2,515 research outputs found

    Feature selection for chemical sensor arrays using mutual information

    Get PDF
    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays

    Cram\'er-Rao Bounds for Polynomial Signal Estimation using Sensors with AR(1) Drift

    Full text link
    We seek to characterize the estimation performance of a sensor network where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the bias. Though estimation in the presence of random errors has been extensively studied in the literature, the loss of estimation performance due to systematic errors like drift have rarely been looked into. In this paper, we derive closed-form Fisher Information matrix and subsequently Cram\'er-Rao bounds (upto reasonable approximation) for the estimation accuracy of drift-corrupted signals. We assume a polynomial time-series as the representative signal and an autoregressive process model for the drift. When the Markov parameter for drift \rho<1, we show that the first-order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. For \rho=1, i.e., when the drift is non-stationary, we show that the constant part of a signal can only be estimated inconsistently (non-zero asymptotic variance). Practical usage of the results are demonstrated through the analysis of 1) networks with multiple sensors and 2) bandwidth limited networks communicating only quantized observations.Comment: 14 pages, 6 figures, This paper will appear in the Oct/Nov 2012 issue of IEEE Transactions on Signal Processin

    Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations

    Full text link
    The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system

    Technology transfer potential of an automated water monitoring system

    Get PDF
    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes

    Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    Get PDF
    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing

    E-Nose Application to Food Industry Production

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Food companies worldwide must constantly engage in product development to stay competitive, cover existing markets, explore new markets, and meet key consumer requirements. This ongoing development places high demands on achieving quality at all levels, particularly in terms of food safety, integrity, quality, nutrition, and other health effects. Food product research is required to convert the initial product idea into a formulation for upscaling production with ensured significant results. Sensory evaluation is an effective component of the whole process. It is especially important in the last step in the development of new products to ensure product acceptance. In that stage, measurements of product aroma play an important role in ensuring that consumer expectations are satisfied. To this end, the electronic nose (e-nose) can be a useful tool to achieve this purpose. The e-nose is a combination of various sensors used to detect gases by generating signals for an analysis system. Our research group has investigated the scent factor in some foodstuff and attempted to develop e-noses based on low-cost technology and compact size. In this paper, we present a summary of our research to date on applications of the e-nose in the food industry.Chilo, J.; Pelegrí Sebastiá, J.; Cupane, M.; Sogorb Devesa, TC. (2016). E-Nose Application to Food Industry Production. IEEE Instrumentation and Measurement Magazine. 19(1):27-33. doi:10.1109/MIM.2016.7384957S273319
    corecore