11,615 research outputs found

    Evolving Spatially Aggregated Features from Satellite Imagery for Regional Modeling

    Full text link
    Satellite imagery and remote sensing provide explanatory variables at relatively high resolutions for modeling geospatial phenomena, yet regional summaries are often desirable for analysis and actionable insight. In this paper, we propose a novel method of inducing spatial aggregations as a component of the machine learning process, yielding regional model features whose construction is driven by model prediction performance rather than prior assumptions. Our results demonstrate that Genetic Programming is particularly well suited to this type of feature construction because it can automatically synthesize appropriate aggregations, as well as better incorporate them into predictive models compared to other regression methods we tested. In our experiments we consider a specific problem instance and real-world dataset relevant to predicting snow properties in high-mountain Asia

    Pseudo-NK: an Enhanced Model of Complexity

    Get PDF
    This paper is based on the acknowledgment that NK models are an extremely usefu l tool in order to represent and study the complexity stemming from interactions among components of a system. For this reason NK models have been applied in many domains, such as Organizational Sciences and Economics, as a simple and powerful tool for the representation of complexity. However, the paper suggests that NK suffers from un-necessary limitations and difficulties due to its peculiar implementation, originally devised for biological phenomena. We suggest that it is possible to devise alternative implementations of NK that, though maintaining the core aspects of the NK model, remove its major limitations to applications in new domains. The paper proposes one such a model, called pseudo-NK (pNK) model, which we describe and test. The proposed model appears to be able to replicate most, if not all, the properties of standard NK models, but also to offer wider possibilities. Namely, pNK uses real-valued (instead of binary) dimensions forming the landscape and allows for gradual levels of interaction among components (instead of presence-absence). These extensions provide the possibility to maintain the approach at the original of NK (and therefore, the compatibility with former results) and extend the application to further domains, where the limitations posed by NK are more striking.NK model, Simulation models, Complexity, Interactions

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Behavioral Learning of Aircraft Landing Sequencing Using a Society of Probabilistic Finite State Machines

    Full text link
    Air Traffic Control (ATC) is a complex safety critical environment. A tower controller would be making many decisions in real-time to sequence aircraft. While some optimization tools exist to help the controller in some airports, even in these situations, the real sequence of the aircraft adopted by the controller is significantly different from the one proposed by the optimization algorithm. This is due to the very dynamic nature of the environment. The objective of this paper is to test the hypothesis that one can learn from the sequence adopted by the controller some strategies that can act as heuristics in decision support tools for aircraft sequencing. This aim is tested in this paper by attempting to learn sequences generated from a well-known sequencing method that is being used in the real world. The approach relies on a genetic algorithm (GA) to learn these sequences using a society Probabilistic Finite-state Machines (PFSMs). Each PFSM learns a different sub-space; thus, decomposing the learning problem into a group of agents that need to work together to learn the overall problem. Three sequence metrics (Levenshtein, Hamming and Position distances) are compared as the fitness functions in GA. As the results suggest, it is possible to learn the behavior of the algorithm/heuristic that generated the original sequence from very limited information

    A Generalized Spatial Measure for Resilience of Microbial Systems

    Get PDF
    The emergent property of resilience is the ability of a system to return to an original state after a disturbance. Resilience may be used as an early warning system for significant or irreversible community transition; that is, a community with diminishing or low resilience may be close to catastrophic shift in function or an irreversible collapse. Typically, resilience is quantified using recovery time, which may be difficult or impossible to directly measure in microbial systems. A recent study in the literature showed that under certain conditions, a set of spatial-based metrics termed recovery length, can be correlated to recovery time, and thus may be a reasonable alternative measure of resilience. However, this spatial metric of resilience is limited to use for step-change perturbations. Building upon the concept of recovery length, we propose a more general form of the spatial metric of resilience that can be applied to any shape of perturbation profiles (for example, either sharp or smooth gradients). We termed this new spatial measure “perturbation-adjusted spatial metric of resilience” (PASMORE). We demonstrate the applicability of the proposed metric using a mathematical model of a microbial mat

    Fitness landscape of the cellular automata majority problem: View from the Olympus

    Get PDF
    In this paper we study cellular automata (CAs) that perform the computational Majority task. This task is a good example of what the phenomenon of emergence in complex systems is. We take an interest in the reasons that make this particular fitness landscape a difficult one. The first goal is to study the landscape as such, and thus it is ideally independent from the actual heuristics used to search the space. However, a second goal is to understand the features a good search technique for this particular problem space should possess. We statistically quantify in various ways the degree of difficulty of searching this landscape. Due to neutrality, investigations based on sampling techniques on the whole landscape are difficult to conduct. So, we go exploring the landscape from the top. Although it has been proved that no CA can perform the task perfectly, several efficient CAs for this task have been found. Exploiting similarities between these CAs and symmetries in the landscape, we define the Olympus landscape which is regarded as the ''heavenly home'' of the best local optima known (blok). Then we measure several properties of this subspace. Although it is easier to find relevant CAs in this subspace than in the overall landscape, there are structural reasons that prevent a searcher from finding overfitted CAs in the Olympus. Finally, we study dynamics and performance of genetic algorithms on the Olympus in order to confirm our analysis and to find efficient CAs for the Majority problem with low computational cost

    DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution

    Full text link
    Recent research has demonstrated the vulnerability of fingerprint recognition systems to dictionary attacks based on MasterPrints. MasterPrints are real or synthetic fingerprints that can fortuitously match with a large number of fingerprints thereby undermining the security afforded by fingerprint systems. Previous work by Roy et al. generated synthetic MasterPrints at the feature-level. In this work we generate complete image-level MasterPrints known as DeepMasterPrints, whose attack accuracy is found to be much superior than that of previous methods. The proposed method, referred to as Latent Variable Evolution, is based on training a Generative Adversarial Network on a set of real fingerprint images. Stochastic search in the form of the Covariance Matrix Adaptation Evolution Strategy is then used to search for latent input variables to the generator network that can maximize the number of impostor matches as assessed by a fingerprint recognizer. Experiments convey the efficacy of the proposed method in generating DeepMasterPrints. The underlying method is likely to have broad applications in fingerprint security as well as fingerprint synthesis.Comment: 8 pages; added new verification systems and diagrams. Accepted to conference Biometrics: Theory, Applications, and Systems 201
    corecore