as N grows, but it is not clear
if they grow linearly in N .

5.8 Conclusions

In this chapter, we addressed the problem of how to derive error bounds for the
queue length distribution of a tandem network of two queues when we truncate the
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y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.111705 0.067738 0.049126 0.036544 0.032626 0.029381 0.025861
10 0.059490 0.049620 0.043148 0.036365 0.030545 0.026358 0.022293
15 0.022877 0.023374 0.023932 0.024159 0.023783 0.023055 0.021799
20 0.007995 0.009369 0.010740 0.012498 0.013621 0.014453 0.015081
25 0.002693 0.003479 0.004342 0.005599 0.006618 0.007631 0.008843
30 0.000893 0.001238 0.001654 0.002305 0.002895 0.003566 0.004535

c.c.b. 0.57 0.57 0.57 0.57 0.57 0.57 0.57

Table 5.4: Standardised observed errors between the original marginal distribution of the second
queue and its QBD approximation for ρ1 = 0.7 and ρ2 = 0.8. The last line corresponds to the
constant coefficient bound, which is independent of the truncation level.

y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.125843 0.143740 0.153805 0.162918 0.167754 0.171416 0.175029
10 0.015303 0.028326 0.041754 0.056035 0.064001 0.070198 0.076478
15 0.001317 0.003057 0.005926 0.011150 0.015352 0.019302 0.023904
20 0.000105 0.000272 0.000615 0.001496 0.002515 0.003775 0.005639
25 8.2×10−6 0.000022 0.000055 0.000159 0.000312 0.000550 0.001007
30 6.4×10−7 1.8×10−6 4.7×10−6 0.000015 0.000032 0.000065 0.000142

Table 5.5: Observed errors between the original marginal distribution of the second queue and its
QBD approximation multiplied by eγ(N−1) for ρ1 = 0.7 and ρ2 = 0.6.

background state space. In doing so, we truncated the buffer size of the first queue and,
with the aid of extreme value analysis, we derived an upper bound for the exact queue
length probabilities (see Section 5.3.2). We studied further the asymptotic behaviour
of the factors involved in this bound and we derived in Eq. (5.44) an asymptotic upper
error bound.

The conclusions we can draw for the asymptotic upper bound are summarised as
follows:

• The bound depends only on the truncation level and the parameters of the

model, i.e. it is uniform in the values x and y of P
(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
.

• The bound is rather pessimistic. Moreover, the bound becomes more pessimistic
as the truncation level increases.

y N = 4 N = 7 N = 10 N = 14 N = 17 N = 20 N = 24
5 0.446821 0.474166 0.491262 0.509115 0.519269 0.527160 0.535052
10 0.237961 0.347341 0.431488 0.511621 0.554648 0.587623 0.620665
15 0.091507 0.163618 0.239323 0.338237 0.404312 0.461115 0.523188
20 0.031980 0.065585 0.107405 0.174972 0.231559 0.289079 0.361945
25 0.010773 0.024356 0.043420 0.078387 0.112517 0.152636 0.212239
30 0.003573 0.008666 0.016546 0.032278 0.049222 0.071330 0.108849

Table 5.6: Observed errors between the original marginal distribution of the second queue and its
QBD approximation multiplied by eγ(N−1) for ρ1 = 0.7 and ρ2 = 0.8.
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• From the performed numerical experiments, we discovered that the undesired
behaviour of the bound is most probably attributed to the constant term of the
bound, i.e. the factor c.c.b. that is independent of the truncation level N .

The above observations indicate that further modifications are important to improve
the accuracy of the asymptotic upper bound. One possible direction is to make the
bound dependent on the values x and y.





Appendix

A.1 Subexponential distributions

In Chapters 2–3, to study the tail behaviour of the ruin probability we consider that
the claim sizes belong to the the class of subexponential distributions S. Following
Teugels (1975), we give the following definition for the class S.

Definition A.1. A distribution F concentrated on [0,∞) belongs to the class of
subexponential distributions S if and only if

lim
u→∞

1− F ∗n(u)

1− F (u)
= n, n = 1, 2, . . .

When a distribution F belongs to S, it is known that F decays slower than any
exponential rate (Asmussen and Albrecher, 2010). Two very useful known properties
of subexponentiality are the following, which are given without proof; see Asmussen
and Albrecher (2010).

Property A.2. The class S is closed under tail-equivalence. That is, if A(u) ∼ aF (u)
for some F ∈ S and some constant a > 0, then A ∈ S.

Property A.3. Let F ∈ S and let A be any distribution with a lighter tail, i.e.
A(u) = o

(
F (u)

)
. Then for the convolution A ∗ F of A and F we have A ∗ F ∈ S and

(A ∗ F )(u) ∼ F (u).

A.2 Results on perturbation theory

In this section, we provide some preliminary results on linear algebra, matrix functions,
and perturbation theory that are needed in the analysis of Chapter 4. We introduce an
N ×N matrix function E(s) with a single parameter s > 0 and we set N = {1, . . . , N}.
We say that the matrix function E(s) is regular if det E(s) is not identically zero as a
function of s. In addition, if E(s) is regular (we denote it as det E(s) 6≡ 0), then the
eigenvalues of E(s) are the solutions of the equations det E(s) = 0 (De Terán, 2011).
Throughout our analysis, we assume that matrix E(s) is regular and that r is a simple
eigenvalue of it. In addition, we assume that E(s) is analytic in the neighbourhood of
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r. We use the notation E(n)(s) for the nth derivative with respect to s of the matrix
function E(s). Thus, E(s) can be written as a Taylor series in the following form:

E(s) = E(0)(r) + (s− r)E(1)(r) + · · · =
∞∑
n=0

(s− r)n

n!
E(n)(r). (A.1)

To avoid redundant notation, in the forthcoming analysis we use the conventions that
E = E(0)(r) = E(r) and E(n) = E(n)(r).

As a consequence of the fact that the multiplicity of the eigenvalue r is one, the
dimension of the nullspace of E is equal to one. Our first goal is to find the form of
the eigenvectors of the nullspace of matrix E. We prove the following theorem, which
gives us exactly the form of these eigenvectors.

Theorem A.4. If C is an N×N matrix with determinant equal to zero, i.e. det C = 0,
and nullspace of dimension one, then a right N × 1 eigenvector that corresponds to

the simple eigenvalue zero is t with coordinates tj = (−1)1+j det C
N\{j}
N\{1}, j ∈ N .

Proof. We need to prove that the inner product of every row of C with t is equal to
zero. More precisely, if ci denotes the ith row of matrix C, we need to show that

cit = 0, i ∈ N .

If cij is the (i, j) element of matrix C, for the first row we have

c1t =

N∑
j=1

c1j(−1)1+j det C
N\{j}
N\{1}

def.
= det C = 0.

For an arbitrary row i = 2, . . . , N , we have

cit =

N∑
j=1

cij(−1)1+j det C
N\{j}
N\{1}.

We expand the determinant of each matrix C
N\{j}
N\{1}, j ∈ N , in minors of the ith row

of matrix C. Observe that the ith row of the initial matrix is indexed by i − 1 in

every matrix C
N\{j}
N\{1} due to the removal of the first row of C. Note also that every

column k placed to the right of the jth column of matrix C, after the removal of the
jth column is shifted one position to the left, therefore it is indexed by k − 1. After
the above observations, we have

cit =

N∑
j=1

cij(−1)1+j det C
N\{j}
N\{1} =

N∑
j=1

cij(−1)1+j
∑
k 6=j

cik(−1)i−1+k−1{k>j} det C
N\{j,k}
N\{1,i}

= (−1)i
N∑
j=1

∑
k 6=j

cijcik(−1)j+k−1{k>j} det C
N\{j}
N\{1} = 0,

because for any two arbitrary columns m and l, with m > l, only the summands

cilcim(−1)l+m−1 det C
N\{l,m}
N\{1,i} and cimcil(−1)m+l det C

N\{l,m}
N\{1,i}
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appear in the expression of cit and they cancel out with one another. Since all
summands of the above double sum are coupled and cancelled out, the double sum is
equal to zero. Thus, we have proven that the inner product of any column of C with
t is equal to zero. Consequently, t is an eigenvector of matrix C that corresponds to
its eigenvalue zero.

Remark A.5. If the null space of an N × N matrix C has dimension one, then
rankC = N − 1. Therefore, there exists at least one sub-matrix of C such that its
determinant is not equal to zero. More precisely, there exists at least one combination

of row-column (m,n) with det C
N\{n}
N\{m} 6= 0. Thus, if all determinants det C

N\{j}
N\{1},

j ∈ N , are equal to zero, we can choose the coordinates of the right eigenvector t,

which corresponds to the eigenvalue zero, as tj = (−1)m+j det C
N\{j}
N\{m}, j ∈ N .

Remark A.6. If t is an arbitrary eigenvector that belongs to the null space of C,
then any other eigenvector z that belongs to the same null space is proportional to t.
Namely, there exists σ ∈ R such that z = σt.

From Theorem A.4 and Remark A.5, we have as consequence the following corollary
for the right eigenvectors of the matrix E.

Corollary A.7. If m ∈ N is such that det E
N\{j}
N\{m} 6= 0 for at least one j ∈ N , a

right eigenvector t of the null space of E has coordinates

tj = (−1)m+j det E
N\{j}
N\{m}, j ∈ N .

We now perturb the matrix function E(s) by εK(s). Namely, we consider the matrix
E(s) + εK(s), where we assume that the matrix K(s) is analytic in the neighbourhood
of r. If K(n) is the nth derivative of the matrix function K(s) at s = r, the Taylor
series of matrix K(s) around r is:

K(s) = K + (s− r)K(1) + · · · =
∞∑
n=0

(s− r)n

n!
K(n), (A.2)

where K(n) = K(n)(r) and K = K(0). Our goal is to find the form of the eigenvectors
of the null space of E(s)+ εK(s). Thus, as a first step we find the roots of the equation

det
(
E(s) + εK(s)

)
= 0. (A.3)

At this point, we need the following result from perturbation theory, which gives
us the root of a function f(s) when it is perturbed by a small amount. We include its
proof for completeness.

Theorem A.8. Let r be a simple root of an analytic function f(s). For some function
h(s, ε) and for all small real values ε, we define the perturbed function

F (s, ε) = f(s) + h(s, ε). (A.4)

If h(s, ε) is analytic in s and ε near (r, 0), then F (s, ε) has a unique simple root (x(ε), ε)
near (r, 0) for all small values of ε. Moreover, x(ε) is an analytic function in ε, and if
∂
∂snh(s, 0) = 0, n = 0, 1, . . . , then it holds

x(ε) = r − ε
∂
∂εh(r, 0)

f (1)(r)
+O(ε2). (A.5)
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Proof. From the Implicit function theorem (Dini, 1907), we know that there exist a
unique function x with x(0) = r, such that for all small values of ε, it holds that
F
(
x(ε), ε

)
= 0 close to (r, 0). Moreover, the function x is analytic in ε. To find the

linear Taylor polynomial approximation of x(ε), which is defined as

x(ε) = x(0) + εx(1)(0) +O(ε2),

we differentiate the function F
(
x(ε), ε

)
= 0 as a function of ε. By using the chain rule

we obtain

∂

∂x(ε)
F
(
x(ε), ε

)
x(1)(ε) +

∂

∂ε
F
(
x(ε), ε

)
= 0

⇒(
f (1)(x(ε)) +

∂

∂x(ε)
h(x(ε), ε)

)
x(1)(ε) +

∂

∂ε
h(x(ε), ε) = 0.

In the latter equation, we substitute ε = 0 and we solve it with respect to x(1)(0).
Since r is a simple root of the function f , it holds that f (1)(r) 6= 0 (Krantz, 1999).
Thus, we have

f (1)(r)x(1)(0) +
∂

∂ε
h(r, 0) = 0 ⇒ x(1)(0) = −

∂
∂εh(r, 0)

f (1)(r)
,

which completes the proof.

From Theorem A.8, we have the following lemma, which we give without proof.

Lemma A.9. If the functions f(s) and h(s, ε) satisfy the assumptions of Theorem A.8,
and g(s) is an analytic function with g(r) 6= 0, then the perturbed function

G(s, ε) = f(s)g(s) + h(s, ε)g(s)

has the same unique simple root (x(ε), ε) near (r, 0), for all small values of ε, with the
perturbed function F (s, ε) = f(s)+h(s, ε). Namely x(ε) = r−ε ∂∂εh(r, 0)/f (1)(r)+O(ε2).

We also need the following property for the determinant of a square matrix.

Proposition A.10. If C and D are N × N matrices with columns C•i and D•i,
i ∈ N , respectively, then

det(C•1 + εD•1, . . . ,C•N + εD•N ) = det(C•1, . . . ,C•N )︸ ︷︷ ︸
det(C)

+ ε

N∑
i=1

det(C•1, . . . ,D•i, . . . ,C•N ) +O(ε2).

Proof. The result is an immediate consequence of the additive property of determinants.

By combining the results of Theorem A.8 and Proposition A.10, we show in the
following corollary how we can find the roots of the equation det

(
E(s) + εK(s)

)
= 0.



A.2 Results on perturbation theory 161

Corollary A.11. The number rε = r − εδ +O(ε2), where

δ =

∑N
j=1 det

(
E•1, . . . ,K•j , . . . ,E•N

)∑N
j=1 det

(
E•1, . . . ,E•j

(1), . . . ,E•N
) ,

is a simple root of the determinant det
(
E(s) + εK(s)

)
= 0.

Proof. According to Proposition A.10,

det
(
E(s) + εK(s)

)
= det E(s) + ε

N∑
j=1

det
(
E•1, . . . ,K•j(s), . . . ,E•N

)
+O(ε2).

Note that det E(s) is an analytic function in r and its derivative is defined as

d

ds
det E(s) =

N∑
j=1

det
(
E•1, . . . ,E

(1)
•j (s), . . . ,E•N (s)

)
.

Since r is a simple eigenvalue of E(s), by the definition of the multiplicity of a root
of an analytic function, it holds that d

ds det E(s)
∣∣
s=r
6= 0 (see Krantz (1999)). In

addition, the function
∑N
j=1 det

(
E•1, . . . ,K•j(s), . . . ,E•N

)
is also analytic in the

neighbourhood of r. The result is then immediate from Theorem A.8.

According to Corollary A.11, the eigenvalue rε of the matrix E(s)+ εK(s) is simple.
Consequently, the dimension of the null space of the matrix E(rε) + εK(rε) is equal to
one. We apply Theorem A.4 to find the eigenvectors of the matrix E(s) + εK(s) that
correspond to its eigenvalue rε. Before that though, we do the following simplification.
From Eqs. (A.1)–(A.2), we have the Taylor expansion

E(s) + εK(s) =

∞∑
n=0

(s− r)n

n!

(
E(n) + εK(n)

)
.

Evaluating this at the point rε = r − εδ +O(ε2), we obtain

E(rε) + εK(rε) = E− εδE(1) + εK +O(ε2U) = E + ε
(
K− δE(1)

)
+O(ε2U).

In the next theorem, we find the form of the right eigenvectors of a perturbed
matrix.

Theorem A.12. A right eigenvector of matrix E + ε
(
K− δE(1)

)
that corresponds to

the eigenvalue rε is
w = t− εδt(1) + εk +O(ε2e),

where t is a right eigenvector of E defined as in Corollary A.7 and t(1) is its derivative
at rε. Moreover, k is an N × 1 vector with coordinates

kj = (−1)m+j
N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

where the choice of m ∈ N is explained in Corollary A.7.



162 Appendix

Proof. According to Remark A.5 and Corollary A.7, there exists an m ∈ N such that
the vector t with coordinates

tj = (−1)m+j det E
N\{j}
N\{m}, j ∈ N ,

is a right eigenvector of matrix E. We prove that a right eigenvector that corresponds
to the matrix E + ε

(
K− δE(1)

)
is w with coordinates

wj = (−1)m+j det
(
E + ε

(
K− δE(1)

))N\{j}
N\{m}

, j ∈ N .

By using Proposition A.10, the above equation simplifies to

wj = (−1)m+j det
(
E + ε

(
K− δE(1)

))N\{j}
N\{m}

= (−1)m+j det E
N\{j}
N\{m} + ε(−1)m+j

×
N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

((
K− δE(1)

)N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)

= (−1)m+jE
N\{j}
N\{m} − ε(−1)m+jδ

N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
E(1)N\{j}

N\{m}

)
•k
,

. . . ,
(
E
N\{j}
N\{m}

)
•N−1

)

+ ε(−1)m+j
N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
= tj − εδt(1)

j + εkj ,

where t
(1)
j =

d

ds
tj(s)

∣∣∣∣∣
s=r

and

kj = (−1)m+j
∑N−1
k=1 det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
.

Observe that t is not identically equal to zero, because it is an eigenvector of
E. Thus, the vector w is also not identically equal to zero. Therefore, according to
Remark A.5, w is an eigenvector of the matrix E + ε

(
K− δE(n)

)
, which completes

the proof.

A.3 Random walks and related results

In this section, we follow the notation introduced in Chapter 5 (and more precisely
Section 5.4.1) and we provide some results that connect the probability measure P
with P̆. We also discuss about the ladder height distribution and the overshoot, which
play a crucial role in the Cramér-Lundberg approximation derived in Section 5.5.

The results of this section are widely known in the non-lattice case. Here, we
present their lattice equivalents, where in most cases the extension is simple. The
following lemma gives the connection between the probability measures P and P̆.
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Lemma A.13. For any Borel-measurable function g on n variables such that the
expectations exist, the following relations hold:

Eg(Z1, . . . , Zn) = Ĕe−γUng(Z1, . . . , Zn), (A.6)

Ĕg(Z1, . . . , Zn) = EeγUng(Z1, . . . , Zn). (A.7)

Proof. This proof is the lattice equivalent of Asmussen (1982, Lemma 2.1). We write

Eg(Z1, . . . , Zn) =
∑
z1∈Z

. . .
∑
zn∈Z

g(z1, . . . , zn)P(Z = z1) · · ·P(Z = zn)

=
∑
z1∈Z

. . .
∑
zn∈Z

g(z1, . . . , zn)e−γz1P̆(Z = z1) · · · e−γznP̆(Z = zn)

= Ĕe−γUng(Z1, . . . , Zn).

The remaining relation is proven analogously.

Lemma A.14. For any event GN ∈ Fτ(N),

P(GN ; τ(N) <∞) = e−γN Ĕe−γB(N)1 (GN ) . (A.8)

Proof. This proof is the lattice equivalent of Asmussen (1982, Lemma 2.2). We include
it here for completeness. The definitions of Fn and Fτ(N) imply the existence of n-
dimensional Borel sets AN,n such that GN ∩ {τ(N) <∞} = {(Z1, . . . , Zn) ∈ AN,n}.
But, Un = N +B(N) on {τ(N) = n} so that by (A.6)

P(GN ; τ(N) <∞) =

∞∑
n=1

P
(
(Z1, . . . , Zn) ∈ AN,n

)
=

∞∑
n=1

Ĕe−γUn1 ((Z1, . . . , Zn) ∈ AN,n)

= e−γN Ĕe−γB(N)
∞∑
n=1

1 ((Z1, . . . , Zn) ∈ AN,n)

= e−γN Ĕe−γB(N)1 (GN ) .

For N = 0, the above lemma takes the form:

Corollary A.15. For any event G ∈ Fτ+ , it holds that P(G) = Ĕ[e−γUτ+ ;G], since
G ⊂ {τ+ <∞}.

In the following lemma, we study the properties of the ladder height distribution
H̆+. We also use the notation h̆+ for its probability mass function.

Lemma A.16. The ladder height distribution H̆+ and the the renewal measure
Ŭ(dx) =

∑∞
n=0 H̆

∗n
+ (dx) are lattice and aperiodic (d = 1). In addition, the ladder

height distribution H̆+ is proper – i.e.
∥∥∥H̆+

∥∥∥ = 1 – and its probability mass function

is defined as h̆+(n) = eγnh+(n), n ≥ 1.



164 Appendix

Proof. It is immediately obvious that the ladder height distribution is lattice since
the increments Zn take values on {−1, 0, 1, 2, . . . }. However, due to the definition of
τ+, the ascending ladder height Uτ+ takes values on {1, 2, . . . }. Now, observe that the
nth ladder height can be written as:

Uτ+(n) = Uτ+(1) + (Uτ+(2) − Uτ+(1)) + · · ·+ (Uτ+(n) − Uτ+(n−1)). (A.9)

If we set Sn = Uτ+(n) −Uτ+(n−1), n = 1, . . . , then by the definition (5.21) of τ+(n) we
deduct that Sn can only take positive integer values. Therefore, the epochs Uτ+(0) = 0,
Uτ+(n) = S1 + · · ·+ Sn constitute a renewal process. The associated renewal sequence

ŭ0, ŭ1, . . . is defined by ŭk = P̆(Uτ+(n) = k, for some n ≥ 1), i.e. ŭk is the probability
of a renewal at k. Note also that ŭ0 =1, because Uτ+(0) = 0. Thus, according to

Asmussen (2003, Lemma I.2.1), the renewal measure Ŭ is supported on {0, 1, . . . } and
it is aperiodic.

From Theorem 5.3, we know that ĔZ > 0. Therefore, according to Asmussen

(2003, Theorem VIII.2.4), the ladder height distribution H̆+ is proper, i.e.
∥∥∥H̆+

∥∥∥ = 1.

As a last step to find a connection between the ladder height distributions H+ and
H̆+, we use Corollary A.15. If we take G = {Uτ+ = n}, where n ≥ 1, we have that

h+(n) = P(Uτ+ = n) = Ĕ
[
e−γUτ+1

(
Uτ+ = n

) ]
= e−γnP(Uτ+ = n)

= e−γnh̆+(n), (A.10)

which completes the proof.

In Lemma A.17, we prove a weak convergence result of the overshoot B(N) and we

find the distribution of its limit B(∞). We denote weak convergence as
d̆⇒. Thus, if ξn

and ξ are random elements of a metric space T, ξn
d̆⇒ ξ means that for any f ∈ Cb(T)

(the bounded continuous function on T), it holds that Ĕf(ξn)→ Ĕf(ξn) (Asmussen,
1982, page 147).

Lemma A.17. B(N)
d̆⇒ B(∞), where P̆(B(∞) = n) =

1− H̆+(n− 1)

l̆+
, n ≥ 1.

Proof. Our random walk has positive mean under the tilted probability measure. Thus,
for all N > 0, at least one n exists with certainty so as Un > N . Since τ(N) is the
smallest index for which this is true, Uτ(N) is called the point of first entry into (N,∞).
The variable Uτ(N) −N is the amount by which the level N is overshot at the first
entry and we want to find its distribution; namely, we want to find the probabilities
P̆(B(N) = n) = P̆(Uτ(N) = N + n), for n ∈ Z+. In other words, P̆(B(N) = n)
corresponds to the probability that the level N is overshot exactly by an amount n.

We define now U ′1 as the point of the first entry into (0,∞) and by induction
U ′n+1 as the point of the first entry into (U ′n,∞). The sequence U ′1, U

′
2, . . . coincides

with the ladder heights Uτ+(1), Uτ+(2),. . . and forms a renewal process: the differences
U ′n+1 −U ′n are evidently mutually independent and have the same distribution as Uτ+ .
Consequently, the event that the level N is overshot by an amount n, with n ≥ 1
occurs if some renewal epoch U ′n equals m ≤ N and the following inter-arrival time
U ′n+1 − U ′n is equal to N −m+ n.
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jump
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Figure A.1: Ladder height sample path.

Combining all the above, we have

P̆(B(N) = n) = Ŭ ∗ h̆+(N + n) =

N∑
m=0

ŭmh̆+(N + n−m)

=

N∑
m=0

ŭN−mh̆+(n+m)→ 1

l̆+

∞∑
j=0

h̆+(n+ j), N →∞,

where in the last step we applied the lattice version of the Renewal Theorem (see Feller

(1971, page 363) and Asmussen (2003, page 157)). Now, since
∑∞
j=0 h̆+(n + j) =

1− H̆+(n− 1), the result is immediate.





Summary

Error analysis of structured Markov chains

This dissertation is concerned with the error analysis of structured Markov chains.
Performance measures for various classes of structured Markov processes can be found
algorithmically with the aid of Matrix-Analytic Methods (MAM), where the latter
techniques combine probability and matrix theory.

Although there exist cases in which performance measures for structured models can
be found explicitly, often in practice, a system is described by a stochastic model which
can only be analysed numerically if the background state space is truncated. From an
application point of view, truncation of the background state space can be interpreted
as approximating general distributions with phase-type distributions, and/or infinite
waiting rooms with finite waiting rooms. On the one hand the approximation of
several input parameters leads to an approximate model that can be analysed exactly
or numerically, but on the other hand it introduces approximation errors.

The goal of this dissertation is to obtain a rigorous understanding of these ap-
proximation errors for a number of practically relevant classes of stochastic systems
arising in risk and queueing theory. More precisely, since MAM are very successful
in the numerical analysis of structured Markov processes, we combine MAM with
other techniques, such as Laplace transforms, perturbation analysis, and extreme
value theory, in order to derive algorithms that yield provably accurate estimates of
performance measures for a wide class of systems. In addition, we focus on relating
the incurred errors to the truncation levels.

In Chapters 2–4, we consider heavy-tailed models. To preserve the heavy-tailed
property within the context of structured Markov processes, we should allow for a
(doubly) infinite state space, which makes the numerical evaluation of performance
measures cumbersome if not impossible. Specifically, in Chapters 2–3, we consider
the classical compound Poisson risk model and we find approximations, with their
accompanying error bounds, for the ruin probability. In broad terms, a risk reserve
process is a model for the time evolution of the reserve of an insurance company,
where the initial reserve is non-negative. Claims for money arrive according to a
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Poisson process, the claim sizes are i.i.d. and independent of the aforementioned
Poisson process, and premiums flow in at a rate one per unit time. Furthermore, the
probability of ultimate ruin, is defined as the probability that the reserve ever drops
below zero.

In Chapter 2, we assume that the claim sizes are heavy-tailed and we show how
to approximate the heavy-tailed claim size distribution with a hyperexponential one
in order to meet a predetermined accuracy for the ruin probability. In addition,
we perform an extensive numerical study to compare our approximations with well-
established approximations for heavy-tailed risk models. Motivated by statistical
theory, we describe in Chapter 3 how the claim sizes can be written as a mixture of
a phase-type and a heavy-tailed distribution. From this representation of the claim
size distribution, we derive, with the aid of perturbation analysis, a series expansion
for the ruin probability. Our proposed approximations consist of the first two terms
of this series expansion and we refer to them collectively as corrected phase-type
approximations. Finally, we prove that the corrected phase-type approximations
provide small absolute and relative errors and we check their accuracy through
numerical experiments.

In Chapter 4, we extend the applicability of the corrected phase-type approxima-
tions to a more involved queueing model. In particular, we consider a single server
queue with FIFO discipline where customers arrive according to a Markovian Arrival
Process (MArP) and their service times follow the same distribution as the claim
sizes in Chapter 3, i.e. a mixture of a phase-type and a heavy-tailed distribution.
For this model, we focus on the evaluation of the queuing delay, where significant
correlations between arrivals of load-generating events make the numerical evaluation
of such a performance measure a challenging problem. We show that the developed
approximations capture the exact tail behaviour and provide bounded relative errors.
We exhibit their performance with numerical examples.

Finally, in Chapter 5, we no longer focus on heavy-tailed models. However, we
consider a tandem queue with batch arrivals. Customers arrive in batches according
to a Poisson stream and join the first queue, while the service times in each queue are
exponential. A customer leaves the system after completing service in both queues. For
this model, the joint queue length distribution can be represented by a doubly-infinite
Quashi-Birth-Death (QBD) process and we can apply MAM to find the steady-state
distribution only if the number of customers in front of either queue is finite. To find
approximations for the queue lengths we exploit the latter property, and we truncate
the number of customers of the first queue. We connect our two dimensional queuing
process with a two dimensional random walk and with the aid of large deviations
theory we find an asymptotic upper bound for our approximations. We recognise three
possible cases for the bound, study its qualitative characteristics, and test its accuracy
through numerical experiments.



Bibliography

J. Abate and W. Whitt. Computing Laplace transforms for numerical inversion via
continued fractions. INFORMS Journal on Computing, 11(4):394–405, 1999a.

J. Abate and W. Whitt. Explicit M/G/1 waiting-time distributions for a class of
long-tail service-time distributions. Operations Research Letters, 25(1):25–31, 1999b.

I. Adan. A compensation approach for queueing problems. PhD thesis, Centrum voor
Wiskunde en Informatica, 1994.

I. J. B. F. Adan and V. G. Kulkarni. Single-server queue with Markov-dependent
inter-arrival and service times. Queueing Systems. Theory and Applications, 45(2):
113–134, 2003.

I. J. B. F. Adan, J. Wessels, and W. H. M. Zijm. Analysing multiprogramming queues
by generating functions. SIAM Journal on Applied Mathematics, 53(4):1123–1131,
1993.

S. Ahn, J. H. T. Kim, and V. Ramaswami. A new class of models for heavy tailed
distributions in finance and insurance risk. Insurance: Mathematics & Economics,
51(1):43–52, 2012.

G. Alsmeyer. On the Markov renewal theorem. Stochastic processes and their applica-
tions, 50(1):37–56, 1994.

E. Altman, K. E. Avrachenkov, and R. Núñez-Queija. Perturbation analysis for
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