1,007 research outputs found

    Robusno adaptivno upravljanje istosmjernim servomotorom s nelinearnom širokom zračnosti

    Get PDF
    In this paper, the problem of driving angular position of a direct current servomotor system with unmodeled wide backlash nonlinearity is addressed. In order to tackle this problem, a control scheme based on an adaptive super twisting algorithm is proposed. In order to implement the proposed controller, information about angular velocity is estimated by means of a robust differentiator. Based on a simplified model of the system, the proposed scheme increases robustness against unmodeled dynamics as backlash, as not all the parameters of the system nor the bounds of the perturbations are required to be known. Experimental results considering a wide backlash angle near to 2*PI, illustrate the feasibility and performance of the proposed control methodology.U ovom radu bavi se problemom kutnog pozicioniranja istosmjernog sevomotora s nemodeliranom nelinearnošću široke zračnosti. Za rješenje tog problema predlaže se korištenje upravljačke sheme bazirane na algoritmu adaptivnog uvijanja. Kako bi se implementiralo predloženo upravljanje, kutna brzina estimira se korištenjem robusnog diferencijatora. Bazirana na pojednostavljenom modelu sustava, predložena shema povećava robustnost u odnosu na nemodeliranu dinamiku kao što je zračnost. Pritom nije potrebno poznavanje svih parametara sustava niti očekivane granice smetnji. Eksperimetalni rezultati, koji uzimaju u obzir široki kut zračnosti od skoro pi$, ilustriraju izvodljivost i učinkovitost predloženog algoritma upravljanja

    Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns

    Get PDF
    In this paper, a backpropagating constraints-based trajectory tracking control (BCTTC) scheme is addressed for trajectory tracking of a quadrotor with complex unknowns and cascade constraints arising from constrained actuator dynamics, including saturations and dead zones. The entire quadrotor system including actuator dynamics is decomposed into five cascade subsystems connected by intermediate saturated nonlinearities. By virtue of the cascade structure, backpropagating constraints (BCs) on intermediate signals are derived from constrained actuator dynamics suffering from nonreversible rotations and nonnegative squares of rotors, and decouple subsystems with saturated connections. Combining with sliding-mode errors, BC-based virtual controls are individually designed by addressing underactuation and cascade constraints. In order to remove smoothness requirements on intermediate controls, first-order filters are employed, and thereby contributing to backstepping-like subcontrollers synthesizing in a recursive manner. Moreover, universal adaptive compensators are exclusively devised to dominate intermediate tracking residuals and complex unknowns. Eventually, the closed-loop BCTTC system stability can be ensured by the Lyapunov synthesis, and trajectory tracking errors can be made arbitrarily small. Simulation studies demonstrate the effectiveness and superiority of the proposed BCTTC scheme for a quadrotor with complex constrains and unknowns

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    Deadzone compensation control based on detection of micro flow rate in pilot stage of proportional directional valve

    Get PDF
    The pilot operated proportional directional valves (POPDVs) with a flow rate ranging from 100 to 1000 L/min are widely used in electro-hydraulic systems (EHSs). The deadzone of the pilot stage valve and its control compensation could significantly affect the position control performance for the main stage valve that could directly affect dynamics of EHSs In this paper, it is concluded that micro flow rates exist at the intermediate position of the valve based on the analysis of the continuity equation of the flow in the control chamber of the pilot stage. The micro flow rate is helpful to eliminate the discontinuity and unsmooth domain in the previous inverse deadzone compensation function. An improved deadzone detection method is proposed to calibrate the pilot valve flow characteristics which include the micro flow rate. This new method avoids the threshold selection of the main valve spool displacement which affects the detected deadzone values. Its detection processes are realized based on the pilot flow rate characterized by the speed of the main valve spool and the pilot valve displacement characterized by the solenoid current. The deadzone compensation control strategy based on the improved deadzone detection method is also designed. The experimental results using the steady-state position tracking and sinusoidal position tracking methods are verified. It is concluded that the tracking accuracy of the main valve spool position is effectively improved with this control strategy

    Improvement On Transient Response Of Pneumatic Grasper Robot Positioning Using Deadzone Compensator

    Get PDF
    This project presents the design and modeling dead zone compensator with the close-loop control of pneumatic robot grasper unit. Pneumatic system is a very common devices in industrial automation application due to the advantage such as easy and simple maintenance. However, there are some challenges and limitation in application due to its non-linearities with uncertain behavior including dead zone influences. Dead zone is referring certain input control valve values give no response to the valve operations as the pressure flow is blocked. Therefore, this study has taken initiative to propose the method to compensate with the dead zone effect such by using inverse dead zone function approaches. The identification works are done to identifying the characteristic of the pneumatic system used on the targeted platform; tri-finger pneumatic grippers (TPG). Moreover, the data from dead zone analysis was used to design the compensator equation and apply to the PID controller as selected controller. The result shows that the offset value is close to the center, and the dead zone values on both sides are balanced. The proposed compensator. The experiment carried on targeted platform to validate the proposed compensator with the controller without the compensator. The result shows that the PID control system with compensator have improved the transient response of a fingertip positioning for the TPG system

    The Fourteenth Scandinavian International Conference on Fluid Power, SICFP15: Abstracts

    Get PDF
    At this time the conference includes various themes like hybrids, drives, digital hydraulics and pneumatics. Special attention in the program is given for energy efficiency, renewable energy production and energy recovery. They are reflecting well the situation, where environmental issues and energy saving are increasingly important issues

    Nonlinear energy-based control of soft continuum pneumatic manipulators

    Get PDF
    This paper investigates the model-based nonlinear control of a class of soft continuum pneumatic manipulators that bend due to pressurization of their internal chambers and that operate in the presence of disturbances. A port-Hamiltonian formulation is employed to describe the closed loop system dynamics, which includes the pressure dynamics of the pneumatic actuation, and new nonlinear control laws are constructed with an energy-based approach. In particular, a multi-step design procedure is outlined for soft continuum manipulators operating on a plane and in 3D space. The resulting nonlinear control laws are combined with adaptive observers to compensate the effect of unknown disturbances and model uncertainties. Stability conditions are investigated with a Lyapunov approach, and the effect of the tuning parameters is discussed. For comparison purposes, a different control law constructed with a backstepping procedure is also presented. The effectiveness of the control strategy is demonstrated with simulations and with experiments on a prototype. To this end, a needle valve operated by a servo motor is employed instead of more sophisticated digital pressure regulators. The proposed controllers effectively regulate the tip rotation of the prototype, while preventing vibrations and compensating the effects of disturbances, and demonstrate improved performance compared to the backstepping alternative and to a PID algorithm

    Derivative-free Kalman Filter-based Control of Nonlinear Systems with Application to Transfemoral Prostheses

    Get PDF
    Derivative-free Kalman filtering (DKF) for estimation-based control of a special class of nonlinear systems is presented. The method includes a standard Kalman filter for the estimation of both states and unknown inputs, and a nonlinear system that is transformed to controllable canonical state space form through feedback linearization (FL). A direct current (DC) motor with an input torque that is a nonlinear function of the state is considered as a case study for a nonlinear single-input-single-output (SISO) system. A three degree-of-freedom (DOF) robot / prosthesis system, which includes a robot that emulates human hip and thigh motion and a powered (active) transfemoral prosthesis disturbed by ground reaction force (GRF), is considered as a case study for a nonlinear multi-input-multi-output (MIMO) system. A PD/PI control term is used to compensate for the unknown GRF. Simulation results show that FL can compensate for the system\u27s nonlinearities through a virtual control term, in contrast to Taylor series linearization, which is only a first-order linearization method. FL improves estimation performance relative to the extended Kalman filter, and in some cases improves the initial condition region of attraction as well. A stability analysis of the DKF-based control method, considering both estimation and unknown input compensation, is also presented. The error dynamics are studied in both frequency and time domains. The derivative of the unknown input plays a key role in the error dynamics and is the primary limiting factor of the closed-loop estimation-based control system stability. It is shown that in realistic systems the derivative of the unknown input is the primary determinant of the region of convergence. It is shown that the tracking error asymptotically converges to the derivative of the unknown input

    Controller Development for a Separate Meter-In Separate Meter-Out Fluid Power Valve for Mobile Applications

    Get PDF
    corecore