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Abstract—In this paper, a backpropagating constraints based
trajectory tracking control (BCTTC) scheme is addressed for
trajectory tracking of a quadrotor with complex unknowns and
cascade constraints arising from constrained actuator dynamics
including saturations and dead zones. The entire quadrotor
system including actuator dynamics is decomposed into 5 cascade
subsystems connected by intermediate saturated nonlinearities.
By virtue of the cascade structure, backpropagating constraints
(BC) on intermediate signals are derived from constrained
actuator dynamics suffering from nonreversible rotations and
nonnegative squares of rotors, and decouple subsystems with
saturated connections. Combining with sliding-mode errors, BC-
based virtual controls are individually designed by addressing
underactuation and cascade constraints. In order to remove
smoothness requirements on intermediate controls, first-order
filters are employed, and thereby contributing to backstepping-
like sub-controllers synthesizing in a recursive manner. Moreover,
universal adaptive compensators are exclusively devised to dom-
inate intermediate tracking residuals and complex unknowns.
Eventually, the closed-loop BCTTC system stability can be en-
sured by the Lyapunov synthesis, and trajectory tracking errors
can be made arbitrarily small. Simulation studies demonstrate
the effectiveness and superiority of the proposed BCTTC scheme
for a quadrotor with complex constrains and unknowns.

Index Terms—Backpropagating constraints, quadrotor, con-
strained actuator dynamics, cascade constraints, complexun-
knowns, dead zones, trajectory tracking control.

I. I NTRODUCTION

RECENTLY, increasing attention has been paid to Vertical
Take-Off and Landing (VTOL) unmanned aerial vehicles

(UAV) pertaining to a wide area of vital applications including
patrolling for forest fires, traffic monitoring and surveillance
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rescue via hovering, tracking and coordination [1]–[4]. Re-
cently, flapping-wing flying robotics have also attracted much
attention by devising novel neuro-adaptive methods [5], [6].
Compared with fixed-wing aircrafts, the rotary-wing UAV
possesses the significant advantage that it can take-off and
land vertically in limited spaces and is easy to hover over
the target. Note that the quadrotor UAV (QUAV) is a typical
VTOL-UAV with simple mechanical structure and favorable
maneuverability. In this context, as a remarkable platformof
the UAV, the QUAV has attracted numerous research [7]–[10].

The QUAV is a highly nonlinear system with underactuated
constraints and strong couplings between actuator dynamics,
and thereby leading to great challenges in controller design
and synthesis. With the development of advanced control
approaches including sliding mode control (SMC) [11]–[13],
dynamic surface control (DSC) [14], fuzzy/neural control
[15]–[23], and non-smooth approaches [24]–[26]etc., promis-
ing control schemes for the QUAV are pursued ceaselessly. In
the literature, control methods of the QUAV can be actually
classified into two kinds, i.e., model-based approaches includ-
ing feedback linearization [27] backstepping [28], SMC [29],
adaptive control [30], model predictive control (MPC) [31],
and robust control [32]etc., and mode-free approaches includ-
ing PID [33]–[35], neural control [36] and fuzzy control [37],
etc. Undoubtedly, the plant dynamics controlled would be dra-
matically simplified for linear/nonlinear PID controller design
[38]. Backstepping- and SMC-based adaptive robust control
schemes can incorporate complex unknown dynamics and even
uncertainties and/or disturbances by employing disturbance
observers [39], [40]. Furthermore, combining with model-
free approaches, i.e. adaptive fuzzy/neural approximators, for
uncertainties and/or unknown dynamics, tracking errors ofan
uncertain QUAV can be made bounded [36], [41].

In order to facilitate trajectory/position tracking control of
a QUAV, the entire QUAV system is usually decomposed into
a cascaded form such that the underactuation issue can be
solved by applying an inversion calculation to interconnected
nonlinearities. To this end, various cascaded frameworks have
been derived from QUAV kinematics and dynamics, and can
be mainly classified into 3 categories, i.e., translationaland
rotational (TR) dynamics [42]–[45], underactuated and fully-
actuated (UF) dynamics [46]–[49], and multiple-loop (ML)
dynamics [50], [51]. Main ideas can be summarized as follows.
Within the TR form, the orientation (attitude) variables are
treated as virtual control inputs of translational dynamics in
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addition to actual thrusts generated by propellers. Furthermore,
the desired attitude variables resulting from virtual control
signals are taken as references to be tracked by rotational
dynamics. In this context, virtual control inputs have to be
reasonable since the total thrust is uniformly nonnegative.
In terms of unit-quaternion, Abdessameud and Tayebi [3]
created a tool for extracting the thrust and desired attitudes,
whereby feasible magnitudes for intermediate signals can be
ensured. Within the UF framework, underactuated dynamics
are driven by one or more cascaded fully-actuated subsys-
tems, and thereby rendering backstepping-based approaches
available. Typically, inspired by Lyapunov’s direct method for
underactuated ship tracking [52], Doet al. [46] developed a
global tracking control scheme for a QUAV by employing
bounded backstepping techniques. Within the ML structure,
several quasi-cascade loops are designed by employing time-
scale separation philosophy, whereby the innermost (outer-
most) loop has to possess the fastest (lowest) tracking error
dynamics since virtual controllers can only stabilize individual
subsystems. In summary, there exist the issues which are open:

• Dealing with cascade constraints.Using TR and UF
cascade structures would inevitably ignore cascade con-
straints hidden within subsystems due to main facts as
follows: (1) The total thrust is constrained by nonre-
versibly limited propeller rotations and has to be non-
negative; (2) Together with trigonometric functions of
attitudes, desired cascade inputs to translational dynamics
have to be feasibly constrained; (3) Cascade inputs to
attitude dynamics are directly constrained by the squares
of propeller rotations; (4) Thrust torques generated by
individual propellers are restricted to be nonnegative and
are determined by the squares of motor rotor speeds.
(5) Moreover, DC actuators would also suffer from con-
trol input nonlinearities including saturations and dead
zones. Note that an extraction algorithm for thrust and
quaternion-based attitude has been addressed in [3]. How-
ever, it is limited to be available for quaternion-based
models in addition that cascade constraints from rotation
squares and actuator dynamics are still unsolved. Within
the ML framework, interconnected nonlinearities between
cascade dynamics can be characterized in a triangular-like
form. Unfortunately, aforementioned cascade constraints
have not been addressed to date [51], although individual
loops can facilitate the SMC approach.

• Dealing with actuator dynamics.As analyzed above, ac-
tuator dynamics including transient responses and control
input constraints would directly affect and limit the torque
inputs to propeller rotation dynamics. Clearly, treating ac-
tuator dynamics as input nonlinearities/uncertainties [53],
[54], linearized dynamics [43], [55], [56] or stationary
mappings [1], [57] would hardly determine feasible input
torques generated by propellers, and thereby resulting in
uniformly unreachable regions within the desired control
efforts. Nevertheless, BLDC motors in a QUAV are not
allowed to rotate reversely such that uniformly upward
thrust forces can be generated. In this context, it becomes
empirical and risky to design control laws for torque
inputs if BLDC dynamics are omitted and torque control

signals are directly fed into the electronic speed control
(ESC) module which generates 3-phase AC voltages via
PWM signals. Hence, incorporating actuator dynamics
into the QUAV model is strongly desirable for pursuing
high autonomy. However, to our best knowledge, few
attention to systematically dealing with actuator dynamics
including control constraints has been paid for a QUAV.

In this paper, we focus on trajectory tracking control of
a QUAV including cascade constraints, constrained actuator
dynamics and complex unknowns, which is unsolved in the
literature. By incorporating the SMC and DSC approaches into
a backstepping-like framework, a backpropagating constraints
(BC) based trajectory tracking control (BCTTC) scheme is
proposed by devising extraction tools for cascade constraints.
In the presence of actuator dynamics, unmodeled dynamics,
uncertainties, measurement noises and external disturbances,
the entire QUAV dynamics are formulated in a vectorial
pure-feedback form with unmatched unknowns whereby in-
termediate constraints and underactuated dynamics appearin
a cascade mode, and make traditional backstepping-based
approaches unavailable. In this context, the BCTTC frame-
work using the SMC is realized to circumvent both cascade
constraints and underactuation issues, and recursively stabilize
tracking errors. The DSC technique is further deployed to
facilitate the derivation of intermediate signals. Since con-
strained actuator dynamics are sufficiently addressed, virtual
control signals pertaining to Euler angles, rotation squares,
and armature voltages of nonreversible motors with input
saturations and dead zones are reasonably constrained by the
BC extraction. In addition, intermediate tracking discrepancies
and complex unknowns are further be attenuated by a family
of universal adaptive compensators. Eventually, the Lyapunov
approach ensures that the entire closed-loop BCTTC system
is asymptotically stable, and trajectory tracking errors together
with other signals are uniformly ultimately bounded.

The rest of this paper is organized as follows. In Section II,
the QUAV dynamics and problem formulation are addressed.
Backpropagating constraints on intermediate signals are de-
rived in Section III. The BCTTC scheme for trajectory tracking
of a QUAV and stability analysis are presented in Sections
IV and V, respectively. Simulation studies are conducted in
Section VI. Conclusions are drawn in Section VII.

Nomenclature:Throughout this paper, “‖ · ‖” denotes Eu-
clidean vector norm or Frobenius matrix norm, respectively,
and a saturation functionsat(·) shown in Fig. 1 is defined by

sat(x;x0, δx) =











x, |x− x0| ≤ δx

x0 + δx, x− x0 > δx

x0 − δx, x− x0 < −δx

(1)

wherex0 and δx > 0 are the center point and range of the
saturation, and a smooth approximation to (1) is defined by

sata(x;x0, δx) = x0 + δx · tanh((x − x0)/δx) (2)

with hyperbolic tangent functiontanh(·). Accordingly, the
saturation approximation error function is defined as follows:

sate(x;x0, δx) = sat(x;x0, δx)− sata(x;x0, δx) (3)
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Fig. 1. Saturation functionsat(·) and its smooth approximationsata(·) .
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Fig. 2. The configuration of a QUAV.

which is obviously bounded.

II. QUAV D YNAMICS AND PROBLEM FORMULATION

A. QUAV Dynamics

As shown in Fig. 2, a QUAV is made up of four electric
motors fixed on an X-shape frame. The earth-fixed coordinate
OXoYoZo and the body-fixed coordinateO′XYZ are consid-
ered with the origin coinciding to the gravity center of the
QUAV. In the earth-fixed frame, theZ0-axis points upwards,
and the QUAV position is given by a vector[x, y, z]T . The
QUAV orientation refers to as roll, pitch, and yaw, and is
given by the vector[φ, θ, ψ]T which is measured with respect
to the earth-fixed coordinate. Actually, the entire model of
the QUAV is composed by position dynamics, Euler angles,
angular velocity, propeller speed and BLDC motor dynamics.

Inspired by the faithful representation for a QUAV with
complete dynamics in [58], in this paper, actuator dynamics,
i.e., BLDC motor dynamics together with propeller speeds,
have been comprehensively incorporated into the entire QUAV
dynamics which in turn become much more practical and
challenging for controller design and synthesis.

The position dynamics can be described as follows:
{

χ̇χχ11 = χχχ12

χ̇χχ12 = fff1 (χχχ12) + uuu1 (χχχ2, T (χχχ4)) + ddd1
(4)

with lumped unknown nonlinearitiesddd1 = [d11, d12, d13]
T

including model uncertainties, unmodeled dynamics and/or
external disturbances which exist in position dynamics, and

fff1 (χχχ12) = −
1

m





Dxẋ
2

Dyẏ
2

Dz ż
2 + g



 (5)

uuu1 (χχχ2, T (χχχ4)) =
T

m





cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ



 (6)

whereχχχ11 = [x, y, z]T andχχχ12 = [ẋ, ẏ, ż]T are the vectors of
the positions and linear velocities in the earth-fixed frame,

respectively,Di(i = x, y, z) represents the air resistance
coefficient respectively,m is the mass of the QUAV,g is the
acceleration of the gravity,T is the total thrust determined by

T (χχχ4) =

4
∑

i=1

bw2
i (7)

here,b is the thrust factor andχχχ4 = [w1, w2, w3, w4]
T is the

vector of propeller rotation speeds, andχχχ2 = [φ, θ, ψ]T is the
vector of Euler angles governed by

χ̇χχ2 =GGG2(χχχ2)uuu2(χχχ3) + ddd2 (8)

with lumped nonlinearitiesddd2 = [d21, d22, d23]
T which may

include measurement noises and/or external disturbances per-
taining to angular velocities, and

GGG2(χχχ2) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 (9)

uuu2(χχχ3) = χχχ3 (10)

whereχχχ3 = [p, q, r]T is the angular velocity vector in body-
fixed coordinate given by the following dynamics:

χ̇χχ3 = fff3(χχχ3) +GGG3uuu3(χχχ4) + ddd3 (11)

with the diagonal matrixGGG3 = diag (1/Jx, 1/Jy, 1/Jz) where
Ji(i = x, y, z) is the moment of inertia with respect to each
axis,ddd3 = [d31, d32, d33]

T are unknown nonlinearities within
the input channel of angular dynamics, and

fff3(χχχ3) =







Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq






(12)

uuu3(χχχ4) =





lb
(

−w2
2 + w2

4

)

lb
(

−w2
1 + w2

3

)

k
(

−w2
1 + w2

2 − w2
3 + w2

4

)



 (13)

where the virtual control inputuuu3(χχχ4) is actually constrained
by the nonnegative squares, i.e.,w2

1 , w2
2 , w2

3 andw2
4 , τai (i =

1, 2, 3) denotes the airframe torque,l is the distance from the
gravity center of QUAV to the propeller rotor,b is the thrust
factor, k is the drag factor, and the dynamics of propeller
speedsχχχ4 = [w1, w2, w3, w4]

T are given by

χ̇χχ4 = fff4(χχχ4) +GGG4uuu4(χχχ5) + ddd4 (14)

with GGG4 = III4/Ir where III4 ∈ R4 is an unity matirx,Ir
denotes the propeller rotor inertia,ddd4 = [d41, d42, d43, d44]

T

are lumped unknowns for propeller rotation dynamics, and

fff4(χχχ4) =
1

Ir









−kw2
1 − cw1

−kw2
2 − cw2

−kw2
3 − cw3

−kw2
4 − cw4









(15)

uuu4(χχχ5) := [τ1, τ2, τ3, τ4]
T =

nr

η
[w2
e1, w

2
e2, w

2
e3, w

2
e4]

T (16)

where the input signaluuu4(χχχ5) is actually constrained by the
nonnegative squares, i.e.,w2

e1, w2
e2, w2

e3 andw2
e4, c is the thrust

factor,τi(i = 1, 2, 3, 4) denote the thrust torques generated by
individual propellers,n is the damping factor,r is the speed
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Fig. 3. The input nonlinearity including saturation and dead zone.

ratio between the motor and the propeller,η is the transmission
efficiency and the dynamics of BLDC motor rotor speedsχχχ5 =
[we1, we2, we3, we4]

T is given by

χ̇χχ5 = fff5(χχχ5) +GGG5uuu5(vvv5) + ddd5 (17)

with GGG5 = CmIII4/Ra whereCm and Ra denote the elec-
tric torque coefficient and the armature resistance of the
BLDC motor, respectively,ddd5 = [d51, d52, d53, d54]

T are
lumped unknowns pertaining to motor dynamics,uuu5(vvv5) =
[u51(v51), u52(v52), u53(v53), u54(v54)]

T is the armature volt-
age vector of motors and is practically constrained by input
nonlinearities including both saturations and dead zones due
to irreversible rotation shown in Fig. 3 as follows:

u5i(v5i) = sat

(

dz
(

v5i;u
0
5i

)

;
um5i − u05i

2
,
um5i − u05i

2

)

(18)

where

dz
(

v5i;u
0
5i

)

= v5i − sat
(

v5i; 0, u
0
5i

)

(19)

here,sat(·) is defined by (1),u05i andum5i are the dead zone
and the saturation of armature voltages, respectively, andvvv5 =
[v51, v52, v53, v54]

T is the ideally nominal control input, and

fff5(χχχ5) =
1

Jrr2 + Jmη











−CmCeη
Ra

we1 − nrw2
e1

−CmCeη
Ra

we2 − nrw2
e2

−CmCeη
Ra

we3 − nrw2
e3

−CmCeη
Ra

we4 − nrw2
e4











(20)

whereJr is the moment of inertia of the motor rotor,Jm is
the inertia moment of the rotating element that turns to rotor
of the motor,Ce is the voltage coefficient of the motor.

Similar to previous works formulated by Euler angles [32],
[36], constraints on Euler angles are naturally required to
ensure the nonsingularity of matrixGGG2 in (9) as follows:

Assumption 1. Euler angles are constrained by

φ, θ, ψ ∈ (−π/2, π/2) (21)

Remark 1. For the entire QUAV dynamics (4), (8), (11), (14)
and (17), vectorial nonlinearitiesuuu1(·),uuu2(·),uuu3(·) anduuu4(·)
are taken as virtual control inputs while the signaluuu5 is
referred to as the actual control input. As a consequence, a
vectorial pure-feedback nonlinear system with interconnected
nonlinearities can be innovatively established and is ready for
backstepping-like controller design.

Remark 2. In view of the squares of propeller and rotor
speeds, i.e.,w2

i and w2
ei in (13) and (16), respectively,

together with (7), virtual control signalsuuu1(·), uuu3(·) and
uuu4(·) in (4), (11) and (14) respectively are expected to be
constrained for ensuring the positiveness and boundedness

of speed squares. In addition, actuator dynamics with com-
plex constraints arising from insensitive dead-zone voltages,
bounded armature voltages and nonreversible rotations have
been completely formulated in (17)–(19), and thereby leading
to constraints on control input nonlinearityuuu5(·). To our best
knowledge, all aforementioned concerns on backpropagating
cascade constraints and complex actuator dynamics have not
been addressed in the literature.

Remark 3. In practice, the armature voltage of a BLDC
motor within the QUAV is actually limited within a reasonable
range, and is usually nonnegative for unidirectional rotation.
In addition, both mismatched and matched complex unknowns
dddi, i = 1, · · · , 5 including unmodeled dynamics, uncertainties,
measurement noises and external disturbances are incorporat-
ed into the QUAV model.

B. Problem Formulation

In this paper, we address the trajectory tracking problem of
a QUAV with backpropagating cascade constraints, complex
actuator dynamics and mismatched unknowns within the entire
dynamics (4), (8), (11), (14) and (17). Our objective is to
design a backpropagating constraints based trajectory tracking
controller (BCTTC) such that the complex QUAV can track
the desired trajectories under mild conditions as follows:

Assumption 2. The desired trajectory (χχχ11d := [xd, yd, zd]
T

andψd) and its time derivatives are bounded.

Assumption 3. Complex unknownsdddi are bounded while the
upper bound is unnecessarily known, i.e.,

‖dddi‖ ≤ Li, i = 1, 2, 3, 4, 5 (22)

where positive constantsLi > 0 is unknown.

In practice, BLDC motors within a QUAV are expected to
rotate unidirectionally and generate uniformly upward thrust.

Assumption 4. BLDC motors are nonreversible, i.e.,wei ≥ 0.

In order to facilitate stability analysis of the closed-loop
control system, a preliminary result is stated here.

Lemma 1. Consider the following system:

ẋ(t) + λ(t)x(t) = σ(t) (23)

with λ(t) > 0, ∀ t, if σ(t) is uniformly bounded, i.e.,|σ(t)| ≤
̺, ∀t with a positive constant̺ > 0, then statesx(t) and ẋ(t)
are uniformly bounded.

Proof: Consider the Lyapunov functionW = 1
2x

2. Using
(23) yields the time derivative ofW as follows:

Ẇ = x (−λx+ σ)

≤ − (λ− κ)x2 +
σ2

4κ
(24)

for any positive constantκ > 0. Since|σ(t)| ≤ ̺, ∀t, selecting
κ < λ, we further have

Ẇ ≤ −aW + b (25)

with a = 2 (λ− κ) andb = ̺2/(4κ).
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It implies that

0 ≤W (t) ≤W (0)e−at + (1− e−at)
b

a
<∞ (26)

Clearly,x(t) is uniformly bounded (UB), i.e.,|x(t)| ≤ x̄, ∀t.
From (23), we further have

|ẋ(t)| ≤ λx̄ + ̺ <∞, ∀t (27)

which yieldsẋ(t) is also UB. This concludes the proof.

Remark 4. Unlike previous works, a servo motor control loop
is incorporated in this paper, and renders cascade constraints
on intermediate signals actually backpropagate from complex
actuator dynamics in addition to mismatched unknowns. In this
context, an innovative backpropagating cascade constraints
based control scheme for such a complex QUAV is established
in the sequel.

III. B ACKPROPAGATING CONSTRAINTS

In order to facilitate our control scheme, backpropagating
constraints (BC) on intermediate signals are extracted from
nonreversible actuator dynamics and saturations. Key results
are summarized as follows:

Proposition 1. The following BC-based saturations hold:

wei = sat (wuei;w
m
ei/2, w

m
ei/2) (28)

wi = sat (wui ;w
m/2, wm/2) (29)

T = sat
(

T u; 2bwm2, 2bwm2) (30)

u4i = sat
(

uu4i;nrw
m
ei

2/(2η), nrwmei
2/(2η)

)

(31)

u3i = sat
(

uu3i; 0, u
m
3i

)

(32)
{

u1i = sat
(

uu1i; 0, 4bw
m2/m

)

, i = 1, 2

u13 = sat
(

uu13; 2bw
m2/m, 2bwm2/m

) (33)

where sat(·) is defined in (1),wmei and wm are maximal
rotation speeds of motor rotors and propellers, respectively,
“ ⋆u” denotes the unsaturated signal of “⋆”, and saturation
levels foru3i are given by

um33 =
k

b
min

{

T, 4bwm2 − T
}

(34)

um32 =
l

2
min

{

T −
b

k
u33, 4bw

m2 − T +
b

k
u33

}

(35)

um31 =
l

2
min

{

T +
b

k
u33, 4bw

m2 − T −
b

k
u33

}

(36)

Proof: Rewriting actuator dynamics (17) as follows:

ẇei = −aiwei + bi (37)

with

ai =
1

Jrr2 + Jmη

(

CmCeη

Ra
+ nrwei

)

(38)

bi =
Cm
Ra

u5i(v5i) + d5i (39)

Together with Assumptions 3–4 and (18), we have

ai ≥
CmCeη

Ra(Jrr2 + Jmη)
> 0, ∀ t (40)

|bi| ≤
Cm
Ra

(um5i − u05i) + Li <∞, ∀ t (41)

Using Lemma 1, we immediately have rotor rotationwei is
UB, i.e., 0 ≤ wei ≤ wmei , ∀ t. Similarly, using (14), we have
propeller speedwi is UB, i.e., 0 ≤ wi ≤ wm, ∀ t. Together
with (7) and (16), respectively, we have constraints onT and
uuu4, i.e., 0 ≤ T ≤ 4bwm2 and 0 ≤ u4i ≤ nrwmei

2/η. In this
context, we have (28)–(31) hold.

Together with (7) and (13), we have


















w2
1 = − 1

2lbu32 −
1
4ku33 +

1
4bT ∈ [0, wm2]

w2
2 = − 1

2lbu31 +
1
4ku33 +

1
4bT ∈ [0, wm2]

w2
3 = 1

2lbu32 −
1
4ku33 +

1
4bT ∈ [0, wm2]

w2
4 = 1

2lbu31 +
1
4ku33 +

1
4bT ∈ [0, wm2]

(42)

which yields

u33 ∈
k

b

[

−(4bwm2 − T ), T
]

∪
k

b

[

−T, 4bwm2 − T
]

(43)

u32 ∈
l

2

[

−
(

T −
b

k
u33

)

, 4bwm2 −
(

T −
b

k
u33

)

]

∪
l

2

[

−

(

4bwm2 −
(

T −
b

k
u33

)

)

, T −
b

k
u33

]

(44)

u31 ∈
l

2

[

−
(

T +
b

k
u33

)

, 4bwm2 −
(

T +
b

k
u33

)

]

∪
l

2

[

−

(

4bwm2 −
(

T +
b

k
u33

)

)

, T +
b

k
u33

]

(45)

It follows that saturation constraints onuuu3, i.e., (32) and (34)–
(36), hold.

Using (6) yields

u11 =
T

m
cos(ψ − δ)

√

cos2 φ sin2 θ + sin2 φ (46)

u12 =
T

m
sin(ψ − δ)

√

cos2 φ sin2 θ + sin2 φ (47)

u13 =
T

m
cosφ cos θ (48)

with δ = tan−1(tanφ/ sin θ). Together with Assumption 1,
we have|u11| ≤ 4bwm2/m, |u12| ≤ 4bwm2/m and 0 ≤
u13 ≤ 4bwm2/m. In this context, saturations onuuu1 in (33)
hold. This concludes the proof.

Proposition 2. Consider desired signalsuuujd, j = 1, 3, 4 of
BC-based saturationsuuuj in (31)–(33) defined as follows:

u4id = sat
(

v4id;nrw
m
ei

2/(2η), nrwmei
2/(2η)

)

(49)

u3id = sat
(

v3id; 0, u
m
3i

)

(50)
{

u1id = sat
(

v1id; 0, 4bw
m2/m

)

, i = 1, 2

u13d = sat
(

v13d; 2bw
m2/m, 2bwm2/m

) (51)

wherevjid ’s are corresponding unsaturated signals. Then, the
error uuuje := uuuj − uuujd is bounded, i.e.,

‖uuuje‖ ≤ ςj (52)

for an unnecessarily known constantςj > 0 depending on the
saturation level.



6 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS, VOL. XX, NO. XX, APRIL 2018

�

�

�

�

�

�

���������

�	�
�����

����
��

�������	�

������

������

����������

������

������

������

���������

��������

�����������

������

�����

��������

�����������

����������

������

��������

�����������

������

������

�	�����

�����������

�����������
���

��
�������

�����

������� 	
�� 	���

	���

������ �
� ��� ���

	�� 	��	��	
�

���

����

�������

	���
����
��

�������	�

��������

�����������

�������

������� �����

�
����	�

	�

Fig. 4. The overall BCTTC scheme of a quadrotor.

Proof: Combining with (31)–(33) and (49)–(51), we have

|u4ie| ≤ nrwmei
2/η (53)

|u3ie| ≤ 2um3i (54)

|u11e| ≤ 8bwm2/m (55)

|u12e| ≤ 8bwm2/m (56)

|u13e| ≤ 4bwm2/m (57)

This concludes the proof.

Remark 5. Proposition 1 reveals that actuator constraints in
(28)–(30) backpropagate recursively to preceding intermediate
signals saturated in (31)–(33), and establishes recursivesat-
uration levels which facilitate the BC-based backstepping-like
control. Proposition 2 implies that virtual control discrepan-
cies are bounded if desired signals are governed by (49)–(51).

IV. BACKPROPAGATING CONSTRAINTS BASED

TRAJECTORYTRACKING CONTROL SCHEME

In this section, the BC-based trajectory tracking control
(BCTTC) scheme for a complex QUAV is elaborately estab-
lished, in a recursive form, by employing an SMC-based DSC
framework with universal adaptive compensators for saturation
and robustness. As shown in Fig. 4, the entire BCTTC scheme
consists of 5 successive controllers, whereby the preceding
control effort is used as the desired signal of the succeeding
inner closed-loop. Hence, a cascade backstepping-like control
hierarchy is synthesized.

A. Position Virtual Controller

By Proposition 2, the desired position virtual controller
(PVC) uuu1d(vvv1d) := [u11d(v11d), u12d(v12d), u13d(v13d)]

T is
saturated as (51), wherevvv1d := [v11d, v12d, v13d]

T is the
ideally desired PVC determined later.

Note that the saturated signalsuuu1d(vvv1d) defined in (51)
are non-smooth. In order to facilitate a differentiable PVC, a
smooth functionggg1(vvv1d) = [g11(v11d), g12(v12d), g13(v13d)]

T

is devised to approximate the saturated inputuuu1d(vvv1d) as
follows:

{

g1id = sata
(

v1id; 0, 4bw
m2/m

)

, i = 1, 2

g13d = sata
(

v13d; 2bw
m2/m, 2bwm2/m

) (58)

wheresata(·) is defined in (2).

Accordingly, the saturation approximation error̟̟̟1 :=
[̟11, ̟12, ̟13]

T is given by
{

̟1i = sate
(

v1id; 0, 4bw
m2/m

)

, i = 1, 2

̟13 = sate
(

v13d; 2bw
m2/m, 2bwm2/m

) (59)

wheresate(·) is defined in (3). Obviously,̟̟̟ 1 is bounded, i.e.,

‖̟̟̟1‖ ≤ w̄1 (60)

here,w̄1 > 0 is unknown.
Define an intermediate tracking error as follows:

ũuu1e = uuu1 − ggg1 (61)

Using (52) and (60), we immediately have

‖ũuu1e‖ ≤ ρ1 (62)

with an unknown upper boundρ1 = ς1 + w̄1.
Given a reference trajectoryχχχ11d := [xd, yd, zd]

T , combin-
ing with position dynamics (4), we define the following errors:

eee11 = χχχ11 −χχχ11d (63)

eee12 = χχχ12 − χ̄χχ12d −µµµ1 (64)

yyy1 = χ̄χχ12d +µµµ1 −χχχ12d (65)

whereµµµ1 is a dynamic compensator determined later,χχχ12d

is a virtual control signal,̄χχχ12d is the filtered output ofχχχ12d

given by

ǫ1 ˙̄χχχ12d + χ̄χχ12d = χχχ12d (66)

here,ǫ1 > 0 is an user-defined filtering time constant.
Design sliding surfaces as follows:

sss1i(t) = eee1i(t) +KKK1i

∫ t

0

eee1i(τ)dτ, i = 1, 2 (67)

whereKKK1i = diag(k1i1, k1i2, k1i3) > 0.
In this context, the virtual control signalχχχ12d can be

selected as follows:

χχχ12d = −PPP 11sss11 + χ̇χχ11d −KKK11eee11 − eee12 (68)

wherePPP 11 = diag(p111, p112, p113) > 0 and an ideally desired
PVC for sub-system (4) can be designed as follows:

vvv1d =−PPP 12sss12 − fff1(χχχ12) + ˙̄χχχ12d

− µµµ1 −KKK12eee12 − (L̂1 + ρ̂1) tanh
(sss12
ε

)

(69)
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with a positive constantε > 0, and universal adaptive
compensators (UAC) forµµµ1, L̂1 and ρ̂1 given by











µ̇µµ1 = −µµµ1 + ggg1(vvv1d)− vvv1d
˙̂
L1 = −γ11L̂1 + κL,1sss

T
12 tanh

(

sss12
ε

)

˙̂ρ1 = −γ12ρ̂1 + κρ,1sss
T
12 tanh

(

sss12
ε

)

(70)

wherePPP 12 = diag(p121, p122, p123) > 0 , γ11 > 0, γ12 > 0,
κL,1 > 0, κρ,1 > 0, andL̂1 and ρ̂1 are estimates of unknown
boundsL1 andρ1, respectively.

In this context, the sliding error dynamics can be obtained
as follows:

ṡss11 = −PPP 11sss11 + yyy1 (71)

ṡss12 = −PPP 12sss12 + ddd1 + ũuu1e −
(

L̂1 + ρ̂1
)

tanh
(sss12
ε

)

(72)

with ũuu1e defined in (61).

B. Euler Angle Virtual Controller

Substituting (51) into the input nonlinearity (6) yields










Td (cosφd sin θd cosψd + sinφd sinψd) = mu11d

Td (cosφd sin θd sinψd − sinφd cosψd) = mu12d

Td cosφd cos θd = mu13d

(73)

Given a reference yaw angleψd, applying a direct calcula-
tion to (73) and using (30) in Proposition 1, we have











Td = sat
(

Td; 2bw
m2, 2bwm2

)

φd = arcsin
(

m
Td
(sinψdu11d − cosψdu12d)

)

θd = arcsin
(

m
Td
u11d−sinψd sin φd

cosψd cosφd

)

(74)

whereTd = m‖uuu1d‖ anduuu1d := [u11d, u12d, u13d]
T .

Let χχχ2d := [φd, θd, ψd]
T and χ̄χχ2d := [φ̄d, θ̄d, ψ̄d]

T where
χ̄χχ2d is the filtered output ofχχχ2d given by

ǫ2 ˙̄χχχ2d + χ̄χχ2d = χχχ2d (75)

here,ǫ2 > 0 is an user-defined filtering time constant.
Combining with Euler angles dynamics (8), we define the

following errors:

eee2 = χχχ2 − χ̄χχ2d (76)

yyy2 = χ̄χχ2d −χχχ2d (77)

Design a sliding surface as follows:

sss2(t) = eee2(t) +KKK2

∫ t

0

eee2(τ)dτ (78)

whereKKK2 = diag(k21, k22, k23) > 0.
In this context, the desired Euler angle virtual controller

(EAVC) for sub-system (8) can be designed as follows:

uuu2d =GGG−1
2 (χχχ2)

[

˙̄χχχ2d −KKK2eee2

−PPP 2sss2 + β2yyy2 − L̂2 tanh
(sss2
ε

)

]

(79)

with an UAC L̂2 given by

˙̂
L2 = −γ21L̂2 + κL,2sss

T
2 tanh

(sss2
ε

)

(80)

wherePPP 2 = diag(p21, p22, p23) > 0, β2 > 0, γ21 > 0, κL,2 >
0, andL̂2 is the estimate of unknown boundL2.

Hence, the sliding error dynamics can be obtained as
follows:

ṡss2 = −PPP 2sss2 + ddd2 +GGG2uuu2e + β2yyy2 − L̂2 tanh
(sss2
ε

)

(81)

where

uuu2e = uuu− uuu2d = χχχ3 −χχχ3d (82)

Remark 6. The derivation of (74) from (73) can be obtained
by assigning a given reference yaw angleψd. In addition, the
first equation of (74) ensures the desired total thrustTd is
reasonable, whereby possible saturation can be tackled later.

C. Angular Velocity Virtual Controller

The saturated angular velocity virtual controller (AVVC)
uuu3d(vvv3d) := [u31d(v31d), u32d(v32d), u33d(v33d)]

T is designed
as (50) with saturation levels in (34)–(36), wherevvv3d :=
[v31d, v32d, v33d]

T is the ideally desired AVVC determined
later.

Note the constrained control inputuuu3d(vvv3d) defined in
(50) and (34)–(36) is non-smooth. In order to facilitate a
differentiable virtual control law, a smooth functionggg3(vvv3d) =
[g31(v31d), g32(v32d), g33(v33d)]

T is devised to approximate
the constrained inputuuu3d(vvv3d) as follows:

g3i(v3id) = sata
(

v3id; 0, u
m
3i

)

(83)

wheresata(·) is defined in (2) andum3i is given by (34)–(36).
Accordingly, the constraint approximation error̟̟̟3 :=

[̟31, ̟32, ̟33]
T is given by

̟3i = sate
(

v3id; 0, u
m
3i

)

(84)

wheresate(·) is defined in (3). Obviously,̟̟̟ 3 is bounded, i.e.,

‖GGG3̟̟̟3‖ ≤ w̄3 (85)

here,w̄3 > 0 is unknown.
Define an intermediate tracking error as follows:

ũuu3e = uuu3 − ggg3 (86)

Using (52) and (85), we immediately have

‖GGG3ũuu3e‖ ≤ ρ3 (87)

with an unknown upper boundρ3 = ‖GGG3‖ς3 + w̄3.
Together with angular velocity dynamics (11), we design a

sliding surface as follows:

sss3(t) = uuu2 − uuu2d − yyy3 = eee3(t) (88)

with

eee3 = χχχ3 − χ̄χχ3d −µµµ3 (89)

yyy3 = χ̄χχ3d +µµµ3 −χχχ3d (90)

whereµµµ3 is determined later,̄χχχ3d := [p̄d, q̄d, r̄d]
T is the filtered

output ofχχχ3d := [pd, qd, rd]
T = uuu2d and is given by

ǫ3 ˙̄χχχ3d + χ̄χχ3d = χχχ3d (91)

here,ǫ3 > 0 is an user-defined filtering time constant.
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Accordingly, an ideally desired AVVC for sub-system (11)
can be governed as follows:

vvv3d =GGG−1
3

[

˙̄χχχ3d − fff3(χχχ3)−GGGT2 sss2 −PPP 3sss3 −GGG3µµµ3

+ β3yyy3 − (L̂3 + ρ̂3) tanh
(sss3
ε

)

]

(92)

with the UAC forµµµ3, L̂3 and ρ̂3 given by










µ̇µµ3 =GGG3 (ggg3(vvv3d)− vvv3d − µµµ3)
˙̂
L3 = −γ31L̂3 + κL,3sss

T
3 tanh

(

sss3
ε

)

˙̂ρ3 = −γ32ρ̂3 + κρ,3sss
T
3 tanh

(

sss3
ε

)

(93)

wherePPP 3 = diag(p31, p32, p33) > 0, β3 > 0, γ31 > 0, γ32 >
0, κL,3 > 0, κρ,3 > 0, andL̂3 andρ̂3 are estimates of unknown
boundsL3 andρ3, respectively.

In this context, the sliding error dynamics can be obtained
as follows:

ṡss3 = −PPP 3sss3 −GGGT2 sss2 + ddd3

+GGG3ũuu3e + β3yyy3 − (L̂3 + ρ̂3) tanh
(sss3
ε

)

(94)

whereũuu3e is given by (86).

Remark 7. The saturation ofTd in (74) can be transferred
to constraints onuuu3d given by (50).

D. Propeller Speed Virtual Controller

The desired propeller speed virtual controller (PSVC)
uuu4d(vvv4d) := [u41d(v41d), u42d(v42d), u43d(v43d), u44d(v44d)]

T

is designed as (49), wherevvv4d := [v41d, v42d, v43d, v44d]
T is

the ideally desired PSVC determined later.
Note the constrained control inputuuu4d(vvv4d) defined in

(49) is non-smooth. In order to facilitate a differentiable
virtual control law, a differentiable functionggg4(vvv4d) :=
[g41(v41d), g42(v42d), g43(v43d), g44(v44d)]

T is employed to
approximate the non-smooth constrained inputuuu4d(vvv4d) as
follows:

g4i(v4id) = sata
(

v4id;nrw
m
ei

2/(2η), nrwmei
2/(2η)

)

(95)

wheresata(·) is defined in (2). The constraint approximation
error ̟̟̟4 = [̟41, ̟42, ̟43, ̟44]

T is determined by

̟4i = sate
(

v4id;nrw
m
ei

2/(2η), nrwmei
2/(2η)

)

(96)

wheresate(·) is defined in (3). Obviously,̟̟̟ 4 is bounded, i.e.,

‖GGG4̟̟̟4‖ ≤ w̄4 (97)

here,w̄4 > 0 is unknown.
Define an intermediate tracking error as follows:

ũuu4e = uuu4 − ggg4 (98)

Using (52) and (97), we immediately have

‖GGG4ũuu4e‖ ≤ ρ4 (99)

with an unknown upper boundρ4 = ‖GGG4‖ς4 + w̄4.
Note that the actually desired control lawuuu3d can be derived

from (49). Together with the following equations deriving from

(7) and (13):






















w1d =
(

− 1
2lbu32d −

1
4ku33d +

1
4bTd

)1/2

w2d =
(

− 1
2lbu31d +

1
4ku33d +

1
4bTd

)1/2

w3d =
(

1
2lbu32d −

1
4ku33d +

1
4bTd

)1/2

w4d =
(

1
2lbu31d +

1
4ku33d +

1
4bTd

)1/2

(100)

we can obtain the referenceχχχ4d := [w1d, w2d, w3d, w4d]
T , and

the filtered signals̄χχχ4d := [w̄1d, w̄2d, w̄3d, w̄4d]
T given by

ǫ4 ˙̄χχχ4d + χ̄χχ4d = χχχ4d (101)

whereǫ4 > 0 is an user-defined filtering time constant.
Combining with propeller speed dynamics (14), we define

eee4 = χχχ4 − χ̄χχ4d −µµµ4 (102)

yyy4 = χ̄χχ4d +µµµ4 −χχχ4d (103)

whereµµµ4 is determined later.
Design a sliding surface as follows:

sss4(t) = eee4(t) +KKK4

∫ t

0

eee4(τ)dτ (104)

with KKK4 = diag(k41, k42, k43, k44) > 0.
In this context, the ideally desired propeller speed control

law for sub-system (14) can be designed as follows:

vvv4d =GGG−1
4

[

˙̄χχχ4d − fff4(χχχ4)−KKK4eee4 −PPP 4sss4

−GGG4µµµ4 + β4yyy4 − (L̂4 + ρ̂4)tanh
(sss4
ε

)

]

(105)

with the UAC forµµµ4, L̂4 and ρ̂4 given by










µ̇µµ4 =GGG4 (ggg4(vvv4d)− vvv4d − µµµ4)
˙̂
L4 = −γ41L̂4 + κL,4sss

T
4 tanh

(

sss4
ε

)

˙̂ρ4 = −γ42ρ̂4 + κρ,4sss
T
4 tanh

(

sss4
ε

)

(106)

wherePPP 4 = diag(p41, p42, p43, p44) > 0, β4 > 0, γ41 > 0,
γ41 > 0, γ42 > 0, κL,4 > 0, κρ,4 > 0, and L̂4 and ρ̂4 are
estimates of unknown boundsL4 andρ4, respectively.

In this context, the sliding error dynamics can be obtained
as follows:

ṡss4 = −PPP 4sss4 + ddd4 +GGG4ũuu4e

+ β4yyy4 − (L̂4 + ρ̂4) tanh
(sss4
ε

)

(107)

whereũuu4e is given by (98).

E. Servo Motor Actual Controller

The actually desired signaluuu4d can be derived from
(49) and (105). Using (16), we can obtain the desired
vector χχχ5d := [we1d, we2d, we3d, we4d]

T , and χ̄χχ5d :=
[w̄e1d, w̄e2d, w̄e3d, w̄e4d]

T is the filtered output given by

ǫ5 ˙̄χχχ5d + χ̄χχ5d = χχχ5d (108)

here,ǫ5 > 0 is an user-defined filtering time constant.
Combining with servo motor dynamics (17) and the input

nonlinearities (18) and (19), we define the following errors:

eee5 = χχχ5 − χ̄χχ5d −µµµ5 (109)
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yyy5 = χ̄χχ5d + µµµ5 −χχχ5d (110)

where µµµ5 is determined later,uuu5(·) is the nonlinear input
constrained by saturation and dead zone in (18) and (19).

Design a sliding surface as follows:

sss5(t) = eee5(t) +KKK5

∫ t

0

eee5(τ)dτ (111)

with KKK5 = diag(k51, k52, k53, k54) > 0.
Eventually, the nominal control law, i.e., the servo motor

actual controller (SMAC)vvv5, can be designed as follows:

vvv5 =GGG−1
5

[

˙̄χχχ5d − fff5(χχχ5)−KKK5eee5 −PPP 5sss5

−GGG5µµµ5 + β5yyy5 − L̂5 tanh
(sss5
ε

)

]

(112)

with the UAC forµµµ and L̂5 given by
{

µ̇µµ5 =GGG5(uuu5(vvv5)− vvv5 −µµµ5)
˙̂
L5 = −γ51L̂5 + κL,5sss

T
5 tanh

(

sss5
ε

) (113)

wherePPP 5 = diag(p51, p52, p53, p54) > 0, β5 > 0, γ51 > 0,
κL,5 > 0, andL̂5 is the estimate of unknown boundL5.

Hence, the sliding error dynamics is obtained as follows:

ṡss5 = −PPP 5sss5 + ddd5 + β5yyy5 − L̂5 tanh
(sss5
ε

)

(114)

Remark 8. Bounded intermediate errors in (61), (86) and (98)
decouple sliding error dynamics (71), (72), (94) and (107),
and leave onlẏsss2 in (81) be driven by the input discrepancy
uuu2e which is closely related with the cascade sliding surface
sss3. In addition, as shown in Fig. 4, the BCTTC scheme is
composed by 4 successive virtual sub-controllers in (69), (79),
(92) and (105), and 1 actual sub-controller in (112). In this
context, each sub-controller for an individual subsystem can be
designed independently by using various approaches although
the SMC technique is exclusively employed in this paper. In
essence, this significant advantage actually benefits from the
BC-based cutting by virtue of bounded intermediate errors.

Remark 9. Note that the ESC module is still required to be
used for generating PWM waves which drive and regulate
BLDCs even though actuator dynamics have been completely
addressed in the proposed BCTTC scheme. Unlike traditional
ESC modules which are open-loop control systems, the closed-
loop ESC can be achieved in the BCTTC scheme, and thereby
enhancing its regulation accuracy and robustness.

Remark 10. Note that the BCTTC scheme only requires a
nominal model, and even is a model-free approach if nominal
dynamicsfff i, i = 1, · · · , 5 are completely unknown and
thereby encapsulating into unknownsdddi. In addition, nonlinear
state observers can also be designed to extend the BCTTC to
an output-feedback control approach.

Remark 11. Filters applied to virtual signals might cause
high-gain problem pertaining to filter-backstepping (i.e., DSC)
or high-gain observer design [59]. In the BCTTC scheme,
unexpected magnitudes and/or peaks are actually saturatedby
BC-based constraints. The SMC technique employed in sub-
controllers is expected to enhance steady-state tracking accu-

racy via incorporating an integral term. Actually, if integral
gainsKKKi are chosen as zeros, sliding-mode surfaces degrade
to intermediate tracking errors.

Remark 12. From (51), (69), (79), (50), (92), (49), (105) and
(112), we can see that the computational complexity of the
BCTTC scheme is similar to adaptive approximation based
state-feedback approach.

V. STABILITY ANALYSIS

A key result on stability analysis is summarized as follows:

Theorem 1. Consider a complex QUAV system (4), (8), (11),
(14) and (17), together with the proposed BCTTC scheme (51),
(69), (79), (50), (92), (49), (105) and (112) with the UAC
given by (70), (80), (93), (106) and (113), tracking errors
are uniformly ultimately bounded and all other signals of the
closed-loop control system are bounded.

Proof: Consider the following Lyapunov function:

V =
1

2

[

sssT11sss11 + sssT12sss12 +

5
∑

i=2

sssTi sssi +

5
∑

i=1

yyyTi yyyi

+
5

∑

i=1

κ−1
L,iL̃

2
i + κ−1

ρ,1ρ̃
2
1 + κ−1

ρ,3ρ̃
2
3 + κ−1

ρ,4ρ̃
2
4

]

(115)

with L̃i = Li − L̂i, i = 1, · · · , 5, ρ̃1 = ρ1 − ρ̂1, ρ̃3 = ρ3 − ρ̂3
and ρ̃4 = ρ4 − ρ̂4.

Together with (71), (72), (81), (94), (107) and (114), and
using (62), (87) and (99), we have the time derivative ofV
can be derived as follows:

V̇ ≤

5
∑

i=2

[

− sssTi PPP isssi + βisss
T
i yyyi + Li‖sssi‖ − L̂isss

T
i tanh

(sssi
ε

)

]

+

5
∑

i=1

(−κ−1
L,iL̃i

˙̂
Li + yyyTi ẏyyi) + ρ1‖sss12‖+ ρ3‖sss3‖+ ρ4‖sss4‖

− κ−1
ρ,1ρ̃1

˙̂ρ1 − κ−1
ρ,3ρ̃3

˙̂ρ3 − κ−1
ρ,4ρ̃4

˙̂ρ4 − ρ̂1sss
T
12 tanh

(sss12
ε

)

− ρ̂3sss
T
3 tanh

(sss3
ε

)

− ρ̂4sss
T
4 tanh

(sss4
ε

)

− sssT11PPP 11sss11

+ sssT11yyy1 + sssT2GGG2yyy3 − sssT12PPP 12sss12 + L1‖sss12‖

− L̂1sss
T
12 tanh

(sss12
ε

)

(116)

Note that for any positive constantε > 0 andvvv ∈ R
n the

following inequality holds [60]:

‖vvv‖ − vvvT tanh
(vvv

ε

)

≤ ktε (117)

wherekt = e−(kt+1), i.e. kt = 0.2785.
We further have






























L1‖sss12‖ ≤ L1

(

sssT12 tanh
(

sss12
ε

)

+ ktε
)

Li‖sssi‖ ≤ Li
(

sssTi tanh
(

sssi
ε

)

+ ktε
)

, i = 2, 3, 4, 5

ρ1‖sss12‖ ≤ ρ1
(

sssT12 tanh
(

sss12
ε

)

+ ktε
)

ρ3‖sss3‖ ≤ ρ3
(

sssT3 tanh
(

sss3
ε

)

+ ktε
)

ρ4‖sss4‖ ≤ ρ4
(

sssT4 tanh
(

sss4
ε

)

+ ktε
)

(118)
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Substituting (118) into (116) yields

V̇ ≤

5
∑

i=2

[

− sssTi PPP isssi +
(

sssTi tanh
(sssi
ε

)

− κ−1
L,i

˙̂
Li

)

L̃i

+ βisss
T
i yyyi + yyyTi ẏyyi + ktεLi

]

+
(

sssT12 tanh
(sss12
ε

)

− κ−1
ρ,1

˙̂ρ1

)

ρ̃1 + ktερ1

+
(

sssT3 tanh
(sss3
ε

)

− κ−1
ρ,3

˙̂ρ3

)

ρ̃3 + ktερ3

+
(

sssT4 tanh
(sss4
ε

)

− κ−1
ρ,3

˙̂ρ4

)

ρ̃4 + ktερ4

− sssT11PPP 11sss11 − sssT12PPP 12sss12 + sssT11yyy1 + sssT2GGG2yyy3 + yyyT1 ẏyy1

+
(

sssT12 tanh
(sss12
ε

)

− κ−1
κ,1

˙̂
L1

)

L̃1 + ktεL1 (119)

Applying (70), (80), (93), (106) and (113) to (119), we
further have

V̇ ≤
5

∑

i=2

[

−sssTi PPP isssi +
γi1
κL,i

L̂iL̃i + βisss
T
i yyyi + yyyTi ẏyyi + ktεLi

]

+
γ12
κρ,1

ρ̂1ρ̃1 +
γ32
κρ,3

ρ̂3ρ̃3 +
γ42
κρ,4

ρ̂4ρ̃4 + ktερ1 + ktερ3

+ ktερ4 − sssT11PPP 11sss11 + sssT11yyy1 + sssT2GGG2yyy3 − sssT12PPP 12sss12

+
γ11
κL,1

L̂1L̃1 + yyyT1 ẏyy1 + ktεL1 (120)

From (66), (75), (91), (101) and (108), we can obtain










ẏyy1 = −yyy1
ǫ1

− χ̇χχ12d +
µµµ1

ǫ1
+ µ̇µµ1

ẏyy2 = −yyy2
ǫ2

− χ̇χχ2d

ẏyyi = −yyyi
ǫi

− χ̇χχid +
µµµi
ǫi

+ µ̇µµi, i = 3, 4, 5

(121)

In this context, we have

‖ẏyy1 + yyy1/ǫ1‖ ≤ z1(χ̇χχ12d, µ̇µµ1,µµµ1) (122)

‖ẏyy2 + yyy2/ǫ2‖ ≤ z2(χχχ2d) (123)

‖ẏyy3 + yyy3/ǫ3‖ ≤ z3(χ̇χχ3d, µ̇µµ3,µµµ3) (124)

‖ẏyy4 + yyy4/ǫ4‖ ≤ z4(χ̇χχ4d, µ̇µµ4,µµµ4) (125)

‖ẏyy5 + yyy5/ǫ5‖ ≤ z5(χ̇χχ5d, µ̇µµ5,µµµ5) (126)

for continuously bounded functionszi(·).

Together with (122)–(126), we eventually have

yyyTi ẏyyi ≤ −

(

1

ǫi
−

1

2

)

yyyTi yyyi +
1

2
z2i , i = 1, · · · , 5 (127)

In addition, using the Young’s inequality yields


















L̂iL̃i ≤
1
2L

2
i −

1
2 L̃

2
i , i = 1, · · · , 5

ρ̂1ρ̃1 ≤ 1
2ρ

2
1 −

1
2 ρ̃

2
1

ρ̂3ρ̃3 ≤ 1
2ρ

2
3 −

1
2 ρ̃

2
3

ρ̂4ρ̃4 ≤ 1
2ρ

2
4 −

1
2 ρ̃

2
4

(128)

Applying (127) and (128) to (120) yields

V̇ ≤ −sssT11
(

PPP 11 −
III1
2

)

sss11 − sssT12PPP 12sss12

− sssT2
(

PPP 2 −
(β2 + 1)III2

2

)

sss2 −

5
∑

i=3

sssTi
(

PPP i −
βiIIIi
2

)

sssi

−
( 1

ǫ1
− 1

)

yyyT1 yyy1 −
( 1

ǫ3
−

2 + β3
2

)

yyyT3 yyy3

−
∑

i=2,4,5

( 1

ǫi
−

1 + βi
2

)

yyyTi yyyi

−

5
∑

i=1

γi1
2κL,i

L̃2
i−

∑

i=1,3,4

γi2
2κρ,i

ρ̃2i+

5
∑

i=1

[

γi1
2κL,i

L2
i+ktεLi

]

+
∑

i=1,3,4

[

γi2
2κρ,i

ρ2i + ktερi

]

+

5
∑

i=1

1

2
z2i (129)

whereIIIi(i = 1, 2, 3) ∈ R
3 andIIIi(i = 4, 5) ∈ R

4 are unity
matrixes.

Selecting user-defined parameters satisfying the following
conditions:

PPP 11 ≥
1 + α

2
III1,PPP 12 ≥

α

2
III1,PPP 2 ≥

β2 + α+ 1

2
III2,

PPP i ≥
βi + α

2
IIIi, i = 3, 4, 5

1

ǫ1
≥ 1 +

α

2
,
1

ǫ3
≥ 1 +

β3 + α

2
,
1

ǫi
≥

1 + βi + α

2
, i = 2, 4, 5

γi1
κL,i

≥ α, i = 1, · · · , 5,
γi2
2κρ,i

≥ α, i = 1, 3, 4

whereα > 0 is any positive constant, we have

V̇ ≤− αV + C (130)

with

C =

5
∑

i=1

[

γi1
2κL,i

L2
i + ktεLi

]

+
∑

i=1,3,4

[

γi2
2κρ,i

ρ2i + ktερi

]

+

5
∑

i=1

1

2
z̄2i (131)

wherez̄i is the upper bound of functionzi.
Together with (115) and (131), we have

0 ≤ V (t) ≤ V (0)e−αt + (1− e−αt)
C

α
<∞ (132)

It is clear thatV (t) is bounded. Moreover, together with
(115), there exist a finite timeT > 0 such that

V =
1

2

[ 5
∑

i=2

sssTi sssi + sssT11sss11 + sssT12sss12 +
5

∑

i=1

yyyTi yyyi

+

5
∑

i=1

κ−1
L,iL̃

2
i + κ−1

ρ,1ρ̃
2
1 + κ−1

ρ,3ρ̃
2
3 + κ−1

ρ,4ρ̃
2
4

]

≤ 2C/α, ∀ t ≥ T (133)

In this context, we have

ϑ ≤ 2
√

C/α (134)

where ϑ ∈
{

‖sss11‖, ‖sss12‖, ‖sss2‖, · · · , ‖sss5‖, ‖yyy1‖, · · · , ‖yyy5‖,
|L̃1|, · · · , |L̃5|, |ρ̃1|, |ρ̃3|, |ρ̃4|

}

.
Using (134) and Lemma 1, we immediately have the

tracking error‖eee11‖ is uniformly bounded. Similarly, we can
obtain that all the other signals includingeee12, eee2, · · · , eee5,
yyy1, · · · , yyy5, L̃1, · · · , L̃5, ρ̃1, ρ̃3 andρ̃4 are ultimately uniformly
bounded. Together with the filtered dynamics (66), (75), (91),
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TABLE I
MAIN PARAMETERS OF THEQUAV.

Para. Value Units Para. Value Units

g 9.806 m/s2 m 0.65 kg
b 7.5e-7 − l 0.232 m
c 1e-5 − n 1.5e-4 −

k 3.13e-5 − rs 1 −

Cm 0.08 − Ce 0.0415 −

Jm 4e-4 N/(m/s)2 Jr 6e-3 N/(m/s)2

Ra 0.036 Ω Ir 1e-3 kg ·m2

Dx 1e-6 N/(m/s)2 Jx 0.015 kg ·m2

Dy 1e-6 N/(m/s)2 Jy 0.015 kg ·m2

Dz 1e-4 N/(m/s)2 Jz 0.026 kg ·m2

wm
d 3000 rpm wm

ed 3000 rpm
u0

5 0.2 V um
5 14 V

η 0.9 −

−2 −1 0 1 2
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0

1
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2

3

4

5
 

x/m
y/m

 

z
/
m

Reference Trajectory
Actual Trajectory

Fig. 5. Trajectory tracking of the BCTTC scheme.
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Fig. 6. Desired and actual statesx, y, z andψ.

(101) and (108), and the UAC mechanism (70), (80), (93),
(106) and (113), we can obtain that system signals including
˙̄χχχ12d, ˙̄χχχ2d, · · · , ˙̄χχχ5d, ẏyy1, · · · , ẏyy5, ˙̂

L1, · · · ,
˙̂
L5, ˙̂ρ1, ˙̂ρ3 and ˙̂ρ4 are

bounded. This concludes the proof.

VI. SIMULATION STUDIES

In this section, the effectiveness and superiority of the
proposed BCTTC scheme is demonstrated for trajectory track-
ing control of a complex QUAV with actuator dynamics and
cascade constraints on both control input and states, in the
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Fig. 7. Trajectory tracking errorsxe, ye, ze andψe.
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Fig. 9. Desired and actual angular velocitiesp, q and r.

presence of complex unknowns. Main parameters of the QUAV
refer to [58] and are listed in Table I.

The reference trajectory is governed byxd = −2 sin(0.1t),
yd = cos(0.3t), zd = 2 sin(0.2t) + 3 andψd = π

2 sin(0.2t),
and the initial condition is as follows:χχχ11(0) = [1, 0, 0]T ,
χχχ12(0) = [0, 0, 0]T and χχχ2(0) = [0, 0, 0]T . For the sake
of simulation studies, complex unknowns are assumed to
be as follows:ddd1 = 5[sin(0.01χχχT11χχχ12), cos(0.02χχχT11χχχ12),
sin(0.05χχχT11χχχ12) cos(0.03χχχ

T
11χχχ12)]

T , ddd2 = 5 sin(χχχ2) cos(χχχ2),
ddd3 = 5 sin(χχχ3) cos(χχχ3), ddd4 = 100 sin2(χχχ4) cos(χχχ4), and
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Fig. 10. Desired and actual propeller speedsw1, w2, w3 andw4.

0 10 20 30 40 50 60 70

0

1000

2000

3000

t/s

w
e1
/
r
p
m

 

 
we1d
we1

0 10 20 30 40 50 60 70

0

1000

2000

3000

t/s

w
e2
/
r
p
m

 

 
we2d
we2

0 10 20 30 40 50 60 70

0

1000

2000

3000

t/s

w
e3
/
r
p
m

 

 
we3d
we3

0 10 20 30 40 50 60 70

0

1000

2000

3000

t/s

w
e4
/
r
p
m

 

 
we4d
we4

Fig. 11. Desired and actual motor rotationswe1, we2, we3 andwe4.

ddd5 = 100 cos(0.01χχχ5).
User-defined parameters of the BCTTC scheme are

as follows: PPP 11 = PPP 12 = PPP 3 = diag(10, 10, 10),
PPP 2 = diag(100, 100, 100), PPP 4 = diag(1, 1, 1, 1),
PPP 5 = diag(10, 10, 10, 10), KKK11 = KKK12 =
KKK2 = diag(0.01, 0.01, 0.01), KKK4 = KKK5 =
diag(0.01, 0.01, 0.01, 0.01), γ11 = γ21 = γ31 = γ41 =
γ51 = 1, γ12 = γ32 = γ42 = 2, κL,1 = κL,2 = κL,3 =
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Fig. 12. Control inputs.
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Fig. 14. Comparisons of trajectory tracking errors.

κL,4 = κL,5 = 1, κρ,1 = κρ,3 = κρ,4 = 2, ε = 1,
ǫ1 = ǫ2 = ǫ3 = ǫ4 = ǫ5 = 0.01, andβ2 = β3 = β4 = β5 = 1.

The actual and reference trajectories in 3-D space are shown
in Fig. 5, from which we can see that the BCTTC scheme can
render the QUAV track the desired trajectory accurately in the
presence of both mismatched and matched complex unknowns.
Individual positions, i.e.,x, y and z, and the yaw angleψ
together with their desired targets are shown in Fig. 6, from
which we can see that the QUAV using the BCTTC scheme
can track the desired individual trajectories with fast response
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TABLE II
PERFORMANCECOMPARISONS OFBCTTC WITH PD.

BCTTC PD
IAE ITAE IAE ITAE

xe 0.9773 0.0187E+4 3.8597 0.9520E+4
ye 0.9726 0.0291E+4 3.0425 1.0152E+4
ze 1.3784 0.0620E+4 2.7317 0.8251E+4
ψe 0.9928 0.3509E+4 2.1992 0.7405E+4
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Fig. 15. Rotation squares of PD control scheme.

and high accuracy, simultaneously, whereby tracking errors are
shown in Fig. 7. Intermediate tracking results for other states
including Euler angles, angular velocities, propeller speeds
and motor rotations are shown Figs. 8–11, respectively, which
demonstrate that accurate tracking of intermediate statescan
still be guaranteed under the constraints on propeller speeds
and motor rotations (shown in Figs. 10 and 11). Eventually,
control inputs to 4 motors are shown in Fig. 12, from which
we can see that nonreversible constraints and saturations have
been effectively addressed.

Furthermore, in order to demonstrate the superiority of the
proposed BCTTC scheme, comprehensive comparisons with a
PD control scheme are conducted on previous settings. To this
end, PD controllers are designed as follows:

UUU1 =KKKp1(χχχ11 −χχχ11d) +KKKd1(χχχ12 −χχχ12d)

U2 = Kp2(φ− φd) +Kd2(φ̇ − φ̇d)

U3 = Kp3(θ − θd) +Kd3(θ̇ − θ̇d)

U4 = Kp4(ψ − ψd) +Kd4(ψ̇ − ψ̇d)

whereUUU1 is control input of position dynamics (4),U2 :=

lb(−w2
2 + w2

4), U3 := lb(−w2
1 + w2

3) andU4 := k(−w2
1 +

w2
2 − w2

3 + w2
4) are control inputs of attitude dynamics (11),

φd, θd and T := m‖UUU1‖ are derived fromUUU1 according to
(74), and fine-tuning parameters are chosen as follows:KKKp1 =
diag(20, 100, 150), KKKd1 = diag(10, 10, 10), andKp2 = 1,
Kd2 = 0.3, Kp3 = 1, Kd3 = 0.3, Kp4 = 1.5, andKd4 = 0.5.

Trajectory tracking result of the PD control approach and
comparisons with the BCTTC scheme are shown in Figs. 13
and 14, respectively, and illustrate that the BCTTC approach
can accommodate complex unknowns, and thereby achieving
nearly zero steady-state discrepancies which apparently appear
in PD controllers.

In order to make intensive insight into the superiority
of the BCTTC, quantitative comparisons using Integrated
Absolute Error (IAE) and Integrated Time Absolute Error
(ITAE) indices for tracking errors are summarized in Table
II. Clearly, it can be seen that the proposed BCTTC scheme is
significantly superior to the PD control approach. It shouldbe
noted that the PD control strategy cannot tackle constrained
actuator dynamics. As a consequence, as shown in Fig. 15,
negative squares of rotor rotations reversely deriving from PD
control input torques would unreasonably occur, and thereby
leading to unreachable control efforts in practice and even
destroying system stability. Similarly, those methods taking
rotor torques as control inputs would inevitably suffer from
the aforementionednegative-squaredilemma. In this context,
the proposed BCTTC scheme via backpropagating constraints
due to constrained actuator dynamics can definitely guarantee
reasonable control signals which can be completely executed
by actuators.

VII. C ONCLUSIONS

In this paper, the BCTTC scheme for trajectory tracking
of a QUAV with constrained actuator dynamics and complex
unknowns has been proposed. Unlike previous works, the
entire QUAV system has been decomposed into 5 cascade
subsystems connected by intermediate nonlinearities. In this
context, SMC-based sub-controllers have been recursivelyde-
signed by addressing underactuation and cascade constraints,
whereby the preceding sub-controller provides desired signals
for the succeeding subsystem. In addition, first-order filters
have been employed to avoid the smoothness requirement
and decouple the iterative design within the backstepping-
like procedure. By virtue of backpropagating constraints (BC),
intermediate controls have been shaped within reachable re-
gions determined by constrained actuator dynamics including
saturations and dead zones. Furthermore, universal adaptive
compensators have been employed to dominate complex un-
knowns together with BC-based intermediate discrepancies.
Using the Lyapunov approach, BCTTC tracking errors can be
made arbitrarily small and all signals are bounded. Simulation
studies have shown that the proposed BCTTC scheme can
achieve high-accuracy tracking under constrained actuator
dynamics and complex unknowns, and is remarkably superior
to previous approaches without addressing actuator constraints
or inner nonlinearities.
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