959 research outputs found

    Stability and sensitivity characteristic analysis for the hydropower unit considering the sloping roof tailrace tunnel and coupling effect of the power grid

    Get PDF
    This paper focuses on the stability and dynamic characteristics of the coupled system of nonlinear hydraulic turbine regulating system (HTRS) and power grid (PG). By establishing a nonlinear mathematical model considering the downstream surge chamber and sloping roof tailrace tunnel, the coupling effect and influence mechanism between the hydropower station and power grid are revealed. First, with regard to the coupled system, HTRS considering downstream surge chamber and sloping roof tailrace tunnel and PG model is established. Then, dynamic performance of the coupled system is investigated based on the nonlinear mathematical model as well as Hopf bifurcation theory and validated by numerical simulation. Meanwhile, the impact mechanism of HTRS and PG is revealed by investigating dynamic characteristics. In addition, stability is studied by using eigenvalue method according to the Jacobian matrix of the coupled system. Finally, parameter sensitivity is investigated to quantify parameter effects on system performance. The experimental results indicate that bifurcation line divides the whole proportional–integral adjustment coefficient plane into two parts and the region at the bottom of bifurcation line is stability region. HTRS and PG possess a coupling effect on stable domain and dynamic properties of the coupled system. The variation of HTRS parameters is most significant for the coupled system, especially for the inertia time constant of the hydraulic turbine unit and penstock flow inertia time constant

    Fractional Order Controller Designing with Firefly Algorithm and Parameter Optimization for Hydroturbine Governing System

    Get PDF
    A fractional order PID (FOPID) controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA), for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID) controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF

    Passivity - Based Control and Stability Analysis for Hydro-Solar Power Systems

    Get PDF
    Los sistemas de energía modernos se están transformando debido a la inclusión de renovables no convencionales fuentes de energía como la generación eólica y fotovoltaica. A pesar de que estas fuentes de energía son buenas alternativas para el aprovechamiento sostenible de la energía, afectan el funcionamiento y la estabilidad del sistema de energía, debido a su naturaleza inherentemente estocástica y dependencia de las condiciones climáticas. Además, los parques solares y eólicos tienen una capacidad de inercia reducida que debe ser compensada por grandes generadores síncronos en sistemas hidro térmicos convencionales, o por almacenamiento de energía dispositivos. En este contexto, la interacción dinámica entre fuentes convencionales y renovables debe ser estudiado en detalle. Para 2030, el Gobierno de Colombia proyecta que el poder colombiano El sistema integrará en su matriz energética al menos 1,2 GW de generación solar fotovoltaica. Por esta razón, es necesario diseñar controladores robustos que mejoren la estabilidad en los sistemas de energía. Con alta penetración de generación fotovoltaica e hidroeléctrica. Esta disertación estudia nuevas alternativas para mejorar el sistema de potencia de respuesta dinámica durante y después de grandes perturbaciones usando pasividad control basado. Esto se debe a que los componentes del sistema de alimentación son inherentemente pasivos y permiten formulaciones hamiltonianas, explotando así las propiedades de pasividad de sistemas eléctricos. Las principales contribuciones de esta disertación son: una pasividad descentralizada basada control de los sistemas de control de turbinas hidráulicas para sistemas de energía de múltiples máquinas para estabilizar el rotor acelerar y regular el voltaje terminal de cada sistema de control de turbinas hidráulicas en el sistema como, así como un control basado en PI pasividad para las plantas solares fotovoltaicas

    Dynamic modelling, simulation, and control design of a pressurized water-type nuclear power plant

    Get PDF
    This article presents an integrated non-linear dynamic model of a Pressurized Water-type Nuclear Reactor (PWR) and associated plant components for control design and evaluation purposes. The model uses the first-principles approach to represent various components of the plant. The model considers the dynamics of the reactor core, thermal hydraulics, piping and plenum, pressurizer, steam generator, condenser, and turbine-governor system, in addition to various actuators and sensors. The response of the proposed model is tested using perturbations in different input variables. Various control loops implementing low-level PI control strategies are designed and implemented in the model to simulate the closed-loop behaviour of the plant. These include control loops for reactor power, steam generator pressure, pressurizer pressure and level, and turbine speed. Linear quadratic Gaussian-based optimal control strategies are further developed and implemented. Unique contributions of the work include the set of plant sections that are considered, the implementation of carefully tuned control strategies, the completeness of the model equations, and the availability of parameter values so that the model is readily implementable and has the potential to become a benchmark for control design studies in PWR nuclear power plants

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes
    corecore