
Edited by

Modeling and 
Optimal Operation of 
Hydraulic, Wind and 
Photovoltaic Power 
Generation Systems

Chaoshun Li, Yun Zeng, Beibei Xu and Dong Liu

Printed Edition of the Special Issue Published in Energies

www.mdpi.com/journal/energies



Modeling and Optimal Operation of
Hydraulic, Wind and Photovoltaic
Power Generation Systems





Modeling and Optimal Operation of
Hydraulic, Wind and Photovoltaic
Power Generation Systems

Editors

Chaoshun Li

Yun Zeng

Beibei Xu

Dong Liu

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Chaoshun Li

Huazhong University of

Science and Technology

China

Yun Zeng

Kunming University of

Science and Technology

China

Beibei Xu

Northwest A&F University

China

Dong Liu

North China University of

Water Resources and Electric

Power

China

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/

Hydraulic Wind Photovoltaic).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-5837-0 (Hbk)

ISBN 978-3-0365-5838-7 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Zhiwei Zhu, Xiaoqiang Tan, Xueding Lu, Dong Liu and Chaoshun Li

Hopf Bifurcation and Parameter Sensitivity Analysis of a Doubly-Fed Variable-Speed Pumped
Storage Unit
Reprinted from: Energies 2022, 15, 204, doi:10.3390/en15010204 . . . . . . . . . . . . . . . . . . . . 1

Peng Chen, Yumin Deng, Xuegui Zhang, Li Ma, Yaoliang Yan, Yifan Wu and Chaoshun Li

Degradation Trend Prediction of Pumped Storage Unit Based on MIC-LGBM and VMD-GRU
Combined Model
Reprinted from: Energies 2022, 15, 605, doi:10.3390/en15020605 . . . . . . . . . . . . . . . . . . . . 21

Lianda Duan, Dekuan Wang, Guiping Wang, Changlin Han, Weijun Zhang, Xiaobo Liu,

Cong Wang, Zheng Che and Chang Chen

Piecewise Causality Study between Power Load and Vibration in Hydro-Turbine Generator
Unit for a Low-Carbon Era
Reprinted from: Energies 2022, 15, 1207, doi:10.3390/en15031207 . . . . . . . . . . . . . . . . . . . 43

Yubo Niu, Xingyuan Gu, Xuhui Yue, Yang Zheng, Peijie He and Qijuan Chen

Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave
Energy Converter
Reprinted from: Energies 2022, 15, 1373, doi:10.3390/en15041373 . . . . . . . . . . . . . . . . . . . 57

Yan Ren, Linlin Zhang, Jiangtao Chen, Jinwei Liu, Pan Liu, Ruoyu Qiao, Xianhe Yao,

Shangchen Hou, Xiaokai Li, Chunyong Cao and Hongping Chen

Noise Reduction Study of Pressure Pulsation in Pumped Storage Units Based on Sparrow
Optimization VMD Combined with SVD
Reprinted from: Energies 2022, 15, 2073, doi:10.3390/en15062073 . . . . . . . . . . . . . . . . . . . 73

Yan Ren, Linmao Ren, Kai Zhang, Dong Liu, Xianhe Yao and Huawei Li

Research on the Operational Strategy of the Hybrid Wind/PV/Small-Hydropower/Facility-Agriculture
System Based on a Microgrid
Reprinted from: Energies 2022, 15, 2466, doi:10.3390/en15072466 . . . . . . . . . . . . . . . . . . . 91

Mengfei Xie, Suzhen Feng, Jinwen Wang, Maolin Zhang and Cheng Chen

Impacts of Yield and Seasonal Prices on the Operation of Lancang Cascaded Reservoirs
Reprinted from: Energies 2022, 15, 3247, doi:10.3390/en15093247 . . . . . . . . . . . . . . . . . . . 107

Nan Zhang, Xiaoming Xue, Na Sun, Yanhui Gu, Wei Jiang and Chaoshun Li

Nonlinear Modeling and Stability of a Doubly-Fed Variable Speed Pumped Storage Power
Station with Surge Tank Considering Nonlinear Pump Turbine Characteristics
Reprinted from: Energies 2022, 15, 4131, doi:10.3390/en15114131 . . . . . . . . . . . . . . . . . . . 119

Yonggang Li, Jinjiao Hou, Juan Gu, Chaoshun Li and Yanhe Xu

Dynamic Characteristics and Successive Start-Up Control Strategy Optimization of Pumped
Storage Units under Low-Head Extreme Conditions
Reprinted from: Energies 2022, 15, 5428, doi:10.3390/en15155428 . . . . . . . . . . . . . . . . . . . 143

Yunhe Wang, Zhihuai Xiao, Dong Liu, Jinbao Chen, Dong Liu and Xiao Hu

Degradation Trend Prediction of Hydropower Units Based on a Comprehensive Deterioration
Index and LSTM
Reprinted from: Energies 2022, 15, 6273, doi:10.3390/en15176273 . . . . . . . . . . . . . . . . . . . 163

v



Meng Zhang, Jinhai Feng, Ziwen Zhao, Wei Zhang, Junzhi Zhang and Beibei Xu

A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability
Reprinted from: Energies 2022, 15, 7089, doi:10.3390/en15197089 . . . . . . . . . . . . . . . . . . . 189

vi



About the Editors

Chaoshun Li

Chaoshun Li is professor at Huazhong University of Science and Technology. He has been

selected as a young top talent in the National “Ten Thousand Plan”, a winner of the Hubei

Outstanding Youth Fund, executive director of the Rotor Dynamics Committee of the Chinese

Society of Vibration Engineering, director of the Hubei Hydropower Engineering Society and an

editorial board member of SCI journals. He has presided over one national young talent project,

four National Natural Science Foundation of China (NSFC) projects, one National Key Research

and Development Program (sub-project) project, one Doctoral Point Fund project of the Ministry

of Education, one Wuhan City Applied Basic Frontier Project, and participated in many major

projects including 973 key projects of the National Science and Technology Support Program and

National Natural Science Foundation of China (NSFC). He has authored three monographs and

published 162 papers, including 102 in SCI journals, 13 in EI conferences, and 47 in Chinese journals.

He received academic honors such as the 2020 MDPI Highest Influential Author and the Elsevier

2020 Highly Cited Scholar in China (with only 24 scholars working in the discipline of water resource

engineering).

Yun Zeng

Yun Zeng is a professor with Kunming University of Science and Technology. He is the director

of the Yunnan University Hydraulic Machinery Intelligent Test Engineering Research Center. He is

also the Chairman of the Hydroelectric Power Subcommittee of IEEE PES Energy Department

and Power Generation Satellite Committee—China, a member of the Hydro Turbine Committee

of Chinese Society of Power Engineering, a member of the Automation Committee of the Chinese

Society for Hydropower Engineering, a member of Hydropower Equipment Committee of the

Chinese Society for Electrical Engineering, and a member of the Drainage and Irrigation Machinery

Committee of the Chinese Society for Agricultural Machinery. His research interests include the

stability and control of hydro turbine generating units, renewable energy generation, nonlinear

dynamics and control. He has published more than 80 papers, including more than 60 SCI and EI

papers. He has published the monograph “Modeling Theory of Hydropower Units”, and a textbook

entitled “Computer Monitoring of Hydropower Stations”.

Beibei Xu

Beibei Xu, Ph.D., is with Northwest A&F University. He received his bachelor’s, master’s and

doctorate degrees in hydraulic engineering from Northwest A&F University in 2014, 2017, and in

2020, respectively. In 2019, he spent three months at Universitat Politecnica de Catalunya as part

of a student exchange program. Since 2020, he has been worked at Northwest A&F University as

an associate professor. His research interests cover a number of R&D topics including hydropower

generation integration into renewable energy, risk analysis and reliability evaluation, as well as

dynamics and control theories. Now, he serves as a reviewer for more than 30 international journals.

vii



Dong Liu

Dong Liu, Ph.D., is with College of Energy and Power Engineering, North China University of

Water Resources and Electric Power. He received his B.E. degree in thermal and power engineering

(hydrodynamic direction) from the North China University of Water Resources and Electric Power in

2015 and his Ph.D. in fluid mechanics and engineering from Wuhan University in 2020. Between

July 2020 and August 2022, he worked as a postdoctoral researcher in the discipline of water

resource engineering at Huazhong University of Science and Technology with the co-supervision

of Prof. Chaoshun Li. From 2017 to the present, he has published more than 25 academic papers

in journals such as Applied Energy, Renewable Energy, Measurement, etc. He has hosted one Chinese

Postdoctoral Science Foundation and participated in two National Natural Science Foundation of

China. His research interests include refined modeling, stability analysis, optimal control, and

monitoring and diagnosis of renewable energy generation systems, including hydropower units.

viii



Citation: Zhu, Z.; Tan, X.; Lu, X.; Liu,

D.; Li, C. Hopf Bifurcation and

Parameter Sensitivity Analysis of a

Doubly-Fed Variable-Speed Pumped

Storage Unit. Energies 2022, 15, 204.

https://doi.org/10.3390/en15010204

Academic Editor: Dimitrios

Katsaprakakis

Received: 26 November 2021

Accepted: 21 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Hopf Bifurcation and Parameter Sensitivity Analysis of a
Doubly-Fed Variable-Speed Pumped Storage Unit
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School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; M202074043@hust.edu.cn (Z.Z.); D201981040@hust.edu.cn (X.T.);
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Tel.: +86-132-0718-2985 (D.L.); +86-158-7180-0142 (C.L.)

Abstract: The doubly-fed variable speed pumped storage unit is a storage system suitable for joint
operation with renewable energy sources to smooth the imbalance between renewable energy supply
and electricity demand. However, its working principle and operation control are more complex than
those of constant speed pumped storage. In this study, a nonlinear model of doubly-fed variable speed
pumped storage units (VSPSUs) considering nonlinear characteristics of the head loss is established.
The study finds that a supercritical Hopf bifurcation occurs in the system, and the area enclosed by
the lower side of the bifurcation line and the coordinate axis is the stability domain of the system.
The active power step perturbation from −0.3 to 0.3 will gradually reduce the area of the stability
domain and narrow the adjustable range of the control parameters. In addition, the sensitivity of the
model full state variables and the primary and secondary relationships to the changes of subsystem
parameters is analyzed systematically using the trajectory sensitivity. It is found that there is a large
difference in the sensitivity of different state variables to the parameters. The state variables are
much more sensitive to the transfer coefficient of hydraulic turbine torque to guide vane opening,
the unit inertia time constant, and the controller proportional gain change than other parameters,
which are defined as highly sensitive parameters. The receiver response time constant and the turbine
flow-to-head transfer coefficient are the corresponding low-sensitivity parameters.

Keywords: doubly-fed variable-speed pumped storage; Hopf bifurcation; stability analysis;
parameter sensitivity

1. Introduction

As power system operators pursue low-carbon investments and long-term energy
sustainability, large-scale development and a high proportion of variable renewable energy
(VRE) access in the power system will become inevitable in the coming decades. In fact,
renewables remained the fastest growing source of energy in buildings, increasing 4.1%
annually on average between 2009 and 2019, and reached their highest recorded share in the
global electricity mix in 2020—an estimated 29% [1]. The higher the share of generation from
variable renewable energy sources, the more flexible the power system must be to maintain
a daily or annual balance between supply and demand. To manage the long-term imbalance
between VRE supply and electricity demand, scholars have investigated solutions to
smooth the imbalance between VRE supply and electricity demand and evaluated their role
in deep decarbonization of power generation using advanced power system investment
and operation models. These systems include nuclear power plants and natural gas plants
equipped with carbon capture and storage, flexible demand, battery energy storage, and
long-term storage technologies [2–4]. Energy storage technologies can provide long-term
and seasonal energy conversion, allow for the temporal separation of energy generation and
consumption, and address the intermittency of variable renewables. Dimanchev et al. used
a detailed capacity expansion and dispatch model to verify the optimal role of reservoir
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hydro as an energy storage resource. Therefore, pumped storage units (PSUs), which use
both upstream and downstream reservoirs for energy conversion and storage, are currently
large-scale energy storage systems that are widely used around the world [5]. PSUs do
not involve chemical conversion processes, which may easily generate pollution. They
are highly adjustable to flexible and variable operating conditions, and have a combined
operating efficiency of 70–85% [6]. Therefore, PSUs as energy storage devices are well
suitable for combined operation with renewable energy in hybrid energy power systems [7].

There are two common types of PSU, namely constant speed pumped storage units
(CSPSUs) and variable speed pumped storage units (VSPSUs) [8]. Currently, most of the
PSUs are of constant speed. However, for CSPSUs, the speed regulation of the units is
slow in the generation condition, and the input power of the unit is not adjustable in the
pumping condition. Compared with the CSPSU, recent studies have demonstrated that the
VSPSU not only inherits the advantages but also has the following additional advantages:
(a) the active power of VSPSUs can be controlled quickly; (b) the frequency stability of the
grid can be greatly improved; (c) and the efficiency of the units can be improved in both
power generation and pumping conditions [9–11]. However, the working principle and
operation control of VSPSUs are more complicated than those of CSPSUs. Therefore, the
understanding of the dynamic behavior of VSPSUs is now in urgent need of enhancement,
and the stability of VSPSUs has significant research value.

At present, the research on doubly-fed variable-speed pumped storage units (VSPSUs)
is focused on the following aspects: mathematical modeling and simulation, dynamic
characteristics and operational stability and reliability, and optimal control. Their contri-
butions are mainly as follows. Gao et al. developed a fast and high-precision model of a
VSPSU, which can better characterize VSPSUs [12]. Mohanpurkar et al. achieved real-time
co-simulation of hydrodynamics and electrical events for adjustable-speed pumped stor-
age hydro [13]. Zhao et al. established a model for the power generation and pumping
conditions of VSPSUs and verified the model and the proposed control strategy using
the MATLAB/Simulink simulation platform [14]. Xie et al. studied an electromechanical
transient model of the VSPSU, preserving the dynamic process of the motor flux linkage
and the dynamic characteristics of the controller inner loop [15]. Zhao et al. established the
output power model of VSPSUs, and found that the VSPSU has good compensation ability
for the power fluctuation of a power system [16]. Yang et al. evaluated the performance of
the VSPSU in mitigating the power regulation of wind power variations and found that it
excels in promoting power system stability [17]. Joseph et al. investigated the dynamic per-
formance of VSPSUs in the event of power and control circuit failures as well as converter
and sensor failures, providing ideas for the stable operation of VSPSUs [18,19]. Damdoum
et al. proposed new simple fault ride-through strategies to reduce the negative impacts of
grid fault occurrence on the doubly-fed induction machine pumped storage system [20].
Madeira et al. investigated the effect of sudden changes in excitation capacitances, resistive
loads, or recovered head on the operation of a pump working as a turbine-self-excited
induction generator model (PAT-SEIG) system using a constructed PAT-SEIG model [21].
Pagaimo et al. studied the transient characteristics of series-connected pumps working as
turbines in an off-grid system and found that one change in the first pump of a turbine
group will significantly affect the other group dynamics [22]. Gao et al. studied the stability
of a VSPSU regulation system and found that the stability domain of the pumping condition
is larger than that of the generation mode when the parameters of the power controller
are fixed [23]. The above literature provides a basis for studying the stability of VSPSUs
but does not investigate the effect of the intrinsic nonlinear characteristics of the system
components on the stability of the whole unit.

Meanwhile, Cruz et al. showed that stability robustness has a close relationship
with sensitivity robustness in nonlinear feedback systems [24]. Therefore, parameter
sensitivity analysis is also an important part of system stability analysis. Some of the
current studies focus on the influence of individual subsystem parameters (e.g., turbine
system parameters [25]) on individual system characteristics (e.g., unit vibration [26]), and
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some scholars have also studied the influence of unit parameters on control characteristics
using the zero-pole variation of the closed-loop transfer function and have used it to design
the unit parameters [27]. Liu et al. analyzed the sensitivity of the hydropower unit damping
to the system parameters and revealed the influence mechanism of the parameters on ultra-
low-frequency oscillations [28]. These studies lack a systematic study of the primary and
secondary relationships between the effects of parameters on the system, and there are few
examples of their application to VSPSUs.

Therefore, this paper focuses on the nonlinear bifurcation and parameter sensitivity
characteristics of the VSPSU. In Section 2, the process of deriving the models of each
subsystem is described, and a fifth-order nonlinear model of the VSPSU considering
pressure head loss is established. A parameter sensitivity analysis method is also introduced
in this section. In Section 3, nonlinear bifurcation analysis of the VSPSU under PI control
strategy is performed to find its stability domain and analyze the bifurcation types of the
system. The dynamic response of the system under active power perturbation is simulated
numerically, and the conclusions obtained from the theoretical analysis are verified by the
simulation. In Section 4, the effects of different active power steps on the stability domain
of the system and the sensitivity of the system to the changes of key parameters of each
subsystem are analyzed. Conclusions are drawn in the final section.

2. Mathematical Modeling and Parameter Sensitivity Analysis Method of Doubly-Fed
Variable Speed Pumped Storage Units

In the field of automatic control, we often use the state space method to analyze
systems, where the dynamic characteristics of the system are described by a number of
first-order differential equations composed of state variables. They can reflect the changes
of all independent variables of the system, so that all the internal motion states of the
system can be determined at the same time, and they can also handle the initial conditions
easily. In addition, they can be used in nonlinear systems, time-varying systems, multiple-
input-multiple-output systems, and stochastic processes because they can be analyzed and
designed with computers and controlled in real time. A VSPSU is a nonlinear system with
hydraulic-mechanical-electrical coupling, for which a reliable and realistic mathematical
model can be developed using the state space method. The VSPSU mainly consists of
a governor, electro-hydraulic servo system, pump turbine, water diversion system and
doubly-fed induction motor (DFIM), and the structure diagram of a VSPSU is shown in
Figure 1.

refn

h

devn yu y

q

n
mT

Figure 1. Structure diagram of a VSPSU.

2.1. Modeling of Hydraulic Subsystem

In building the mathematical model of a VSPSU, we need to consider a combination
of hydraulic–mechanical–electrical factors. The hydraulic part of the factors is mainly
represented by the pressure pipe used to transmit water, whose dynamic characteristics
can be described using an ordinary differential equation. Assuming that the walls of the
pressure pipe and the water in the pressure pipe are rigid, the water hammer pressure due
to the variation of the guide vane opening of the pump turbine can be calculated by the
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rigid water column theory. Based on Newton’s second law of motion, the fluid motion in
the pressure pipe can be described by the following equation:

LtVt0

gH0

d(Qt−Qt0
Qt0

)

dt
= −H − H0

H0
− ht − ht0

H0
(1)

where Lt is the length of penstock, Vt0 is the initial value of flow velocity in penstock,
H is the turbine working head, H0 is the initial value of the turbine working head, g is
acceleration of gravity, Qt is the reference flow rate of the turbine, Qt0 is the initial value of
the reference flow rate of the turbine. ht is the head loss of penstock, ht0 is the initial value
of the head loss of penstock.

Since the state variables in this paper are expressed in the form of relative values of
deviation, the deviation of the above equation regarding flow rate and water pressure
can be simplified by h = H−H0

H0
and q = Qt−Qt0

Qt0
. LtVt0

gH0
represents the characteristics of the

inertia of water flow in the pressure pipe. We can use a time constant of water inertia TW to
simplify the substitution. Then the simplified equation is obtained as follows:

h = −Tw
dq
dt

− ht − ht0

H0
(2)

By associating with the flow rate at this moment, we can obtain the differential
equation containing only h and q. For the head loss in penstock, the expression for the head
loss is ht = αQ2

t . At the initial moment, that is t = 0, when there is ht0 = αQ2
t0, then we

find ht = ht0(
Qt
Qt0

)
2
, using the relationship between Qt and q, and ht = ht0(1 + 2q + q2) can

be obtained by substituting Qt = Qt0 + Qt0q. Therefore, we can obtain the equation at the
initial moment: ht − ht0 = ht0(2q + q2).

The above equations can be combined to obtain the dynamic equation considering the
pressure pipe head loss as follows [29]:

h = −Tw
dq
dt

− ht0(2q + q2)

H0
(3)

This shows that the head loss of the penstock is nonlinear.

2.2. Modeling of Mechanical Subsystem

The mechanical part of the factors is reflected in the prime mover of hydroelectric
power generation, i.e., the pump turbine, and the governor used to control the turbine
speed and thus ensure the frequency stability of the power generation. In the modeling
of the pump turbine, to represent the dynamic characteristics of the turbine in a relatively
simple form, and considering that the variation of the turbine speed, head and guide vane
opening is small in the study of this paper, we assume that the nonlinear relationship of
the pump turbine is linear. The moment equation and flow equation of the pump turbine
are used for further analysis and research, and the specific expressions of the equations are
as follows: {

mt = ehh + exx + eyy

q = eqhh + eqxx + eqyy
(4)

where x = n−n0
n0

and y = a−a0
a0

; eh, ex, ey are the transfer coefficients of pump turbine torque
to head, speed, guide vane opening respectively, eqh, eqx, eqy are the transfer coefficients of
pump turbine flow to head, speed, guide vane opening respectively, n is the pump turbine
speed, n0 is the initial value of speed, a is the guide vane opening of pump turbine, a0 is
the initial value of guide vane opening.

The governor is the controller of the unit, and its control law commonly used in
industrial applications is mainly PI control or PID control. PI control is used in this paper.
In order to achieve the control goal, an electrohydraulic servo system is required to convert

4
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the output of the PI control strategy into the action of the guide vane, i.e., the guide vane
opening. This conversion is generally in the form of integration, supplemented by the
conversion coefficient of the response. The equations of this control strategy and the
electrohydraulic servo system are:{ du

dt = −Kp
dx
dt − Kix

dy
dt = 1

Ty
(u − y)

(5)

where u is the governor regulation output, Kp is the proportional gain, Ki is the integral
gain, and Ty is the receiver response time constant.

2.3. Modeling of Electrical Subsystem

The electrical factors are concentrated in the DFIM of a VSPSU. The mathematical
model of the DFIM consists of voltage equations, magnetic chain equations, torque equa-
tions and equations of motion. The mathematical model of the DFIM in the conventional
three-phase stationary coordinate system is a very complex and strongly coupled time-
varying system. To facilitate the analysis and solution of the operating characteristics, the
mathematical model of the DFIM is transformed by using the coordinate transformation
method, and the mathematical model in the three-phase stationary abc coordinate system is
equated to that in two identical rotating dq coordinate systems.

The transformed voltage and magnetic chain equations are as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
uds = Rsids +

.
Ψds − ωsΨqs

uqs = Rsiqs +
.

Ψqs + ωsΨds

udr = Rridr +
.

Ψdr − srωsΨqr

uqr = Rriqr +
.

Ψqr + srωsΨdr

(6)

⎧⎪⎪⎨⎪⎪⎩
Ψds = Lssids + Lmidr
Ψqs = Lssiqs + Lmiqr
Ψdr = Lmids + Lrridr
Ψqr = Lmiqs + Lrriqr

(7)

where uds, uqs, udr, uqr are the d, q axis voltage of stator and rotor, respectively; Rs, Rr
is the stator and rotor resistance, respectively; ids, iqs, idr, iqr are the d, q axis current of
stator and rotor, respectively; Ψds, Ψqs, Ψdr, Ψqr are the d, q axis flux linkage of stator and
rotor, respectively; ωs denotes the synchronous speed, sr = ωs−ωr

ωs
denotes the relative

speed deviation. Lm is the mutual inductance between stator and rotor; Lss, Lrr are the
inductance of stator and rotor respectively; subscripts s and r represent the stator and rotor
components respectively; subscripts d and q represent the d-axis and q-axis components
respectively.

The equation of motion and the equation of torque can be described as follows:{
Ta

dx
dt = Tm − Te

Te =
3
2 pnLm

(
idsiqr − iqsidr

) (8)

where Ta is the unit inertia time constant; Tm is the active torque of the turbine; and Te is
the load torque of the generator; pn is the number of poles.

When the model of the DFIM is converted to two identical steps in a rotation coordinate
system, vector control is generally used as the control method. We can let the d-axis coincide
with the stator voltage vector, while ignoring the stator resistance which is much smaller
than the reactance, and finally obtain the stator magnetic chain vector in steady state with
90◦ phase difference from the stator voltage vector. After orientation, a series of updated

5
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system equations can be obtained. The most important power equation and torque equation
will be updated in Equation (9):⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ps = − 3
2 Us

Lm
Ls

idr

Qs = − 3
2 Us

(
Us
ωs

1
Ls

− Lm
Ls

iqr

)
Te = − 3

2 pn
Us
ωs

Lm
Ls

idr

(9)

where Us is effective value of grid voltage; Ps is active power; Qs is reactive power.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
q = − 1

Tw
[( 2ht0

H0
+ 1

eqh
)q − eqx

eqh
x − eqy

eqh
y + ht0

H0
q2]

.
x = 1

Ta
[ eh

eqh
q + (ex − eh

eqh
eqx − eg)x + (ey − eh

eqh
eqy)y + 3us Lm

2Lsws
idr]

.
y = 1

Ty
(u − y)

.
u = −Kp

Ta
[ eh

eqh
q + (ex − eh

eqh
eqx − eg)x + (ey − eh

eqh
eqy)y + 3us Lm

2Lsws
idr]− Kix

.
idr = − 3Ki2us Lm

2Ls+3Kp2us Lm
idr +

2LsKi2
2Ls+3Kp2us Lm

Pre f

(10)

By combining the above equations and selecting the independent state variables
q, x, y, u, idr that represent the characteristics of the VSPSU, with appropriate variable
substitutions and simplifications, we can obtain a fifth-order nonlinear model for a VSPSU
as Equation (10).

2.4. Parameter Sensitivity Analysis Method

In this paper, the definition of trajectory sensitivity and average trajectory sensitivity
in the literature [30] are used to analyze the parameters in the system accordingly, and
the nonlinear model of a VSPSU is expressed as Equation (10). Under certain operating
conditions, taking the rotational speed of VSPSU as an example, the trajectory sensitivity of
the system state variables with respect to a parameter can be defined as Equation (11):

Sx(t)/p(t) =
∂x(t)
x(t)
∂p
p

=

x(θr ,θi0+Δθi ,t)−x0(θr ,θi0,t)
x0(θr ,θi0,t)

Δθi
θi0

(11)

where, x0 is the rotational speed of the VSPSU when the value of the parameter θi is θi0,
Δθi is the variation of the θi, and θr is the other parameters in the model except for the θi.

In order to facilitate the comparison and analysis of the parameter trajectory sensitivity,
the relative trajectory sensitivity is defined, and its absolute average value is taken as the
index for quantitative analysis. The specific expression is shown in Equation (12):

SAVE = Sx(t)/p(t) =
1

t2 − t1

∫ t2

t1

∣∣∣Sx(t)/p(t)
∣∣∣dt (12)

where t1, t2 are the start and end moments of a dynamic process, respectively, which are
reasonably chosen according to the response dynamic curve of the system.

3. Hopf Bifurcation Analysis

3.1. Hopf Bifurcation Theory

Power systems consist of various nonlinear parts, including synchronous generators
(providing active and reactive power for the networks), load buses (representing power
consumers), and distribution transmission lines. The dynamic characteristics of those
systems are represented by the swing equation of synchronous generators, and derivative
and algebraic equations of dynamic load (such as induction motors), thus proving the
nonlinear load characteristics of the power system [31]. In actual engineering problems,
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the parameters on which the dynamic system depends often undergo arbitrarily small
changes (also known as perturbations). When these parameters change, the phase trajectory
topology of the unstable system will undergo essential changes. This situation is called
bifurcation. As the load conditions change, the system with nonlinear derivative equations
undergoes a qualitative change at the bifurcation point. Hopf bifurcation and saddle node
bifurcation are considered as typical bifurcations in power systems. Hopf bifurcation theory
is applied in this paper to study the nonlinear bifurcation characteristics of VSPSUs.

Consider a general nonlinear system
.
x as follows:

.
x = f (x, μ), x ∈ Rn

μ ∈ Rm, f : Rn+m → Rn (13)

where x is the n dimensional state variable, and μ is the m dimensional parameter vector.
When the parameter μ passes a certain critical value μ0, the phase trajectory topology

of the system suddenly changes at μ = μ0, and the system is called bifurcated at μ = μ0, and
μ0 is called the bifurcation value. The totality of bifurcation values is called the bifurcation
set. When the parameters change, the dynamic behavior of the nonlinear system switches
between a stable equilibrium point and a stable limit cycle. This dynamic evolution process
is called Hopf bifurcation.

Assume that x = x0 is the equilibrium point of the system: that is, f (x0, μ) = 0
is satisfied. Suppose the Jacobian matrix of the system at the equilibrium point x0 is
J(μ) = DFx(x0, μ). Expand the characteristic equation det(sI − J(μ)) = 0 of the Jacobian
matrix and arrange them in descending powers to obtain Equation (14):

sn + c1(μ)sn−1 + . . . + cn−1(μ)s + cn(μ) = 0 (14)

where ci(μ)(i = 1, 2, · · · , n) is the coefficient of the characteristic equation, and for a certain
bifurcation parameter value μ = μc, if the following conditions are met, the n-dimensional
nonlinear dynamic system has Hopf bifurcation:

1. ci(μc) > 0(i = 1, 2, · · · , n);
2. Δj(μc) > 0(j = 2, · · · , n − 2), Δn−1(μc) = 0;

Among them, Δk =

∣∣∣∣∣∣∣∣∣∣∣

c1 1 0 · · · 0
c3 c2 c1 · · · 0
c5 c4 c3 · · · 0
...

...
...

. . .
...

c2k−1 c2k−2 c2k−3 · · · ck

∣∣∣∣∣∣∣∣∣∣∣
(k = 1, 2, · · · , n). If i > n, then

there is ci = 0. At this moment, the characteristic equation has a pair of pure imaginary
roots at μ = μc;

3. The transversal coefficient σ′(μc) satisfies σ′(μc) = Re
(

dS
dμ

∣∣∣
μ=μc

)
�= 0. Then the

system will have Hopf bifurcation at μ = μc, and the period of periodic motion at this
time is T = 2π

ω .

In addition, the transversal coefficient σ′(μc) can also be used to distinguish the type
of bifurcation. When σ′(μc) > 0, the Hopf bifurcation that occurs is supercritical, and at
μ < μc, the equilibrium point of the system is the stable focus, and for a sufficiently small μ
which satisfies μ > μc, the system will bifurcate from the equilibrium position and perform
periodic motion. In the phase trajectory, it will produce a stable limit cycle, and then the
system will enter a continuous oscillation. When σ′(μc) < 0, the Hopf bifurcation that
occurs is subcritical. At this time, the system shows stable limit cycles and stable focal
motion characteristics at the left and right sides of μc respectively.

3.2. Hopf Bifurcation Analysis of VSPSU

For the fifth-order VSPSU nonlinear model established in this paper, firstly, the equilib-
rium point of the nonlinear dynamic system can be described as XB = (qB, xB, yB, uB, idrB),
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and it can be calculated based on the nonlinear state equation f (XB, μ) = 0. The result is
shown in Equation (15).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qB = H0
2ht0

⎡⎢⎢⎣
−
(

2ht0
H0

+ 1
eqh

− eqy
eqh

ehwsqB
ehwseqy−eqheyws

)
±
√(

2ht0
H0

+ 1
eqh

− eqy
eqh

ehwsqB
ehwseqy−eqheyws

)2
+ 4 ht0

H0

eqyPre f
ehwseqy−eqheyws

⎤⎥⎥⎦
xB = 0

yB =
eqhPre f +ehwsqB

ehwseqy−eqheyws

uB = yB

idrB = 2Ls
3us Lm

Pre f

(15)

Secondly, the Jacobian matrix of the nonlinear dynamic system is formulated at the
equilibrium point to determine the existence of Hopf bifurcation. The Jacobian matrix
of the system at its equilibrium point XB is shown in Equation (16). The detailed partial
derivatives in the Jacobi matrix are given in Appendix A.

J(μ) = D fx(xB, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
.
q

∂q
∂

.
q

∂x
∂

.
q

∂y
∂

.
q

∂u
∂

.
q

∂idr
∂

.
x

∂q
∂

.
x

∂x
∂

.
x

∂y
∂

.
x

∂u
∂

.
x

∂idr
∂

.
y

∂q
∂

.
y

∂x
∂

.
y

∂y
∂

.
y

∂u
∂

.
y

∂idr
∂

.
u

∂q
∂

.
u

∂x
∂

.
u

∂y
∂

.
u

∂u
∂

.
u

∂idr
∂

.
idr
∂q

∂
.
idr
∂x

∂
.
idr
∂y

∂
.
idr
∂u

∂
.
idr

∂idr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

According to the Hopf bifurcation theory introduced earlier, the characteristic equation
of J(μ) can be formulated from det(sI − J(μ)) = 0 and the result is shown in Equation (17):

s5 + c1s4 + c2s3 + c3s2 + c4s + c5 = 0 (17)

where s is the eigenvalue of det(sI − J(μ)) = 0, and the expressions of ci (i = 1, 2, . . . , 5)
are presented in Appendix B.

Then the existence of Hopf bifurcation can be verified according to the following criterion:

1. ci(μc) > 0(i = 1, 2, · · · , 5)
2.

Δ2 =

∣∣∣∣ c1 1
c3 c2

∣∣∣∣ > 0

Δ3 =

∣∣∣∣∣∣
c1 1 0
c3 c2 c1
c5 c4 c3

∣∣∣∣∣∣ > 0

Δ4 =

∣∣∣∣∣∣∣∣
c1 1 0 0
c3 c2 c1 1
c5 c4 c3 c2
0 0 c5 c4

∣∣∣∣∣∣∣∣ = 0

For the VSPSU nonlinear system in this paper, the bifurcation point where the Hopf
bifurcation occurs is the edge point between the stability and the instability of the system.
In the coordinate plane composed of several parameters (Kp, Ki), we consider the set of
bifurcation points in different states will form a curve in the coordinate plane. The bifur-
cation line can divide the stable region and unstable region of the system. Therefore, the
position of the bifurcation line can largely reflect the dynamic characteristics of the system.
Assuming that the system is affected by perturbation (the aforementioned perturbation), in

8
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the stable region, the dynamic response of the system will converge to a new steady state;
on the bifurcation line, the response of the system will oscillate with the same amplitude;
and in the unstable region, the response of the system will diverge, and a new steady state
cannot be obtained. According to those principles, the bifurcation line of the system can
be drawn.

Select Ki as the bifurcation parameter of the system, and the corresponding bifurcation
point can be expressed as μc = K∗

i ; select the proportional-integral parameter plane, and
Kp, Ki are the abscissa and ordinate, respectively, to determine the bifurcation line of the
system. The disturbance is set to a 10% step drop of the rated value of the active power
at the time t = 0 s; that is, Pre f = −0.1. The rest of the parameters involved in the system
are shown in Table 1. Use the inequality in the aforementioned criterion to determine the
feasible range of the parameter, and the equation to obtain the relationship between the
parameters. The determined bifurcation line of the system is shown in Figure 2.

Table 1. Model parameters of the VSPSU.

Parameters Values Parameters Values Parameters Values

ex −1 eg 0 ws 1
ey 1 Tw 1.9927 Lm 2.9
eh 1.5 ht0 4 Ls 3.08
eqx 0 H0 115 Ty 0.2
eqy 1 Ta 12.66 Kp2 1
eqh 0.5 us 1 Ki2 3

K
i

Figure 2. Stable domain of the VSPSU.

At the same time, applying the aforementioned definition of transversal coefficient to
the system described in this paper, the available system’s transversal coefficient expression
is shown in Equation (18):

σ′(μc) = Re

(
c′1s4 + c′2s3 + c′2s2 + c′4s + c′5

5s4 + 4c1s3 + 3c2s2 + 2c3s + c4

)∣∣∣∣∣
μ=K∗

i

(18)

where c′i = dci
dμ , (i = 1, · · · , 5), and the pure virtual characteristic root at μ = μc is

s1,2 = ±i
√

c5−c1c4
c3−c1c2

, and the values of the transversal coefficient corresponding to all bifurca-
tion points are shown in Figure 3.

9
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Figure 3. Transversal coefficient of the VSPSU.

It can be clearly found that all the transversal coefficients are bigger than 0, which
means that the bifurcation in the fifth-order VSPSU nonlinear system is supercritical. That
is, the area enclosed by the coordinate axis under the bifurcation line is the stable region of
the system.

3.3. Numerical Stability Simulation

In order to verify the accuracy of the stable region drawn above, 5 points S1–S5 are
selected in Figure 2 for the numerical simulation of the dynamic response, and the values
of Kp, Ki of the selected five points are shown in Table 2.

Table 2. Control parameters for points S1–S5.

Parameters
Points

S1 S2 S3 S4 S5

Kp 6 6 6 6 6
Ki 0.2000 0.4000 0.5748 0.6500 0.7000

Location area Stable domain Stable domain Bifurcation line Unstable domain Unstable domain

Using the ode45 solving function in MATLAB software to solve the nonlinear deriva-
tive equations for numerical simulation, we can calculate the dynamic response process of
the characteristic state variables q, x, y corresponding to the five different points in Table 2
under the active power disturbance, and the phase trajectory of the dynamic response of
these variables as well. The results are shown in Figure 4.

From the results in Figure 4, we can conclude that the dynamic responses and phase
trajectories of the selected four state point variables are consistent with the results obtained
from the Hopf bifurcation theory analysis. S1 and S2 are located in the stable domain of the
coordinate plane formed by the parameters. After the system is disturbed by the change of
active power, the dynamic response of characteristic variables (i.e., flow, frequency, opening)
needs to go through several cycles of response attenuation and oscillation before reaching
the final equilibrium state. Correspondingly, the three-dimensional phase composed of
characteristic variables will have several trajectories before reaching the equilibrium point;
S3 is located on the bifurcation line of the coordinate plane formed by the parameters, the
dynamic response of the characteristic variables will enter a continuous oscillation state
with constant amplitude, and the corresponding phase trajectory is a stable limit cycle.
For S4 and S5, which are located in the unstable domain, the characteristic variables will
first go through several cycles of divergent response state before entering a stable constant

10
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amplitude oscillation, and the phase space trajectory is divergent first and then enters a
stable limit cycle.

Comparing S1 and S2, the smaller the value of Ki and the larger the distance (
∣∣Ki − K∗

i

∣∣)
from the bifurcation line, the shorter the time for the system to return to the equilibrium
state after the disturbance. This means that the further the points in the stability domain are
from the bifurcation line, the better the stability of the system. Similarly, comparing S4 and
S5, the larger the value of Ki and the greater the distance (

∣∣Ki − K∗
i

∣∣) from the bifurcation
line, the shorter the time from divergence to the equal amplitude oscillation, and the larger
the amplitude of the oscillation in the constant amplitude oscillation. In other words,
the system becomes less stable when the points in the unstable domain are far from the
bifurcation line. It can be seen that the improper selection of the control parameters of the
system will cause the CSPSU to enter a state of constant amplitude oscillation. In order to
protect the safe and stable operation of the system, it is necessary to guide the selection of
the PI controller parameters according to the reference stability domain.

At the same time, by substituting the pure imaginary characteristic root of the system
into the calculation formula of the oscillation period and then taking the reciprocal, the
oscillation frequency of the point on the bifurcation line can be obtained. The specific
formula is shown in Equation (19).

fLC =
1

TLC
=

√
c5−c1c4
c3−c1c2

2π
(19)

Calculate the oscillation frequency corresponding to all the bifurcation points, and
carry out the dynamic response simulation at the same time to obtain the amplitude value
of the state variable x in the system during constant amplitude oscillation. The result is
shown in Figure 5. The three equal-amplitude oscillation points P1, P2, P3 are selected to
verify the results in Figure 5, and the control parameters are shown in Table 3, while the
simulated curves are obtained as shown in Figure 6.

  
(a) Time response for S1 (b) Phase trajectory for S1 

  
(c) Time response for S2 (d) Phase trajectory for S2 

Figure 4. Cont.
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(e) Time response for S3 (f) Phase trajectory for S3 

 
(g) Time response for S4 (h) Phase trajectory for S4 

 
(i) Time response for S5 (j) Phase trajectory for S5 

Figure 4. Dynamic response and phase trajectory of state variables at points S1–S5.

 

Figure 5. Oscillation frequency and amplitude of equal-amplitude oscillations at points on the
bifurcation line.
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Table 3. Control parameters for points P1–P3.

Parameters
Points

P1 P2 P3

Kp 2 4 6
Ki 0.8499 1.0789 0.5748

Figure 6. Dynamic response of x at points P1–P3.

From Figure 5, it can be clearly seen that with the change of Kp from small to large,
the oscillation frequency presents a monotonically increasing trend, becoming larger in
a nearly linear manner. The amplitude of the oscillation changes in a more tortuous
manner, while the overall trend is downward. There is a sharp drop in amplitude near the
intersection of the bifurcation line with the horizontal axis. On the whole, the amplitude
and frequency of the system’s constant-amplitude oscillation have roughly the opposite
trend; that is, the greater the frequency, the smaller the amplitude, and vice versa. This
may indicate from the side that the energy of the system is generally conserved. The results
shown in Figure 6 are the dynamic response of state variable x at points P1–P3. These
response curves and the frequency marked on the right side of the figure verify the previous
frequency-amplitude diagram.

4. Parameter Sensitivity Analysis

4.1. The Effect of Active Power Step on the Stability Domain

The aforementioned stable region is drawn when the active power has a step drop
of 10% of the rated value. In actual engineering, the magnitude and direction of the
disturbances are unpredictable. For this reason, the influence of different disturbances on
the system stable region is studied. We selected a total of six active power disturbances
with different directions and magnitudes, and drew the stable region according to the same
method as described above, and the results are shown in Figure 7.

It can be seen from Figure 7 that as the active power disturbance changes from −0.3
to 0.3, the intersection points between the stable domain and the horizontal axis (i.e., Kp)
gradually shifts to the left, and the intersection point with the vertical axis (i.e., Ki) gradually
moves downward. The area of the stable region also gradually decreases, and the specific
values are shown in Table 4. This means that the adjustable range of the PI controller
parameters is also reduced for the stable operation of the system. This may be manifested
in actual engineering operation: when the VSPSU is operating with 70% rated load under
power generation conditions, the pressure to ensure its stable operation is lower than when
operating with a rated load.
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Table 4. Stable domain area under different active power perturbations.

Case Pre f = −0.3 Pre f = −0.2 Pre f = −0.1 Pre f = 0.1 Pre f = 0.2 Pre f = 0.3

Area 18.7364 18.4972 18.2579 17.7849 17.5499 17.3150

0 1 2 3 4 5 6 7
Kp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pref=-0.3 Pref=-0.2 Pref=-0.1

Pref=0.1 Pref=0.2 Pref=0.3

6.4 6.6 6.8
0.00

0.05

0.10

0.00 0.02
0.33

0.34

0.35

0.36

Figure 7. Stable domain of the VSPSU under different active power disturbances.

4.2. Sensitivity Analysis of Key System Parameters
4.2.1. System Parameter Trajectory Sensitivity Analysis Process

To facilitate the calculation of the above indicators, the simulation conditions are
designed to subject the VSPSU to an active power disturbance, setting the active power
to 10% of its rated value with a pulse width of 0.1 s. Under this disturbance, the system
state will fluctuate for a short time from the initial equilibrium point and return to the
original equilibrium point again under the regulation of the controller. The reason why
the form of perturbation is not chosen from the aforementioned step perturbation used
to calculate the stability domain is, on the one hand, to facilitate the calculation of the
sensitivity index; on the other hand, the equilibrium point of the system will change after
the step perturbation, which means that the parameter sensitivity will be affected by both
the dynamic characteristics and the steady-state characteristics, while the study in the
section is actually concerned with the effect of the parameter change on the dynamic
characteristics of the system. According to the formula of trajectory sensitivity, it is only
necessary to calculate the area of the dynamically changing part of the system variables.
The sensitivity of the system state variables to the parameters can be obtained by comparing
the difference between the areas before and after the parameter variation. The flow chart of
parameter sensitivity analysis is shown in Figure 8.
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?i N

1i i

Figure 8. Parameter sensitivity calculation and analysis process.

4.2.2. System Parameter Trajectory Sensitivity Results

The parameters of the system that will vary within a reasonable range during the
dynamic transients of the system are ex, ey, eh, eqx, eqy, eqh, Tw, Ta, Ty, Kp, Ki, and the
system variables to be analyzed are the five state variables that are selected when the model
is built.

According to Figure 7, a ± 5% perturbation is applied to each parameter on the basis
of its initial value, and the simulation test of active power pulse disturbance is performed.
The total duration of the simulation is 200 s, in which the disturbance occurs at t = 1 s.
Due to the large number of parameters, only the parameter with the greatest influence on
the system state (i.e., Ta) is selected to analyze the influence of the parameter perturbation
on the system state variables. Taking the rotational speed of the VSPSU as an example,
the simulation curve before and after the parameter ingestion is obtained, which is shown
in Figure 9a, and the corresponding trajectory sensitivity calculation results are shown
in Figure 9b (only the trajectory sensitivity of the first 100 s is selected to optimize the
display effect).

From Figure 9a, it can be seen that the positive perturbation of the Ta slows down
the decrease rate of the speed to a small extent and reduces the minimum and maximum
during the dynamic process of the speed; i.e., at the same time when the speed decreases,
its value subject to the positive perturbation of Ta is larger than that subject to the negative
regression of Ta, and vice versa. As can be seen from Figure 9b, the sensitivity of different
state variables to the Ta varies, and the sensitivity of variables q, y, u to parameter Ta is
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significantly greater than that of variable x, and the sensitivity of y, u to Ta is basically
the same, which can also be clearly seen from the derivative equations of the VSPSU. The
sensitivity indexes of the complete system state variables to each parameter are listed
in Table 5, and the depth of the color bars in the cells can visually reflect the size of the
sensitivity indexes.

Table 5. Sensitivity index of different parameters of the system to state variables.

Parameters
State Variables

q x u y idr

ex 6.185 × 10−4 2.972 × 10−4 6.447 × 10−4 6.449 × 10−4 1.638 × 10−2

ey 1.199 × 10−3 6.453 × 10−4 1.240 × 10−3 1.240 × 10−3 1.580 × 10−2

eh 5.124 × 10−4 2.833 × 10−4 5.488 × 10−4 5.495 × 10−4 1.645 × 10−2

eqx 9.328 × 10−4 1.538 × 10−4 2.831 × 10−4 2.836 × 10−4 1.639 × 10−2

eqy 1.330 × 10−3 2.833 × 10−4 5.488 × 10−4 5.495 × 10−4 1.645 × 10−2

eqh 4.098 × 10−4 9.612 × 10−5 1.883 × 10−4 1.890 × 10−4 1.638 × 10−2

TW 5.949 × 10−4 2.842 × 10−4 5.489 × 10−4 5.496 × 10−4 1.639 × 10−2

Ta 1.294 × 10−3 7.342 × 10−4 1.395 × 10−3 1.398 × 10−3 1.644 × 10−2

Ty 9.412 × 10−5 2.612 × 10−5 1.096 × 10−4 5.043 × 10−5 1.641 × 10−2

kp 1.307 × 10−3 5.905 × 10−4 1.404 × 10−3 1.407 × 10−3 1.633 × 10−2

ki 4.644 × 10−4 3.334 × 10−4 4.826 × 10−4 4.827 × 10−4 1.639 × 10−2

(a) Dynamic response comparison of x (b) Trajectory sensitivity comparison
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Figure 9. Comparison of simulation curve and trajectory sensitivity before and after parameter
Ta ingestion.

It can be seen from Table 5 that the sensitivity of each state variable to the ey, Ta, Kp
is much higher than that of the other parameters; i.e., ey, Ta, Kp are the high sensitivity
parameters, and the corresponding low sensitivity parameters are Ty, eqh. In addition to the
aforementioned highly sensitive parameters, the state variable q is also highly sensitive to
the changes of the eqy, and the sensitivity of u, y is almost the same for different parameters.
Moreover, the sensitivity of the state variable idr is almost the same for different parameters.

5. Conclusions

As a long-term energy storage system, it is a very meaningful topic to study the
stability and dynamic characteristics of the VSPSU at a time when the share of variable
renewable energy access is continuously increasing.

The focus of this study was on the nonlinear bifurcation characteristics and parameter
sensitivity of the VSPSU. Considering the nonlinear characteristics of head loss, a fifth-order
nonlinear mathematical model of the VSPSU was developed. The numerical simulation
verified the Hopf bifurcation theory derivation. When the system was subjected to active
power step disturbance, the bifurcation in the system was supercritical. Considering
the points located on the bifurcation line, the system perturbation response showed the
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characteristics of equal-amplitude oscillation, and when the PI controller proportional gain
varied from small to large, the oscillation frequency was between 0.02 and 0.12, and showed
a monotonic increasing trend. The amplitude of oscillation was opposite to the trend of
frequency. As the active power step disturbance changed from −0.3 to 0.3, the area of the
stability domain gradually decreased from 18.7364 to 17.3150.

Parameter sensitivity analysis of the established model yielded the correlation between
the system full-state variables and subsystem parameter variations. The system state
variables were more sensitive to changes in the transfer coefficient of turbine torque to
guide vane opening, the unit inertia time constant, and the controller proportional gain,
while they were less sensitive to changes in the receiver response time constant and the
turbine flow-to-head transfer coefficient.

The stability domain can be used to guide the selection of unit control parameters for
operation of the VSPSU, and the variation of the stability domain area with disturbance can
provide a basis for rational load planning during the actual operation of the VSPSU, thus
helping to exploit its ability to solve the intermittent problems of renewable energy sources.

Author Contributions: Conceptualization, Z.Z.; methodology, Z.Z.; software, X.L.; validation, Z.Z.;
formal analysis, Z.Z.; investigation, Z.Z.; resources, X.T.; data curation, X.L.; project administration,
X.T.; writing—original draft preparation, Z.Z.; writing—review and editing, D.L.; visualization, X.T.;
supervision, C.L.; funding acquisition, C.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 51879111), the Fundamental Research Funds for the Central Universities, HUST (Grant No.
2021JYCXJJ043), the China Postdoctoral Science Foundation (Grant No. 2020M682416), the Applied
Fundamental Frontier Project of Wuhan Science and Technology Bureau (Grant No. 2018010401011269),
and the Hubei Provincial Natural Science Foundation of China (Grant No. 2019CFA068).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

J(μ) = D fx(xB, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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Appendix B

c1 = −(J11 + J22 + J33 + J55)

c2 = J11(J22 + J33 + J55) + J22(J33 + J55) + J33 J55 − J12 J21 − J34 J43

c3 = J11 J34 J43 + J12(J21 J33 + J21 J55) + J22 J34 J43 + J34 J43 J55

−J11(J22 J33 + J22 J55 + J33 J55)− J13 J34 J41 − J22 J33 J55 − J23 J34 J42

c4 = J11(J22 J33 J55 + J23 J34 J42) + J12 J21 J34 J43 + J13(J22 J34 J41 + J34 J41 J55) + J23 J34 J42 J55

−J11(J22 J34 J43 + J34 J43 J55)− J12(J21 J33 J55 + J23 J34 J41)− J13 J21 J34 J42 − J22 J34 J43 J55

c5 = J11 J22 J34 J43 J55 + J12 J23 J34 J41 J55 + J13 J21 J34 J42 J55 − J11 J23 J34 J42 J55 − J12 J21 J34 J43 J55 − J13 J22 J23 J41 J55
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Abstract: The harsh operating environment aggravates the degradation of pumped storage units
(PSUs). Degradation trend prediction (DTP) provides important support for the condition-based
maintenance of PSUs. However, the complexity of the performance degradation index (PDI) sequence
poses a severe challenge of the reliability of DTP. Additionally, the accuracy of healthy model is
often ignored, resulting in an unconvincing PDI. To solve these problems, a combined DTP model
that integrates the maximal information coefficient (MIC), light gradient boosting machine (LGBM),
variational mode decomposition (VMD) and gated recurrent unit (GRU) is proposed. Firstly, MIC-
LGBM is utilized to generate a high-precision healthy model. MIC is applied to select the working
parameters with the most relevance, then the LGBM is utilized to construct the healthy model.
Afterwards, a performance degradation index (PDI) is generated based on the LGBM healthy model
and monitoring data. Finally, the VMD-GRU prediction model is designed to achieve precise DTP
under the complex PDI sequence. The proposed model is verified by applying it to a PSU located in
Zhejiang province, China. The results reveal that the proposed model achieves the highest precision
healthy model and the best prediction performance compared with other comparative models. The
absolute average (|AVG|) and standard deviation (STD) of fitting errors are reduced to 0.0275 and
0.9245, and the RMSE, MAE, and R2 are 0.00395, 0.0032, and 0.9226 respectively, on average for two
operating conditions.

Keywords: pumped storage unit; degradation trend prediction; maximal information coefficient;
light gradient boosting machine; variational mode decomposition; gated recurrent unit

1. Introduction

Pump storage units (PSUs) store excessive power during light load periods and con-
vert hydro energy into electricity at peak load periods [1]. According to the hydropower
status report [2], the installed capacity of PSUs reached 159.5 GW in 2020, accounting for
94% of the capacity of all energy storage facilities. PSUs are playing an increasingly impor-
tant role in peak–valley reduction and emergency reserves [3–5]. However, the frequent
condition conversion and the complex hydro-mechanical–electric coupling aggravate the
wear and degradation of PSUs. Degradation trend prediction (DTP) ensures the secure
operation of PSUs by evaluating the degradation and predicting the degradation trend
of PSUs. Generally, DTP includes the mechanism-analysis approaches and data-driven
approaches [6]. The mechanism-analysis approaches describe the degradation process
by building a mathematical model based on the failure mechanism. However, complex
systems are difficult to describe precisely with mathematical models, which limits their
application. With the improvement of monitoring systems, data-driven approaches are
attracting increased attention [7]. The data-driven based DTP always consists of two phases:
(a) building a healthy model that represents the good running conditions of PSUs and then
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constructing the performance degradation index (PDI); (b) establishing a precise prediction
model to forecast the future degradation trend of PSUs.

Healthy model building is the process of constructing mapping relationships between
working parameters and status data. Its accuracy directly affects the reliability of PDI. In
relevant literature, the artificial neural network (ANN) [8], Gaussian process regression
(GPR) [9], radial basis function interpolation surface [10,11], Shepard interpolation sur-
face [12], etc. are frequently used. These methods need plenty of computational resources
and time, while their performances are always not satisfactory. Recently, the gradient
boosting machines (GBMs) [13] have developed rapidly due to their low computational
resources, fast training speed, and high fitting accuracy. They are widely used in regression
and classification tasks, such as wind speed forecasting [14,15], fault diagnosis [16,17], and
anomaly detection [18,19]. The light gradient boosting machine (LGBM) [20] is a novel GBM
proposed by Ke et al. in 2017. It has similar performance while requiring far less memory
and training time compared with gradient boosting decision tree (GBDT) and has achieved
state-of-the-art results in numerous competitions. Considering the outstanding advantages
and the potential engineering demand, LGBM would be a great choice to build a healthy
model to fit the mapping relationships exactly and save expensive computational resources.

Moreover, the input and the output of the healthy model should be determined. The
status data, such as swing, vibration, etc., provide a wealth of information on the operating
status of PSUs [21]. It is suitable to use the status data as the output of the healthy model.
The working parameters, which describe the operating mode of PSU in detail, should be
used as the input of the healthy model [8]. However, some working parameters have a
weak correlation with the status data and bring confusion when judging the status of PSUs.
To make sure the healthy model entirely learns the characteristics of a PSU under good
running conditions, it is necessary to screen the working parameters by correlation. The
maximal information coefficient (MIC) [22] can explore not only linear correlation but also
nonlinear and nonfunctional correlations between variables, thus achieving remarkable
success in data screening. Jiang et al. [23] designed a two-step feature selection method
based on MIC to screen the best feature for predicting remaining useful life of the bearing.
Ji et al. [24] proposed a novel selection method of software attribute by combining MIC
and automatic clustering. Due to its superior performance, MIC is adopted to screen the
working parameters in this paper.

The PDI is obtained after building the healthy model, after which the degradation
trend of the PSU should be predicted to support decision-making. Classical machine
learning methods, such as autoregressive integrated moving average (ARIMA) [25], sup-
port vector regression (SVR) [26], ANN [27], etc., are widely used in related works. With
the development of machine learning, recurrent neural networks (RNNs) [28] have ob-
tained excellent results in prediction tasks. Park et al. [29] used long short-term memory
(LSTM) to predict the remaining useful life of a battery. Xia et al. [30] combined the multi-
layer attention and LSTM models to predict the degradation trend of mechanical systems.
Wu et al. [31] predicted the remaining useful life of a cooling system by using LSTM and
gated recurrent unit (GRU), respectively, finding that GRU performs better than LSTM.
Compared with LSTM, GRU [32] only has two gates and fewer parameters, while it often
achieves slightly better results [33–35]. However, the degradation trend of PSU is non-
periodic, with irregular fluctuation components. Even GRU cannot learn the degradation
trend of PSU well. The complexity of PDI sequences brings difficulty for high-precision
prediction. One way to solve this issue is to make the PDI sequence simpler. Empirical
mode decomposition (EMD) [36] is a classical decomposition method which has been
widely used. However, EMD lacks a theoretical foundation and suffers from problems
such as mode mixing and boundary effect. To overcome these shortcomings, variational
mode decomposition (VMD) [37] has been proposed. It has a sound theoretical foundation
and is suitable for dealing with nonlinear and non-stationary series [38]. It decomposes
the complex series into a series of approximately orthogonal simple modes and is popular
in the fields of signal denoising [39], runoff forecasting [40], wind speed forecasting [41],
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etc. Thus, the complex PDI sequences are decomposed into simpler modes by VMD before
being fed into GRU to improve the accuracy of prediction.

To achieve precise degradation trend prediction for a PSU, a combined DTP model of
a PSU is proposed based on MIC-LGBM and VMD-GRU. Firstly, the working parameters
are selected by MIC. Afterwards, the LGBM healthy model is built, and the PDI is obtained
by measuring the difference between the benchmark output of the healthy model and the
monitoring status data. Finally, the PDI sequence is sent into the VMD-GRU prediction
model to obtain a reliable future degradation trend. The main contributions of this work
are listed as follows:

(a) Considering that the relationships between the working condition parameters and the
state data are not linear, MIC is utilized to screen the relevant working parameters.
The interference of irrelevant working parameters is reduced, and the performance of
the healthy model is improved.

(b) Inspired by the superiority of LGBM, the healthy model is constructed and not
only achieves a high-precision fitting result but also consumes fewer computational
resources as it has a strongly competitive training speed.

(c) To address the challenges caused by the complexity of PDI sequences, the VMD-GRU
prediction model is designed for reliable prediction. The complex degradation trend is
decomposed into a series of simple sequences by VMD, which can be more adequately
learned by GRU. An outstanding prediction result is obtained compared with other
popular prediction models.

The remainder of this paper is organized as follows. The relevant theoretical back-
ground is stated in Section 2. Then, the proposed DTP model is presented in Section 3.
In Section 4, model validation, comparative experiments, and analysis are carried out.
Conclusions and future work are presented in Section 5.

2. Theoretical Background

2.1. Maximal Information Coefficient

Compared with traditional correlation coefficients, MIC has generality and equitability.
It not only captures linear, nonlinear, or even nonfunctional correlations (i.e., generality)
but also assigns similar scores to any variables containing equal noise (i.e., equitability) [42].
Supposing a dataset of ordered pairs D = {X, Y} = {(xi, yi), i = 1, · · · , N}, where X and
Y are variables with length N, the MIC is calculated with the following steps:

Step 1: Divide the D into m-by-n grids G, where m ∗ n ≤ B, and B is set to N0.6 [22] in
this paper.

Step 2: Calculate the maximum mutual information (MI) of D under G MI∗(D|G) by
Equation (1); then, the (m, n)th term of characteristic matrix Mm,n is obtained by normaliz-
ing MI∗(D|G) as Equation (2).

MI∗(D|G) = maxMI(G) = max ∑
m,n

p(xi, yi) log2

(
p(xi, yi)

p(xi)p(yi)

)
(1)

Mm,n =
MI∗(D|G)

log2 min(m, n)
(2)

where p(xi, yi) denotes the joint probability density, and p(xi) and p(yi) denote the marginal
probability densities.

Step 3: Calculate Mm,n for all grids that satisfy m ∗ n ≤ B; then, the MIC of D is the
maximum term in the characteristic matrix, namely

MIC(D) = max
m∗n≤B

Mm,n (3)

where MIC ranges from 0 to 1. The larger the MIC, the stronger correlation.
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2.2. Light Gradient Boosting Machine

Extreme gradient boosting (XGBoost) [43] and LGBM models are popular ensemble
learning methods based on GDBT. Compared with XGBoost and GDBT, LGBM consumes
fewer computational resources and has a faster training speed while obtaining a similar
accuracy [20,44]. The superiority of LGBM is mainly reflected by the following technologies:

(a) Gradient-based one-side sampling (GOSS). Data with large gradients contribute more
to the model and require more attention during training, while those with small
gradients are already sufficiently learned by the model. GOSS is applied to make the
model focus more on data with large gradients, while avoiding large variations in
the distribution of training data. The process of GOSS is described as follows. Firstly,
data are sorted according to the gradient by decreasing order. Afterwards, the top a%
of data are retained, and b% of the remaining data is randomly selected. Finally, the
information gain is calculated and the gradient of the selected b% data is multiplied
by 1−a

b .
(b) Exclusive feature bundling (EFB). EFB is effective when data are high-dimensional. It

bundles mutually exclusive features to reduce the number of features, thus increasing
the training speed without reducing the training accuracy.

(c) Histogram-based algorithm. The continuous features are discretized into K bins,
which are utilized to generate the histogram during training, and the optimal segmen-
tation point is found by traversing the discrete value in the histogram, as shown in
Figure 1. This approach reduces the memory consumption.

(d) Leaf-wise growth strategy. The level-wise growth strategy splits plenty of redundant
leaves with low gain, which excessively consumes computational resources [45], while
the leaf-wise growth strategy achieves higher precision by splitting the leaf with the
greatest gain. The comparison of the above growth strategies is shown in Figure 2.

Figure 1. Histogram-based algorithm.

(a) (b) 

Figure 2. Comparison of (a) level-wise growth strategy and (b) leaf-wise growth strategy.
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2.3. Variational Mode Decomposition

VMD is a non-recursive and adaptive signal decomposition method [37]. It obtains a
series of approximately orthogonal modes by solving a variational optimization problem.
The variational optimization problem is described as follows:

min
{uk},{wk}

{
∑
k
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
(4)

s.t.
K

∑
k=1

uk(t) = x(t) (5)

where K denotes the number of modes, x(t) is the original sequence, {uk} = {u1, · · · , uK}
and {wk} = {w1, · · · , wK} are modes and center frequencies of modes, respectively, δ(t) is
the Dirac distribution, and ∗ denotes convolution operation.

The Lagrange multiplier λ(t) and quadratic penalty term are introduced to make the
problem unconstrained; the augmented Lagrangian L is listed as follows:

L({uk}, {wk}, λ) = α∑
k
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2 + ‖x(t)−
K

∑
k=1

uk(t)‖2
2+λ(t), x(t)−

K

∑
k=1

uk(t) (6)

where α is the balance parameter.
The alternate direction method of multipliers (ADMM) [46] is adopted to solve the

augmented Lagrangian L. uk, wk are updated as follows:

ûn+1
k (w) =

x̂(w)− ∑i<k ûn+1
i (w)− ∑i>k ûn

i (w) +
λ̂n(w)

2

1 + 2α
(
ω − ωn

k
)2 (7)

ωn+1
k =

∫ ∞
0 w

∣∣∣ûn+1
k (w)

∣∣∣2dw∫ ∞
0

∣∣∣ûn+1
k (w)

∣∣∣2dw
(8)

λ̂n+1(w) = λ̂n(w) + τ

(
x̂(w)−

K

∑
k=1

ûn+1
k (w)

)
(9)

where τ is the iteration factor, and n denotes the number of iterations. û(w), x̂(w), and
λ̂(w) are the Fourier transforms of u(t), x(t), and λ(t), respectively.

The iteration is stopped when the following convergence condition is met:

K

∑
k=1

‖ ûn+1
k (w)− ûn

k (w) ‖2
2

‖ ûn
k (w) ‖2

2
< ε (10)

where ε is the convergence threshold.
The number of modes K is key in VMD. On one hand, the modes are still complex if K

is too small, which is inconducive to learning degradation trends; thus, the performance of
the prediction model cannot be improved effectively. On the other hand, if K is too large,
a great amount of computational resources is consumed, even the prediction accuracy
is reduced due to the accumulation of prediction errors in sub-models. To determine a
suitable K, the ratio of residual energy to the original signal energy Rres [47] is used as the
criterion of decomposition. The Rres is defined as follows:

Rres =
1
T

T

∑
t=1

∣∣∣∣∣ x(t)− ∑K
k=1 uk(t)

x(t)

∣∣∣∣∣× 100% (11)
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where T denotes the length of x(t). The minimum K that satisfies Rres < 1% is the optimal
number of modes.

2.4. Gated Recurrent Unit

A traditional recurrent neural network cannot effectively learn long-term depen-
dence [48]. LSTM solves this shortcoming through the gating mechanism, while this
structure increases the parameters of the network. GRU [49] is a simplified version of LSTM
that only uses two gates, while the prediction accuracy is not reduced. The structure of a
GRU cell is shown in Figure 3. Given the current input Xt and the previous hidden state
Ht−1, the current hidden state Ht is calculated as follows.

Figure 3. Structure of GRU cell.

Firstly, Ht−1 and Xt are put into the reset gate Rt and generate the candidate hidden
state Ht:

Rt = sigmoid(WrxXt + Urh Ht−1) (12)

Ht = tanh(WhxXt + Uhh(Rt 
 Ht−1)) (13)

where 
 denotes the element-wise multiplication. Wrx, Urh, Whx, and Uhh are the weight ma-
trices.

Afterwards, the update gate Zt controls how much information in Ht is utilized to
generate Ht:

Zt = sigmoid(WzxXt + UzhHt−1) (14)

Ht = (1 − Zt)
 Ht−1 + Zt 
 H̃t (15)

where Wzx and Uzh are weight matrices.

3. The DTP Model Based on MIC-LGBM and VMD-GRU

To predict the degradation trend of a PSU precisely and provide support for condition-
based maintenance, a MIC-LGBM and VMD-GRU-based combined model is proposed. On
one hand, it generates a reliable PDI in a short time, only using few computational resources;
on the other, its predicted degradation trend is accurate and has a strong correlation with
the actual degradation trend. The overall flowchart of the proposed model is shown in
Figure 4. Firstly, working parameters are screened by MIC, and the interference information
is removed. Secondly, the data in the benchmark state, which represents the good running
conditions of PSU, are utilized to generate the LGBM healthy model, and then the PDI
sequence is obtained. Lastly, the VMD-GRU prediction model is constructed to predict the
degradation trend of PSU.
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Figure 4. Proposed DTP model.

3.1. Working Parameters Selection by MIC

The status data, such as vibration, swing, etc., reflect the operating status of the PSU
directly. Besides, the PSU behaves differently under different working parameters. Working
parameters that are poorly correlated with the status data bring interference to the judgment
of the PSU’s status. Therefore, invalid operating parameters are excluded by MIC to ensure
that the inputs to the healthy model are critical to determine the operating status of PSU.
Given l working parameters w1(t), w2(t), · · · , wl(t) and the status data s(t) of PSU, the
selection of working parameters is carried out as follows:

(1) Calculate the correlation c(i), i = 1, · · · , l between wi(t), i = 1, · · · , l and s(t) by the
MIC in Section 2.1.

(2) Obtain the selection threshold δ as follows:

δ =
1
l

l

∑
i=1

c(i) (16)

(3) The working parameter wi(t) is selected as input of the healthy model if c(i) ≥ δ.
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3.2. Healthy Model Construction and PDI Generation
3.2.1. Part A: Healthy Model Construction

After selecting the input, the status data are used as the output of the healthy model.
Thus, the LGBM healthy model is built as follows:

(1) The period when the PSU is running well is selected as the benchmark state. The
selected working parameters under benchmark state w1(t), w2(t), · · · , wm(t) are used
as the input of the LGBM healthy model, and the corresponding healthy status data
h(t) are adopted as the output of the LGBM healthy model. Thus, the nonlinear
mapping relationship is established as follows:

h(t) = f
(

w1(t), w2(t), · · · , wm(t)
)

(17)

(2) The trial-and-error method is utilized to determine the optimal parameters of LGBM.

The absolute average (|AVG|) and standard deviation (STD) of the fitting errors
E = {e(i), i = 1, · · · , N} on the test set are introduced to evaluate the effectiveness of the
LGBM healthy model. The definition of |AVG| and STD are presented as follows:

|AVG| =
∣∣∣∣ 1

N ∑N
i=1 e(i)

∣∣∣∣ (18)

STD = ∑N
i=1

(e(i)− e)2

N − 1
(19)

where N is the number of fitting errors E and e denotes the average of E. The smaller
the |AVG|, the smaller fitting error. The smaller the STD, the more stable the healthy
model performance.

Moreover, the training time of the healthy model TIME is recorded to illustrate the
computational resource consumption.

TIME = tend − tstart (20)

where tend and tstart represent the start time and end time of model training, respectively.
The smaller the TIME, the smaller the cost of computational resources.

3.2.2. Part B: PDI Generation

The performance degradation of the PSU mainly occurs in the pumping condition
and generation condition. Therefore, a single pumping or generation process is used as the
basis unit of PDI generation in this paper. The PDI PDI(i) of the ith process is calculated
as follows:

pi(t) = f
(

w1
i (t), w2

i (t), · · · , wm
i (t)

)
(21)

PDI(i) =
1
T ∑T

t=1
|si(t)− pi(t)|

pi(t)
(22)

where si(t) is the monitoring status data, w1
i (t), w2

i (t), · · · , wm
i (t) are the monitoring work-

ing parameters selected by the MIC, f denotes the mapping relationship learned by the
LGBM healthy model, pi(t) implies the presumptive status data under corresponding
working parameters when the PSU is running well, and T denotes the number of points in
the ith process.

3.3. Degradation Trend Prediction with VMD-GRU

The VMD-GRU prediction model is constructed after obtaining PDI. As shown in
the bottom of Figure 4, the PDI sequence is decomposed into a series of modes at first.
Then, the GRU sub-models are built for each mode separately. Finally, the predicted values
of all modes are added to obtain the future PDI. The structure of the GRU sub-model is
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shown in Figure 5. The long-term dependence of the PDI sequence is extracted by the GRU
layer; then, the output of the final GRU cell is sent to the full connected layers to obtain the
predicted value of mode.

Figure 5. Structure of the GRU sub-model.

RMSE, MAE, and R2 are selected as metrics for evaluating the performance of the
prediction model.

(a) RMSE:

RMSE =

√
∑N

i=1
(yi − ỹi)

2

N
(23)

(b) MAE:

MAE =
1
N ∑N

i=1|yi − ỹi| (24)

(c) R2:

R2 = 1 − ∑N
i=1(yi − ỹi)

2

∑N
i=1(yi − y)2 (25)

where yi and ỹi denote the actual PDI and predicted PDI, respectively. N is the length
of the actual PDI, and y is the average of yi.

4. Case Study

The proposed DTP model was verified on a PSU located in China, and comparison
experiments were conducted to illustrate the superiority of components of the proposed
model. All experiments were carried out in the Python 3.6.4 environment running on a
computer with R7 5800h CPU, GTX3060ti GPU.

4.1. Data Source

The structure of the PSU is shown in Figure 6. It has a single-stage mixed-flow pump-
turbine unit with a capacity of 375 MW. The single-shaft vertical-stage pump-turbine is
concatenated with the power generating motor, which has a rated speed of 375 r/min,
through the main shaft. The monitoring system has worked since 19 May 2017. According
to the operation reports, no abnormalities or accidents occurred from 15 January 2018 to
15 February 2018, which means the PSU ran well. This period was chosen as the benchmark
state. The PSU had poor performance between 1 March 2019 to 1 October 2019, and this
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period was used for generating the PDI. Besides, the PSU has different characteristics under
different operating conditions, and DTP was carried out on the pumping condition and
generating conditions, respectively. There were 207 pumping processes and 307 generating
processes during PDI generation.

Figure 6. The structure of the PSU.

4.2. Working Parameter Selection Based on MIC

Among the status data, swing and vibration reflect the operating status of the PDU
significantly [9]. The swing of the upper guide bearing was chosen to reflect the status
of the PSU in this paper. Therefore, the output of the healthy model was determined as
swing. The working parameters, such as active power, reactive power, excitation recurrent,
excitation voltage, working head, guide vane opening, etc., determine the operation mode
of the PSU. The working parameters have different effects on the swing; however, they also
have different correlations with the swing. The relationships between the swing and the
working parameters under the benchmark state are shown in Figure 7.

(a) Active power–swing (b) Reactive power–swing (c) Excitation current–swing 

(d) Excitation voltage–swing (e) Working head–swing (f) Guide vane opening–swing 

Figure 7. Relationships between working parameters and swing.

From Figure 7a, it can be seen that swing was distributed from 59.12–67.31 μm and
55.64–63.75 μm under the pumping condition and generating condition, respectively. This
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indicates that PSU has different vibration characteristics under these operating conditions,
and it is necessary to generate a PDI for all operating conditions separately to ensure
consistency. Figure 7b shows that the reactive power of PSU is mostly distributed between
6.33 MVar and 60 Mvar, while a small amount is distributed from 91.2 Mvar to 102.3 MVar.
Moreover, the relationships between the swing and the above working parameters are not
linear and are difficult to discern directly; the same conclusions can be drawn in Figure 7c–f.
Thus, MIC was utilized to extract the complex relationships between the swing and the
working parameters; then, the selection threshold δ was calculated by Equation (16) to
exclude the working parameters that have weak correlations with the swing. The MIC
and δ are shown in Figure 8, where δ = 0.553. The active power, working head, and guide
vane opening were selected as the inputs of the healthy model since their MICs are greater
than δ.

Figure 8. MIC between swing and working parameters.

4.3. Healthy Model Establishment and PDI Construction
4.3.1. Comparative Healthy Models and Parameter Settings

After determining the input and output of the healthy model, the LGBM healthy mod-
els were built under two operating conditions, respectively. In the benchmark state, there
were 5009 samples under the pumping condition and 3175 samples under the generating
condition. In total, 90% of the benchmark state was used for training, and the remaining
10% was applied for testing. The GPR, Classification and Regression Tree (CART) [50],
and XGBoost are small and effective; thus, they were adopted for the comparison with
the LGBM. The optimal parameters of healthy models were obtained through the trial-
and-error method, as listed in Table 1. Moreover, ablation experiments were conducted to
illustrate the importance of working parameter selection; i.e., all working parameters were
taken as the input of the healthy model.

Table 1. Parameter setting of healthy models.

Model Parameter Settings

GPR Kernel = ‘RBF’, alpha = ‘1e-9′.
CART Criterion = ‘MSE’, Min_samples_split = 2, Min_samples_leaf = 1.

XGBoost Booster = ‘gbtree’, eta = 0.1, Max_depth = 7, Min_child_weight = 1, Sub_sample = 0.82.
LGBM Max_depth = 8, Num_leaves = 19, Min_child_samples = 30, Sub_sample = 0.85.
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4.3.2. Performance Analysis and Discussion of Healthy Models

The evaluation metrics of different healthy models on the testing set are listed in
Table 2. The bolded values represent the best metrics. The box plots of fitting errors on
the testing set are shown in Figure 9, and the mean values of evaluation metrics of two
operating conditions are presented in Figure 10.

Table 2. Fitting errors of healthy models.

Parameter
Selection

Healthy
Model

Pumping Condition Generating Condition

|AVG| STD TIME |AVG| STD TIME

NO MIC

GPR 0.065 1.033 2.317 0.014 1.037 1.700
CART 0.093 1.246 0.182 0.036 1.127 0.096

XGBoost 0.384 1.174 1.539 0.030 1.128 0.937
LGBM 0.082 1.055 0.755 0.028 0.994 0.652

MIC

GPR 0.049 0.985 2.261 0.029 1.071 1.553
CART 0.056 1.169 0.023 0.023 1.063 0.036

XGBoost 0.040 0.994 0.314 0.023 0.970 0.612
LGBM 0.036 0.911 0.302 0.019 0.938 0.563

(a) Fitting errors under pumping condition (NO MIC) (b) Fitting errors under generating condition (NO MIC) 

(c) Fitting errors under pumping condition (MIC) (d) Fitting errors under generating condition (MIC) 

Figure 9. The box plots of fitting errors on the testing set.
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Figure 10. Average evaluation metrics under two conditions.

When the working parameters were selected by MIC, LGBM achieved the minimum
|AVG| and STD among all healthy models under both the pumping condition and generat-
ing condition. This reveals that LGBM has the smallest fitting error and the most stable
performance. The |AVG| and TIME of XGBoost are close to those of LGBM, while STD
is 6.2% higher than LGBM on average for two operating conditions. This indicates that
XGBoost is more likely to produce outliers. CART takes the shortest training time among
healthy models, while |AVG| and STD are larger than XGBoost and LGBM. Although it
trains quickly, its fitting error is not satisfactory. GPR took the longest time for training and
consumed the most computational resources but performed the worst under the generating
condition. The above conclusions are also verified in Figure 9c,d.

As shown in Table 2, when working parameters were not selected by MIC (NO MIC),
most of healthy models had a larger |AVG| and STD and required a longer training time.
This shows that the redundant components in the working parameters not only decrease
the accuracy and stability of healthy models but also cost more in terms of computational
resources. Interestingly, the working parameter selection improves the performance of GPR
under the pumping condition while its capability reduces under the generating condition.
The working parameter selection makes the distributions of fitting errors on the testing set
more concentrated, as shown in Figure 9. From Figure 10, it can be seen that parameter
selection improved the average performance of GPR, CART, XGBoost, and LGBM under
two operating conditions, where |AVG| improved by 1.2%, 38.9%, 84.7%, and 50%, STD
improved by 0.6%, 5.9%, 14.6%, and 9.7%, and TIME improved by 5.1%, 78.8%, 62.6%, and
38.5%. MIC greatly improves the capability of XGBoost and LGBM.

4.3.3. PDI Construction with LGBM Healthy Model

Based on the reliable LGBM healthy model, the effective PDI sequences are generated.
For the ith process, the presumptive status data pi(t) are obtained by Equation (21); then,
the PDI(i) is calculated by Equation (22). The PDI sequences of two operating conditions
are shown in Figure 11. The PDI sequences of two operating conditions have similar overall
increasing trends. This indicates that the degradation of PSU gradually increases with
operation time, which is consistent with the records in the operating reports. In addition, the
PDI sequences are so complex that there are plenty of recursive components and nonlinear
components. These components are clearly demonstrated in the PDI sequence under the
generating condition, as shown in Figure 12b. They seriously affect the performance of the
prediction model.
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(a) PDI sequence under pumping condition (b) PDI sequence under generating condition 

Figure 11. PDI sequences under (a) pumping and (b) generating conditions.

(a)  of different  under pumping condition (b)  of different  under generating condition 

(c) Decomposition result under pumping condition (d) Decomposition result under generating condition 

Figure 12. Decomposition results of PDI sequences by VMD.

4.4. Degradation Trend Prediction of PSU
4.4.1. Comparative Prediction Models and Parameter Settings

The complex PDI sequence brings challenges for predicting degradation trends ac-
curately. To solve this problem, the VMD-GRU prediction model was constructed in this
paper. VMD was utilized to decompose the PDI sequence into a series of simple modes;
then, GRU sub-models were built for each mode separately, and the predicted values of
the sub-models were summed to obtain the future PDI at last. The following comparative
experiments were conducted to confirm the superiority of VMD-GRU. Firstly, the popu-
lar prediction models were used to illustrate the challenge brought by the complexity of
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the PDI sequence, including ANN [27], SVR [26], LSTM [29], and GRU [33]. Afterwards,
VMD-ANN, VMD-LSTM, and VMD-GRU were compared with ANN, LSTM, and GRU,
respectively, to demonstrate the performance improvement resulting from decomposition;
then, the EMD-ANN, EMD-LSTM, and EMD-GRU prediction models were set up to demon-
strate the effectiveness of VMD. Lastly, the validity of GRU was proved by comparing
GRU, EMD-GRU, and VMD-GRU with corresponding models. The optimal structures and
parameter settings of prediction models were determined by the trial-and-error method, as
shown in Table 3.

Table 3. Parameter setting of prediction models.

Model Parameter Settings

ANN Four full connected layers, number of neurons: 256, 64, 4, 1.
SVR C = 0.8, Kernel = ‘RBF’, Epsilon = 0.001, Tol = 0.001.

LSTM (a) LSTM Layer, 128 units.
(b) Three full connected layers, number of neurons: 256, 64, 1.

GRU (a) GRU Layer, 128 units.
(b) Three full connected layers, number of neurons: 256, 32, 1.

EMD-ANN (a) EMD: Decompose until meeting the stopping condition in [51].
(b) ANN sub-model: it has same structure as ANN prediction model.

EMD-LSTM (a) EMD: Decompose until meeting the stopping condition in [51].
(b) LSTM sub-model: The structure is same as LSTM prediction model.

EMD-GRU (a) EMD: Decompose until meeting the stopping condition in [51].
(b) GRU sub-model: The structure is same as GRU prediction model.

VMD-ANN
(a) VMD : K is set to 4 under pumping condition, while K = 5 under

generating condition.
(b) ANN sub-model: it has same structure as ANN prediction model.

VMD-LSTM
(a) VMD : K is set to 4 under pumping condition, while K = 5 under

generating condition.
(b) LSTM sub-model: The structure is same as LSTM prediction model.

VMD-GRU
(a) VMD : K is set to 4 underpumping condition, while K = 5 under

generating condition.
(b) GRU sub-model: The structure is same as GRU prediction model.

The time step was set to 5 in all prediction models; i.e., PDI(i − 5), PDI(i − 4), · · · ,
PDI(i − 1) were used to predict PDI(i). The first 80% of the PDI sequence was employed
for training and the remaining 20% was utilized for testing. To eliminate randomness, all
prediction results were the averages of 10 repeated experiments.

To determine the optimal number of modes for VMD, the Rres of different numbers
of modes K was calculated under two conditions, respectively. The Rres is shown in
Figure 12a,b. It can be seen that Rres < 1% when K ≥ 4 under the pumping condition and
K ≥ 5 under the generating condition. Therefore, K was set to 4 and 5 under the pumping
condition and generating condition, respectively. The decomposition results under an
optimal K are presented in Figure 12c,d. These demonstrate that the smooth and simple
modes are obtained by VMD, and they store different information of the PDI sequence.
Additionally, the decomposition results of EMD are illustrated in Figure 13. EMD suffers
from the mode mixing severely that multiple frequency components appear in the same
mode. This reveals that the modes generated by EMD are more complex than those of
VMD. Thus, we can conclude that VMD makes PDI sequences simpler, and it provides a
better decomposition compared with EMD.
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(a) Decomposition result under pumping condition b  Decomposition result under generating condition

Figure 13. Decomposition result of PDI sequences by EMD.

4.4.2. Performance Analysis and Discussion of Prediction Models

The prediction results of VMD-GRU on the testing sets are shown in Figure 14, and
those of comparative experiments are shown in Figure 15. The RMSE, MAE, and R2 are
listed in Table 4. The bolded values indicate the optimal metrics. The analysis of the results
and discussion are presented below.

Figure 14. Performance of VMD-GRU.

36



Energies 2022, 15, 605

(a) ANN (b) SVR (c) LSTM 

(d) GRU (e) EMD-ANN (f) EMD-LSTM 

(g) EMD-GRU (h) VMD-ANN (i) VMD-LSTM 

Figure 15. Performance of the comparative prediction models.

Table 4. Performance of prediction models.

Prediction
Models

Pumping Condition Generating Condition

RMSE MAE R2 RMSE MAE R2

ANN 0.0173 0.0149 −0.9761 0.0271 0.0232 −1.7304
SVR 0.0147 0.0125 −0.4360 0.0249 0.0208 −1.3031

LSTM 0.0129 0.0095 −0.1060 0.0190 0.0146 −0.3337
GRU 0.0118 0.0096 0.0677 0.0178 0.0136 −0.1780

EMD-ANN 0.0124 0.0106 −0.0187 0.0206 0.0177 −0.5713
EMD-LSTM 0.0076 0.0061 0.6160 0.0099 0.0078 0.6305
EMD-GRU 0.0062 0.0050 0.7457 0.0085 0.0068 0.7328
VMD-ANN 0.0065 0.0056 0.7234 0.0123 0.0100 0.4435
VMD-LSTM 0.0053 0.0045 0.8131 0.0066 0.0053 0.8405
VMD-GRU 0.0035 0.0029 0.9171 0.0044 0.0035 0.9281

(1) Challenges brought by the complex PDI sequence

From Table 4, the R2 values of ANN, SVR, LSTM, and GRU are less than 0.07 under
two operating conditions. This shows that the predicted PDI is poorly correlated with the
actual PDI; thus, the developing trend of PDI is not effectively learned by these prediction
models. The RMSE and MAE of four models are large; additionally, their prediction results
can only fall roughly between the upper and lower envelopes of the actual PDI, as shown
in Figure 15a–d. These show that the prediction models have large deviations. As shown
in Figure 11 and Table 4, the PDI sequence is more complex under generating condition,
and the prediction models perform worse under the generating condition than pumping
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condition. These factors reveal that the performance of prediction models is inversely
proportional to the complexity of the PDI sequence.

Thus, we can conclude that the complexity of the PDI sequence increases the difficulty
of accurate prediction. In this case, even popular prediction models are not effective. The
more complex the PDI sequence, the worse the performance.

(2) Comparison of VMD-based models with other models

VMD-ANN, VMD-LSTM, and VMD-GRU are compared with ANN, LSTM, and GRU,
respectively, to verify the prediction performance improvement due to PDI sequence
simplification by VMD. As listed in Table 4, the VMD-based models show a significant
performance improvement. Compared with GRU, the RMSE and MAE of VMD-GRU are
improved by 237.1% and 231% under the pumping condition and 304.5% and 288.5% under
the generating condition. VMD-LSTM improves RMSE by 143.3% and 187.8% and MAE by
111.1% and 175.4% under the two conditions compared with LSTM. Similar results can be
obtained by comparing VMD-ANN with ANN. These indicate that simple modes are more
conducive to learning PDI sequences and reducing the prediction bias. In addition, the R2

values of VMD-based models are greatly increased compared to the corresponding models.
VMD-GRU reaches the optimal R2, reaching 0.917 under the pumping condition and 0.928
under the generating condition, while the R2 values of most benchmark prediction models
are less than 0. Similar results can be acquired by comparing EMD-based models with
ANN, LSTM, and GRU. These results show that decomposition is helpful to learning the
long-term dependence in a PDI sequence.

As listed in Table 4, the VMD-based models have smaller errors and learn more long-
term dependence in the PDI sequence compared with the EMD-based models. For example,
the RMSE, MAE, and R2 of the VMD-GRU are improved by 85.2%, 83.3%, and 19.9%
compared with those of the EMD-GRU on average for the two operating conditions. This
indicates that the VMD-based prediction models perform better, so the modes obtained by
VMD are more effective.

Therefore, it can be concluded that the simple modes obtained by decomposition are
helpful to learning the trend of PDI sequences and reducing the prediction error. Besides,
the modes generated by VMD are more efficient than those of EMD.

(3) Comparison of GRU-based models with other models

Compared with ANN, SVR, and LSTM, GRU achieves the smallest RMSE and MAE
and the largest R2. Under the two operating conditions, the RMSE of GRU improved
by 49.4% and 62.9% on average and MAE improved by 32.2% and 41.6% on average
compared to ANN and SVR. This indicates that GRU has a smaller prediction bias and
better learning ability compared with these models. The performance of LSTM is much
better than ANN and SVR, yet the RMSE and MAE of LSTM are still larger than GRU
by 7.42% and 2.89%. Besides, LSTM has more parameters and requires more time and
computational resources. Therefore, GRU has the best prediction performance when the
PDI sequence is not decomposed.

Under the two operating conditions, the EMD-GRU achieves the optimal evaluation
metrics and performs best among EMD-based models. Compared with EMD-ANN and
EMD-LSTM, the RMSE is improved by 121.1% and 19.5% on average, and the MAE is
improved by 136.1% and 18.4% on average. Moreover, the R2 of EMD-GRU is also the best
among EMD-based models, reaching 0.7457 and 0.7328 under the pumping condition and
generating condition, respectively. Comparing the VMD-based models, it can be seen that
the RMSE and MAE of VMD-GRU are improved by 137.9% and 143.7% on average over
VMD-ANN and 50.6% and 53.1% over VMD-LSTM under the two operating conditions.
The R2 of VMD-GRU is also the best among VMD-based models. These factors show that
the GRU-based models learn the degradation trend most fully among the corresponding
models when the PDI sequence is decomposed.

VMD-GRU achieves the largest R2 among all prediction models, which are greater
than 0.9 under the two operation conditions. This shows that the predicted values of VMD-
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GRU have a strong correlation with the actual PDI. Besides, VMD-GRU has the smallest
RMSE and MAE among all prediction models. These factors indicate that VMD-GRU has
the smallest prediction error and learns the information in PDI sequence most adequately.

Based on the above analysis, we can conclude that VMD-GRU learns the long-term
dependence of PDI sequence best, achieves the highest prediction accuracy, and every
component of it is indispensable.

5. Conclusions

To predict the degradation trend of PSU reliably, a novel combined model based on
MIC-LGBM and VMD-GRU is proposed in this paper. Firstly, MIC is utilized to eliminate
the working parameters that have weak correlations with the status of PSU. Secondly, the
LGBM healthy model is built to establish the mapping relationship between the selected
working parameters and status data under good running conditions; then, the PDI is ob-
tained on the basis of the LGBM healthy model and monitoring data. Lastly, the VMD-GRU
prediction model is designed to predict the degradation trend reliably. Experimental valida-
tion and comparative analysis show that the proposed model requires less computational
resources while establishing the most accurate and stable healthy model and predicts the
degradation trend most reliably.

However, all hyperparameters are adjusted by the trial-and-error method in this
paper, which consumes a great deal of time. The intelligent optimization algorithms
perform outstandingly in hyperparameter tuning and will be used in our future work.
Besides, the more reliable the degradation trend prediction, the greater the reference for
decision-making. Building a more effective prediction model will also be a research focus
in the future.
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Abstract: With the rapid development of wind and photovoltaic power generation, hydro-turbine
generator units have to operate in a challenging way, resulting in obvious vibration problems.
Because of the significant impact of vibration on safety and economical operation, it is of great
significance to study the causal relationship between vibration and other variables. The complexity
of the hydro-turbine generator unit makes it difficult to analyze the causality of the mechanism. This
paper studied the correlation based on a data-driven method, then transformed the correlation into
causality based on the mechanism. In terms of correlation, traditional research only judges whether
there is a correlation between all data. When the data with correlation are interfered with by the data
without correlation, the traditional methods cannot accurately identify the correlation. A piecewise
correlation method based on change point detection was proposed to fill this research gap. The
proposed method segmented time series pairs, then analyzed the correlation between subsequences.
The causality between power load and vibration of a hydro-turbine generator unit was further
analyzed. It indicated that when the power load is less than 200 MW, the causality is weak, and when
the power load is greater than 375 MW, the causality is strong. The results show that the causality
between vibration and power load is not fixed but piecewise. Furthermore, the piecewise correlation
method compensated for the limitation of high variance of the maximum information coefficient.

Keywords: high proportional renewable power system; active power; change point detection; maximum
information coefficient; cosine similarity; anomaly detection

1. Introduction

Under the guidance of carbon peak and carbon neutralization, many renewable energy
sources such as wind power and photovoltaic have grown rapidly in recent years [1,2].
As renewable energy is easily affected by the natural environment, power load often
fluctuates [3]. This requires the power grid to have reliable peak and frequency regulation
capabilities [4]. The hydro-turbine generator units (HTGUs) are essential equipment for
peak and frequency regulation [5,6]. Moreover, hydropower accounts for a large proportion
in Southwest China [7,8].

In this context, HTGUs have to operate in a challenging way, which is in contradiction
with the goal of safe and stable operation. Under the challenging operation mode, the
vibration of HTGUs is a problem worthy of study. Approximately 90% of the failures are
reflected in vibration [9,10]. Vibration may cause an unstable rotation speed of the HTGUs
and unbalanced flow channel pressure, which eventually causes the unit to fail to operate
safely and stably [11]. In addition, vibration also affects the efficiency of HTGUs [12].
Therefore, there is an urgent need to study vibration.
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In general, HTGUs can be divided into three subsystems: hydraulic, mechanical,
and electrical subsystem. The three subsystems are coupled together, forming a com-
plex nonlinear system [13,14]. The vibration of this kind of complex system has induced
scholars to carry out a lot of research, most of which studies vibration from the view of
dynamic models.

Xu et al. proposed a finite element dynamic model to simulate vibration [15]. Zeng et al.
established a generalized Hamiltonian system including the lateral vibration equation of the
shaft system and the generator equation [16]. Li et al. constructed the stator pack structural
model and the electrical model of the generator and used the finite element method for
electrical simulation. The source of abnormal vibration can be found by comparing the
generated vibration data with real data. [17]. Li et al. constructed a nonlinear dynamic
model considering the gyroscopic effect [18]. Zhao et al. proposed a condition indicator
called artificial damage index based on dynamic analysis, which can be used to detect the
vibration of Pelton turbines [1]. Xu et al. used nonlinear modal methods to analyze the
interaction between subsystems [13]. Sun et al. proposed a method to study the overall
nonlinear dynamics of the generator-shaft-foundation coupling system and studied the
influence of the foundation system and related parameters on vibration [19]. Shi et al.
proposed a mathematical model of HTGU unbalanced rotor bending-torsional coupling
vibration considering the arcuate whirl of the shafting [20].

The above studies explained the mechanism of vibration from the view of dynamic
models. However, building a comprehensive model is complex and difficult [11]; for
example, draft tube pressure pulsation is difficult to model [21]. The data-driven approach
is a new direction. Bi et al. used data-driven methods to analyze the correlation between
vibration and other variables, and used highly correlated variables and historical vibration
data to predict vibration [22]. However, correlation does not imply causation. In addition,
the operation and maintenance personnel of the power plant are more concerned about
the main factors causing the vibration and the time series causality between the vibration
and other variables. Recently, studies on causality have been very fruitful. So, studying the
cause of vibration from the perspective of causality can ascertain the cause of vibration and
lay the foundation for anomaly detection.

Many studies on time series causality have been conducted. Granger introduced
time flow into the study of causality and proposed a method to evaluate causality in a
two-variable time series [23]. On this basis, a number of Granger-like causality detection
methods have been developed [24–27]. Schreiber first introduced transfer entropy in
information theory into the study of causality [28]. On this basis, a number of causality
detection methods based on information theory have been developed [29,30]. Sugihara et al.
proposed a convergent cross map suitable for detecting nonlinear causality [31]. However,
none of the above methods were designed for vibration research. Granger causality studied
the causality in the economic field, and convergence cross-mapping studied the causality
between the prey and the predator.

In general, the more data, the better, but this is not necessarily the case in actual
situations. The state of HTGUs is changeable. Here, three reasons behind the change
are analyzed. First, an installation error occurs when installing the shaft [32]. Second,
when the power load changes, the deformation of the shaft [33] also changes. Third, with
the accumulation of operation time, the parameters of HTGUs may change [34,35]. The
above reasons lead to the fact that the causality between vibration and other variables is
not fixed but presents piecewise characteristics. A piecewise causality analysis method is
proposed to study this complex causality. It should be noted that this paper only studies
the causal relationship between vibration and a single variable, but does not study the
causal relationship between vibration and multiple variables.

This paper has three main innovations compared with previous studies:

1. A kind of piecewise causality was proposed. According to the mechanism of HTGU,
piecewise correlation was used to replace piecewise causality.
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2. A piecewise correlation analysis method based on change point detection and cor-
relation analysis was proposed. The interference of data without correlation was
effectively avoided.

3. It was found that MIC has the problem of high variance. This paper used cosine
similarity instead of MIC to avoid high variance.

2. Methods

This paper studies causality piecewise by utilizing piecewise correlation. The dif-
ference between the correlation and causality of the two variables is that the latter has
directional information, which reveals whether the variable is cause or consequence. The
piecewise causality can be obtained based on piecewise correlation and directional infor-
mation. Section 2.1 gets the directional information from the mechanism, and Section 2.2
investigates the piecewise correlation quantitatively.

2.1. Mechanism Analysis

From the perspective of unbalanced forces, three kinds of unbalanced forces: unbal-
anced hydraulic force, unbalanced electrical force, and unbalanced mechanical force, act
together to cause the vibration of the HTGU [36]. The unbalanced hydraulic force refers
to the disturbing force generated by the water flow to the flow parts of the turbine. The
hydraulic unbalance is mainly caused by cavitation occurring on the draft tube and runner.
Cavitation is closely related to power load [12,37,38]. In other words, the power load affects
the hydraulic imbalance.

The unbalanced mechanical force refers to the inertia and friction of the mechanical
part. The unbalanced mechanical force is mainly caused by the misalignment of the rotor
shaft system and insufficient shaft system rigidity. After the installation of the HTGU
is completed, the degree of shafting misalignment can be considered unchanged when
the HTGU is at a standstill. However, when the HTGU is rotating, the shaft system
will be deformed [33]. Moreover, as the power load becomes larger, the shafting force
becomes larger, resulting in greater bearing deformation and further aggravation of shaft
misalignment, leading to greater unbalanced mechanical force [39].

The unbalanced electrical force refers to the radial unbalanced magnetic force caused
by the uneven air gap of the generator. The uneven air gap is mainly caused by the
misalignment of the shafting, and the misalignment of the shafting is closely related to the
power load [39]. In addition, as the excitation current increases, the unbalanced electrical
force becomes larger. The excitation current mainly depends on the change of power load
and reactive power [40].

From the analysis of the above three types of unbalanced forces, the power load affects
the three kinds of unbalanced force simultaneously, and finally affects the vibration of the
HTGU. The power load has made the main contribution to the unbalanced force, so the
paper studies the influence of the power load on the vibration.

2.2. Piecewise Causality Based on Change Point Detection

This paper proposes a combined algorithm (CPDC) based on change point detec-
tion [41] and correlation analysis. The change point detection acts as a segmenter, and
the correlation analysis acts as a comparator. CPDC is used to explore the piecewise
causality between power load and vibration. The exploration process can be divided
into four steps: change point detection, change point matching, correlation analysis, and
causality detection.

To clearly illustrate the proposed CPDC method, change point detection is briefly
introduced first. Change point detection assumes piecewise stationary to segment the
time series. A series of change points divide the time series into a subseries, in which the
data in each subseries have similar statistical characteristics. In this paper, the number of
change points in time series is uncertain. The change point detection used in this paper is
an optimization problem with constraints. Linear penalty function and kernel-based loss
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function are used to construct the objective function to deal with constrained optimization
problems. Fortunately, this objective function can be optimized by the PELT algorithm,
which has linear complexity [41].

1. Change point detection. Change points can be obtained by change point detection.
The change point detection method based on the Gaussian kernel is selected for the
unknown number of change points in the time series of interest and the unclear
probability distribution. Taking the active power time series as an example, the
number of active power changes is uncertain and random [14,42]. The specific change
point detection algorithm can be found in Ref. [41].

2. Change point matching. When the difference between the two change points from
the two-variable time series does not exceed the threshold, the two change points are
said to match each other. Change points that cannot match each other often appear in
actual situations. The augmented change point is proposed to divide the two-variable
time series into subsequences aligned. When the change points can match each other,
the larger change point is taken as the augmented change point; when the change
points cannot match, the two change points are both used as the augmented change
points. All augmented change points are arranged in ascending order to form an
augmented change point sequence. As shown in Figure 1, the first change points of
two lines P1 and P2 are relatively close and can match each other. Therefore, P2 can
replace P1 and P2 as the augmented change point. The second change points of two
lines P3 and P4 are far apart and cannot match each other. Therefore, both P3 and P4
are kept as augmented change points. The augmented change point sequence formed
by the change points in Figure 1 is {P2, P3, P4}.

3. Correlation analysis. The augmented change point sequence obtained above can ex-
tract subsequences from the time series. According to a time range, two subsequences
are extracted from the time series x and y. The time range of the subsequence xi and
yi corresponding to the augmented change point Pi is Pi−1 to Pi+1. Then, xi and yi are
normalized by MinMaxScaler, respectively. Finally, cosine similarity si between xi and
yi is calculated by formulation:

si =
xi · yi

‖xi‖‖yi‖
forming the cosine similarity sequence s.

4. Causality detection. It is considered that the causality between the subsequences is
weak when the cosine similarity is less than the set threshold. On the contrary, it is
believed that the causality is strong.

Although only CPCD mentioned in Section 2.2 is used in calculating piecewise causal-
ity, the mechanism analysis in Section 2.1 is the basis of CPCD, which builds a bridge
between correlation and causality. This will be explained in detail in Section 4.2. In general,
a data-driven approach based on domain knowledge is proposed, which is different from
the model-based approach.

The proposed method obtains directional information from domain knowledge and
piecewise correlations from the data, and fuses the two to obtain piecewise causality. This
fusion is an effective use of domain knowledge and data. Significantly, the proposed
piecewise correlations effectively solve the problems of traditional correlations. Figure 2 is
a simple example that cannot be analyzed by the traditional correlation method. There is
no correlation between the two curves in the left half, but there is a correlation between
the two curves in the right half. The traditional method arbitrarily considers that there is
no correlation between these two curves or that there is a correlation between these two
curves. This problem can be handled well using the piecewise correlation method.
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Figure 1. Schematic diagram of augmented change point.

Figure 2. Schematic diagram of augmented change point.

3. Results

The measured data came from an HTGU, consisting of a Francis turbine and a vertical-
shaft semi-umbrella generator, with a rated speed of 125 r/min and a rated power of
600 MW.

We used active power (P) and the peak-to-peak value of vibration in the X direction
of the upper guide bearing (Vugx) to quantify power load and vibration, respectively, and
then studied the piecewise causality between power load and vibration based on these two
variables. The following explains why these two variables were used for research.

For an HTGU, under a specific water head, both the turbine’s flow rate and the
generator’s P can be used to measure the power load. However, since the relative error of
P is less than that of the flow rate, and the water head is often time changing, P is selected
to measure the power load.

There are two main types of vibration: radial vibration and axial vibration. This paper
focuses on radial vibration, including upper guide swing, lower guide swing, and water
guide swing. Figure 3 is used to explain why the upper guide was chosen for the study. It
shows that the peak-to-peak value of the upper guide is almost twice as large as that of the
lower guide and water guide. In addition, the sensors for measuring the three X-direction
vibrations are with the same measurement accuracy. Vugx was chosen to measure the
vibration, considering that the relative error of Vugx is the smallest.
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Figure 3. The peak-to-peak value of the swing of the three guide bearings.

We collected P and Vugx time series data with a time length of 1400 and a sampling
interval of 1 min. The collected data are shown in Figure 4a,b, which shows that the
relationship between Vugx and P is complex. The following content analyzes this complex
relationship in detail.

(a) 

(b) 

Figure 4. (a) Line graph of P. (b) Line graph of Vugx. Although there is a spike in the figure, a
single abnormal point has almost no effect on the change point detection and correlation calculation.
Therefore, no special treatment is required for this spike.

In the change point detection step, the kernel change point detection (kernelCPD)
in the Python package ruptures was used to segment the time series [41]. The specific
parameter selection is shown in Table 1.
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Table 1. Key parameters in change point detection.

Item Parameter

kernel function k(x, y) = exp(−γ‖x − y‖2)
kernel parameter γ 0.1

minimum segment length 10
penalty value 3

The change point difference threshold is 5 in the change point matching step. The
correlation threshold is 0.95 in the causal detection step.

The results of segmenting P and Vugx are shown in Figure 5a,b, respectively. They
show that the change points of P are very different from those of Vugx in the first 509 data.

(a) 

(b) 

Figure 5. (a) The result obtained by segmenting P. (Different background colors for different seg-
ments.) (b) The result obtained by segmenting Vugx. (Different background colors are used to
distinguish different segments).

Figure 5a,b present the intermediate results of the piecewise causality analysis. They
show that the number of change points of P is much more than that of Vugx. Firstly, the
fluctuation of P is relatively small, which makes the change points of P easier to find.
Secondly, the change of P does not necessarily cause the change of Vugx.

P and Vugx are segmented according to the same change point sequence by change
point matching. Then, the cosine similarities between the subsequences of P and the Vugx
are calculated, as shown in Figure 6. The larger the correlation coefficient, the stronger the
causality between the subsequence of P and that of Vugx.
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Figure 6. The correlation coefficient between P and Vugx subsequence.

Figure 6 also implements the MIC [43] method to calculate the correlation between the
two sequences for comparison. Judging from the line graph of cosine similarity, the first
24 pieces of data are within correlation threshold 0.95, and most of the later data exceed it.
From the value of MIC, a similar conclusion can hardly be drawn because the fluctuation
of the MIC line graph is greater than the cosine similarity. This will be discussed in detail
in Section 4.2.

Figure 6 shows that the causality between P and Vugx is weak in the time range
corresponding to 1–24 subsequences, and the causality between P and Vugx is strong in
the time range corresponding to 25–83 subsequences. To observe this rule intuitively, the
broken line diagrams of 1–23 subsequences, 25–83 subsequences, and 24 subsequences of P
and Vugx are presented in Figure 7a–c, respectively.

Figure 7a–c visually reveal when the causality is stronger and when it is weaker.
Figure 7a,b show that P corresponding to 1~472 min is smaller, and P corresponding to
509–1400 min is larger. The influence of power load on vibration obtained in Section 2.1
plays a fundamental role here. There is weak causality between P and Vugx when P < 200
MW. There is strong causality between P and Vugx, and it reveals that Vugx is predominantly
affected by P when P > 375 MW. In addition, Figure 7c shows that the causality between P
and Vugx is weak when P changes from a small value to a large value.

For comparison, we calculated the correlation coefficients between P and Vugx in the
three time periods, and the results are shown in Table 2. Observing by row, it is easy to find
that the value gradually increases. This implies that if the segmentation processing is not
used, it is likely to be mistaken for simple causality between P and Vugx. P and Vugx only
have strong causality during 509–1400 min.

Table 2. The correlation coefficients between P and Vugx in the three time periods.

1–472 min 1–1400 min 509–1400 min

cosine 0.867 0.892 0.999
MIC 0.227 0.611 0.886

From the last row of Table 2, it is easy to mistakenly believe that there is no causality
between P and Vugx if segmentation is not carried out. In fact, P and Vugx have piecewise
causality. The proposed method is a useful supplement to the MIC method.

Finally, it shows that the relationship between power load and the vibration is not a
simple causality but a complex piecewise causality.
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(a) 

(b) 

(c) 

Figure 7. (a) P and Vugx corresponding to subsequences 1–23. (b) P and Vugx corresponding to
subsequences 25–83. (c) P and Vugx corresponding to the 24th subsequence.

4. Discussion

4.1. Compare the Difference of MIC and Cosine Similarity Based on Variance

Both MIC [43] and cosine similarity can measure the degree of correlation between the
two sets of data, but from Figure 5, the value of MIC fluctuates far more than the cosine simi-
larity. This kind of fluctuation brings great difficulties to the analysis of piecewise causality.

We used simulated data to evaluate the variance of MIC and cosine similarity. Take
three random variables x, y, and z, where y = 2x + 0.5ε, z = 2x + ε, and x and ε both obey
the standard normal distribution. Randomly generate x, y, and z samples {x1, x2, . . . xn},
{y1, y2, . . . yn}, and {z1, z2, . . . zn}, where n is the sample size. Here, we set n = 100. Nor-
malize the three sets of samples by MaxMinScaler, respectively. Calculate the MIC and
cosine similarity. Repeat the test 100 times, and the results are shown in Figure 8.
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(a) 

(b) 

Figure 8. (a) Cosine similarity calculated by simulation test. (b) MIC calculated by simulation test.

Figure 8a,b can intuitively reveal why cosine similarity is better than MIC. In Figure 8a,
the blue line represents the cosine similarity between X and Y obtained in 100 trials, and
the green line represents the cosine similarity between X and Z obtained in 100 trials. In
Figure 8b, the blue line represents the MIC between X and Y obtained in 100 trials, and
the green line represents the MIC between X and Z obtained in 100 trials. The dotted line
in Figure 8a can distinguish the blue line and the green line well, but the dotted line in
Figure 8b cannot. This implies that the cosine similarity is more capable of distinguishing
the strength of the correlation relationship than the MIC. The blue and green lines in
Figure 8b fluctuate greatly and are intertwined together, which makes it impossible to
distinguish well. The fluctuation of the line can be measured by variance. Next, from
the perspective of variance, further, we analyze the difference between MIC and cosine
similarity.

The following only considers the correlation coefficient between X and Z. The variance
of the MIC and cosine similarity calculation results are calculated under different sample
sizes to further study fluctuation. Table 3 shows that the larger the sample size n, the smaller
the variance. When the sample size n is the same, the variance of the cosine similarity
is smaller than that of MIC. It shows that cosine similarity can more stably measure the
correlation than MIC. For this paper, where the amount of data is small, cosine similarity is
more appropriate.

Table 3. The variance of cosine similarity and MIC calculated from the samples.

Variance n = 10 n = 100 n = 1000

cosine 7.89 × 10−3 3.77 × 10−4 4.565 × 10−5

MIC 4.94 × 10−2 4.83 × 10−3 6.48 × 10−4
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4.2. Correlation and Causality

Cosine similarity is an uncentralized Pearson correlation coefficient [44]. Correlation is
one of the main methods to quantify causality but loses the causal relationship’s directional
information [45]. For example, there is a strong correlation between M and N. Still, from
the strong correlation alone, it cannot be concluded that M leads to N or N leads to
M. Section 2.1 clarifies how power load affects vibration by qualitatively studying the
causality between power load and vibration. With the directional information provided by
a qualitative study, correlations can reveal causality to a certain extent.

4.3. Piecewise Causality

Figures 5–7 show that the causality between P and Vugx is strong when P is large.
In addition, the causality between P and Vugx is weak when P is small. This seems to be
somewhat contradictory to the analysis in Section 2.1, but this is normal. This is because
when P is small, the HTGU is in an unstable zone. This leads to large fluctuations of Vugx,
and Vugx does not change with P.

The above complex causality is piecewise causality. This segmented operation is
necessary and meaningful in the changeable industrial environment.

4.4. Advantages and Limitations

Bi et al. [22] believe that there is a strong correlation between P and Vugx. However,
the results show that the relationship between P and Vugx is not stable but has a piecewise
causality. In other words, the causality is strong in one section and weak in another section.
The stable relationship between P and Vugx is the basis for predicting Vugx based on data
such as P. This instability will affect some data processing tasks and deserves attention.

CPDC is suitable for analyzing piecewise causality. In addition, CPDC focuses on
the data around the change point instead of the entire data, which reduces the amount of
data that needs to be processed. The limitation of CPDC is that the change point detection
method assumes that the data is piecewise stationary, and further research is needed for
situations that do not meet this assumption.

5. Conclusions

Based on the domain knowledge and data-driven method of HTGUs, this paper
proposed CPDC to study the piecewise causal relationship between vibration and power
load. In this paper, the active power and vibration peak value of the upper guide bearing
of HTGU were selected as the typical observation of power load and vibration, respectively.
The piecewise correlation between vibration and power load was quantitatively studied by
change point detection and correlation analysis methods. Further, based on the domain
knowledge of HTGUs, the piecewise causal relationship between vibration and power load
was clarified. The traditional correlation method cannot handle the case of segmentation of
correlation, and the proposed piecewise correlation method solved this problem well. Three
main conclusions are drawn. Firstly, from the qualitative analysis of mechanical, electrical,
and hydraulic aspects, there is a causal relationship between power load and vibration.
Among them, the power load is the cause, and the vibration is the result. Secondly, for a
specific HTGU, the causal relationship between power load and the vibration is piecewise.
Specifically, when the power load is small, the causal relationship between power load and
the vibration is weak. When the power load is large, the causal relationship between the
two is vital. Thirdly, from the perspective of statistical calculation, the variance of cosine
similarity estimated by samples is less than that of MIC. The CPDC method proposed can
find the piecewise correlation without being disturbed by the part without correlation.
CPDC has value in studying the complex causality between vibration and other variables,
and may also be applied to similar complex correlation studies.
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Nomenclature

CPDC change point detection and correlation analysis
HTGU hydro-turbine generator units
kernelCPD kernel change point detection
MIC maximum information coefficient
P active power
Vlgx peak-to-peak value of vibration in X direction of the lower guide bearing
Vugx peak-to-peak value of vibration in X direction of the upper guide bearing
Vwgx peak-to-peak value of vibration in X direction of the water guide bearing
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Abstract: Hydraulic power-take-off (PTO) systems which utilize high-pressure oil circuits to transmit
energy are widely applied in wave energy generation. The properties of hydraulic oil are significantly
influenced by environmental conditions, and its dynamic viscosity is sensitive to temperature,
especially in relatively low-temperature cases. This paper studies the characteristics of the hydraulic
PTO when started in different temperature conditions via numerical analysis and experimental
verification. An improved numerical model of the hydraulic PTO system is proposed, in which the
effects of temperature on the hydraulic oil viscosity and hydraulic motor efficiency are quantitatively
investigated, and consequently, the thermal-hydraulic characteristics can be sufficiently considered.
The performances of the hydraulic PTO in start-up processes with different initial temperatures
and in long term operation are assessed. The results show that the presented model can reasonably
describe the hydraulic PTO characteristics. The efficiency of hydraulic PTO degrades when it starts at
low temperatures. The efficiency increases in relatively high temperature, while larger fluctuations of
the flow rate and output power are observed. This study can provide guidance for enhancing the
efficiency and consistency of hydraulic PTO operating in actual sea conditions.

Keywords: thermal-hydraulic characteristics; hydraulic oil viscosity; hydraulic PTO; wave energy
converter

1. Introduction

As a widespread renewable energy source, ocean wave energy has gradually received
extensive attention from scientists since the oil crisis broke out in the 1870s [1,2]. Waves
have irregular motion and their power is largely discontinuous, which makes it difficult
to obtain wave energy. An important feature of ocean waves is that they have the highest
energy density among all renewable energy sources [2]. If wave energy can be effectively
used, it will make a great contribution to alleviating the world energy crisis [3].

Some European countries were the first to carry out the research of wave energy
conversion technology. At present, a large number of wave energy conversion devices
have been designed and manufactured, some of which have been tested in actual sea
conditions [2]. The wave energy converters are usually composed of a wave energy capture
(WEC) system and a power take-off (PTO) system. There are many ways to classify wave
energy converters currently, according to the different working principles of wave energy
captures. They can be mainly divided into three types, the oscillating water column,
overtopping, and oscillating body [4]. The role of the WEC system is to absorb wave energy,
while the role of the PTO system is to convert the energy captured by the WEC system
into relatively consistent mechanical energy and then outputs electrical energy through
the generator. Therefore, the PTO system is the core part of the wave energy converter.
There is no doubt that it has become the research focus of many universities and energy
institutions [5]. In general, the typical PTO system can be equipped with four types of drive
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mechanisms including air turbines, low-head hydraulic turbines, linear generators, and
hydraulic oil circuits [4–6]. Air turbines are mainly adopted in oscillating water column
WEC due their special working principles [4]. Their structures are reliable, however, the
compressibility of air and the inevitable deviation of the actual rotation speed to the optimal
value may easily degrade their efficiencies [7,8]. With high efficiency and reliability, low-
head turbines are mainly applied to overtopping devices. Nevertheless, their large-scale
applications are still impeded by the inconvenient constructions of the overtopping WECs.
The linear generators are also broadly utilized in WECs, which primarily benefits from their
low mechanical complexity. However, the linear generator structures are vulnerable to
damages from vibrations and impacts, especially in real irregular waves and extreme waves.
In addition, the power outputs from the linear generators fluctuated, and consequently,
the quality of the converted electricity cannot satisfy the criteria. In contrast, hydraulic
PTO systems are frequently employed in oscillating body WECs, and they use hydraulic
oil circuits to transmit energy, which can cope with low frequency-large torque inputs
of waves and overload protection. Meanwhile, their advantages of stabilizing power
output are attractive for engineering applications. However, the performances, e.g., the
pressure consistency, the flow rate consistency, and the efficiency of the hydraulic PTO, are
sensitive to operating conditions, and the aforementioned performances may significantly
deteriorate when the system states deviate from the optimal states. Consequently, we focus
on hydraulic PTO in this paper and investigate the influences of several key elements to
their performances [9,10].

In the past few decades, universities and scientific research institutions have carried
out a large amount of research work on hydraulic PTO systems, including structural design
and system optimization [9]. Stephen Salter proposed a kind of wave energy generation
device named the nodding duck [10]. A buoyant pendulum wave energy generation system
was invented by Lancaster University in the United Kingdom [11]. Zhejiang University
designed a kind of pendulum wave energy generation device [12]. The Guangzhou Energy
Research Institute of the Chinese Academy of Sciences created the duck-type and eagle-type
wave energy conversion devices [13]. The University of Edinburgh in the United Kingdom
put forward a wave energy power generation device based on a new hydraulic transmission
system [14,15]. Gaspar presented some incremental modifications to the PTO architecture,
such as using more cylinder ports, installing more parallel cylinders, and assembling
an oil bypass circuit [16]. The consistency and efficiency of the wave energy conversion
device are two key factors that determine whether the wave energy can be effectively used.
The PTO system in the Pelamis wave energy converter realizes the torque control of the
hydraulic cylinder by improving the one-way valve into a control valve block, thereby
achieving the purpose of high-efficiency energy capture [17,18]. Falcao introduced and
implemented a latching control method to increase the captured mechanical energy by the
hydraulic PTO [19]. Liu et al. improved the power capture ability of a two-raft-type WEC
by optimizing several parameters of the hydraulic PTO, including the area of the piston,
the displacement of the hydraulic motor, and the effective damping of the generator [20].
Cargo et al. realized the maximization of the generated power in different wave period
situations by optimizing the size of the hydraulic motor [21]. Chen and Jiang verified that
the parameter settings of the key components play an important role in the consistent
operation of the hydraulic PTO system through simulation and experiments [9]. Yue
proposed integrated characteristic curves in constant voltage conditions, which are used to
optimize system design and improve the operating efficiency of the PTO system [22]. Geng
proposed a novel hydraulic PTO power module consisting of a pressure compensator and
throttle valve by adjusting the parameters to improve the consistency of hydraulic motor
speed and output power [23]. The focus of the research on the consistency and efficiency of
the hydraulic PTO system is focused on how to select pivotal components and optimize
parameters and control strategies, which ignored the influence of the characteristics of the
working medium on the consistency of the output power and efficiency when the wave
energy converters are running.
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From the perspective of hydraulic oil characteristics, this paper studies the influence
of temperature on the performance of the hydraulic PTO system during operation. The
viscosity of hydraulic oil is an important property to measure the performance of hydraulic
oil. If the viscosity of the hydraulic oil is too high, the internal friction force of the hydraulic
oil will be relatively large when it flows, which will generate more heat energy during the
energy transmission process and increase the total energy consumption. If the viscosity of
hydraulic oil is too low, the leakage will increase, leading to a decrease in system pressure
and affecting the consistency of the system. The viscosity of hydraulic oil is significantly
affected by temperature changes [24]. Therefore, it is of great significance to study the
effect of viscosity on the consistent operation and efficient work of the PTO system when it
starts at different temperatures. According to the results of simulated analysis, the viscosity
of hydraulic oil varies significantly within the range of −20 ◦C to 20 ◦C [24], considering
that the seawater temperature in the sea area where electricity can be generated is above
0 ◦C, this paper selects the ambient temperature within the range of 0~20 ◦C to research
the impact on the performance of the hydraulic PTO system.

The rest of this paper is organized as follows. Section 2 introduces the working
principle of the hydraulic PTO system for a pendulum wave energy converter and the
digital model of a hydraulic motor and simulation of hydraulic PTO system. Section 3
presents the components of the prototype test platform. The experimental results and
analysis are arranged in Section 4. Finally, the corresponding conclusions are showed
in Section 5.

2. Modeling and Simulation of Thermal Characteristics of Hydraulic PTO System

The hydraulic PTO system of a wave energy converter is mainly composed of a gear
and rack mechanism, a single-acting hydraulic cylinder with single rod, four check valves,
a relief valve, a high-pressure accumulator, a flow control valve, a permanent magnet
synchronous generator, a hydraulic motor, resistor loads, and an oil tank [20]. The working
principle is shown in Figure 1. The floating pendulum converts wave energy into its
own mechanical energy and moves around the fulcrum [4]. The mechanical energy of the
floating pendulum is transmitted to the single-acting horizontal bar hydraulic system by
using the meshing gear and rack mechanism. Then the piston rod drives the piston to
reciprocate to perform work on the hydraulic oil, which completes the conversion from
mechanical energy to hydraulic energy. The four check valves integrate the two-way flow
of hydraulic oil at the rod-less cavity oil port of the hydraulic cylinders into a one-way flow
in the main oil circuit through rectification. The variable displacement hydraulic motor
converts the hydraulic energy into rotating mechanical energy, which is then converted
into electrical energy output by permanent magnet synchronous generator [3,25].

The main functions of the accumulator are to store energy, stabilize pressure, eliminate
periodic fluctuations of the system pressure and flow generated when the cylinder is
reversing, and enhance the consistency of the system. The overflow valve can avoid the
high pressure in the pipeline, and the function of the flow control valve is to control the flow
rate and participate in the control of the power; the oil tank is used to compensate for the
leakage and short-term negative pressure that may occur in the system and to supplement
the oil pressure in time [9,22,23,26].

2.1. The Temperature-Hydraulic Oil Viscosity-Efficiency Model of Hydraulic Motors

Hydraulic oil is most commonly used in hydraulic transmission, and most of the pub-
lished literatures about hydraulic oil are selected in combination with specific engineering
machinery. There are few theoretical studies on the external characteristics of hydraulic
oil. The main physical properties of hydraulic oil include density, viscosity, elastic modu-
lus, surface tension, etc. From the perspective of fluid movement and transmission force,
viscosity is the main factor to prevent the flow of hydraulic oil. Therefore, it is of great
significance to study the influence of fluid viscosity on the performance of the PTO system.
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Figure 1. Schematic diagram of a hydraulic PTO system with a pendulum (1) wave energy capture
device (2) rack and pinion mechanism (3) single-acting hydraulic cylinder with single rod (4) check
valve (5) relief valve (6) high pressure accumulator (7) flow control valve (8) permanent magnet
synchronous generator (9) hydraulic motor (10) resistor load (11) oil tank.

The law of internal friction proposed by Newton believes that the relative movement
of two adjacent layers inside the flowing fluid produces internal friction, and its magnitude
is proportional to the viscosity of the fluid, the velocity gradient of the relative movement,
and the contact area. The mathematical expression is:

F = μA
du
dy

(1)

The corresponding shear stress can be expressed as:

τ =
F
A

= μ
du
dy

(2)

where μ refers to the dynamic viscosity of hydraulic oil, Pa·s, τ is the internal friction shear
stress of hydraulic oil, m2/s, A means the contact area of hydraulic oil between two layers,
m2, and du/dy presents the velocity gradient of hydraulic oil, s−1.

The greater the dynamic viscosity of the fluid is, the stronger the stickiness generated
when it moves. The normal pressure has little effect on the viscosity of the fluid and can be
almost ignored, while the temperature has a great influence on the viscosity of the fluid.
The reason is that the viscosity of the fluid mainly comes from the attraction of molecules.
The hydraulic oil belongs to the Newtonian fluid, so it conforms to the Newton internal
friction law. In a constant temperature condition, the viscosity coefficient of this kind of
fluid does not change, which is an oblique straight line through the origin of the coordinate
in the τ ∼ du/dy coordinate system. When the temperature increases, the molecular
distance increases, the attractive force decreases, and the shear stress generated by the
same shear deformation rate decreases; therefore, the dynamic viscosity decreases. The
relationship between hydraulic oil viscosity and temperature can be expressed as:

μ = μT0
e−λ(T−T0) (3)

where μT0
is the dynamic viscosity of hydraulic oil when T is equal to T0, and Pa·s, λ refers

to the hydraulic oil viscosity coefficient.
According to the literature, the relationship between hydraulic motor torque loss and

hydraulic oil viscosity [27] is:

ML = Kμμn + KPΔp + KρPSPn3 +
KρVNΔp

√
Δp

n
+ KP2Δp2 + MLo (4)
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where Kμ, KP, KρPSP, KρVN, KP2, and MLo are moment-loss-related performance charac-
teristic coefficients, n represents speed of the hydraulic motor, r/min, Δp represents the
pressure difference between inlet and outlet of hydraulic motor, Pa, ρ stands for hydraulic
fluid density, and kg/m3, ML, and MLo delegate the torque loss and fixed torque loss of
hydraulic motor, N·m.

The relationship between hydraulic motor leakage loss and viscosity [27] is:

QL = Cμ
Δp
μ

+ Cνn + CVN

√
Δp
ρ

+ CPP
ρn3

Δp
+ CC

nΔp
β

+ QLo (5)

where Cμ, Cν, CVN, CPP, CC, and QLo are leakage-related performance characteristic co-
efficients, n represents the speed of hydraulic motor, r/min, Δp represents the pressure
difference between inlet and outlet of hydraulic motor, Pa, ρ stands for hydraulic fluid
density, and kg/m3, QL, and QLo delegate respectively leakage loss and fixed leakage loss
of hydraulic motor, L/min.

The mechanical efficiency of a hydraulic motor can be expressed as:

ηm =
M − ML

M
= 1 − ML

M
(6)

where ηm stands for the hydro-mechanical efficiency and M is the theoretical output torque
of a hydraulic motor, N·m.

The volumetric efficiency of a hydraulic motor can be expressed as:

ηv =
Q

Q + QL
=

1

1 + QL
Q

(7)

where ηv stands for the volumetric efficiency and Q represents the theoretical flow rate of a
hydraulic motor, L/min.

The mechanical power loss of the hydraulic motor can be expressed as:

∅1 = 2πnML (8)

The volumetric power loss of the hydraulic motor can be expressed as:

∅2 = ΔpQL (9)

When the temperature rises, the viscosity of the hydraulic oil decreases according
to Formulas (3), (4), (6) and (8). Consequently, the torque loss of the hydraulic motor
will decrease, which will increase the mechanical efficiency of the hydraulic motor. The
mechanical power loss of the hydraulic motor is correspondingly reduced. It can be seen
from Formulas (3), (5), (7) and (9) when the temperature rises, the viscosity of the hydraulic
oil decreases, which will cause the leakage loss of the hydraulic motor to increase, thus
the volumetric efficiency of the hydraulic motor decreases, and volumetric power loss of
the hydraulic motor increases accordingly. The influence of viscosity on the efficiency of
hydraulic motors mainly includes the influence of its mechanical efficiency and volumetric
efficiency. It is very necessary to control the viscosity of hydraulic oil within a suitable
range for the efficient operation of the PTO system. Therefore, this paper focuses on the
influence of the viscosity of the hydraulic oil with the rise of temperature on mechanical
loss, volumetric loss of the hydraulic motor, and system efficiency.

2.2. Simulation Model of Hydraulic PTO System

The hydraulic PTO system simulation model was established in AMESim, a software
used for the modeling, simulation, and dynamic analysis of hydraulic systems, it is shown
in Figure 2. The parameters for the simulation model are based on the design of the
experiment platform and are shown in Table A1 of Appendix A.
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Figure 2. Schematic diagram of the experimental platform. (1) A pump station, (2) three-position and
four-way reversing valve, (3) double-acting hydraulic cylinder with double rods, (4) single-acting hy-
draulic cylinder with single rod, (5) relief valve, (6) check valve, (7) high pressure accumulator,
(8) flow control value, (9) hydraulic motor, (10) permanent magnet synchronous generator,
(11) resistor loads, (12) oil tank, (13) a linear variable displacement transducer, (14) bidirectional force
transducers, (15) pressure gauge, (16) flow rate sensor, (17) Torque tachometer.

Because the range of wave energy period is 6–8 s and the significant wave height
distributes between 1.5 m and 3.5 m [23], we chose the typical sea state where the period
was 8s, and the wave height was 1.5 m to carry out the simulation and experiments.; then
controlling the pressure of the system kept in 7 MPa, and another sea state whose period
was 6s and wave height was 1.5 m. The designed output powers of the hydraulic system
were respectively about 1.2 KW and 1.5 KW.

3. Prototype Test Platform of Hydraulic Power Take-Off System

The verification test was completed by building a hydraulic PTO system prototype
platform, shown in Figure 3, which consists of a drive system, a hydraulic PTO system, a
data acquisition and monitoring system, and loads. The drive system, which simulates
the motion of the wave energy capture device, realizes the reciprocating motion of the
piston in the double-hydraulic-chamber double-rod cylinder through a hydraulic pump
station and controls the direction of the piston by adjusting the three-position and four-way
reversing valve, which guides the high-pressure oil into different chambers, and finally
achieves the input of wave energy at different periods. The hydraulic PTO system utilizes
the reciprocating movement of two single-acting hydraulic cylinders with single rods that
are solidly connected to the double-acting hydraulic cylinder with double rods to discharge
high-pressure oil from the rod-less cavity of the cylinders. The check valves integrate
the two-way flow of hydraulic oil into a one-way flow, and then hydraulic oil enters the
hydraulic motor through the flow control valve to drive the generator, which is rigidly
connected with the motor to rotate. This process realizes the conversion of mechanical
energy to electrical energy. The monitoring and control system was developed based
on the LabVIEW software. A human-computer interaction interface was established in
LabVIEW, and the serial communication technology of the computer and the programmable
controller was applied to realize the condition monitoring of the PTO system and the
real-time collection of data such as tubing pressure, system flow, hydraulic oil viscosity,
and hydraulic motor speed and system while realizing the storage of data by using the
database system.
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Figure 3. The composition of the experimental platform.

The research procedure was arranged as follows. Firstly, a prescribed piston motion
with a period of 8 s and an amplitude of 0.075 m was used to validate the numerical model
in this paper, and a comparison in system pressure was made, flow at variable temperatures
and output power at 18 ◦C. Then the wave conditions with a period of 6 s and an amplitude
of 0.075 m was used numerically to study the consistency of the PTO system. Finally, a
long-running test was carried out at the temperature of 6 ◦C. Its purpose was to study the
effect of temperature rise on the consistency and efficiency of the hydraulic PTO system.

The main component parameters are determined according to the designed working
conditions, as shown in Table 1.

Table 1. Parameters of main components.

Components Parameters Value Unit

Three-position and four-way
reversing valve Maximum pressure 31.5 MPa

Maximum flow-rate 180 L/min
Double-acting double-rod

cylinder Maximum pressure 31.5 MPa

Piston diameter 90 mm
Rod diameter 63 mm

Stroke 200 mm
Single-acting single-rod cylinder Maximum pressure 31.5 MPa

Piston diameter 80 mm
Piston area 0.005 m2
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Table 1. Cont.

Components Parameters Value Unit

Rod diameter 63 mm
Stroke 200 mm

Check valve Maximum pressure 31.5 MPa
High-pressure accumulator Maximum pressure 31.5 MPa

Nominal volume 6.3 L
Pre-charge gas pressure 4.5 MPa

Relief valve Maximum cracking pressure 31.5 MPa
Flow control valve Maximum pressure 31.5 MPa

Adjuconsistent flow-rate range: 0~25 L/min
Hydraulic motor Maximum pressure 35 MPa

Maximum flow-rate 206 L/min
Maximum displacement 54.8 mL/r
Minimum displacement 16.4 mL/r

Low-pressure tank Volume 175 L
Magnetic powder brake Torque range 0~100 Nm

Maximum power 10 kW
Bidirectional force transducer Force range −100~100 kN

Displacement transducer Displacement range 0~225 mm
Flow-rate transducer Flow-rate range 3.3~20 L/min
Pressure transducer Pressure range 0~25 MPa

Torque-speed transducer Torque range 0~100 Nm
Speed range 0~1000 r/min

4. Results and Discussion

This section begins with experiments to validate the hydraulic PTO model proposed
in Section 3. The experiments were conducted in a hydraulic PTO test platform and the
ECD movements were simplified as prescribed piston motions. The PTO system start up
tests were carried out at the ambient temperature of 6 ◦C, 12 ◦C, and 18 ◦C. Temperature
is thought to be almost immutable when the PTO system starts up within a short of time.
Thus, we studied the influence of different start-up temperatures on the characteristics of
the PTO system. The system pressure, flow, and output power are tested in the numerical
model and experimental conditions.

4.1. Simulation and Experiments of Hydraulic PTO System at Different Temperatures

The wave with a period of 8 s and an amplitude of 0.075 m was used to carry out the
simulation and experiments. The pressure changes of the hydraulic PTO system within
one minute of the startup process are shown in Figure 4. The three pictures (a), (b), and
(c) respectively represent the corresponding system flow when the startup temperature
is 6 ◦C, 12 ◦C, and 18 ◦C. It can be seen that the simulation results obtained by using the
model in Section 3 generally agree with those obtained by experiments at different startup
temperatures, ◦C, the system pressure dropped at the beginning. The analysis found that
the accumulator was not working because of the low temperature at the beginning and the
relatively high viscosity of the hydraulic oil. When the ambient temperature was 12 ◦C or
18 ◦C, there was little difference at the beginning. The system pressure in experimental
conditions cannot reach the charging pressure because the compressibility of hydraulic
oil was not considered in this model. However, the system pressure in the experimental
condition was consistent with that in the simulation eventually.
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Figure 4. Comparison and experiment of hydraulic PTO system pressure between simulation at
different temperatures. (a) ambient temperature is 6 ◦C. (b) ambient temperature is 12 ◦C. (c) ambient
temperature is 18 ◦C.

The flow differences of the hydraulic PTO system at different temperatures in the start-
up process are shown in Figure 5. The tested system flow is higher when the temperature
is higher, close to the simulation results. Hence, within a certain temperature range, the
higher the temperature the hydraulic oil is at the startup process, the greater the system
flow rate will be.

Figure 5. Comparison of hydraulic PTO system flow between simulation and experiment at different
temperatures. (a) ambient temperature was 6 ◦C. (b) ambient temperature was 12 ◦C. (c) ambient
temperature was 18 ◦C.

The output power changes of the hydraulic PTO system within one minute of the
startup process are shown in Figure 6. Picture (a) presents the comparison of system output
power at 18 ◦C between the numerical model and the experimental conditions, and they
are generally on the way up, though they varied at the beginning. Picture (b) demonstrates
that although the output power of the PTO system increased in volatility, the average value
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only reached about 550 W when the initial temperature was 6 ◦C, which was much lower
than the set system output power of 1200 W. In addition, the average value reached about
720 W and 1100 W when the initial temperature was 12 ◦C and 18 ◦C separately. Therefore,
within the range of 6 ◦C to 18 ◦C, the higher the initial temperature, the greater the output
power of the system, and it is closer to the designed output power.

Figure 6. System output power at different start-up temperatures. (a) comparison of system output
power at 18 ◦C between the numerical model and experimental conditions. (b) comparison of system
output power at 6 ◦C, 12 ◦C, and 18 ◦C.

4.2. Simulation of Hydraulic PTO System at Different Temperatures

The wave with a period of 6 s and an amplitude of 0.075 m was considered in this
simulation model. The pressure and flow changes of the hydraulic PTO system in the
startup process are shown in Figures 7 and 8. The system pressure had no evident diversity
when the period of the input wave had changed from 8s to 6s. Furthermore, when the
ambient temperature was higher, it was faster to achieve the balance, and the volatility also
increased in the meantime. At the same time, the flow would have a clear distinction if the
temperature increased.

Figure 7. Comparison of the hydraulic PTO system pressure at different temperatures by simulation.
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Figure 8. Comparison of hydraulic PTO system flow at different temperatures by simulation.

4.3. The Effect of Temperature Rise on the Consistency and Efficiency of Hydraulic PTO System

Since the output power of the PTO system at low temperature was much lower than
at slightly higher temperatures, a long-running test was carried out at the temperature
of 6 ◦C, controlling the input force constant and using the sensors and meters to record
the system state data at runtime. The test results are shown in Figures 9 and 10. It can be
seen that when the device was started, the temperature gradually rose, while the hydraulic
motor speed, system flow, and pressure rose rapidly. Then, the temperature continued to
rise, and when the system pressure was consistent, the system flow, speed, and torque of
the hydraulic motor continued to increase. The rise in temperature reduced the viscosity
and the flow resistance of the hydraulic oil, while the torque loss of the hydraulic motor
decreased, which would eventually increase the mechanical efficiency of the system. Then,
6 minutes later, the temperature of the hydraulic oil continued to rise and eventually
reached about 13 ◦C; the pressure fluctuated slightly. The fluctuations in flow rate and
hydraulic motor speed were more obvious. The continuous rise of temperature caused the
viscosity of the hydraulic oil to be too low, leading to an increase in leakage, and finally, the
volumetric efficiency of the hydraulic PTO system decreased.

Figure 9. Changes of temperature, flow, and motor speed in the start-up to steady progress of power
take-off system.
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Figure 10. Changes in hydraulic motor torque and system pressure during long-term operation of
the PTO system.

The changes in the mechanical efficiency and volumetric efficiency of the hydraulic
motor with the operation of the PTO system are shown in Figure 11. The increase in
the temperature of the hydraulic oil caused the mechanical efficiency to rise from about
80 percent to 97 percent, while the volumetric efficiency had a downward trend decreasing
from around 93 percent to 85 percent. The total efficiency of the hydraulic motor shows a
tendency that it increases firstly and then decreases, and the overall efficiency is maintained
at the range of 70 percent to 88 percent.

Figure 11. Mechanical, volumetric, and total efficiency of the hydraulic motor.

With the operation of the experimental device, the temperature of the hydraulic oil
increased, the viscosity of the hydraulic oil decreased, and meanwhile, the hydraulic motor
speed and system flow increased. Therefore, the influence of temperature on the system
characteristics mainly altered the flow by affecting the hydraulic oil viscosity, thus acting on
the hydraulic motor efficiency. This eventually had an impact on the system output power.
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5. Conclusions

This paper focused on and studied the impact of start-up at variable temperatures and
the rise of temperature on the characteristics of the hydraulic PTO system. The mathemati-
cal model of the temperature—hydraulic oil viscosity—hydraulic motor efficiency of the
hydraulic PTO system was added into the simulation model of the hydraulic PTO system.
Experiments were carried out to prove the correction of the simulation model, and different
waves were emulated. The conclusions are as followed:

1. The system flow will increase owing to the rise of system temperature before it
achieves the maximum, while system pressure can always reach a constant value;

2. The output power of the hydraulic PTO system is much lower than the designed one
when it starts at low temperature, and it needs a reasonably long time for the system
to heat up;

3. The results indicate that the thermal hydraulic model is reasonable and has high
accuracy compared with to the real situation. For the cases of different wave excitation,
the pressure of the hydraulic system is maintained at a relatively stable value, which
ensures the consistent operation of the system at different input of energies;

4. The influence of temperature on the system characteristics is mainly altering the flow
by affecting the hydraulic oil viscosity, thus acting on the hydraulic motor efficiency,
eventually impacting the system output power.

In future work, we will study the operating characteristics of PTO in a larger range
of temperatures and wave states and introduce a more accurate model to describe other
components’ performances to improve the efficiency of the hydraulic PTO system in
different sea states.
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Appendix A

Table A1. Parameters of numerical model.

Components Title Unit Value

Single-acting single-rod
hydraulic cylinder

Piston diameter mm 80
Rod diameter mm 63

High-pressure accumulator
Gas pre-charge pressure bar 60

Accumulator volume L 6.3
Polytropic index �/ 1.4

Flow control valve

Set flow L/min 20
Minimum operating pressure

difference bar 2

Flow-rate pressure gradient L/min/bar 0.05
Valve hysteresis bar 0

Hydraulic motor Displacement cc/rev 17.5
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Table A1. Cont.

Components Title Unit Value

Generator

Number of pole pairs �/ 5
Reference temperature degC 18

Stator winding resistance at
reference temperature Ohm 0.05

Corrective coefficient on stator
winding resistance 1/K 0.2

Stator cyclic inductance on
Park’s d axis H 0.0035

Stator cyclic inductance on
Park’s q axis H 0.0018

Permanent magnet flux linkage
at reference temperature Wb 0.4

Load Resistance Ohm 11

Oil
Density kg/m3 850

Bulk modulus bar 17,000
Absolute viscosity cP 51

Design operating
parameters

Pressure MPa 7
Flow-rate L/min 14.7

Amplitude of piston motion m 0.075
Frequency of piston motion Hz 1/8

Rotational speed r/min 600
Output power W 1200

References

1. Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power
Energy 2009, 223, 887–902. [CrossRef]

2. Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini,
S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [CrossRef]

3. Lasa, J.; Antolin, J.C.; Angulo, C.; Estensoro, P.; Santos, M.; Ricci, P. Design, construction and testing of a hydraulic power Take-off
for wave energy converters. Energies 2012, 5, 2060–2082. [CrossRef]

4. Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2009, 14, 899–918. [CrossRef]
5. Hansen, R.H.; Kramer, M.M.; Vidal, E. Discrete displacement hydraulic power take-off system for the wave-star wave energy

converter. Energies 2013, 6, 4001–4044. [CrossRef]
6. Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Albani, A.; Yusop, Z.M. Hydraulic power take-off concepts for wave energy conversion

system: A review. Energies 2019, 12, 4510. [CrossRef]
7. Masuda, Y.; Miyazaki, T. Wave power electrical generation study in Japan. In Proceedings of the BHRA International Symposium

on Wave and Tidal Energy, Canterbury, UK, 27–29 September 1978; pp. 85–92.
8. Whittaker, T.; Beattie, W.; Raghunathan, S.; Thompson, A.; Stewart, T.; Curran, R. The islay wave power project: An engineering

perspective. Proc. Inst. Civ. Eng.-Water Marit. Energy 1997, 124, 189–201. [CrossRef]
9. Qijuan, C.; Wen, J.; Xuhui, Y.; Dazhou, G.; Donglin, Y.; Weiyu, W. Dynamic performance of key components for hydraulic power

take-off of the wave energy converter. IET Renew. Power Gener. 2019, 13, 2929–2938. [CrossRef]
10. Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review.

Ocean Eng. 2020, 204, 107248. [CrossRef]
11. Cruz, J.M.B.P.; Salter, S.H. Numerical and experimental modelling of a modified version of the Edinburgh Duck wave energy

device. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2006, 220, 129–147. [CrossRef]
12. Orer, G.; Ozdamar, A. An experimental study on the efficiency of the submerged plate wave energy converter. Renew. Energy

2006, 32, 1317–1327. [CrossRef]
13. Zhang, D.; Li, W.; Lin, Y.; Bao, J. An overview of hydraulic systems in wave energy application in China. Renew. Sustain. Energy

Rev. 2012, 16, 4522–4526. [CrossRef]
14. You, Y.; Sheng, S.; Wu, B.; He, Y. Wave energy technology in China. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2012, 370, 472–480.

[CrossRef]
15. Kim, B.-H.; Wata, J.; Zullah, M.A.; Ahmed, M.R.; Lee, Y.-H. Numerical and experimental studies on the PTO system of a novel

floating wave energy converter. Renew. Energy 2015, 79, 111–121. [CrossRef]
16. Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Soares, C.G. Design tradeoffs of an oil-hydraulic power take-off for wave energy

converters. Renew. Energy 2018, 129, 245–259. [CrossRef]

70



Energies 2022, 15, 1373

17. Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter.
Renew. Energy 2006, 31, 271–283. [CrossRef]

18. Dießel, D.; Bryans, G.; Verdegem, L.; Murrenhoff, H. Wavepod a transmission for wave energy converters—Set-up and testing.
Int. J. Fluid Power 2015, 16, 75–82. [CrossRef]

19. Falcão, A.F.d.O. Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system.
Ocean Eng. 2007, 35, 358–366. [CrossRef]

20. Liu, C.; Yang, Q.; Bao, G.I. Influence of hydraulic power take-off unit parameters on power capture ability of a two-raft-type
wave energy converter. Ocean Eng. 2018, 150, 69–80. [CrossRef]

21. Cargo, C.; Hillis, A.; Plummer, A. Strategies for active tuning of wave energy converter hydraulic power take-off mechanisms.
Renew. Energy 2016, 94, 32–47. [CrossRef]

22. Chen, Q.; Yue, X.; Geng, D.; Yan, D.; Jiang, W. Integrated characteristic curves of the constant-pressure hydraulic power take-off
in wave energy conversion. Int. J. Electr. Power Energy Syst. 2020, 117, 105730. [CrossRef]

23. Geng, D.; Zheng, Y.; Chen, Q.; Yue, X.; Yan, D. Novel hydraulic mechanism-based output power regulation for the wave energy
converter. Appl. Ocean Res. 2021, 110, 102587. [CrossRef]

24. Chen, Q.; Yu, H.; Yue, X.; Ye, Z.; Geng, D. Thermal-hydraulic modeling and simulation on wave energy power take-off system.
Acta Energ. Sol. Sin. 2020, 41, 237–243. (In Chinese)

25. Antolín-Urbaneja, J.C.; Cortés, A.; Cabanes, I.; Estensoro, P.; Lasa, J.; Marcos, M. Modeling innovative power take-off based on
double-acting hydraulic cylinders array for wave energy conversion. Energies 2015, 8, 2230–2267. [CrossRef]

26. Penalba, M.; Ringwood, J.V. A Review of wave-to-wire models for wave energy converters. Energies 2016, 9, 506. [CrossRef]
27. Jeong, H.-S.; Kim, H.-E. A novel performance model given by the physical dimensions of hydraulic axial piston motors:

Experimental analysis. J. Mech. Sci. Technol. 2007, 21, 630–641. [CrossRef]

71





Citation: Ren, Y.; Zhang, L.; Chen, J.;

Liu, J.; Liu, P.; Qiao, R.; Yao, X.; Hou,

S.; Li, X.; Cao, C.; et al. Noise

Reduction Study of Pressure

Pulsation in Pumped Storage Units

Based on Sparrow Optimization

VMD Combined with SVD. Energies

2022, 15, 2073. https://doi.org/

10.3390/en15062073

Academic Editors: Helena M. Ramos,

Chaoshun Li, Yun Zeng, Beibei Xu

and Dong Liu

Received: 3 February 2022

Accepted: 10 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Noise Reduction Study of Pressure Pulsation in Pumped
Storage Units Based on Sparrow Optimization VMD
Combined with SVD

Yan Ren 1,*, Linlin Zhang 1, Jiangtao Chen 2, Jinwei Liu 3, Pan Liu 1, Ruoyu Qiao 1, Xianhe Yao 1, Shangchen Hou 1,

Xiaokai Li 4, Chunyong Cao 5 and Hongping Chen 4

1 School of Electric Power, North China University of Water Resources and Electric Power,
Zhengzhou 450045, China; 15638296728@163.com (L.Z.); 201411210@stu.ncwu.edu.cn (P.L.);
19937720813@163.com (R.Q.); jms20151834@163.com (X.Y.); houshangchen888@163.com (S.H.)

2 Energy and Power Engineering Institute, Zhengzhou Electric Power College, Zhengzhou 450000, China;
chenjt-1@163.com

3 China Nuclear Power Engineering Co., Ltd., Shenzhen 518124, China; liujinwei@cgnpc.com.cn
4 State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China; lixiangvictory@126.com (X.L.);

ftchenhp@163.com (H.C.)
5 Hunan Heimifeng Pumped Storage Power Co., Ltd., State Grid Xin Yuan Company, Changsha 410213, China;

ccy.mm@163.com
* Correspondence: renyan@ncwu.edu.cn

Abstract: The unbalanced forces generated by pumped storage units operating under non-ideal oper-
ating conditions can cause pressure pulsations. Due to the noise interference, the feature information
reflecting the operating state of the unit in the pressure pulsation is difficult to extract. Therefore,
this paper proposes a noise reduction method based on sparrow search algorithm (SSA) optimized
variational mode decomposition (VMD) combined with singular value decomposition (SVD). Firstly,
SSA is used to realize the adaptive optimization of VMD parameters for ideal decomposition of the
signal. Then, the noise reduction of the decomposed signal is performed by using the sensitivity of
the Permutation Entropy (PE) for small mutations. The noise reduction and reconstruction of the
decomposed signal are carried out again by using SVD. The experimental and comparison results
show that the mean square error of the signal after VMD-SVD feature extraction is reduced from
1.0068 to 0.0732 and the correlation coefficient is increased from 0.2428 to 0.9614. It is proved that
the method achieves better results in the pressure pulsation signal of pumped storage units and has
some application significance for the fault diagnosis of pumped storage units.

Keywords: pumped storage units; pressure pulsation; noise reduction; variational mode decomposition;
sparrow search algorithm

1. Introduction

Vibration in pumped storage units poses a significant threat to the safe and stable
operation of the units [1,2]. Pumped storage units have the characteristics of rapid start-up
and shutdown, peak cutting and valley filling, etc., which play an important supporting
role in the construction of a new power system with new energy as the main body [3,4].
In order to smooth the new energy output, pumped storage units often deviate from the
optimal operating conditions into the vibration zone when operating in new power systems.
Pumped storage units operating in the vibration zone can cause strong draft tube pressure
pulsations resulting in fatigue damage to the unit and affecting its performance [5]. The
draft tube pressure pulsation signal is disturbed by ambient noise, the effective features are
often masked by a large amount of noise, and the non-linearity and non-smoothness of the
vibration signal is increasing. Noise reduction and feature extraction of draft tube pressure
pulsations can increase unit operating efficiency and reduce economic losses [6].
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A lot of research has been done on noise reduction and feature extraction of vibration
signals [7–9]. Among them, short-time Fourier transform (STFT) [10,11], wavelet transform
(WT) [12–14], empirical mode decomposition (EMD) [15,16], ensemble empirical mode
decomposition (EEMD) [17,18], and other signal decomposition methods are more common.
However, all of the above methods have certain limitations. STFT enables time-frequency
analysis, but the fixed window function makes time-frequency analysis lack in adaptability.
The WT makes use of the scalable nature of the wavelet basis functions to give good
resolution, but some of the wavelet basis and threshold functions can cause unsatisfactory
noise reduction results. EMD is achieved by time-scale transformation of the signal, which
often results in mode mixing due to the uncertainty of the frequency and bandwidth of each
mode during decomposition. The EEMD solves the mode mixing problem posed by EMD
by adding random white noise to the original signal. However, the signal decomposition
of EEMD is often accompanied by end effects that may cause signal deficiencies and
affect the processing effect [19]. Based on the above analysis, it is important to propose
a time-frequency signal processing method that is applicable to non-smooth non-linear
signals. Singular value decomposition (SVD) is a noise reduction method based on phase
space reconstruction, which achieves noise reduction by removing the reconstructed signal
components corresponding to smaller singular values [20]. Reference [21] proposes an
optimal wavelet demodulation method based on singular value decomposition (SVD),
which can accurately detect the shock component in vibration signals. In [22], a combined
adaptive local iterative filtering (ALIF) and SVD method was used for dual noise reduction
and feature extraction of draft tube pressure pulsation, which was verified in simulation
experiments and measured draft tube pressure pulsation data. Dragomiretskiy [23–26]
proposed a variational mode decomposition (VMD) method based on non-recursive signals
to achieve better results in the decomposition of vibration signals. Reference [27] used VMD
to decompose the vibration signal, avoiding the mode mixing problem caused by EMD,
and extracted a wealth of information on fault characteristics. Furthermore, [28] proposed a
noise reduction method based on VMD and quantum particle swarm optimization adaptive
stochastic resonance to achieve good noise reduction in early faint fault features. However,
the effect of VMD decomposition is influenced by the iteration K and the penalty factor a.
Too large a value of K or a can easily lead to over-decomposition of mode mixing; too small
a value of K or a can easily lead to under-decomposition. Some of the literature is based on
experience or observation to determine parameter combinations, which is subjective and
random [29]. In recent years, some scholars have proposed to seek the optimal parameters
of VMD by optimization algorithms. Traditional optimization algorithms [30–32] are well
established but often fall into local optima when solving, making it difficult to achieve
satisfactory results for the complexity of vibration signals. It is important to implement an
adaptive decomposition of the VMD parameters using an algorithm with a strong global
search capability.

Based on the above analysis, the SSA [33] has a flexible and efficient global search capa-
bility, with stronger convergence and better optimization accuracy and stability. Adaptive
optimization of VMD parameters can be achieved using SSA. VMD and SVD have been
applied to non-stationary vibration signals and have effectively avoided the problem of
mode mixing in the decomposed signal, considering that the draft tube pressure pulsation
contains a wealth of characteristic information about the unit’s operating conditions for the
pressure pulsation characteristics of the draft tube of pumped storage units [34,35]. In this
paper, we propose a study on pressure pulsation reduction of pumped storage units based
on sparrow optimization VMD combined with SVD.

This paper takes pumped storage units as the research object, and the main contribu-
tions are as follows: (1) By comparing the computational cost of envelope entropy (EE),
sample entropy (SE), and permutation entropy (PE), it is determined that the EE is used as
the fitness function of the SSA to achieve adaptive optimization of the VMD parameters.
(2) Using the EE as the fitness function, the SSA, the particle swarm optimization (PSO),
and the genetic algorithm (GA) were compared in terms of their ability to find the optimal
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VMD parameters, and the SSA was determined as the optimization algorithm for the VMD
parameters. (3) By comparing the noise reduction ability of different entropies, it was
determined that PE would be used as the feature extraction method. (4) Calculate the PE
after VMD decomposition and select the optimal PE parameter by comparing the entropy
values under different embedding dimensions and delay time conditions. The signal com-
ponents whose PE values are less than the set threshold are retained for reconstruction to
achieve preliminary noise reduction of the noisy signal. (5) The signal after the initial noise
reduction is noise reduced again by using SVD, and the effectiveness of various feature
extraction methods is evaluated by using the correlation coefficient and mean square error
as evaluation indexes.

The rest of the paper is as follows: Section 2 introduces the basic principles of the noise-
carrying signal noise reduction method based on SSA optimization VMD combined with
SVD and establishes the framework flow chart of the research method. Section 3 constructs
a simulation signal based on the pressure pulsation characteristics of the draft tube of
pumped storage units and determines the optimal parameters of the proposed method
in this paper. Section 4 compares the proposed method with reported noise reduction
methods using simulated signals and evaluation metrics to demonstrate the effectiveness
of the method.

2. Methods

2.1. VMD

VMD is a new method for non-recursive signal decomposition proposed by Dragomiret-
skiy [36]. Constraints are used as the theoretical basis for constructing the overall framework
and searching for variational modes by iteration. The decomposition of a signal consisting
of multiple components into K intrinsic mode functions with fixed central frequencies ωk.
The mode mixing problems are avoided and local features are highlighted for subsequent
signal analysis.

(1) Mode components uk of the analytic signal

After Hilbert’s method calculation, each intrinsic mode function is considered as an
FM-AM mode function.

uk(t)= Ak(t) cos(∅k(t)) (1)

where Ak(t) is the instantaneous amplitude of uk(t), ∅k(t) is the instantaneous phase of
uk(t). The derivative of the instantaneous phase with respect to time is the instantaneous
frequency ωk(t) = d∅k(t)/dt.

(2) Estimation of the frequency bandwidth of each intrinsic mode function

Using Hilbert’s transformation of the mode component uk(t), one can obtain the
one-sided spectral equation. Gaussian smoothing is used to obtain the bandwidth of the
analytic signal after frequency shift, that is, the square root of the norm gradient L2. The
variational problem is constructed as follows:⎧⎪⎪⎨⎪⎪⎩

min
{

k
∑

k=1
‖∂t

(
δ(t) + j

πt

)
uk (t) e−jwk (t) }‖2

2

s. t.
k
∑

k=1
uk = f (t)

(2)

where ∂t is the partial derivative of the function with respect to time t, δ(t) is the unit time
impulse function, e−jwk (t) is the correction exponent, and f (t) is the signal input function.

(3) Introduction of the Lagrange quadratic constraint and solution using alternating operators
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The unconstrained variational solution is established by augmenting Lagrange method
as in Equation (3). After that, the alternating direction multiplier algorithm is used to contin-
uously iteratively update the solution to obtain the generalized function as in Equation (4):

L({uk} , {ωk}, ˘) = a ∑k ‖∂t

[(
δ(t) + j

πt

)
uk (t)

]
e−jwk (t)‖2

2 + ‖ f (t)
−∑k uk(t)‖2

2 + < ˘(t), f (t)∑k uk (t) >
(3)

where a is the penalty factor, and λ(t) is the Lagrangian multiplier.

ûk
n+1=

− f̂ (w)−∑i �=k ûi
n+1(ω)+

λ̂ (t)
2

1+2a(ω−ωk
2)

ωk
n+1 =

∫ ∞
0 ω|ûk(ω) |2 dω∫ ∞

0 |ûk(ω) | 2 dω

(4)

(4) Termination conditions

k

∑
k=1

(
‖ûk

n+1 − ûk
n‖2

2 /‖ûk
n‖2

2

)
< ε (5)

The iteration ends when the constraint satisfies the above equation, otherwise a circular
iteration is performed and a series of intrinsic mode functions are obtained at the end of
the iteration.

2.2. Adaptive Optimization of VMD Parameters
2.2.1. SSA Principles

The SSA is a group intelligence optimization algorithm that simulates the foraging
and anti-predatory act of sparrows. The algorithm is built by simulating the following acts:
finders search for food while avoiding the danger of predation; joiners compete for food
resources by monitoring the finders. Assume that the sparrow population size is N, the
number of iterations is t, the dimensionality of the optimization variables is dmin, and the
fitness is f . The sparrow’s ability to search for food is strongest when the fitness is best.

Assuming that the finder searches for the widest range of food, the iterative process
updates the finder’s location search as follows:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

a·itermax

)
i f R2 < ST

Xt
i,j + Q·L i f R2 ≥ ST

(6)

where t is the number of iterations, itermax is the current maximum number of iterations,
Xi,j is the position information of i-th sparrow in the j-th dimension, R2 is the warning
value, ST is the safety value, a is the random number of (0, 1], Q is a random number
obeying normal distribution, and L denotes a 1 × d matrix. When R2 < ST, it means there is
no predator in the foraging environment, and the finder can continue searching. When R2
≥ ST, the predator appears and the sparrow needs to change the area to search.

Joiners compete for food resources with discoverers by monitoring their tracks, and a
joiner’s location search is updated as follows:

Xt+1
i,j =

⎧⎪⎨⎪⎩ Q· exp
(

Xworst−Xt
i,j

i2

)
i f i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣·A+·L otherwise
(7)

where Xp is the optimal position of the current discoverer, Xworst is the worst position
currently searched, and A denotes a 1 × d matrix. When i > n/2, it means that the joiner
cannot obtain food resources due to low adaptation.
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The locations of some of the individual sparrows in the sparrow population that
realized the approaching danger and made a zone change were updated as follows:

Xt+1
i,j =

⎧⎪⎨⎪⎩
Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣i f f i > f g

Xt
i,j + K·

( | Xt
i,j−Xt

worst |
( f i− fw)+ε

)
i f f i = f g

(8)

where Xbest is the current global optimal position, f i is the i-th individual sparrow fitness,
f g is the current global best fitness, fw is the current global worst fitness value, β is a
random number obeying normal distribution, K is a random number of [−1, 1], and ε is a
constant.

2.2.2. VMD Parameter Optimization Based on SSA

The EE can measure the extent to which a signal contains fault information based on
the sparsity of the signal. If the signal contains more noise, the signal is less sparse and has
a higher EE. The signal Xi has the following expression for the EE.⎧⎪⎪⎨⎪⎪⎩

Ep = − N
∑

i=1
pilg pi

pi = a(i)/
N
∑

i=1
a(i)

(9)

where Ep is the signal Xi of the EE, a(i) is the signal Xi the envelope signal after Hilbert
calculation, and pi is the normalized form of the a(i) .

Reference [37] used EE as a fitness function to optimize the VMD parameters in order
to make the SSA process of optimizing the VMD parameters more accurate. Firstly, the
VMD parameters are initialized, using the parameters [a, K] as particle positions. The EE
is used as the fitness function to calculate the EE value of each particle under the VMD
decomposition. The positions of sparrow discoverers, joiners, and other individuals are
calculated according to Equations (6)–(8) for individual and global search. The particle
positions are continuously updated and the combination of parameters with the smallest
EE is recorded. When the number of iterations is satisfied, the loop is jumped out at the
end of the iteration and the optimal parameter combination [a, K] is output.

2.3. PE

PE is an effective calculation method proposed by Christophet et al. to detect signal
dynamic mutation and time series randomness [38]. PE can be used to filter the mode
information and distinguish the noise dominant component from the effective signal
component with rich feature information. The noise interference components with relatively
high entropy values are removed by preset threshold for the purpose of denoising. The
principle of the algorithm is as follows:

(1) Suppose a time series Xi and reconstruct its phase space; the matrix is obtained
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X1 =
{

X1, X1+τ, . . . , X1+(m−1)τ,

}
X2 =

{
X2, X2+τ, . . . , X2+(m−1)τ,

}
...

Xr =
{

Xr, Xr+τ . . . , Xr+(m−1)τ

} (10)

where m is the embedding dimension and τ is the delay time. r is the number of row
vectors to reconstruct.

(2) Each row of the matrix is considered as a reconstructed component, and the elements
are rearranged in ascending order to obtain:

77



Energies 2022, 15, 2073

Xi= {X(i + (ε1 − 1)× τ)} ≤ X(i + (ε2 −1)×τ)≤ · · · ≤ X(i + (εm −1)× τ) } (11)

where ε1, ε2,· · · , εm is the column index of each element in the reconstructed component.
(3) Calculate the probability of indexing P1 , P2 , · · · P3 at different positions. Define the

normalized PE of the indexed series at different positions of the time series according
to the form of entropy.

H = (−∑r
i=1Pi·lgp)lg(m!) (12)

2.4. SVD

SVD is a noise reduction method based on phase space reconstruction. As the noise
signal has a different correlation to the original signal, by observing the singular value SVD
spectrum, the singular value components representing the noise after decomposition are
zeroed out and the singular values of the valid signal are retained [39]. Noise reduction
of the characteristic matrix is achieved by the inverse of the SVD. For the signal Xi, the
Hankel matrix is constructed as follows:

H =

⎡⎢⎣ X(1) · · · X(q)
...

. . .
...

X(d) · · · X(N)

⎤⎥⎦ (13)

The SVD decomposition of the H matrix is as follows:

Q = U
[

∑ K 0
0 0

]
VT (14)

where U, V are orthogonal matrices. ∑ K = diag (σ1,σ2,· · · σ3) forms the fault feature vector.
The PE value of the components after VMD decomposition is calculated, and the

effective components smaller than the PE threshold are retained for reconstruction. The
VMD-PE denoised signal is constructed as a Hankel matrix for SVD decomposition to
achieve noise reduction again.

2.5. Noise Reduction Steps

Figure 1 shows the flow chart of the SSA–VMD–SVD framework, and the specific
steps are shown below:

Step 1: Acquisition of vibration signals, setting the number of sampling points and
sampling frequency.

Step 2: Determine the fitness function and establish an adaptive decomposition method
for VMD parameters based on SSA, setting the population size to 10 and the maximum
number of iterations to 20.

Step 3: Initialize the VMD parameters, using the parameters [a, K] as particle positions.
The range of a is [1000, 3000] and the range of K is [2, 10]. The optimal combination of
parameters with the smallest fitness function is obtained by SSA global search.

Step 4: Perform a VMD decomposition according to the optimal combination of
parameters [a, K] to obtain K IMF components.

Step 5: Calculate the PE value of each component according to Equations (10)–(12) and
set the PE threshold based on multiple simulations to achieve the initial noise reduction of
the noisy signal.

Step 6: The initial noise reduction signal is decomposed by SVD according to Equation (14)
to achieve the noise reduction of the reconstructed signal again.

Step 7: Extract the fault feature vector and perform a spectrum analysis to identify the
cause of the fault.
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Figure 1. The framework flow chart of the proposed method.

3. Results

3.1. Simulation Signal

The main cause of the draft tube pressure pulsation is the low frequency vortex band,
but there is also a certain amount of medium and high frequency pressure pulsation.
The low-frequency pulsation frequency is about 0.15–0.30 times, and the medium-high
frequency pressure pulsation frequency is close to the unit rotation frequency. In order to
verify the effectiveness of the algorithm in extracting the pressure pulsation signal in the
draft tube in this paper, the simulation signal A expression is established as follows:

X1= 0.3· sin(2πt f1)+0.2· sin(2πt f2)+0.1 sin ·(2πt f3)
X2 = rand (1, 5000)

Xt= X1 + X2

(15)

where f1 is 0.6 Hz, f2 is 2 Hz, and f3 is 22 Hz; set the sampling frequency to 500 and the
number of sampling points N to 5000.

3.2. Vibration Signal Analysis

The simulation graph is shown in Figure 2. Figure 2a,b show the original signal
waveform and spectrum, while Figure 2c,d show the waveform and spectrum under strong
noise interference. Under strong noise interference, the periodic pulses reflecting the fault
characteristics are obliterated. In Figure 2d, it is also not possible to identify the obvious
shock components, making it difficult to determine the type of fault.
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(a) (b)

(c) (d)

Figure 2. Simulated signal waveform and spectrum (a) Original signal waveform diagram; (b) Spectrum
of the original signal; (c) Noise added signal waveform diagram; (d) Noise added signal spectrum.

3.3. Noise Reduction Based on SSA–VMD–SVD
3.3.1. Fitness Function

Entropy, as a measure of signal disorder, can be used as a fitness function for SSA–VMD.
EE, SE, and PE can all be used as a fitness function. The lowest entropy value is used as the
basis for preferring the parameters. Therefore, in order to reduce the computational cost
of the algorithm, only the running times of the different types of entropies are compared.
The results are shown in Table 1. It can be seen that the running time and iteration times of
EE are the smallest among the three kinds of entropies, while their corresponding optimal
parameters are similar, so the EE is used as the final fitness function.

Table 1. Table of optimization parameters for different fitness functions.

Fitness
Functions

[a, K]
Number

of Iterations
Minimum

Entropy Value
Running Time (s)

EE [2853, 10] 2 6.1766 4705

PE [2996, 10] 2 0.4562 17150

SE [2898, 10] 5 0.2221 10762
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3.3.2. Optimization Algorithms

To highlight the global search capability of SSA algorithm, SSA is compared with GA
and PSO. Using the EE as the fitness function and setting the same population size, number
of iterations, and range of optimization parameters, the optimization results are shown in
Figure 3.

Figure 3. Iterative adaptation under different algorithms.

As can be seen from Figure 3, in the process of SSA optimization, the local minimum
6.177 appears in the second iteration, and the output parameter is [2853, 10]. In the process
of PSO optimization, the local minimum 6.177 appears in the 12th iteration, and the output
parameter is [2854, 10]. The local minimum value 6.259 in GA optimization appears in the
14th iteration, and the output parameter is [2902, 10]. When the output parameter value is
close to the decomposition effect, the number of iterations of SSA is small and the fitness
function is small, which proves that the convergence speed and global search ability of SSA
are superior to GA and PSO.

Considering the randomness of the algorithm, the SSA-VMD algorithm with the
envelope entropy as the fitness function was optimized for 10 times and the average value
was taken as the output result, and the parameter combination was [2853, 10].

3.3.3. PE Parameter

The embedding dimension of the PE affects the construction accuracy, the embedding
dimension m usually ranges from 3 to 7, and the delay time τ is usually set to 1 [40]. In
order to select the PE parameters suitable for the pressure pulsation signal of the pumped
storage unit, the PE values of the simulated signal with m [2, 10] and τ [1, 10] are compared
and analyzed. The results are shown in Figure 4.

As can be seen from the Figure 4, when the embedding dimension is a fixed value, the
curves in the figure mostly overlap.

Proof. The delay time has little effect on the PE value, and sufficient information can be
obtained with a delay time of 1. �

Therefore, the delay time τ of 1 is chosen in this paper. When the embedding dimen-
sion m is [2,6], the entropy value remains within a stable and small difference. When the
m is greater than or equal to 7, the PE value appears to be more volatile, which will cause
some interference to the evaluation of the random degree of the signal. Considering the
length of the data, the m should be as large as possible without distortion, so the m is
chosen to be 6 and the τ is 1.
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Figure 4. The relationship between the PE parameters.

3.3.4. The Comparison of Entropy

Entropy can distinguish between the noise component and the effective component
to achieve primary noise reduction of the simulated signal [41]. The PE, SE, and EE are
combined with VMD for a single noise reduction comparison respectively. The correlation
coefficient and mean square error were also introduced to reflect the relationship between
the noise-reduced signal and the original signal to evaluate the noise reduction effect of the
PE. The calculation results are shown in Table 2.

Table 2. Noise reduction test with three types of entropy.

Feature Extraction Methods Correlation Coefficient Mean Square Error

VMD-PE 0.6210 0.3169
VMD-SE 0.4931 0.4368
VMD-EE 0.4945 0.4494

As seen in Table 2, the correlation coefficient of the VMD–PE processed signal is the
largest and the mean square error is the smallest, and the noise reduction preserves the
original signal more completely. It proves that PE has the best noise reduction effect among
the three entropies.

3.3.5. Simulation Results

With the above parameter discussion, the SSA–VMD–SVD processed waveform and
spectrum are obtained. As seen in Figure 5a, the processed signal waveform becomes
smooth and regular, with a large amount of noise removed without distortion. From
Figure 5b, it can be seen that the amplitude of the spectral lines representing the shock
component is strong. The f 1, f 2, and f 3 frequencies reflecting the fault characteristics were
basically extracted effectively. This demonstrates that the SSA–VMD–SVD decomposition
works well and that there is no mode mixing problem.
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(a) (b)

Figure 5. Simulated signal after SSA-VMD–SVD processing. (a) Waveform diagram after noise
reduction; (b) Spectrum after noise reduction.

4. Discussion

4.1. Comparison of Methods
4.1.1. Comparative Analysis

In order to highlight the effectiveness and reliability of the proposed method, other
methods are used for noise reduction and feature extraction comparison. The signal
processing method considering time domain or frequency domain cannot adapt to the
non-stationarity and non-linearity of pressure pulsation signal. The representative time-
frequency signal decomposition method (CEEMD ALIF VMD) combined with PE was
selected to carry out the primary noise reduction of the simulation signal. However, the
effect of primary denoising on complex signal denoising and feature extraction is not
ideal, so on the basis of primary denoising, SVD secondary denoising process is added.
Figures 6–9 show the simulated signal plots after CEEMD–PE, VMD–PE, ALIF–PE, and
ALIF–SVD processing respectively.

(a) (b)

Figure 6. Simulated signal after CEEMD–PE processing. (a) Waveform diagram after noise reduction;
(b) Spectrum after noise reduction.
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(a) (b)

Figure 7. Simulated signal after VMD–PE processing. (a) Waveform diagram after noise reduction;
(b) Spectrum after noise reduction.

(a) (b)

Figure 8. Simulated signal after ALIF–PE processing. (a) Waveform diagram after noise reduction;
(b) Spectrum after noise reduction.

(a) (b)

Figure 9. Simulated signal after ALIF–SVD processing. (a) Waveform diagram after noise reduction;
(b) Spectrum after noise reduction.
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The white noise added to the CEEMD decomposition is set at 0.2 times the standard
deviation and 100 times the number of sets [42]. Due to the reconstruction bias caused by
the addition of white noise resulting in some noise remaining in the signal after CEEMD
processing, only two feature components are effectively extracted in Figure 6b. As seen in
Figures 7 and 8, the burr is reduced in the waveform plots Figures 7a and 8a after VMD–PE
and ALIF–PE processing, but the similarity to the original signal Figure 5a is not high. In
Figures 7b and 8b, the three feature components are all extracted but the feature components
are not accurate enough, there is bottom noise in the 0–50 Hz band, and the noise reduction
effect is not satisfactory. The ALIF–SVD processed Figure 9a has a large amount of noise
removed but appears distorted. In Figure 9b, only two low-frequency components are
effectively extracted, and the full information reflecting the fault characteristics is not
completely extracted.

4.1.2. Effectiveness Evaluation

To make the above conclusions more convincing, the correlation coefficient and mean
square error were introduced to reflect the relationship between the processed signal and
the original signal, and the results were calculated as shown in Table 3.

Table 3. Assessment table for different methods of noise reduction.

Correlation Coefficient Mean Square Error

Noisy signals 0.2428 1.0068
CEEMD–PE 0.5123 0.4227

VMD–PE 0.6210 0.3169
ALIF–PE 0.7024 0.2595

ALIF–SVD 0.9360 0.0940
VMD–SVD 0.9614 0.0732

As can be seen from Table 3, the correlation coefficient after VMD–SVD processing
is the highest and the mean square error is the lowest among the methods, which proves
that this method has the highest similarity to the original signal after denoising and
reconstruction, retains the highest integrity of valid information, and is more effective for
the extraction of early weak faults in the draft tube.

4.2. Analysis of Variable Working Conditions

In order to prove that VMD–SVD is not only suitable for noise reduction of vibration
signal under single working conditions and fixed noise, change the characteristic frequency
under the condition of invariable noise and change the noise size under the condition of
invariable characteristic frequency, respectively, to demonstrate the applicability of the
method under the condition of variable working conditions and random noise interference.

Construction of simulated signal B with the same noise but different frequencies:

X1= 0.35· sin(2πt f1)+0.3· sin(2πt f2)+0.2 sin ·(2πt f3)+0.2 sin ·(2πt f3)
X2 = rand (1, 5000)

Xt= X1 + X2

(16)

where f1 is 0.5 Hz, f2 is 1.1 Hz, and f3 is 2 Hz; f4 is 9.5 Hz.
Construction of simulated signal C with the same frequency but different noise:

X1= 0.3· sin(2πt f1)+0.2· sin(2πt f2)+0.1 sin ·(2πt f3)
X2 = 0.5 rand (1, 5000)

Xt= X1 + X2

(17)

where f1 is 0.6 Hz, f2 is 2 Hz, and f3 is 22 Hz.
The constructed signals were subjected to VMD–SVD processing and the correspond-

ing spectrums were obtained as shown in Figure 10. The correlation coefficients and mean
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square errors of the three signals after VMD–SVD processing were compared and the
results are shown in Table 4.

(a) (b)

Figure 10. Spectra of the two simulated signals after VMD–SVD processing. (a) Spectrum of signal B
after noise reduction; (b) Spectrum of signal C after noise reduction.

Table 4. Table of evaluation indicators for different signals.

Signal Correlation Coefficient Mean Square Error

A 0.9614 0.0732
B 0.9776 0.0901
C 0.9942 0.0285

As can be seen from Figure 10 and Table 4, the characteristic frequencies of signals B
and C are basically extracted effectively, and the reconstructed signals maintain a good cor-
relation with the original signals. This demonstrates that VMD–SVD is not only applicable
to the noise reduction of vibration signals under single working conditions and fixed noise.

4.3. Examples

In order to verify the effectiveness of the algorithm in this paper, a pumped storage
power plant draft tube pressure pulsation signal is used as an example for the unit test.
The signal is collected using an AK–4D pressure sensor number N2186, as shown in
Figure 11. The unit model is HLNTP–LJ–512, the rated output is 306.1 MW, the rated speed
is 300 r/min, the sampling frequency is 500 Hz, and the number of intercepted data points
is 5000. Figure 12 shows the measured pressure pulsation signal of a pumped storage
power station, and the signal waveform plot is homogenized.

Figure 11. Sensor arrangement measurement diagram.
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(a) (b)

Figure 12. Measured pressure pulsation signal at a pumped storage power station. (a) Signal
waveform diagram; (b) Signal spectrum.

As can be seen in Figure 12a, there is obviously non-periodic noise interference in
the signal waveform, and the periodic pulse reflecting the characteristics of the fault is
completely masked. As can be seen in Figure 12b, there are some spectral peaks in the
middle and high frequency bands but there is no regularity, and there are many interference
spectral lines around, making it difficult to accurately determine the cause of the unit fault.

The actual data were processed according to the simulation experiment of VMD–SVD.
Figure 13a,b show the waveforms and spectrums after VMD–SVD processing, respectively.
From Figure 13a, it can be seen that the processed signal waveform is smoother, the shock
regularity is enhanced, and the interference noise is suppressed to a certain extent. As
can be seen in Figure 13b, low frequency amplitudes that could not be identified before
denoising appear, and the surrounding interference spectral lines are effectively removed.
The shock component of X = 0.61 is consistent with the low frequency of the draft tube
vortex band, and the shock component of X = 4.5 is close to the rotation frequency of the
unit (as shown in the red dashed box), which meets the characteristics of the pressure
pulsation of the draft tube vortex band. This proves that the fault characteristics masked by
noise are effectively stripped out. The above analysis fully proves that the method in this
paper can achieve effective extraction of early faint faults in pressure pulsation of pumped
storage units.

(a) (b)

Figure 13. Graph of the actual data signal after VMD–SVD processing. (a) Waveform diagram after
noise reduction; (b) Spectrum after noise reduction.
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5. Conclusions

Against the background of strong noise interference and variable operating condi-
tions of pumped storage units, and in view of the difficulty in extracting the early weak
fault characteristics of pressure pulsations of pumped storage units, this paper proposes
a sparrow-based optimization VMD combined with SVD for pressure pulsation noise
reduction of pumped storage units, with the following conclusions.

(1) Applying the SSA algorithm with envelope entropy as the fitness function to the
parameter decomposition of VMD overcomes the shortcomings of manual parameter
selection of VMD and realizes the adaptive decomposition of VMD.

(2) The choice of the combined VMD–SVD noise reduction method effectively avoids
the problem of post-reconstruction noise interference and can achieve good results in
non-stationary signal decomposition.

(3) Through simulation comparison with CEEMD–PE, VMD–PE, ALIF–PE, and ALIF–
SVD, it is proved that the noise reduction method of VMD–SVD can effectively
remove noise, achieve the extraction of low frequency fault characteristics of pressure
pulsation of pumped storage units under strong noise disturbance, and enhance
fault-related characteristics.
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Abstract: The use of renewable energy sources, such as wind, photovoltaics (PV), and hydropower,
to supply facility agriculture may effectively mitigate food and environmental pollution problems
and ensure continuity of the energy supply. The operating conditions of a hybrid system are complex,
so the operating strategy is very important for system configuration and scheduling purposes. In
the current study, first, a hybrid wind/PV/small-hydropower/facility-agricultural system was
constructed. Then, the chaotic particle swarm method was applied to optimize hybrid system
operation, and a scheduling strategy of the hybrid system was proposed. Finally, combined with
an example, according to wind and PV power output and load curves, supply-to-load curves for
wind, PV, and small hydropower were obtained. The operational strategy proposed in this study
maximizes the utilization of wind and solar resources and rationally allocates hydropower resources.
The aforementioned operational strategy provides a basis for hybrid system capacity allocation
and scheduling.

Keywords: hybrid system; facility agriculture; chaotic particle swarms method; operation strategy

1. Introduction

1.1. Literature Review

Food is the major necessity of human beings. As the global population continues
to grow, people need increasing quantities of grains and vegetables [1]. Therefore, pro-
moting the efficient and sustainable development of agricultural production methods and
improving technology to increase the crop yield per unit area has attracted increasing
attention, including in smart agriculture and facility agriculture [2]. These approaches can
create a more suitable environment for plant growth, making it possible to grow crops and
vegetables out of season and accelerate their growth [3,4]. However, high efficiency has
led to increased energy consumption and higher costs [5]. With the increasing pressure
on energy conservation and emission reduction, governments have introduced various
policies and guidelines to carry out clean energy research and practices. Consideration
of the use of renewable and clean energy sources applied to agricultural production can
help solve the problem of energy consumption, in addition to effectively mitigating carbon
emissions and reducing the pollution of the environment from fossil fuels [6,7].

In recent years, a lot of research has been conducted on clean energy, and renewable
clean energy sources such as wind power, PV power and hydropower have received at-
tention. However, wind and PV resources are affected by natural climatic conditions and
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are characterized by significant randomness and volatility, leading to inefficient energy
development and, consequently, to difficulties in accessing the power grid, reducing power
quality and reliability [8,9]. Therefore, many people have proposed a mixture of multiple en-
ergy sources to compensate for the fluctuations of wind and PV power generation through
the advantages of rapid start–stop and the strong peaking ability of hydropower [10]. The
study [11] makes full use of the flexibility of hydropower, integrates wind/PV/hydropower,
identifies the sites of each power plant, and analyzes the complementary power output
benefits of the system. In the combined operation of various energy sources, the power
quality of the whole year and the whole day is effectively guaranteed. In the study [12],
a hybrid system containing wind, PV, and hydropower plants with pumped storage was
established and the impact on the national power system was studied. The results show
that the hybrid system can effectively reduce the volatility of the grid. In fact, reducing
the instability of wind and PV output by complementing hydro and pumped storage can
effectively improve the power quality and system reliability.

New clean energy inputs are obvious and necessary for the development of modern
and efficient facility agriculture [13], and wind power/PV power/hydropower is widely
used around the world due to its good applicability [14], and there have been many
applications of multi-energy complementary participation in agriculture. The study [15]
used a combination of wind power and energy storage in agriculture. The study [16] used
PV power generation to solve the problem of agricultural irrigation. The study [17] studied
hybrid energy systems consisting of PV panels and other necessary accessories to provide
electricity to cool greenhouses without the need to obtain energy from the grid. In these
studies, the practicality and very promising applications of new energy sources integrated
into facility agriculture were predicted.

Scholars of various countries have analyzed the economy and practicability of coor-
dination of various energy sources and output power. Most of the early solution meth-
ods were based on linear programming, nonlinear programming, and dynamic program-
ming [18,19]. Due to the depth of research, a class of heuristic algorithms based on biological
evolution or natural phenomena, represented by genetic algorithms [20], ant colony algo-
rithms [21], and particle swarm algorithms [22], have been greatly developed, effectively
solving the shortcomings of the past algorithms in terms of low adaptability to the objective
function and constraints and poor efficiency. In the study [23], an optimal distribution
method for multi-energy power supply systems was established with the total cost min-
imization as the optimization objective. The relationship between the complementary
characteristics of multiple energy sources and the planning cost was quantitatively ana-
lyzed using two important indicators, energy loss rate and hourly loss rate of distributed
generation, and solved by a hybrid genetic algorithm and pattern search algorithm. In the
study [24], power loss minimization and voltage profile enhancement in radial distribution
networks were considered as the key objectives of the study, and selective particle swarm
optimization (SPSO) was used to determine the installation size and location of network
capacity enhancement. In the study [25], a multi-objective particle swarm optimization
algorithm (MOPSO) was used to optimize a hybrid PV-wind-pumped storage system to ob-
tain the optimal configuration with reduced initial investment cost. By comparison, many
new evolutionary algorithms have been proposed or improved and applied to solve the
optimal scheduling problem, mainly including the hybrid swarm algorithm [26], the slime
mode algorithm [27], and the harmony search [28]. Therefore, proposing or improving
algorithms is a key scientific problem for optimizing the coordination of multiple energy
sources with each other. Solving this problem can provide technical support for obtaining
better convergence and distribution of multi-energy complementary systems.

1.2. Research Gap and Motivation

Indeed, the application of wind/PV energy supports operations that are integrated
into facility agriculture [17,29]. In addition, due to the development of large-scale fa-
cility agriculture [1,30], it is necessary to develop new approaches to the hybrid use of

92



Energies 2022, 15, 2466

renewable energy sources and the grid. In the literature, combining electricity gener-
ation with agriculture through independent wind and PV has also been studied, but
there is little research on the coordinated integration of multiple energy sources with
agricultural facilities. Meanwhile, the operating conditions of hybrid energy systems are
complicated, especially in regard to systems based on microgrids, for which the operating
strategy is very important. The studies [31–33] examined energy management strategies
based on distributed microgrids and proposed an economic dispatching strategy of hybrid
PV/storage/hydro/diesel microgrids without considering the operation characteristics
of wind power. The studies [34,35] proposed an optimal microgrid scheduling method
considering a hybrid wind/light/diesel/battery/desalination system but did not consider
the operation strategy. The studies [36,37] investigated the impact of the operation strategy
and operational characteristics of energy storage devices on the reliability of microgrids but
only the energy storage aspect was studied. The study [38] examined the control strategy
of a wind/PV/storage microgrid based on hybrid energy, considering the randomness and
volatility of the output power and voltage of intermittent power sources, such as wind and
PV power generation, and the complexity of microgrid control, but they did not consider
the load impact.

In previous work, we conducted an in-depth study of the hybrid PV/wind/pumped
storage system and optimized the system design using particle swarm optimization algo-
rithms. Furthermore, the output smoothing of the hybrid hydro/wind/PV system was
studied and analyzed [39,40]. The stability and economy of the multi-energy complemen-
tary system were confirmed [41]. In addition, the combination of clean energy and facility
agriculture can improve the efficiency of land and energy use [42] and compensate for the
energy demand of facility agriculture by directly providing productive energy through
clean energy generation [43]. Related practical applications have already appeared in some
countries, such as India and Canada [44,45]. Therefore, in this study, a mathematical model
of a wind/PV/small-hydropower/facility-agriculture system was established, the opera-
tion strategy of the system was proposed, and an example was derived and analyzed using
a chaotic particle swarm optimization (CPSO) algorithm. Compared with other algorithms,
the CPSO algorithm avoids complex operations and has stronger global convergence and
robustness, and it can be used as a new evolutionary algorithm to solve a large number
of nonlinear, non-trivial, and multi-peak complex optimization problems [46,47]. The
algorithm ensures the optimal capacity allocation of each energy source and establishes the
optimal scheduling strategy, which can further enhance the advantages of complementary
characteristics among various energy sources.

1.3. Contribution and Paper Organization

The main contributions of this paper are as follows:

(1) A mathematical model of the wind/PV/small-hydropower/facility-agriculture sys-
tem was established with the load matching degree as the objective function and the
power supply reliability as the constraint.

(2) Through the actual data, the control strategy and operation strategy of the wind/PV/
small-hydropower/facility-agriculture system were proposed.

(3) The wind/PV/small-hydropower/facility-agriculture system was solved using the
CPSO algorithm for the hybrid system, and the operation of the system was analyzed
and is discussed.

The rest of this paper is organized as follows. A mathematical model of the wind/PV/
small-hydropower/facility-agriculture system is established in Section 2. In addition, the
specific steps and calculation process of the CPSO method for the composite system are
introduced. In Section 3, the operation strategy flow of the hybrid system is depicted by
example analysis, and the calculation results are discussed and analyzed. The conclusions
are summarized in the final section.

93



Energies 2022, 15, 2466

2. Methods

2.1. System Optimization Design Model
2.1.1. System Optimization Model Building

Mathematically described as Equation (1):{
min f (x)

gk(x) < εx
(1)

where:

f (x)—Optimization of the objective function;
gk(x)—Constraint condition function;
εx—Tolerance factor of the constraint function, εx ≥ 0;
x—Optimization variables.

2.1.2. Objective Function

With the load matching degree of the wind/PV/small-hydropower/facility-agriculture
system as the optimization objective, using a supply–demand balance calculation model
and the error evaluation of the supply–demand difference value root-mean-square, the
objective function is expressed by Equation (2):

σ =

√
∑T

t=1
(

Pt
S − Pt

L
)

T
(2)

where:

Pt
S—The total system power output during calculation period t, kW;

Pt
L—The system load value during calculation period t, kW;

T—Total number of hours, h.

That is, the optimization objective function f (x) = σ, and the optimization objective is
to minimize σ.

2.1.3. Constraints

The power supply reliability of the system is selected as the constraint.
A reliability model of the composite generation system is established to evaluate the

reliability of the system’s power supply using the loss of power supply probability (LPSP),
the accumulated power deficit, and the number of continuous days with guaranteed cloudy
and windless weather, as follows:

(1) Loss of Load Power Rate

The calculation of the load loss of the power rate for a total time period can be defined
as the ratio of the deficit power (LPS) to the total power required by the load during that
time period, expressed by Equation (3):

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 PL(t)Δt

(3)

where:
LPS—Insufficient power at time t, kWh;
PL(t)—Total load at time t, kW;
T—Running time, h;
Δt—Calculation step size, h.
The LPSP value is between 0 and 1, and the smaller the value, the higher the reliability.

LPSP = 0 means that the load needs can be met at all times; LPSP = 1 means that the load
needs cannot be met at all times. In fact, even the public grid can supply power to large
cities with an LPSP = 10−2 order of magnitude only, and it is obviously unreasonable to
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require relatively expensive wind and solar power systems to achieve 100% reliability. Most
of the failures that occur during the operation of stand-alone power supply systems are
not due to the lack of capacity of the system components, but due to component failures,
poor line contact, and operational errors, so the reliability requirements for wind and solar
complementary power systems should be reasonable.

(2) Accumulated power deficit

The deficit ΔE can be expressed as:

ΔE = EW + EPV + EH − EL (4)

where:
EW is the power generation of the wind turbine during the calculation period, kWh;
EPV—The power generation of the PV array during the calculation period, kWh;
EH—The power generation of small hydropower during the calculation period, kWh;
EL—The power consumption of the load during the calculation period, kWh.
If ΔE is positive, it means that the system power generation during the calculation

period is greater than the load power consumption, that is, the surplus amount, and can
be used for battery charging; if ΔE is negative, it means that the system power generation
during the calculation period is less than the load power consumption, that is, the deficit
amount, and can be supplied by small hydropower generation first.

(3) Number of days with guaranteed continuous rainy and windless weather

The number of days with guaranteed continuous rainy and windless weather can be
taken according to the reliability requirements of residential electricity consumption, gener-
ally n = 3 to 5 days (specific values are determined according to local meteorological data).

That is, the constraints are:
g(x1) = LPSP, taking the tolerance factor of the constraint function ε1 = LPSPreq (LPSPreq

is the required value of load loss rate);
g(x2) = ΔE, taking the tolerance factor of the constraint function ε2 = ΔEreq (ΔEreq is

the cumulative deficit requirement value);
g(x3) = n, taking the tolerance factor of the constraint function ε3 = nreq (nreq is

to ensure the required value of the number of days of guaranteed continuous rainy and
windless weather).

2.1.4. Selection of Optimization Variables

The power side mainly contains wind power, PV power, battery and pumped storage,
and their operation and complementary methods affect the overall output and power
balance of the system; thus, we use the capacity of different power sources (i.e., wind power,
PV) and different forms of energy storage (i.e., pumped storage, battery) as optimization
variables.

2.2. CPSO Method for Composite Systems
2.2.1. Detailed Steps

The basic idea of the CPSO algorithm is to use chaotic sequences to initialize the
positions and velocities of particles; first, a chaotic search is performed for the optimal
particle in the current particle population, and then the result of the chaotic search is
replaced with a random particle in the particle population. The specific steps of composite
system optimization using CPSO are as follows:

(1) Initializing the particles

A population containing ns particles is randomly generated, the particles are initialized
(i.e., the optimization variables: capacity of the wind turbine, PV array, pumped storage,
and battery), each particle is given a random velocity (i.e., the step size of the change
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in the capacity of the wind turbine, PV array, pumped storage, and battery during the
optimization), and the number of iterations is set to N.

(2) Update the velocity and position of the particles

Update the velocity and position of the particle according to Equations (5) and (6):
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i —the velocity of the kth iteration of the ith (i = 1, 2, ..., m) particle;
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gbest,i—the population optimal position for the kth iteration;

ω—inertia weights;
c1—cognitive coefficient;
c2—social coefficient;
r1, r2—random number between [0, 1].

(3) Chaotic optimization of particle swarm optimal positions
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where μ is the control parameter, Rk
max and Rk

min are the upper and lower

bounds of the value of
→
x

k
i , respectively.

2© The chaotic sequence
→
y

k
n is obtained by performing M iterations of the logistic

equation for
→
y

k
1(n = 1, 2, ..., m).

3© The chaotic sequence is mapped back to the original solution space by the
inverse of Equation (8):

→
x
∗k
gbest,m = Rk

min + (Rk
max − Rk

min)
→
y

k
m (8)

thus generating a sequence of feasible solutions in chaotic variables
→
x
∗k
gbest,m(m = 1, 2, ..., M).

4© Calculate the adaptation value of each feasible solution vector in the feasible
solution sequence, and keep the feasible solution vector corresponding to the

optimal adaptation value, denoted as
→
x
∗k
g .

(4) A particle is randomly selected from the current particle population, and the position

vector of
→
x
∗k
g is used to replace the position vector of the selected particle.

(5) Skip to step (2) until the algorithm reaches the maximum number of iterations N
or the optimal solution is obtained, i.e., the capacity of the wind turbine, PV array,
pumped storage, and battery when the load loss rate of the system is minimized and
the initial investment cost of the system is lowest.

The flow chart of the algorithm of CPSO is shown in Figure 1.
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Figure 1. CPSO algorithm flow chart.

2.2.2. Calculation Process

The input raw data are the technical parameters of each component of the system
(including the height of the wind turbine rotor, the power curve of the wind turbine, the
short-circuit current and open-circuit voltage of the PV arrays, the current and voltage of
the maximum power point, and the maximum and minimum head of the small hydropower
plant), the wind speed data, the solar radiation data, the load data, and the allowable power
loss rate. The initial position of the set particle population includes the capacity of the wind
turbine, PV array, pumped storage, and battery.

The power generation of the wind turbine, the power generation of the PV arrays, the
power consumption of the load, and the constraints are calculated.

During the optimal configuration of the system, if the reliability condition of
LPSP ≤ LPSPreq cannot be met, the position of each particle, i.e., the capacity of the
wind turbines, PV arrays, pumped storage, and battery, is adjusted by the CPSO algorithm
until the system load loss rate LPSP meets the requirements. For the given LPSPreq, the
optimization algorithm allows the system to technically meet the requirements. However,
the final optimized system to simultaneously achieve the lowest σ can be obtained by
building a supply and demand balance calculation model.

3. Example Analysis

3.1. System Construction

The hybrid wind/PV/small-hydropower/facility-agriculture system based on a mi-
crogrid is shown in Figure 2, including wind turbines, PV arrays, small hydropower units,
batteries, dispatch center, inverters, vegetable multispan greenhouses, orchards, and flower
beds. The wind turbines and PV arrays comprise the system power supply. Small hy-
dropower units can be employed as both the system power supply and energy storage

97



Energies 2022, 15, 2466

devices. Batteries are the main energy storage devices of the system. The system load
consists of the loads of vegetable multispan greenhouses, orchards, curtain cooling systems,
filling-light systems, ventilation drives, energy-saving lamps, sprinkler system drives, and
other daily electricity demands.

Figure 2. Hybrid wind/PV/small-hydropower/facility-agriculture system based on a microgrid.

Wind turbines are commonly installed in areas with good wind resources. The PV
arrays are set up in agricultural greenhouses, higher than the normal elevation of 20 cm,
and they span the gaps between adjacent greenhouses, thereby blocking direct sunlight
and providing shade to vegetables, while translucent shed walls at a small angle allow
sunlight to reach vegetables. In addition, PV arrays are installed along farm corridors and
on the roof of the production plant.

3.2. Optimization of the Scheduling Method of the Hybrid System

The chaotic particle swarm method is applied to optimize hybrid system scheduling.
The optimization goal load matching degree maximization, namely, the energy consump-
tion and energy supply, should be lower than the allowable value. The optimization
condition involves maximizing wind and solar resource utilization.
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3.3. Operating Strategy of the Hybrid System
3.3.1. Wind and PV Power Generation Strategies

The wind turbines are operated under the maximum wind energy capture control
strategy according to the available wind energy resources, and the PV arrays are operated
via the MPPT control method according to the available solar resources.

If the generated wind and PV power meet the load demand, i.e., if PW + PPV − PL > 0,
wind and PV power are first supplied to the batteries to be charged. If the batteries are
fully charged and a surplus occurs, power is supplied to the small hydropower system to
pump water and then to the power grid.

If the generated wind and PV power do not satisfy the load demand, i.e., if
PW + PPV − PL < 0, the load is supplemented with other power sources.

3.3.2. Operation Strategy of the Small Hydropower Stations

Small hydropower stations are operated according to the water supply. First, the small
hydropower stations supply power to satisfy the load, and if there is a surplus, power is
supplied to the batteries and then to the power grid.

(1) When wind and PV power cannot meet the load demand, i.e., PW + PPV − PL < 0, the
small hydropower stations supply power to satisfy the load.
1© If PW + PPV + PH − PL > 0, the small hydropower stations supply power to

the batteries to be charged. If a surplus occurs after the batteries have been
fully charged, power is supplied to the power grid.

2© If PW + PPV + PH − PL < 0, other power resources supplement the load.

(2) When wind and PV power do satisfy the load demand, i.e., PW + PPV − PL > 0.
1© If the batteries are fully charged, the small hydropower stations supply power

to the grid.
2© If the batteries are not fully charged, the small hydropower stations first supply

power to the batteries, after which power is supplied to the power grid when
the batteries are fully charged.

3.3.3. Operation Strategy of the Batteries

If PW + PPV + PH − PL < 0, the batteries supply power to satisfy the load.

3.3.4. Operation Strategy of the System

(1) Generation power strategy
1© Wind and PV power first satisfy the load. If there is a surplus, power is

supplied to the batteries to be charged. Any remaining power is then supplied
to the small hydropower stations for water pumping purposes and finally to
the power grid.

2© Small hydropower stations first meet the load demand, and surplus power is
then supplied to the batteries to be charged and finally to the power grid.

(2) Consumption power strategy

The load is first satisfied via wind and PV power, and if the generated power is
insufficient, power is then provided by the small hydropower stations, followed by the
batteries and finally by the power grid.

(3) Battery charging strategy

The batteries are first charged via wind and PV power, and if the supplied power is
insufficient, the small hydropower stations provide power.

(4) Pumping strategy of the pumps of the small hydropower stations

Only wind and PV power are consumed (only if a wind and PV power surplus occurs
is power supplied to the batteries for charging purposes).
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A flowchart of the system operating strategy is shown in Figure 3, where t is the
charging time of the batteries, and T is the maximum charging time of the batteries to
obtain a full charge.

Figure 3. Flow chart of the hybrid system operation strategy.

3.4. Calculation Results and Discussion

In this study, we developed a mathematical model of the hybrid system in Section 2.1,
elaborated the chaotic particle swarm optimization algorithm in Section 2.2.1, and explained
the optimization problem in Section 2.2.2. The power side mainly contains wind turbines,
PV arrays, batteries, and pumped storage units, and their operation and complementary
methods affect the overall output and power balance of the system. Therefore, their input
or output power are used as the optimization variables. Then, in Section 3, the operating
processes of different power sources in the system are described. In a hybrid system,
pumped storage and batteries are discharged when wind power and PV are insufficient
and charged when wind power and PV are sufficient. The flow chart of the hybrid system
operation strategy is shown in Figure 3.

After inputting the optimization variables, PS is obtained by running the flow in
Figure 3, and then the objective function σ is obtained according to Equation (2), after
which the optimization is performed by the CPSO algorithm to obtain a better σ. If
the maximum number of iterations is reached or the optimal solution is obtained, the
calculation is terminated; otherwise the velocity and position of the particle are updated
and calculated again. The application of the CPSO algorithm for the optimal operation of
the hybrid system is shown in Figure 4.
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Figure 4. Application of the CPSO algorithm for the optimal operation of the hybrid system.

In the wind/PV/small-hydropower/facility-agriculture system, the installed capacity
of wind power is 300 kW, that of the PV arrays is 312 kW, that of the small hydropower
stations is 200 kW without regulation, and that of the batteries is 420 kWh. Wind and PV
power curves and daily load curves are shown in Figure 5.

A wind and PV power supply-to-load curve is shown in Figure 6. Above the 0 kW
line, a surplus occurs after wind and PV power satisfy the load, namely, from 1 to 3 h and
23.5 to 24 h, wind and PV power are supplied to satisfy the load, and any surplus power
charges the batteries. Below the 0- W line, wind and PV power are insufficient to meet the
load, i.e., from 3 to 23.5 h, other power sources are required to meet the load demand. In
this example, no surplus electricity is supplied to the power grid.

From 1 to 3 h and 23.5 to 24 h, wind and PV power and the small hydropower stations
supply electricity to satisfy the load. The profit–loss curve of the small hydropower station
output after meeting the load demand is shown in Figure 7a. Above the 0 kW line, there
is a surplus in the small hydropower station output, i.e., from 1 to 3.9 h and 22 to 24 h,
the small hydropower stations first charge the batteries, and any surplus electric energy is
then supplied to the grid. Below the 0 kW line, wind, PV power and small hydropower
generation cannot meet the load. First, the batteries are used to supply power to satisfy the
load, and the power deficit is supplied by the power grid. Figure 7b shows wind and PV
power and small hydropower station supply-to-load curves. From 1 to 1.25 h, the small
hydropower stations supply power to the grid.
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Figure 5. Wind and PV power curves and daily load curve.

Figure 6. Supply-to-load curve of wind and PV power.

(a) 

Figure 7. Cont.
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(b) 

Figure 7. Supply-to-load curves of wind and PV power and small hydropower stations: (a) small
hydropower station output after meeting the load demand; (b) wind and PV power and small
hydropower station supply-to-load curves.

4. Conclusions

The hybrid wind/PV/small-hydropower/facility-agriculture system may effectively
mitigate food and environmental pollution problems and ensure continuity of the energy supply.

(1) The maximum wind power capture control strategy is adopted in wind power gen-
eration, and the MPPT control approach is applied in PV power generation, which
maximizes wind and solar energy resource utilization. The considered small hy-
dropower generating and pumping systems are independent systems, which increase
the system’s operational flexibility.

(2) The operational strategy of the hybrid system is considered in terms of four aspects:
power generation strategy, operation strategy, battery charging strategy, and small
hydropower pumping strategy. The load should be prioritized in terms of electricity
consumption, batteries should be the second priority, and the power grid should
be the final priority. This approach guarantees the electricity required for facility
agriculture and fully utilizes the various resources.

(3) As China’s largest industry, there are many research results in the field of combining
agriculture with clean energy. The research in this paper responds to the carbon peak
and carbon neutral requirements proposed by China. Clean energy is certain to be
vigorously developed in the agricultural industry, and the development model of
“multiple complementary clean energy sources + agriculture” will have far-reaching
implications for the sustainable green development of China and the world.

At present, it is still difficult to fully characterize the system operation and control
strategies due to the complexity of the model and the limited available data. In order to fur-
ther improve the effectiveness of the coordinated operation strategy, a more comprehensive
simulation of the optimal operation of the system considering water quantity constraints,
economics, and other factors is needed in future studies, and the synergy among wind, PV,
and water energy sources should be further explored.
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Abstract: This work formulates a stochastic dynamic programming (SDP) model that incorporates
seasonal electricity prices and can handle a constraint on power yield, which is assumed to be
satisfied at any time it is possible, thus allowing for an analysis of their impacts on the operational
performances of cascaded reservoirs. The model is applied to the Lancang Cascade, specifically its
two largest reservoirs, Xiaowan and Nuozhadu. The results show that increasing the power yield of
the cascade will reduce energy production unfavorably but will impact water spillage favorably, with
a power yield of 2000 MW and with a 91% reliability suggested as being a satisfactory operational
target. The case study also suggests that using seasonal electricity prices makes the power generation
very unstable during weeks 12–20, which is a period of time that is critical to transferring from dry to
flooding seasons.

Keywords: stochastic dynamic programming (SDP); power yield; seasonal price; reliability; cas-
caded reservoirs

1. Introduction

Due to the stochastic characteristics of inflow into reservoir and electricity prices,
long-term hydropower operation is generally interpreted as a stochastic sequential decision-
making process. Additionally, the nonlinear factors that involve hydropower output are
interconnected, including the water head, reservoir storage, release, generating capacity,
and water rate, which raises challenges for long-term hydropower operation [1]. Stochastic
dynamic programming (SDP) is the most conventional methodology that can be used to
address these issues. SDP has long been studied and successfully implemented in reservoir
operation [2–4], which is attributable to its capability for dealing with the nonlinearity
of functions involved in the model as well as in terms of its structure being inherently
compatible with the stage-by-stage decision-making procedure often employed in real-
time reservoir operation. For example, the water balance expresses the relationship of
storages between two successive time-steps [5], and the Markov chain is commonly used to
represent the stochastic relationship of inflows also between two successive time-steps [6].
Both the water balance and the Markov chain can serve well as the transition equations in
dynamic programming (DP).

SDP can derive a close-loop operating rule, which defines the optimal decision at
any possible state and is usually represented by a combination of discrete values of the
state variables that traditionally include the storage at the beginning of the current or
decision-making stage and the local inflow during the current stage of each reservoir [7–9].
The discretization in even a decent resolution of the state variables makes it problematic for
SDP to be applicable to a reservoir system on a large scale such as in instances with more
than three reservoirs. Some scholars [10,11] call it a “dimensional curse” since enumerating
to obtain the optimal decisions for all the possible combinations of the discrete values of the
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state variables takes a very long computational time, which is intolerable in engineering
practice. For a hydropower system with no more than three cascaded reservoirs, however,
SDP is always one of the most favorable options.

In China, where the advancement of power marketization and the market-oriented
electricity price plays a vital role in promoting the optimal allocation of power resources [12],
electricity price is the most pivotal factor in regulating the activity of the power producer. In
deregulated electricity markets, price uncertainty must also be included in the scheduling
models [13]. Due to the influence of uncertain quantities including electricity price and
inflow, reliability in the long-term hydropower is a meaningful measurement to evaluate
the hydropower system [14]. For instance, Saadat and Asghari [15] employed the reliability
concept to maximize the reservoir releases to satisfy downstream demands. Reliability is
an important indicator for power supply in the electrical system [16].

This work will apply SDP to the Xiaowan and Nuozhadu, the two biggest cascaded
hydropower reservoirs in the Lancang River. The problem size is small and can be easily
handled with SDP, which, however, will still encounter great challenges in dealing with
the probabilistic constraints, such as those relating to the reliability, vulnerability, and
resilience of the system, due to the difficulty of formulating these constraints into ones that
are adaptable to the structure of the DP [17]. The Lancang hydropower cascade that is to be
studied is required to yield energy at a high reliability, which is essentially a probabilistic
constraint that is originally unable to be explicitly included in the SDP formulation but is
likely to be converted into a normal constrain by assuming that the power yield must be
satisfied whenever possible.

This work aims to investigate how the power yield will affect the operation of lancing
cascaded reservoirs in terms of reliability, power production and water spillages, the
proper power yield the cascade should target, as well as how the implementation of
seasonal electricity prices will have impacts on the hydropower generation, in addition to
simultaneously deriving the operational policies of the cascaded hydropower reservoirs
that meet different objectives.

2. Problem Formulation

The reservoir operation, when formulated into SDP, may use one or a few state
variables, usually selected from the storage St at the beginning of time-step t, the local
inflow Qt−1 in previous time-step t − 1, the local inflow Qt in current time-step t, and the
forecasted inflow Ht in time-step t [18]. The recursive objective function in the SDP, for one
reservoir and when using the Ht as the inflow state variable, can be expressed as follows:

ft(St, Ht) = E
Qt |Ht

{
max

Rt

[
B(St, Qt, Rt) + E

Ht+1|Ht ,Qt
[ ft+1(St+1, Ht+1)]

]}
(1)

where ft(St, Ht) is the benefit-to-go function, representing the maximum expected benefit
till the end of the planning horizon given the initial storage St at the beginning of time-
step t and the hydrological state Ht in time-step t; E

Qt |Ht
{·} is the expectation operator at

conditional probability of P(Qt|Ht); and B(St, Qt, Rt) is the stage benefit, determined by
the initial storage St, the current inflow Qt, and the release Rt in stage/time-step t.

This work applies SDP to a hydropower system involving two cascaded reservoirs,
where the state variables include the storages Sit of reservoir i at the beginning of time-step
t and the total inflow into the cascade in coming time-step t − 1. The recursive objective
function in SDP, when applied to two cascaded reservoirs, is expressed as follows:

ft(S1t, S2t, Qt) = max
{

E
Qt+1|Qt

[B1t(S1t, I1t, R1t) + B2t(S2t, I2t, R2t) + ft+1(S1,t+1, S2,t+1, Qt+1)]

}
(2)

where the local inflow Iit to an individual reservoir is assumed as being perfectly correlated
to the total inflow Qt to the whole cascade:
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Iit = λi·Qt (3)

in which λi is the proportional coefficient of local inflow into reservoir i to the total inflow
into the whole cascade. The constraints include the following:

(1) The water balance
Si,t+1 = Sit + (Iit + ∑

k∈Ω(i)
Rkt − Rit)·Δt (4)

where the Ω(i) is the set of reservoirs immediately upstream of reservoir i and the Δt
is the time length in time-step t.

(2) The lower Smin
it and upper bounds Smax

it on the storage

Smin
it ≤ Sit ≤ Smax

it (5)

(3) The release being nonnegative
Rit ≥ 0 (6)

(4) The power yield Y at a certain reliability ε

Pr

(
∑

i
Pit ≥ Y

)
≥ ε (7)

where the hydropower output Pit of i in time-step t is determined with

Pit = ηi·
[

Zup
i (

Sit + Si,t+1

2
)− Zdn

i (Rit)

]
·min(Rit, Umax

i ) (8)

with the final storage Si,t+1 being determined via the water balance (4), the ηi being
the coefficient of generation efficiency, and the Umax

i being the capacity of turbine
discharge of hydropower reservoir i.

The stage benefit Bit(Sit, Iit, Rit), dependent of different operational objectives, could
be the energy production, the revenue gained at seasonal prices, and power yield in current
stage, etc. For a certain stage benefit function, the recursive equation in the SDP will evolve
to the optimal reservoir operational policy, which can then be used in long-term real-time
operation, month by month, for instance. This work will compare the following three
objectives with each other, denoted as follows:

(1) SDP-1: to maximize the energy production without power yield;

Bit(Sit, Qit, Rit) = Pit·Δt (9)

(2) SDP-2: to maximize the revenue at seasonal prices without power yield, where ζt is
the seasonal price of electricity in time-step t;

Bit(Sit, Qit, Rit) = ζt·Pit·Δt (10)

(3) SDP-3: to maximize the energy production with power yield (7).

3. Solution Procedures

The reservoir operation problem will be solved with discrete stochastic dynamic
programming (DSDP), which requires state variables to be discretized and both the objective
and constraints to be decoupled into every stage, with only the state variables coupled via
state variables between two adjacent stages.

3.1. The Typical Inflows and Their Transition Probabilities

The coming inflow into the cascade, as one of the state variables, is a random variable
that can be represented by some typical values, making the monthly inflows a stochastic
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chain, with the Markov Chain as being specific when considering only the first-order
correlation between the inflows in two successive time-steps. Generally, based upon the
mean and standard deviation of the random inflow, its distribution space can be divided
into five intervals: below dry, dry, average, wet, and above wet, commonly practiced
due to the simplicity in engineering application [19]. To derive the inflow transition
probabilities, four methods—counting, ordinary least-squares regression, robust linear
model regression, and multi-variate conditional distributions—are evaluated to determine
how they influence water system performance [20]. The most accessible counting method
is selected to acquire inflow transition probabilities in this work. The number of typical
inflows should be neither too small nor too large to balance the computational burden with
the fullness of their representation. The inflow in this work is represented with 7 typical
values, determined by following these steps:

(1) Suppose the number of typical inflows in time-step t is K, and there are Y years of his-
torical inflows Qy

t observed, which ensure n (=Y/K) historical inflows be represented
by one typical inflow, determined as the average over these n historical inflows.

(2) Arrange the historical inflows Qy
t for t = 1,2, . . . , T and y = 1,2, . . . , Y in order from

the smallest to the largest: Qy(1)
t ≤ Qy(2)

t ≤ · · · ≤ Qy(Y)
t ; the typical inflow for any

interval k (k = 1,2, . . . , K) in time-step t is determined as the average over n historical
inflows, expressed as

Qt(k) =
1
n

nk

∑
j=n(k−1)+1

Qy(j)
t (11)

(3) Apparently, each historical inflow in any time-step t can be represented by one of
the k typical inflows in this time-step, and the transition probability from the k-th in
time-step t to the l-th in time-step t + 1 can be estimated as follows:

Pr
{

Ql
t+1

∣∣∣Qk
t

}
=

nt(k, l)
n

(12)

where among n historical inflows represented by the k-th typical inflow in time-step
t, there are nt(k, l) of their successive inflows that are represented by the l-th typical
inflow in time-step t + 1.

3.2. The Representative Storages

The storage of a reservoir, which theoretically could be any value within its physically
feasible region, is actually a continuous state variable that will also be discretized into a
number of storage volume intervals representing the storage state at certain time. The
number of the storage intervals should be good enough for the computational resolution.
According to the work by Karamouz [21], increasing the number of storage intervals to
more than 20 will help little in improving the operational results of a reservoir that has an
active storage capacity 1.7 times more than the amount of its average annual runoff.

3.3. The Power Yield at Certain Reliability

As required by SDP, the constraints must be decoupled into every stage, with only the
state variables coupled via state variables between two adjacent stages. The constraint (7) of
power yield at certain reliability, however, cannot be easily decoupled into individual stages
as the reliability of meeting the power yield is determined over the whole planning horizon
and cannot be exactly enforced stage by stage. However, if assuming the power yield must
be met whenever it is possible, then we have the following deterministic constraint:

∑
i

Pit ≥ Y (13)

to be satisfied in every stage, thereby making the constraint decoupled into individual
stages. Under this assumption, the power yield actually determines the reliability, which
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can be estimated by simulating the final optimal operation policy derived by solving
the SDP.

3.4. Recursive Evolution

With the transition probabilities determined with (12), the recursive Equation (2) can
be reformulated as follows:

ft(Si
1t, Sj

2t, Qk
t ) = max

R1t ,R2t

{
K

∑
l=1

Pr(Ql
t+1

∣∣∣Qk
t )·

[
B1t(S1t, I1t, R1t) + B2t(S2t, I2t, R2t) + ft+1(S1,t+1, S2,t+1, Ql

t+1)
]}

(14)

which is a backward recursive equation and, given a stationary stochastic streamflow
process, will evolve to a steady operational policy of the cascaded reservoirs. To be specific,
let the benefit-to-go function at the end of the planning horizon (T) be zero so that the
recursive equation finishes one iteration after evolving from T to 1 backward over time.
Then, subtract the benefit-to-go function by a constant to avoid numerical overflow, and
repeat this procedure until the convergence has been achieved.

4. Engineering Applications

4.1. Engineering Background

Xiaowan and Nuozhadu are two large, cascaded hydropower reservoirs located in
the Lancang River basin; both are situated in the middle and lower reaches of the Lancang
River, and the reginal location is depicted in Figure 1. The Xiaowan reservoir, with an active
storage capacity close to 10 billion cubic meters, has a strong over-year regulation capacity,
the same as its downstream Nuozhadu reservoir that, with a total of 5850 MW capacity
installed, is one of the key strategic projects for the West-to-East and the Yunnan-to-outside
power transmission thanks to its strong power generation capacity. This work studies the
joined optimal operation of the cascaded Xiaowan and Nuozhadu reservoirs, which are
two main regulatory hydropower stations under the Yunnan Provincial Power Grids. The
dimension problem will not be an obstacle for the case study of two reservoirs.

Figure 1. Reginal location of Xiaowan and Nuozhadu reservoir.

4.2. Data Preparation and Setting

There are 57 years of “Xunly” historical inflows during 1953–2009 available for the
cascade. In China, a month is divided into three Xuns: the early, mid, and late, with each
Xun being a period of about 10 days.

The number of inflow states are set to be 7 in each Xun; thus, the size of the transition
probability matrix will be 7 × 7 = 49. It is worth noting that since the reservoir operational
rule is annually periodic, the transition probability from the last Xun in a year is to the
first Xun in its next year. The optimal reservoir operation rule derived with the SDP will
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be simulated under the historical scenario of the inflows observed during 1953–2009. The
basic parameters of both hydropower reservoirs are summarized in Table 1.

Table 1. The basic parameters of the reservoirs.

Parameters Xiaowan Nuozhadu

Dead storage capacity (bcm) 4.662 10.414
Normal storage capacity (bcm) 14.557 21.749

Minimum head (m) 164 152
Maximum head (m) 251 215

Generating discharge capacity (m3) 2261 3429

This work studies the joint operational strategies of the cascaded Xiaowan and
Nuozhadu hydropower reservoirs under three different objective conditions. The SDP-1
that maximizes the expected energy production is different from the SDP-2 that maximizes
the expected revenue calculated based on seasonal electricity prices, which are given in
Table 2.

Table 2. Monthly electricity prices.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Price
(CNY/KWh) 0.39 0.39 0.39 0.39 0.26 0.19 0.19 0.19 0.19 0.19 0.26 0.39

The SDP-2 is equivalent to the SDP-1 when keeping the electricity unchanged over the
planning horizon. As for the SDP-3, the operational strategies with different power yields
can be derived and then simulated over many years to statistically estimate the reliabilities
in meeting the power yields. Figures 2 and 3 reveal the water level, inflow, and release
process of Xiaowan and Nuozhadu for SDP-1, SDP-2, and SDP-3 models during 2000–2009.
For SDP-2, due to the dynamic electricity price, water level fluctuations are more obvious.
Similar trends can be presented for SDP-3 models with different power yield. Statistical
analysis will be described as follows:

Figure 2. Water level, inflow, and release process of cascade reservoir for SDP-1 and SDP-2 during
2000–2009.
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Figure 3. Water level, inflow, and release process of cascade reservoir for SDP-3 with power
yield = 500 MW and 5000 MW during 2000–2009.

4.3. Comparison between the SDP-1 and SDP-2

Figure 4 compares the SDP-1 and SDP-2 of the annual energy production and revenue
for both cascaded hydropower stations. When compared to the statistical average deter-
mined by simulating the operation strategies over many years, the SDP-1 gives an annual
average energy production (AAEP) of 50,274,110 MWh, improved by 2.29% over the SDP-2
that produces an AAEP of 49,121,330 MWh. The SDP-2, however, gains an annual average
revenue (AAR) of CNY 15,094 M, improved by 5.34% over the SDP-1 that will have an
AAR of CNY 14,328 M when estimated at CNY 0.285/KWh, which is the average of the
monthly electricity prices given in Table 2.

Figure 4. Comparison between the SDP-1 and SDP-2 on expected energy (a) and revenue (b).

Figure 5 shows the energy production processes from the SDP-1 and 2 for both the
Xiaowan and Nuozhadu hydropower reservoirs. The SDP-1 that maximizes the expected
energy production has a generation process that is similar to the inflow process in the
trend, with less generation in dry seasons and more in wet seasons. However, the SDP-2

113



Energies 2022, 15, 3247

that maximizes the expected revenue will try to generate less in wet seasons when the
electricity prices are low but will generate more in the dry seasons to take advantage of
the higher electricity prices, which is particularly obvious from the Nuozhadu reservoir.
The results suggest that using seasonal electricity prices makes the power generation very
unstable during 12–20 Xun, which is a critical time period for transferring from dry to
flooding seasons.

Figure 5. Comparison between the SDP-1 and SDP-2 on average energy production in each Xun
(1/3 month).

4.4. The Results by the SDP-3

By setting the power yield to 500 MW, 1000 MW, 2000 MW, 3000 MW, 4000 MW, and
5000 MW, the SDP-3 problems are solved to derive the corresponding optimal operational
strategies, which are then simulated over a time period of 1953–2009, when the historical
inflows are available to estimate the reliabilities associated with the power yields. Table 3
summarizes the relationship between the power yield and its reliability, and Figure 6
illustrates the average energy production in each time-step or Xun (1/3 month), in this
case. As Table 3 shows, when the power yield increase gradually, the reliability in meeting
the power yield decrease gradually, and Figure 6 demonstrates that the energy production
process becomes more even for both the Xiaowan and Nuozhadu hydropower reservoirs,
with the higher reliability leading to more generation than the lower reliability in dry
seasons. The reliability decreases sharply when increasing the power yield from 2000 MW to
3000 MW, suggesting the power yield of 2000 MW at 91% reliability should be a satisfactory
operational target.

Table 3. The reliability of the power yield for the cascade.

Power Yield 500 MW 1000 MW 2000 MW 3000 MW 4000 MW 5000 MW

Reliability 99.4% 98.3% 90.7% 77.9% 69.8% 47.5%

The average annual energy productions and spillages under different power yields
are summarized in Table 4, which shows that both the energy production and spillage of
the Xiaowan and Nuozhadu decrease when the power yield of the hydropower cascade
grows higher; in particular, the spillage from the Nuozhadu decreases sharply from 1073 to
595 million cubic meters when the power yield increases from 4000 to 5000 MW. Apparently,
increasing the power yield of the cascade will reduce the energy production unfavorably
but will affect the water spillage favorably.
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Figure 6. The average energy production of Xiaowan (a) and Nuozhadu (b) in each Xun (1/3 month)
under different power yields for the cascade.

Table 4. Annual energy and spillage under different power yields by the SDP-3.

500 MW 1000 MW 2000 MW 3000 MW 4000 MW 5000 MW

Energy
(MWh)

Xiaowan 22,180,172 22,179,661 22,179,003 22,176,101 22,160,479 21,512,030
Nuozhadu 28,093,066 28,093,517 28,092,104 28,071,902 27,933,721 27,214,184

Spillage
(million m3)

Xiaowan 1417.9 1416.8 1410.9 1367.1 1191.1 909.0
Nuozhadu 1282.5 1280.8 1278.3 1231.6 1072.5 594.5

The average spillage processes derived by the SDP-3 under different power yields are
illustrated in Figure 7, which demonstrates that spillage mainly occurs from early July to
late August. With the power yield increased from 0 to 5000 MW, the spillages of Nuozhadu
have a trend that is broadly similar to each other in terms of gradually increasing from early
July, reaching the first peak in mid or late August, then decreasing until early September,
reaching the second peak, then decreasing slowly. Xiaowan, however, has a different trend
in spillage that reaches its peak in mid or late September when the power yield is 4000 MW
and in mid or late June when it is 5000 MW.

Figure 7. The average spillage in each Xun under different power yields.
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5. Conclusions

This work formulates a stochastic dynamic programming (SDP) model that incorpo-
rates seasonal electricity prices and can handle the constraint on power yield at certain
reliability that are assumed to be satisfied whenever it is possible. Despite the increasing
number of reservoirs that will hinder the application of proposed SDP model to multi-
reservoir operation, a cascade with two reservoirs in the case study makes it convenient
to employ the proposed SDP model. When applied to the Lancang River consisting of its
two major cascaded hydropower reservoirs, SDP derives the optimal operational strategies
under three conditions: to maximize the energy production and revenue without power
yield, and to maximize the energy production with power yield, both of which are com-
pared with each other. The results show that increasing the power yield of the cascade
will reduce the energy production unfavorably but will affect the water spillage favorably,
with a power yield of 2000 MW with a 91% reliability being suggested as a satisfactory
operational target. The case study also suggests that using seasonal electricity prices makes
the power generation very unstable during weeks 12–20, which is a critical period of time
for transferring from dry to wet seasons.
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Abstract: This paper investigates the nonlinear modeling and stability of a doubly-fed variable speed
pumped storage power station (DFVSPSPS). Firstly, the mathematical model of DFVSPSPS with
surge tank considering nonlinear pump turbine characteristics was derived and established. Then,
Hopf bifurcation analysis of DFVSPSPS was performed. The stable region was identified and verified
by example analysis. Moreover, the effect mechanism of nonlinear pump turbine characteristics
on the stability of DFVSPSPS was explored. Finally, the influence of factors on the stability and
dynamic response of DFVSPSPS was studied. The results indicate that the emerged Hopf bifurcation
of DFVSPSPS is supercritical and the region on the low side of the bifurcation line is the stable region.
Nonlinear head characteristics have a significant influence on the stability and dynamic response
of DFVSPSPS. Nonlinear speed characteristics have an obvious effect on the stability and dynamic
response of DFVSPSPS only under positive load disturbance and unstable surge tank. Nonlinear
head characteristics are unfavorable for the stability of DFVSPSPS under positive load disturbance
and favorable under negative load disturbance. A smaller flow inertia of penstock, a smaller head
loss of penstock and a greater unit inertia time constant are favorable for the stability of DFVSPSPS.
The stable region under the positive disturbance of active power is larger than that under the negative
disturbance of active power. The time constant of the surge tank presents a saturation characteristic
on the stability of DFVSPSPS.

Keywords: doubly-fed variable speed pumped storage power station; nonlinear modeling; Hopf
bifurcation; stability analysis; nonlinear pump turbine characteristics

1. Introduction

Vigorously developing renewable energy is an important strategic measure to deal
with the problems of fossil fuel shortage, global warming and energy security. It is also
an effective way of maintaining the sustainable development of national societies and
economies. In recent years, the large-scale development and grid connection of intermittent
renewable energy, such as wind power and photovoltaic, has created a serious threat to the
safe and stable operation of the power grid [1,2]. Pumped storage power stations (PSPS)
are the main regulating power supply in power systems [3]. It is of great importance to
ensure the safety of the power grid, promote the consumption of renewable energy and
promote the green and low-carbon transformation of energy [4,5]. Under the guidance
of the goal of carbon peak and carbon neutralization, vigorously developing PSPS is an
urgent task to implement the dual carbon goal [6].

At present, most PSPS use synchronous generators, which can only operate at a con-
stant speed, resulting in a series of problems: (a) Under generator operation mode, the
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power regulation of the unit is slow; (b) The constant speed PSPS (CSPSPS) can only operate
stably at the rated synchronous speed. When the operating head or load change, the unit
speed will deviate from the optimal speed and the efficiency of the pump turbine will
decrease, resulting in the deterioration of the unit operation; (c) In pumping mode, the
input electromagnetic power lacks controllability. The variable speed pumped storage
unit (VSPSU) is a new type of PSU, where an AC-excited asynchronous motor is used to
replace the traditional DC-excited synchronous motor. The speed control of the unit is
realized by changing the excitation current, which overcomes the disadvantage that the
speed of the traditional PSU is not adjustable. Compared with the CSPSPS, the variable
speed PSPS (VSPSPS) has the following advantages: (a) Accelerated regulation of active
power; (b) Increased operation efficiency of the pump turbine in generator and pumping
modes; (c) Widened operating range of the pump turbine; (d) Reduced cavitation process;
(e) Increased stability and flexibility of pump turbine [7–9]. However, the modeling and op-
eration control of VSPSPS are more complex due to the use of an AC-excited asynchronous
motor and converter.

Most of the research into VSPSPS are focused on mathematical modeling, numerical
simulation, operation stability, reliability, dynamic characteristics and control. Mathemat-
ical modeling is the foundation of numerical simulation, operation stability, reliability,
dynamic characteristics and control. Stability is the primary requirement for the normal
operation of the system. The relevant research on modeling, control and stability of VSPSPS
is presented below.

Kuwabara et al. [10] took the 400 MW VSPSU of the Ohkawachi PSPS as an example to
study the principal design and actual performance of the machine. The excellent dynamic
performance and significant potential for contribution to the power system have been
verified by field test data. Unsteady numerical simulations of the VSPSPS and the CSPSPS
were performed and the corresponding dynamic performance was compared [11]. The
simulation results demonstrate that VSPSPS improves power system stability. Tests of
the VSPSPS in the Hydraulics Laboratory of the Polytechnic University of Madrid were
also performed [8]. The results show that the VSPSPS has greater flexibility under off-
designed conditions, which is mainly reflected by the improvements in efficiency, operation
performance and operating range. Integrated modeling of VSPSPS and wind power was
established with MATLAB/Simulink and validated by on-site measurements [12]. The
advantage of VSPSPS for mitigating wind was analyzed by performance assessment.
The different control strategies for VSPSPS connected to an isolated power system with
high penetration of intermittent renewable energy were studied. The effect mechanism
of penstock length and initial operating point on the dynamic performance was then
investigated [13].

Relevant scholars have conducted in depth research into modeling, numerical sim-
ulation and control, and have done a lot of work. However, there has been relatively
little work conducted on the stability of VSPSPS [14]. Guo et al. [15] derived a nonlin-
ear mathematical model of VSPSPS. The influence of factors on stability were studied.
However, nonlinear pump turbine characteristics were ignored and a linear model was
used. A novel mathematical model of VSPSPS concerning the electromechanical transient
model of doubly-fed induction (DFIG) was established and the stability was investigated
based on Hopf bifurcation theory under turbine and pump modes [16,17]. Unfortunately,
the pump turbine model was still linear. Zhu et al. [18] studied the stability of VSPSPS
considering nonlinear head loss and the parameter sensitivity analysis of the model was
analyzed systematically. However, the model did not consider pump turbine nonlinear
characteristics.

From the above literature review, it can be shown that pump turbine nonlinear charac-
teristics are often ignored and the simplified linear model is used in most of the existing
research. However, the stability of a VSPSPS is affected by all the components of the
hydropower station. Among those components, the pump turbine is the core component
of PSPS and has an important effect on the stability of VSPSPS [19]. On the other hand,
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the surge tank also has an obvious influence on the stability and dynamic performance
of VSPSPS but this influence is always neglected [20–22]. Therefore, it is difficult to fully
understand the stability and dynamic characteristics of VSPSPS based on the simplified
model; the effect mechanism of nonlinear pump turbine characteristics on stability and
dynamic characteristics of VSPSPS can not be calculated. Moreover, most of the established
models are focused on numerical simulation and control and are not suitable for stability
analysis [14]. Therefore, a complete and reasonable mathematical model should be estab-
lished for stability and dynamic characteristics analysis of VSPSPS. To overcome the above
problems, using a doubly-fed VSPSPS (DFVSPSPS) as the research object, a novel nonlinear
model of DFVSPSPS with surge tank and consideration of nonlinear pump turbine char-
acteristics was established, and the dynamic performance and parameter sensitivity were
studied. The novelty and innovation of the paper are:

(1) The establishment of a novel, nonlinear model of DFVSPSPS considering surge tank
and nonlinear pump turbine characteristics.

(2) Clarification of the stability of DFVSPSPS based on theoretical analysis and numerical
simulation.

(3) Revealing of the effect mechanism of nonlinear pump turbine characteristics on the
stability of DFVSPSPS.

(4) Revealing of the influence of factors on the stability of DFVSPSPS.

The rest of this paper is organized as follows: The mathematical model of DFVSPSPS
considering surge tank and nonlinear pump turbine characteristics is established in Sec-
tion 2; in Section 3, the stability of DFVSPSPS is analyzed and verified by Hopf bifurcation
theory and numerical simulation; in Section 4, the influence of nonlinear pump turbine
characteristics on the stability and dynamic characteristics of DFVSPSPS are revealed; in
Section 5, the influence of system parameters on the stability and dynamic characteristics
of DFVSPSPS are studied; in Section 6, conclusions are given.

2. Nonlinear Modeling of DFVSPSPS

A typical layout schematic diagram of a DFVSPSPS is shown in Figure 1. In a DFVSP-
SPS system, the components include an upstream reservoir, headrace tunnel, surge tank,
penstock, pump turbine, DFIG, converter and tailwater. The pump turbine is designed in a
reversible way with high energy conversion efficiency in both power generation and pump-
ing functions. The surge tank is set to decrease water hammer pressure in the penstock.
The mathematical model of a DFVSPSPS is composed of the basic equations of components.
The nomenclature for variables is shown in Appendix A.

 

Figure 1. Schematic diagram of a DFVSPSPS.
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2.1. Hydraulic System

The dynamic equations of the hydraulic system, including headrace tunnel, surge tank
and penstock, are determined by Newton’s Second Law of Motion.

Dynamic equation of headrace tunnel [23,24]:

hs = −TwH
dqH
dt

− hH0

H0
(1)

Dynamic equation of surge tank [23,24]:

q = qH + TF
dhs

dt
(2)

Dynamic equation of penstock [19]:

Tw
dq
dt

= −h − hs (3)

2.2. Model of DFIG Control System
2.2.1. Model of DFIG

DFIG is a complex system with strong nonlinearity and high coupling, therefore, it
is difficult to model. To facilitate the research, the model of DFIG was established in a
two-phase d-q synchronous coordinate. The basic equations of stator voltage and rotor
voltage are [16]: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

vds = Rsids +
d
dt ϕds − ω1 ϕqs

vqs = Rsiqs +
d
dt ϕqs + ω1 ϕds

vdr = Rridr +
d
dt ϕdr − (ω1 − ω)ϕqr

vqr = Rriqr +
d
dt ϕqr + (ω1 − ω)ϕdr

(4)

The equations of the stator and rotor flux linkages are represented as follows:⎧⎪⎪⎨⎪⎪⎩
ϕds = Lsids + Lmidr
ϕqs = Lsiqs + Lmiqr
ϕdr = Lmids + Lridr
ϕqr = Lmiqs + Lriqr

(5)

The torque equation and motion equation of the DFIG are represented as follows:{
dω
dt = 1

Ta
(TL − Te − Fω)

Te = 1.5np
(

ϕdsiqs − ϕqsids
) (6)

2.2.2. Control System

An AC-DC-AC bidirectional converter was adopted for this paper. The rotor-side
converter adopts vector control based on the stator flux direction to realize the decoupling of
active and reactive power of DFIG and control the active and reactive power independently.
The grid-side converter adopts double closed-loop control based on the voltage direction
to keep the DC bus voltage constant.

The control of the rotor side is shown as follows:⎧⎨⎩ idr−re f =
Ls
Lm

(
Kp3 +

Ki3
s

)(
Qdre f − Qd

)
+ ϕ1

Lm

vdr−re f =
(

Kp4 +
Ki4
s

)(
idr−re f − idr

)
+ vdrc

(7)

⎧⎨⎩ iqr−re f =
Ls
Lm

(
Kp1 +

Ki1
s

)(
Pre f − P

)
vqr−re f =

(
Kp2 +

Ki2
s

)(
iqr−re f − iqr

)
+ vqrc

(8)
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vdrc and vqrc are defined as follows:

vdrc = − 1
Ls

(LrLs − LmLm)(ω1 − ω)iqr (9)

vqrc =
1
Ls

(LrLs − LmLm)(ω1 − ωr)idr − Lm

Ls
(ω1 − ω)ϕ1 (10)

The control of the grid side is shown as follows:⎧⎨⎩ idg−re f =
(

Kp5 +
Ki5
s

)(
Qg−re f − Qg

)
vdg−re f =

(
Kp6 +

Ki6
s

)(
idg−re f − idg

) (11)

⎧⎨⎩ iqg−re f =
(

Kp7 +
Ki7
s

)(
vdc−re f − vdc

)
vqg−re f =

(
Kp8 +

Ki8
s

)(
iqg−re f − iqg

) (12)

Now, the mathematical model of the DFIG control system was established, and con-
sisted of Equations (4)–(12).

2.2.3. Model Simplifying of DFIG Control System

The response time of the electromagnetic transient, including the switching action
of the power electronic devices and the dynamic process of the power converter, is very
short. The electromechanical transient process is relatively slow (hundreds of millisec-
onds). Therefore, the model of the DFIG control system can be simplified by ignoring the
electromagnetic transient process.

Under the reference coordinate system of stator flux linkage orientation, the d-q axis
voltage and flux linkage have the following constraints:⎧⎪⎪⎨⎪⎪⎩

vds = 0
vqs = −u1
ϕds = ϕ1
ϕqs = 0

(13)

Under operation, the voltage dip of the stator resistance is far less than the reactance
voltage dip and counter electromotive force. Therefore, the stator resistance of the motor
can be ignored. By substituting Rs = 0 and Equation (13) into Equations (4)–(5) we yield [16]:[

didr
dt

diqr
dt

]
=

[ Rr Ls
L2

m−Ls Lr
ω1

−ω1
Rr Ls

L2
m−Ls Lr

][
idr
iqr

]
+ ω

[
0 −1
1 0

][
idr
iqr

]
+

Ls
L2

m−Ls Lr

[ −1 0
0 −1

][
vdr
vqr

]
+ Lm ϕ1(ω1−ω)

L2
m−Ls Lr

[
0
1

] (14)

where ϕ1 = −u1/ω1.
The dynamic characteristics of a DFVSPSPS are only related to the active power

regulation. Therefore, under decoupling control, the grid voltage and the d-axis current can
be considered constant. Consequently, in the study of stability and dynamic characteristics
of DFVSPSPS, only the change of q-axis current is considered. For Equation (14), the
equation for change of q-axis current can be obtained when the change of the d-axis current
is ignored [16]:

diqr

dt
=

RrLs

L2
m − LsLr

iqr − Ls

L2
m − LsLr

vqr + (ω1 − ω)

(
Lm ϕ1

L2
m − LsLr

− idr

)
(15)
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The simplified model of DFIG can be obtained by combining Equations (6) and (15):⎧⎪⎪⎨⎪⎪⎩
diqr
dt = Rr Ls

L2
m−Ls Lr

iqr − Ls
L2

m−Ls Lr
vqr + (ω1 − ω)

(
Lm ϕ1

L2
m−Ls Lr

− idr

)
Te = −1.5np ϕ1

Lm
Ls

iqr
dω
dt =

np
J (Te − Tm)

(16)

The response time of the electromagnetic transient is far less than the electromechanical
transient process. Therefore, the dynamic process of the converter and the inner current
loop can be ignored. A simplified DFIG control system model can be obtained further by
combining Equations (8), (10) and (16):⎧⎪⎪⎨⎪⎪⎩

.
x1 = p +

3np ϕ1Lmω0
2Ls

iqr +
3Iqr0np ϕ1Lm

2Ls
ω +

3np ϕ1Lm
2Ls

ωiqr
.
iqr = − LS

Lm

(
Kp1

.
x1 + Ki1x1

)
.

ω = 1
Ta

(
mt +

3np ϕ1Lm
2Ls

iqr

) (17)

2.3. Mechanical System

The governor is the core control component of the DFVSPSPS and consists of the
controller and servosystem, which is mainly used to regulate the frequency, guide vane
opening and power of a pump turbine. The traditional proportional-integral-derivative
(PID) controller is used in the governor of a DFVSPSPS. The transfer function of the PID is
defined as [25]:

GPID(s) = KP +
KI
s

+ KDs (18)

The servosystem is the actuator of the governor, which is used to convert the electrical
signal from the controller output into a mechanical signal to provide power to operate the
guide vane. The servosystem can be described by a typical first-order transfer function:

y(s)
σ(s)

=
1

1 + Ty(s)
(19)

The mechanical system consists of pump turbine and governor. The model for a pump
turbine can be defined as a moment function and a flow function of guide vane opening,
generator speed and water head, shown as follows [26]:{

Mt = ft(α, n, H)
Q = f (α, n, H)

(20)

For small perturbation in the neighborhood of a steady-state operating point, the non-
linear pump turbine model shown in Equation (20) can be approximated as a linear model
by using the Taylor series expansion without considering higher-order terms. Equation (20)
can be rewritten as: {

ΔMt =
∂Mt
∂α Δα + ∂Mt

∂n Δn + ∂Mt
∂H ΔH

ΔQ = ∂Q
∂α Δα + ∂Q

∂n Δn + ∂Q
∂H ΔH

(21)

The relative values of the above equations are obtained:⎧⎪⎪⎨⎪⎪⎩
ΔMt
Mr

=
∂Mt
Mr

∂ α
αmax

Δα
αmax

+
∂Mt
Mr

∂ n
nr

Δn
nr

+
∂Mt
Mr

∂ H
Hr

ΔH
Hr

ΔQ
Qr

=
∂Q
Qr

∂ α
αmax

Δα
αmax

+
∂Q
Qr

∂ n
nr

Δn
nr

+
∂Q
Qr

∂ H
Hr

ΔH
Hr

(22)
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Meanwhile, the six transfer coefficients are defined as follows:⎧⎪⎪⎨⎪⎪⎩
ey =

∂Mt
Mr

∂ α
αmax

ex =
∂Mt
Mr

∂ n
nr

eh =
∂Mt
Mr

∂ H
Hr

eqy =
∂Q
Qr

∂ α
αmax

eqx =
∂Q
Qr

∂ n
nr

eqh =
∂Q
Qr

∂ H
Hr

(23)

Thus, Equation (22) can be expressed as [27,28]:{
mt = eyy + exω + ehh
q = eqyy + eqxω + eqhh (24)

where six transfer coefficients of pump turbine ex, ey, eh, eqx, eqy and eqh are the partial
derivatives of the torque and flow concerning speed n, guide vane opening y and water
head h, respectively [29].

The mathematical model of the DFVSPSPS system not only includes the description of
the dynamic characteristics of each component of the system, but also includes the control
strategy, which is composed of Equations (1)–(3), Equations (17)–(19) and Equation (24).
The control block diagram of the DFVSPSPS is shown in Figure 2.

-Ls Lm S-1Pref

q

P

iqr 

as-1

 r
Tm

X

p m

s

n L
L
ϕ− Te

H

PID

 opt  r
u

h
y

−

−

Figure 2. Control block diagram of the DFVSPSPS.

As shown in Figure 2, the optimal speed ωopt is obtained from the power reference
value Pref and head h through the optimal speed generator, and the pump turbine can
operate under the optimal working conditions. The control signal u of PID controller can
be obtained from the difference between the optimal speed ωopt and the real-time speed
ω. The guide vane opening y can then be obtained through the hydraulic servosystem to
control the mechanical torque of the hydraulic turbine unit. The rotor side controls the
active output of the generator according to the difference between the power reference
value Pref and the real-time power P. The speed optimization of the optimal speed generator
is used to obtain the optimal speed under different power reference value Pref and head h.

Therefore, according to the control block diagram of the system, the state space
equation of the DFVSPSPS can be obtained from Equation (25):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
qH = 1

TwH
hs − 2hH0

TwH H0
qH

.
hs =

1
TF

(
eqhh + eqxω + eqyy − qH

)
.
h = 1

eqh

(
−eqx

.
ω − eqy

.
y − 1

Tw
h − 1

Tw
hs

)
.
x1 = p +

3np ϕ1Lmωr0
2Ls

iqr +
3iqr0np ϕ1Lm

2Ls
ω +

3np ϕ1Lm
2Ls

ωiqr
.
iqr = − Ls

Lm

(
kp1

.
x1 + ki1x1

)
.

ω = 1
Ta

(
exω + eyy + ehh +

1.5np ϕ1Lm
Ls

iqr

)
.
y = 1

Ty

(
kp

.
z + kiz − kd

.
ω − y

)
.
z = ap − ω

(25)

Equation (25) is an eighth-order state equation with eight state variables, qH , hs, h, x1,
iqr, ω, y and z. When the six transfer coefficients of pump turbine ex, ey, eh, eqx, eqy and eqh
are considered as constants, the pump turbine is a linear model. The six transfer coefficients
can be obtained from the model synthetic characteristic curve of the pump turbine. The
synthetic characteristic curve of the pump turbine is shown in Figure 3. To calculate the six
transfer coefficients in a certain steady operating point 0, the four neighboring operating
points should be determined. In Figure 3, points 1 and 2 are located on the equal speed
curve and points 3 and 4 are located on the equal guide vane opening curve. The six
transfer coefficients can be defined as:⎧⎨⎩ ex = (M4−M3)/Mr

(n4−n3)/nr
ey = (M2−M1)/Mr

(α2−α1)/αmax
eh = (M4−M3)/Mr

(H4−H3)/Hr

eqx = (Q4−Q3)/Qr
(n4−n3)/nr

eqx = (Q2−Q1)/Qr
(α2−α1)/αmax

eqh = (Q4−Q3)/Qr
(H4−H3)/Hr

(26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M = M11D3

1 H
Q = Q11D2

1

√
H

n = n11i
√

H/D1

Hi =
(

nD1
n11

)2

(27)

Figure 3. The synthetic characteristic curve of a pump turbine.

From the above analysis, it can be seen that the values of six transfer coefficients are
dependent on the steady operating condition point and characteristic curve of the pump
turbine.

In the above mathematical model of DFVSPSPS shown in Equation (25), the six
coefficients are considered as constants. However, during the transient process, the system
parameters and operating condition point will change. Therefore, the values of transfer
coefficients of the pump turbine will change. Therefore, there are some limitations and
inaccuracies in the analysis of stability and dynamic characteristic of DFVSPSPS based
on the linear pump turbine model, resulting in a large deviation in the calculation results.
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Considering the nonlinear characteristics of the pump turbine reflected by the changing six
transfer coefficients with the change of operating conditions, the pump turbine nonlinear
model should be deduced to analyze and reveal the influence of nonlinear pump turbine
characteristics on the stability and dynamic characteristics of DFVSPSPS.

In the following paragraphs ey is taken as an example to illustrate the derivation
process of the nonlinear analytical expression [30].

ey = (M2−M1)/Mr
(α2−α1)/αmax

=
(M112D3

1 H−M111D3
1 H)/M11r D3

1 Hr
(α2−α1)/αmax

= (M112−M111)/M11r
(α2−α1)/αmax

H
Hr

= ey0(h + 1)
(28)

By using the same method, we can get [30]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

eqy = (Q2−Q1)/Qr
(α2−α1)/αmax

= eqy0
√

h + 1

ex = (M4−M3)/Mr
(n4−n3)/nr

= ex0
√

h + 1

eqx = (Q4−Q3)/Qr
(n4−n3)/nr

= eqx0

eh = (M4−M3)/Mr
(H4−H3)/Hr

= eh0

eqh = (Q4−Q3)/Qr
(H4−H3)/Hr

= eqh0
1

ω+1

(29)

Then the nonlinear pump turbine model can be obtained:{
m = eh0h + ex0

√
h + 1ω + ey0(h + 1)y

q = eqh0
1

ω+1 h + eqx0ω + eqy0
√

h + 1y
(30)

From Equation (30), we can find that the moment equation and discharge equation are
nonlinear and the six transfer coefficients can change with the head and speed. Therefore,
the nonlinear pump turbine characteristics consist of nonlinear head characteristics and
nonlinear speed characteristics. Considering the nonlinear pump turbine characteristics, a
novel nonlinear DFVSPSPS is established in Equation (31):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
qH = 1

TwH
hs − 2hH0

TwH H0
qH

.
hs =

1
TF

( eqh0
ω+1 h + eqx0ω + eqy0

√
h + 1y − qH

)
.
x1 = p +

3np ϕ1 Lmωr0
2Ls

iqr +
3iqr0np ϕ1 Lm

2Ls
ω +

3np ϕ1 Lm
2Ls

ωiqr
.
iqr = − Ki1 Ls x1

Lm
− pKp1 Ls

Lm
− 1.5Kp1np ϕ1ωroiqr − 1.5Kp1np ϕ1ωiqr − 1.5Kp1np ϕ1iqr0ω

.
ω = 1

Ta

(
ex0

√
h + 1ω + ey0(h + 1)y + eh0h +

1.5np ϕ1 Lm
Ls

iqr

)
.
y =

(
− 1

Ty
− ey0(h+1)Kd

Ta Ty

)
y +

(
− ex0

√
h+1Kd

Ta Ty
− Kp

Ty

)
ω − eh0Kd

Ta Ty
h + Ki

Ty
z − 1.5Kd Lmnp ϕ1

Ta Ls Ty
iqr +

apKp
Ty

.
z = ap − ω
.
h =

(
Kdeh0eqy0

√
h+1

Taeqh0Ty
− eh0eqx0

Taeqh0
− 1

Tweqh0

)
(ω + 1)h +

(
1.5ϕ1Kdeqy0

√
h+1Lmnp

Taeqh0 Ls Ty
− 1.5ϕ1eqx0 Lmnp

Taeqh0 Ls

)
(ω + 1)iqr

+

(
Kdeqy0

√
h+1ex0

√
h+1

Taeqh0Ty
+

eqy0
√

h+1Kp
eqh0Ty

− eqx0ex0
√

h+1
Taeqh0

)
(ω + 1)ω

+

(
Kdeqy0

√
h+1ey0(h+1)

Taeqh0Ty
− eqx0ey0(h+1)

Taeqh0
+

eqy0
√

h+1
eqh0Ty

)
(ω + 1)y

− eqy0
√

h+1Ki
eqh0Ty

(ω + 1)z − 1
Tweqh0

(ω + 1)hs − apeqy0
√

h+1Kp
eqh0Ty

(ω + 1)

(31)

3. Stability Analysis of DFVSPSPS

3.1. Hopf Bifurcation Theory

Hopf bifurcation theory is an effective method of investigating the stability of nonlinear
systems, whose basic concept is described below [31,32].

For a nonlinear system expressed by differential equations
.
x = f (x, μ), x is the state

vector and is the bifurcation parameter. The equilibrium point xE of the system can be
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found by setting
.
x = 0. The Jacobian matrix of the system at the equilibrium point xE can

be obtained as J(μ) = D fx(xE, μ), whose characteristic equation det(J(μ)− λI) = 0 is:

a0(μ)λ
n + a1(μ)λ

n−1 + . . . + an−2(μ)λ
2 + an−1(μ)λ + an(μ) = 0 (32)

where ai(μ)(i = 1, 2, . . . , n) are the coefficients of characteristic equation and λ is the
eigenvalue.

If the following conditions are met, the nonlinear system will achieve Hopf bifurca-
tion [27]:

(i) ai(μc) > 0(i = 1, 2, . . . , m)
(ii) Δi(μc) > 0(i = 1, 2, . . . , m − 2), Δn−1(μc) = 0

Δj(μc) =

∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0
a3 a2 a1 · · · 0
a5 a4 a3 · · · 0
...

...
...

. . .
...

a2j−1 a2j−2 a2j−3 · · · aj

∣∣∣∣∣∣∣∣∣∣∣
· (j = 1, 2, . . . , m − 1)

(iii) σ′(μc) = Re
(

dλ
dμ

∣∣
μ=μc

)
�= 0

If the bifurcation parameter μ = μc satisfies the above conditions, then μ = μc is
the bifurcation point of the system. At μ = μc, the dynamic response of the system will
oscillate periodically, and the phase space trajectory is a stable limit cycle. In addition, the
type of bifurcation can be determined by the transversal coefficient σ′(μc). If σ′(μc) > 0,
the occurred Hopf bifurcation is supercritical and the system is stable when μ < μc. If
σ′(μc) > 0, the occurred Hopf bifurcation is subcritical and the system is stable when
μ > μc.

3.2. Hopf Bifurcation Analysis of DFVSPSPS

For the eighth-order DFVSPSPS nonlinear model described by Equation (31) in this
paper, the equilibrium point xE = (hsE, qHE, x1E, iqrE, ωE, yE, zE) can be obtained by setting:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hsE = −hE

qHE = −hE H0
2hH0

x1E = 0
iqrE = − Ls p

1.5np ϕ1Lm(ωr0+ap) −
apIqr0

ωr0+ap

ωE = ap
yE = − 1.5np ϕ1Lm

Lsey0(hE+1) iqrE − ex0
√

hE+1ωE
ey0(hE+1) − eh0hE

ey0(hE+1)

zE = yE
Ki

(33)

Then the Jacobian matrix of the system
.
x = f (x, μ) at the equilibrium point xE can

be obtained and the detailed expression of D fx(xE, μ) is presented in Appendix B. The
characteristic equation J(μ) is:

a0λ8 + a1λ7 + a2λ6 + a3λ5 + a4λ4 + a5λ3 + a6λ2 + a7λ + a8 = 0 (34){
ai > 0 (i = 1, 2, . . . , 8), Δi > 0 (i = 1, 2, . . . , 7), Δ7= 0
σ′(μc) �= 0

(35)

3.3. Stable Region of DFVSPSPS

The Hopf bifurcation criteria for DFVSPSPS has been obtained in Section 3.2 as shown
in Equation (35). The bifurcation line can be obtained by solving Equation (35), which
consists of all bifurcation points on the parameter plane and divides the whole parameter
plane into a stable region and an unstable region. The stable region of DFVSPSPS can be
determined based on the bifurcation line and transversal coefficient σ′(μc). In this section,
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an actual DFVSPSPS is taken as a specific engineering example to present the application
procedures of Hopf bifurcation analysis of DFVSPSPS. The stable region and dynamic
response of DFVSPSPS can be clarified, and the essence and laws of stability of DFVSPSPS
can be revealed based on the example analysis. The basic parameters of the DFVSPSPS are
shown in Table 1.

Table 1. Parameters of the DFVSPSPS.

Parameters Values Parameters Values

H0 43.45 Ta 9.46
hH0 3.8 a 0.373
TwH 42.8 p 0.1
Tw 1.8 Lm 2.9
TF 1500 Ls 3.08
ex −1 np 7
ey 1 ϕ1 1.0
eh 1.5 ω0 1.022
eqx 0 iqr0 −0.099

The governor parameters Kp, Ki and Kd are the important variables and are closely
related to the stability and dynamic characteristic of the DFVSPSPS. Therefore, the Kp-Ki
plane is selected as the parameter plane and Kd is considered as a constant. Usually, Kp is
chosen as the abscissa, Ki is chosen as the ordinate and the bifurcation parameter. For a
given value of Kp, the value of Ki can be obtained by Equation (35).

In actual applications, the stable region of DFVSPSPS is determined by the following
procedure:

Step 1: For a specific engineering example of DFVSPSPS, the equilibrium point of the
system (Equation (31)) is calculated based on Equation (33);

Step 2: Calculate the Jacobian matrix of the system at the equilibrium point;
Step 3: Calculate the coefficients of the characteristic equation of the Jacobian matrix;
Step 4: For a value of Kp, calculate the corresponding bifurcation parameter Ki using

Equation (35)
Step 5: For all the values of Kp, the repetition of Step 4 yields all the bifurcation points.

The bifurcation line is then determined.
Step 6: Calculate the transversal coefficient σ′(μc) for all the bifurcation points. The

type of emerged Hopf bifurcation can then be determined.
The step disturbance of power is applied to excite the system, and the bifurcation line

of the system can be determined based on the above six steps. The results are shown in
Figure 4. Meanwhile, according to the obtained bifurcation points and the aforementioned
definition of σ′(μc), the corresponding transversal coefficients σ′(μc) are calculated and
shown in Figure 5.

From Figure 4, we can see that the bifurcation line is a smooth curve, and the controller
parameter KI of the bifurcation line presents a trend of first slowly increasing and then
rapidly decreasing with the increase of KP. The KP-KI plane is divided into three parts,
namely, the unstable region, stable region and critical stable region (bifurcation line).
Figure 5 shows that the values of σ′(μc) are greater than zero, which indicates that the
emerged Hopf bifurcation of DFVSPSPS is supercritical. Therefore, the region at the lower
side of the bifurcation line is the stable region and the other side is the unstable region. The
bifurcation line and stable region can quantificationally and intuitively reflect the stability
and dynamic characteristics of DFVSPSPS.
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Figure 4. Stable region of the DFVSPSPS.

Figure 5. Values of σ′(μc) corresponding to the bifurcation line.

3.4. Numerical Simulation and Verification of Stability

To verify the correctness of the obtained stable region in Section 3.3, and investigate
the dynamic characteristic of DFVSPSPS under different governor parameter values, there
are three points S1, S2 and S3 in Figure 4 which were selected as the representatives for
numerical simulation of the dynamic response S1 and S2 are located within the stable
region, S3 is located on the bifurcation line and S3 is located within the unstable region. To
reflect the changes of state variables more intuitively, the phase space trajectories are also
presented.

The Runge-Kutta method can be used to solve the nonlinear derivative equations
of DFVSPSPS for numerical simulation, and the dynamic response process of the state
variables x, y, and ω under the four points S1, S2, S3 and S4 are calculated, as shown
in Figure 6. The corresponding phase space trajectories are shown in Figure 7. From
Figures 6 and 7, we can conclude that the numerical simulation results are consistent with
the Hopf bifurcation theory analysis. For the stable state points S1 and S2, the dynamic
responses of state variables present a damped oscillation and finally converge to a steady
state. The phase space trajectories of S1 and S2 stabilize to the equilibrium point after several
periods of damped attenuated motion. For the bifurcation point S3, the dynamic responses
gradually enter a constant amplitude oscillation after several periods of oscillation. The
corresponding phase space trajectory of S3 stabilizes at the limit cycle. For the unstable state
point S4, the dynamic responses are divergent oscillation, and its phase space trajectory
enters a gradually divergent motion.
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(a) (b) 

 
(c) (d) 

Figure 6. Dynamic responses of state variables x, y, ω for S1, S2, S3 and S4. (a) S1; (b) S2; (c) S3; (d) S4.

 
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. Phase space trajectories of x, y, ω for S1, S2, S3 and S4. (a) S1; (b) S2; (c) S3; (d) S4.

4. Effect Mechanism of Nonlinear Pump Turbine Characteristics on Stability and
Dynamic Characteristics

The stability and dynamic characteristics of DFVSPSPS have been investigated based
on the engineering example in Section 3. In this section, we will focus on the effect mecha-
nism of nonlinear pump turbine characteristics. In particular, the influence mechanism of
nonlinear head characteristics and nonlinear speed characteristics on stability and dynamic
characteristics of the DFVSPSPS are revealed.

A contrastive analysis is used to explore the effect mechanism of nonlinear head
characteristics and nonlinear speed characteristics. Equation (30) is the nonlinear pump
turbine model including nonlinear head characteristics and nonlinear speed characteristics,
which is denoted as Model A. If nonlinear speed characteristics are ignored, the model
of DFVSPSPS is denoted as Model B, where eqh0/(ω + 1) is replaced by eqh0. If the pump
turbine only considers nonlinear head characteristics, the model of DFVSPSPS is denoted
as Model C. The state equation can be obtained by replacing ex0

√
h + 1, ey0(h + 1) and

eqy0
√

h + 1 with ex0, ey0 and eqy0, respectively. If both nonlinear head characteristics and
nonlinear speed characteristics are ignored then a linear pump turbine model can be
denoted as Model D, where eqh0/(ω + 1), ex0

√
h + 1, ey0(h+ 1) and eqy0

√
h + 1 are replaced

by eqh0, ex0, ey0 and eqy0, respectively. The corresponding equations of pump turbines of
Model B, Model C and Model D are presented as follows:

Model B :
{

m = eh0h + ex0
√

h + 1ω + ey0(h + 1)y
q = eqh0h + eqx0ω + eqy0

√
h + 1y

(36)

Model C :
{

m = eh0h + ex0ω + ey0y
q = eqh0

1
ω+1 h + eqx0ω + eqy0y

(37)

Model D :
{

m = eh0h + ex0ω + ey0y
q = eqh0h + eqx0ω + eqy0y (38)

The stability and dynamic characteristics of DFVSPSPS under Model A have been
analyzed in Section 3. The same stability analysis method can be used for Model B, Model
C and Model D. Most research shows that the surge tank and the external disturbance have
a significant influence on the stability of DFVSPSPS [19]. Therefore, different time constants
of the surge tank and step load disturbance are considered, i.e., TF = 1500 s, TF =250 s, p =
0,1 and p = −0.1. The stable region and dynamic responses for Model A, Model B, Model C
and Model D are shown in Figures 8 and 9.
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(a) (b) 

 
(c) (d) 

Figure 8. Stable region and dynamic responses of DFVSPSPS under p = 0.10: (a) TF = 1500 s;
(b) TF = 1500 s; (c) TF = 250 s; (d) TF = 250 s.

 
(a) (b) 

Figure 9. Cont.
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(c) (d) 

Figure 9. Stable region and dynamic responses of DFVSPSPS under p = −0.10: (a) TF = 1500 s;
(b) TF = 1500 s; (c) TF = 250 s; (d) TF = 250 s.

Figures 8 and 9 show that:

1. When p = 0.1 and TF = 1500 s, the stable regions of Model A and Model B are almost
coincident. Similarly, the stable regions of Model C and Model D are almost coincident.
Moreover, the stable regions of Model A and Model B are significantly smaller than
those of Model C and Model D. Therefore, under p = 0.1 and TF = 1500 s, we can see
that nonlinear speed characteristics have almost no effect on stability, but nonlinear
head characteristics have a significant effect on stability. Therefore, nonlinear pump
turbine characteristics are mainly realized by the nonlinear head and nonlinear head
characteristics are unfavorable for the stability of DFVSPSPS. The same conclusion
can be drawn for dynamic response. Nonlinear speed characteristics have almost no
effect on dynamic response, but nonlinear head characteristics have a significant effect
on dynamic response. Comparing the dynamic responses of Model A and Model C in
Figure 8b, nonlinear head characteristics can increase the oscillation amplitude and
prolong the stability time. Nonlinear head characteristics have a negative effect on the
dynamic performance of DFVSPSPS.

2. For the DFVSPSPS under p = 0.1 and TF = 250 s, the stable regions of Model A and
Model B are obviously smaller than that under p = 0.1 and TF = 1500 s. The stable
regions of Model C and Model D are almost coincident with that under p = 0.1 and
TF = 1500 s. However, the stable region of Model A is obviously smaller than Model
B. The results indicate that nonlinear head characteristics have a significant effect on
stability. Nonlinear speed characteristics have no effect on stability when the pump
turbine does not contain nonlinear head characteristics as seen by comparing the
stable regions of Model C and Model D. However, nonlinear speed characteristics
have an obvious effect on stability when the pump turbine model contains nonlinear
head characteristics as seen by comparing the stable regions of Model A and Model
B. Therefore, under p = 0.1 and TF = 1500 s, nonlinear speed characteristics rely on
nonlinear head characteristics. Nonlinear speed characteristics and nonlinear head
characteristics are unfavorable for the stability of DFVSPSPS.

3. For the DFVSPSPS under p = −0.1 and TF = 1500 s, the stable regions of Model A
and Model B are almost coincident. The stable regions of Model C and Model D are
also almost coincident. The stable region of Model C under p = 0.1 and TF = 1500 s
is the same as that under p = −0.1 and TF = 1500 s. However, the stable regions
of Model A and Model B are significantly larger than those of Model C and Model
D. Therefore, under p = −0.1 and TF = 1500 s, we can draw the same conclusion as
that under p = 0.1 and TF = 1500 s. Nonlinear speed characteristics have almost no
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effect on the stability and dynamic characteristics, but nonlinear head characteristics
have a significant effect on the stability and dynamic characteristics. Nonlinear pump
turbine characteristics are mainly realized by the nonlinear head. Nonlinear head
characteristics are favorable for the stability dynamic characteristics of DFVSPSPS.
Moreover, external disturbance only has an obvious effect on the stability of Model A
and Model B and has no effect on the stability of Model C and Model D. Therefore, the
influence of external disturbance on stability relies on nonlinear head characteristics.
From Figure 9, we can see that the results under TF = 1500 s are the same as that under
TF = 250 s.

5. Analysis of Influence Factors on Stability of DFVSPSPS

The effect mechanism of nonlinear pump turbine characteristics on the stability and
dynamic characteristics of DFVSPSPS was investigated in Section 4. In this section, the effect
mechanism of influence factors of DFVSPSPS on the stability and dynamic characteristics
are further explored. The analysis results clarify the effect mechanism of influence factors
on the stability and dynamic characteristics of DFVSPSPS, and provide guidance for
the improvement of stability and dynamic performance of DFVSPSPS. Five important
parameters of DFVSPSPS, Tw, hH0, Ta, p and TF, were chosen as the influence factors. The
different values of the five influence factors were considered, and the other parameters
remained unchanged, as shown in Table 1. For each value of the influence factors, the stable
region of DFVSPSPS was obtained and a state point under the stable region was chosen
for numerical simulation of the dynamic response of ω. The stable region and dynamic
response of DFVSPSPS are shown in Figures 10–14.

 
(a) (b) 

Figure 10. Effect of Tw on stability and dynamic characteristics: (a) Stable region; (b) Dynamic
response.

• Effect of Tw on stability and dynamic characteristics of DFVSPSPS

Tw was set as 1.6 s, 1.7 s, 1.8 s and 1.9 s, respectively. The stable regions and dynamic
responses are shown in Figure 10. From Figure 10a, it can clearly be seen that Tw has a
significant effect on stability. The stable region becomes obviously smaller as Tw increases.
Therefore, a smaller Tw is favorable for the stability of DFVSPSPS. Tw also has a signifi-
cant effect on the response process shown in Figure 10b. As Tw increases, the dynamic
performance of DFVSPSPS becomes significantly worse.

• Effect of hH0 on stability and dynamic characteristics of DFVSPSPS

hH0 was set as 5 m, 6 m, 7 m and 8 m, respectively. The stable regions under different
hH0 are shown in Figure 11a. Figure 11a shows that hH0 has an obvious effect on the
stability of DFVSPSPS. The stable region becomes smaller as hH0 increases.Therefore, a
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smaller hH0 is favorable for the stability of DFVSPSPS. However, from Figure 11b, the
dynamic responses are coincident under different values of hH0. Therefore, hH0 has almost
no effect on the dynamic response of DFVSPSPS.

• Effect of Ta on stability and dynamic characteristics of DFVSPSPS

Ta was set as 7 s, 8 s, 9 s and 10 s, respectively. The stable regions and dynamic
responses are shown in Figure 12. From Figure 12a, it can clearly be seen that Ta has a
significant effect on stability. The stable region becomes obviously larger as Ta increases.
Therefore, a larger Ta is favorable for the stability of DFVSPSPS. Ta also has a significant
effect on the response as shown in Figure 12b. As Ta increases, the dynamic performance of
DFVSPSPS becomes significantly improved.

• Effect of p on stability and dynamic characteristics of DFVSPSPS

p was set as −0.2, −0.1, 0.1 and 0.2, respectively. The stable regions and dynamic
responses are shown in Figure 13. From Figure 13a, it can clearly be seen that p has a
significant effect on stability. The stable region under p < 0 is larger than that under p > 0.
Moreover, when p < 0, the stable region becomes obviously larger as p increases. However,
when p > 0, the stable region becomes obviously smaller with increasing p. Therefore, a
larger absolute value of p is favorable for the stability of DFVSPSPS.

p also has a significant effect on the response process of ω as shown in Figure 13b.
When p > 0, the response process of ω first decreases and then increases. The oscillation
amplitude becomes larger with increasing p. When p < 0, the response process of ω first
increases and then decreases. The oscillation amplitude becomes larger with decreasing p.
After several periods, the response process of ω stabilizes at a positive steady-state value.
Therefore, the oscillation amplitude relies on the absolute value of p and the sign of the
steady-state value depends on the sign of p.

• Effect of TF on stability and dynamic characteristics of DFVSPSPS

TF was set as 270 s, 280 s, 300 s, 350 s, 400 s and 1500 s, respectively. The stable regions
under different TF are shown in Figure 14a. Figure 14a shows that TF has an obvious
effect on the stability of DFVSPSPS when TF < 350. The stable region becomes larger as
TF increases. However, when TF > 350, the stable region keeps almost unchanged with
increasing TF. Therefore, a larger TF is favorable for the stability of DFVSPSPS. However,
from Figure 14b, the dynamic responses of ω are coincident under different values of TF.
Therefore, TF has almost no effect on the dynamic responses of DFVSPSPS.

 
(a) (b) 

Figure 11. Effect of hH0 on stability and dynamic characteristics: (a) Stable region; (b) Dynamic
response.
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(a) (b) 

Figure 12. Effect of Ta on stability and dynamic characteristics: (a) Stable region; (b) Dynamic
response.

 
(a) (b) 

Figure 13. Effect of p on stability and dynamic characteristics: (a) Stable region; (b) Dynamic response.

 
(a) (b) 

Figure 14. Effect of TF on stability and dynamic characteristics: (a) Stable region; (b) Dynamic
response.

137



Energies 2022, 15, 4131

6. Conclusions

A novel nonlinear model of DFVSPSPS considering surge tank and nonlinear pump
turbine characteristics was established. Hopf bifurcation analysis of the DFVSPSPS was
carried out and the stability region was obtained. The effect mechanism of nonlinear
pump turbine characteristics on the stability and dynamic characteristics of DFVSPSPS was
studied. Finally, the influence factors on the stability and dynamic response of DFVSPSPS
were analysed. The conclusions are as follows:

1. The mathematical model of the DFVSPSPS considering surge tank and nonlinear
pump turbine characteristics is described by an eight-dimensional nonlinear state
equation. The emerged Hopf bifurcation of DFVSPSPS is supercritical and the whole
Kp-Ki plane is divided into two parts, where the region at the lower side of the
bifurcation line is the stable region. This has been verified by numerical simulation.

2. Nonlinear head characteristics have a significant effect on the stability and dynamic
characteristics of DFVSPSPS under all situations. However, nonlinear speed character-
istics have obvious influence on the stability and dynamic characteristics of DFVSPSPS
only under p = 0.1, TF = 250 s due to the instability of the surge tank. Under other
situations, nonlinear speed characteristics have no effect on the stability and dynamic
characteristics of DFVSPSPS. The influence of nonlinear speed characteristics relies
on nonlinear head characteristics. Nonlinear head characteristics are unfavorable
for the stability of DFVSPSPS under positive load disturbance and favorable under
negative load disturbance. The stable region of Model C and Model D are also almost
coincident in all situations.

3. Tw has a significant influence on the stability and dynamic characteristics of DFVSP-
SPS. A smaller Tw is favorable for the stability and dynamic performance of DFVSPSPS.
hH0 has a significant influence on stability but has no effect on the dynamic character-
istics of DFVSPSPS. A smaller hH0 is favorable for the stability of DFVSPSPS. Ta has
a significant influence on the stability and dynamic characteristics of DFVSPSPS. A
greater Ta is favorable for the stability and dynamic performance of DFVSPSPS.

4. p has a significant effect on the stability of DFVSPSPS. The stable region under p < 0
is larger than that under p > 0. Under p < 0, the stable region becomes larger with
increasing p. However, under p > 0, the stable region becomes smaller with increasing
p. TF has an obvious effect on the stability of DFVSPSPS and presents a saturation
characteristic. Under TF < 350the stable region becomes larger with increasing TF.
However, when TF >350, the stable region keeps almost unchanged with increasing
TF. Therefore, a larger TF is favorable for the stability of DFVSPSPS. However, the TF
has almost no effect on the dynamic characteristics of DFVSPSPS.

A novel nonlinear mathematical model of DFVSPSPS considering surge tank and
nonlinear pump turbine characteristics was established and stability was studied in this
paper. However, there are still some limitations to the model of DFVSPSPS. There is only
one pump turbine for one headrace tunnel considered in this paper, which is a simplified
model. In an actual engineering application, in order to obtain a large water level drop and
save project investment, the layout of the water conveyance system of PSPS mostly uses
multiple units sharing one common tunnel. Additionally, there is hydraulic disturbance
and interaction between different pump turbines for PSPS with multiple pump turbines.
The hydraulic disturbance and interactions between different turbines have an obvious
influence on the stability of PSPS. Therefore, a refined nonlinear model of the DFVSPSPS
with a layout of multiple units sharing one common tunnel should be established and the
stability needs to be investigated.

On the other hand, the specific nonlinearities in the governor system (delay, saturation,
backlash and so on) are ignored in this paper and have a non-negligible impact on the
stability and dynamic characteristics of DFVSPSPS. Therefore, it is necessary to consider
the nonlinear characteristics of the governor and a more precise nonlinear mathematical
model should be established to investigate the effect mechanism on the stability of system.
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Appendix A

Nomenclature

QH discharge in headrace tunnel, m3/s
Q discharge in penstock, m3/s
Hs change of water level of surge tank, m
H pump turbine net head, m
hH0 head loss of headrace tunnel, m
TwH flow inertia time constant of headrace tunnel, s
TF time constant of surge tank, s
Tw flow inertia time constant of penstock, s
Mt kinetic moment
n unit speed
α guide vane opening
ex, ey, eh moment transfer coefficients of turbine
eqx, eqy, eqh discharge transfer coefficients of turbine
Ty time constant of the servomotor
Kp, Ki, Kd controller parameters of governor

vds, vqs, vdr, vqr
d, q axis components of the stator and rotor
voltage

ids, iqs, idr, iqr
d, q axis components of the stator and rotor
current

ϕds, ϕqs, ϕdr, ϕqr d, q axis components of the stator and rotor flux
ϕ1 the stator flux linkage
Rs, Rr resistance of stator and rotor
ω1 angular velocity of the synchronous rotation
ω Unit speed
Lm mutual inductance between the stator and rotor
Ls, Lr self-inductance of the stator and rotor
Ta unit inertia time constant
TL, Te active torque and load torque of pump turbine
F friction coefficient
np number of pole pairs

idr−re f , iqr−re f
d, q axis components of the rotor current
reference

vdr−re f , vqr−re f
d, q axis components of the rotor voltage
reference

vdrc, vqrc d, q axis voltage compensation of rotor
P, Qd active power and reactive power
Pre f , Qdre f power reference
Kp1, Ki1, Kp2, Ki2, Kp3, Ki3, Kp4, Ki4 control parameters
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Nomenclature

s Laplace operator
idg−re f , iqg−re f d, q axis current reference of grid-side
vdg−re f , vqg−re f d, q axis voltage reference of grid-side
Kp5, Ki5, Kp6, Ki6, Kp7, Ki7, Kp8, Ki8 control parameters
vdc, vdc−re f DC bus voltage and DC bus reference voltage
idg, iqg d, q axis current compensation of grid-side
Qg, Qg−re f reactive power of grid side and reference value
u1 grid voltage
x1 intermediate variable

Definition of variates{
hs =

Hs−H0
Hr

qH = QH−QH0
Qr

ω = n−n0
nr

p =
Pre f −Pre f 0

nr

h = H−H0
Hr

q = Q−Q0
Qr

y = α−α0
αmax

mt =
Mt−M0

Mr

are the relative deviations of corresponding variables, where subscripts r and 0 denote the
rated condition value and the initial value, respectively.

Appendix B

D fx(xE, μ) =
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Abstract: With inherent ‘S’ characteristics and the one-tunnel-with-two-units arrangement of the
pump-turbine, hydraulic transient changes in the successive start-up process are complex, and the
optimal control is difficult. This paper aims to study the dynamic characteristics and successive
start-up control strategy optimization of two hydraulic couplings pumped storage units (PSUs) under
low-head extreme conditions. Firstly, an accurate model of two hydraulic coupling PSUs’ successive
start-up is established. Based on this model, the influence of the interval time of successive start-up on
the dynamic characteristics of PSUs is carried out. It is shown that the change of the interval time of
the successive start-up (ΔT) of the two PSUs has a significant impact on the dynamic response stability
of the low-head start-up. If ΔT is more than 40 s, the hydraulic oscillation and speed fluctuation of
the PSUs deteriorate. Secondly, with the different controller parameters for the two PSUs, a novel
multi-objective optimization scheme with fractional order PID controller (FOPID) is proposed to
figure out the best control scheme for the successive start-up. Furthermore, selecting the sum of the
rise time (Tr) of the rotating speed of two PSUs and the sum of the integral time absolute error (ITAE)
of two PSUs is the objective. Meanwhile, the optimization scheme of PID with different parameters
(PIDDP) is used to compare and verify the optimization method proposed in this paper. The results
for this extreme condition indicate that FOPID has more significant advantages in optimizing the
instability of the successive start-up process, with the better Pareto front, and the optimized scheme
has a more stable dynamic transition process of flow, water hammer pressure, and rotational speed.

Keywords: pumped storage units (PSUs); successive start-up; ‘S’ characteristics; low water head
conditions; multi-objective optimization; fractional order PID controller (FOPID)

1. Introduction

Wind and solar energy have become the consensus on sustainable development [1].
However, wind and solar energy exhibit obvious intermittency, and large-scale wind and
solar energy connected to the electrical power grid constitutes a severe challenge to safety
and stability [2]. A pumped storage unit (PSU), with superiority in switching operating
conditions fast [3], can make up for the intermittency [4] and has been become the most
well-established and commercially acceptable technology for utility-scale electrical power
storage [5] and plays an irreplaceable role in improving the safety, stability, and flexibility
of the electrical power system. Thus, the dynamic performance and the control quality of
the PSU are very important [6].

Due to the existence of the large flow inertia in the long diversion pipeline and
with a large number of nonlinear links, as well as the existence of the unique reverse ‘S’
characteristic instability region of the pump-turbine, the optimal control of the PSU presents
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complex characteristics [7]. Particularly, in the reverse ‘S’ characteristic instability region,
the full characteristic curve of the unit shows serious crossover, aggregation, and twisting.

Compared with other operating conditions, when the PSU starts up under low-head
conditions, it is more likely to fall into this area, which will cause speed oscillation and
is difficult to stabilize, and even a failure to start up [8]. Thus, focusing on the efficiency
and stability of the start-up strategy under low-water-head extreme conditions has a great
significance. Moreover, one tunnel for two units has become a typical layout of PSUs, and
two units share the same water-diversion systems and tailrace tunnel. If the operating
conditions of the two PSUs are different or the transition conditions are not synchronized,
strong hydraulic interference will occur in the diversion system [9]. For example, when the
two PSUs start up successively under the low-head condition, the hydraulic interference
between the two units will further increase the risk of falling into the ‘S’ region, leading to
the regulation quality deterioration of the control system [10].

Using an intelligent optimization algorithm to figure out a feasible solution has be-
come an effective method to solve the above issues [11]. There are many kinds of intelligent
optimization algorithms that have been proposed and used to improve the control per-
formance of PSUs. Zhang et al. [12] improved NSGAS-III and used it to research the best
control strategy for the pump-turbine regulating system. Xu et al. [13] used the improved
gravitational search algorithm (GSA) to optimize the control strategy of PSUs operating
under low-water-head conditions. In the above-published research, the author only consid-
ered a single optimization goal. However, in the actual production process, the evaluation
of the control quality of the transition process of the PSU often needs to consider multiple
performance indicators such as speed overshoot, adjustment time, and water hammer
pressure. Hou et al. [14] used multiple objectives to obtain a superior successive start-up
strategy of two coupling PSUs.

This paper focuses on the successive start-up strategy of two hydraulic coupling PSUs
under low-head extreme conditions. The innovation is as follows: (1) establishing an
accurate transition process model of the regulating system of PSUs based on one actual
pumped storage station in China. The effects of the complex boundary conditions of
the surge chamber, bifurcated pipe, and the nonlinear links are fully considered in this
accurate model. In this way, the characteristics of the transition process of the PSUs
can be described more realistically. (2) The multi-objective optimal method is applied to
research the successive start-up of two PSUs under low-head extreme conditions. The
multi-objective grey wolf optimal algorithm (MOGWO) [15] is used in this paper. (3) The
interval time of a successive start-up is optimized to obtain the optimal moment after the
first start-up to achieve better dynamic quality. (4) The two hydraulic coupling PSUs have
their parameter of the fractional-order PID (FOPID) controller [16] compared and analyzed
with traditional PID controller.

The overview of the rest of this paper is as follows. In Section 2, an accurate model of
two hydraulic coupling PSUs’ successive start-up under low-head extreme conditions has
been established according to a real pumped storage station in Jiangxi province in China.
In this model, the non-linear characteristics of the diversion system and hydraulic actuator
are fully considered. Based on this model, the influence of interval time on successive
start-up has been published, and the range of the most extreme condition of successive start-
up is determined. In Section 3, introduced the optimization schemes, and the MOGWO
are introduced. Section 4 shows the result of the numerical calculation experiment of
a successive start-up under low-water-head extreme conditions with different control
strategies, specifically, the PID controller with the two units with different parameters
and the FOPID controller with the two units with different parameters. In Section 5, the
conclusion and a summary of this paper are published.

2. Model of Two Hydraulic Coupling PSUs Regulating System

The typical layout of two hydraulic coupling PSUs is shown in Figure 1. It needs to
declare that, during the process of the successive start-up of two hydraulic coupling PSUs,
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the 1# PSU is the earlier one, and the 2# PSU is the later one. The parameters of each pipe
section are shown in Table 1.

 

Figure 1. Typical layout of two hydraulic couplings pumped storage units (PSUs).

Table 1. The parameters of each pipe section.

Code L(m) D(m)

Lr1 444.23 6.20
Lr2 865.69 5.04
Lr3 117.86 2.6
Lr4 155.4 4.19
Lr5 117.86 2.6
Lr6 155.4 4.19
Lr7 15 6.5
Lr8 1065.2 6.58

The PSU regulating system is a complex closed-loop control system integrating hy-
draulic, mechanical, and electrical systems. As the important auxiliary equipment of
the pumped storage power station is composed of a pressurized water-diversion system,
pump-turbine, generator, and pump-turbine governor, as shown in Figure 2. The basic task
is to complete the starting, power generation, pumping, load increase and load reduction,
primary frequency modulation, and shutdown of the water turbine.

Figure 2. Structure diagram of the PSU speed-regulating system.

In Figure 2, Q represents the flow of the PSU; H represents the working water head
of the PSU; n represents the rotation speed of the pump-turbine and the generator; M
represents the torque of the pump-turbine; P represents the output power of the generator;
y represents the opening of the guide vane; uy represents the output of the controller and
adjust guide vane opening accordingly.
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2.1. Mathematical Model of Pressurized Water Diversion System

The model of the pressurized water system mainly focuses on the dynamic relationship
between the flow pressure and flow rate. According to Newton’s second law and the law
of conservation of mass, the characteristics of water flow in pipes can be described by the
momentum equation and continuity equation [17] and shown as follows in Equations (1)
and (2).

∂V
∂t

+ V
∂V
∂L

+ g
∂H
∂L

+
f

2D
V
∣∣∣∣V∣∣∣∣= 0 (1)

c2

g
∂V
∂L

+ V
(

∂H
∂L

+ sin α

)
+

∂H
∂t

= 0 (2)

where V represents the average velocity of the flow at the pipe centerline; H represents the
water head at time t of a certain flow section in the pipe; L represents the distance from the
cross-section to the origin; f represents the hydraulic friction coefficient of the pipeline; D
represents the pipe diameter; F represents pipeline cross-sectional area; c represents the
velocity of the pressure wave; α represents the angle between the pipe centerline and the
horizontal, and g represents the gravitational constant.

Due to the elastic water hammer and the flow friction of the non-constant flow in the
water-diversion system, the characteristic-line method that was proposed in [18], has been
used in this study. Moreover, the characteristics method could be adopted to solve these
two differential equations and obtain the hydraulic pressure and water flow in the various
parts of the water-diversion system [19]. Depending on whether the pressure wave is in the
same direction as the water flow, we can get two kinds of hydraulic pressure characteristic
lines, including a positive characteristic line and a negative characteristic line, with two
characteristic line equations [20]:

C+: Qt
P = CP − Ca Ht

P (3)

C−: Qt
P = Cn + Ca Ht

P (4)

where Qt
P represents the section flow of the point p, at the time t; Ht

P represents the

section hydraulic head of the point p at time t; Cp = Qt−Δt
A + gA

c Ht−Δt
A − f ΔL

2DAc Qt−Δt
A

∣∣∣Qt−Δt
A

∣∣∣,
Cn = Qt−Δt

B − gA
c Ht−Δt

B − f ΔL
2DAc Qt−Δt

B

∣∣∣Qt−Δt
B

∣∣∣, Ca = gA
c ; the Qt−Δt

A represents the section

flow of the point A, at the time t − Δt; Ht−Δt
A represents the section hydraulic head of point

A at time t − Δt; the Qt−Δt
B represents the section flow of point B at time t − Δt; Ht−Δt

B
represents the section hydraulic head of point B at time t − Δt.

The schematic diagram of the characteristic line method is shown in Figure 3.

Figure 3. Schematic diagram of the characteristic line method.
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2.2. Mathematical Model of Pump-Turbine

The pump-turbine is the core equipment of the pumped storage power station and
the key to realizing the conversion from water energy to electric energy [21]. As the main
component of the PSU, a lot of studies have been carried out on the modeling. However,
due to the complex flow characteristics in the pump-turbine, the accurate expressions of
the flow and output torque can not be obtained so far, so the accurate dynamic data of the
unit can not be obtained. Researchers usually use the full-characteristic curves of the units
to establish the mathematical model, which is composed of the torque curves and the flow
curves [22,23], as shown in Figure 4.

  
(a) Torque characteristic curve (b) Flow characteristic curve 

Figure 4. Full-characteristic curves of pump-turbine.

Moreover, the unit is expressed as a torque function and a flow function is shown as
Equations (5) and (6), respectively.

M′
1 = fM(a, n′

1) (5)

Q′
1 = fQ(a, n′

1) (6)

where M′
1 represents the unit-torque of the pump-turbine; Q′

1 represents the unit flow of
the pump-turbine; a represents the angle of the guide vane opening, and n′

1 represents
the unit-rotational speed of the pump-turbine runner. Then the torque and the flow are
calculated by Equation (7). ⎧⎨⎩

Mt = M′
1D3H

Qt = Q′
1D2

√
H

n = n′
1

√
H/D

(7)

where Mt and Qt represent the torque and the flow of the pump-turbine at the time t,
respectively. H represents the operating water head; D represents the diameter of the
pump-turbine runner, and n represents the rotational speed of the pump-turbine runner.

As shown in Figure 4, there is a reverse ‘S’ region at the end of the full-characteristic
curve, and with the problems of severe polymerization, distortions, and crossovers, which
might lead to issues with various values of unit-torque and unit-flow at the same unit-
speed [24]. Several researchers have published their studies on solving the multivalued
problem of the ‘S’ region. In this paper, the improved Suter transformation method [25]
is applied. The full-characteristic curves can be transformed into the WH and WM curves
under the improved Suter transformation method, as shown in Figure 5.
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Figure 5. WH and WM curves under the improved Suter transformation method.

The WH and WM curves can be represented as Equations (8) and (9).{
WH(x, y) = h

n2+q2+Ch ·h (y + Cy)
2

WM(x, y) = m+k2·h
n2+q2+Ch ·h (y + Cy)

2 (8)

{
n ≥ 0, x = arctan[(q + k1

√
h)/n]

n < 0, x = π + arctan[(q + k1
√

h)/n]
(9)

where k1 = 0.5 ∼ 1.2, k2 > |M11max|
M11

, and the M11 represents the unit torque. Cy = 0.1 ∼ 0.3,
Ch = 0.4 ∼ 0.6; n, q, h, and y represent relative rotational speed, relative flux, relative water
head, and relative guide vane opening, respectively.

The relative-value equations can be solved according to Equations (8) and (9), as
shown in Equation (10).{

hn+1 = WH(yn+1, x(qn+1, nn+1)) · (q2
n+1 + n2

n+1)
mn+1 = WM(yn+1, x(qn+1, nn+1)) · (q2

n+1 + n2
n+1)

(10)

2.3. First-Order Model of the Generator

In this study, the synchronous generator has been regarded as a rotating rigid body with
a certain torque of inertia, and the first-order model is adopted [26], shown in Equation (11).{

(Ta + Tb)
dn
dt + enn = Mt − Mg

en = eg − ex
(11)

where Ta represents the inertial time constant of the pump-turbine; Tb represents the inertial
time constant of the load; en represents the comprehensive self-regulation coefficient of
the pump-turbine unit; eg represents the self-regulation coefficient of the synchronous
generator, and n represents the relative rotational speed deviation.

During the progress of start-up, the electrical load equals 0, so that Mg = 0. The
first-order model could be expressed as Equation (12).{

(Ta + Tb)
dn
dt + enn = Mt

en = eg − ex
(12)

2.4. Model of the PSUs’ Governor

The typical PSU governor consists of a crisis governor and an electro-hydraulic servo
system. The basic structure of the governor is shown in Figure 6. The microcomputer
regulator is the core of the speed control system. According to the collected information
about the speed of the unit, power grid frequency, guide vane opening, and other relevant
information, the control mode switching and control signal output functions are realized
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through the control process and program calculation. The electro-hydraulic servo system
converts the electrical output signal of the microcomputer regulator to the displacement
signal of the servo motor and drives the water guide mechanism to change the guide vane
opening, so as change the flow into the unit runner, finally realizing the regulation control
of the unit.

 

Figure 6. The basic structure of the PSU governor.

2.4.1. Model of Microcomputer Regulator

In this paper, the numerical simulation of the PSU under the condition of the lower
water head is studied by using the microcomputer governor model based on FOPID, which
could also be represented as PIλDμ.

With the development of fractional calculus theory, its application in the control system
has been developed rapidly. The research shows that the PIλDμ controller has good control
performance. In this paper, the PIλDμ controller is applied. The PIλDμ controller proposed
based on the fractional-order differential theory has one more fractional integral order λ
and differential order μ than the traditional integral order PID controller. Usually, the λ
and μ could be any real numbers in the range of [0, 2] [27]. The structure diagram of the
PIλDμ controller is shown in Figure 7.

Figure 7. Structure diagram of the PIλDμ.

The transfer function of the PIλDμ controller is shown as Equation (13).

C(s) =
u(s)
e(s)

= Kp +
Ki

sλ
+ Kdsμ (13)

From the above equation, it can be easily concluded that, when both λ and μ are equal
to 1, the PIλDμ controller equals the traditional PID controller. With two more adjustable
parameters, the PIλDμ controller not only has all the advantages of the PID controller but
also has better flexibility and applicability and can obtain a better control effect.

2.4.2. Model of Electro-Hydraulic Servo Motor System

In this paper, the PSUs work in the large fluctuation transition process, and the
parameters of the PSU governor change greatly. The nonlinear characteristics of the elector-
hydraulic system must be fully taken into account. Therefore, the dead zone, the saturation
effect of the main distribution valve, and the main servomotor must be thought about. The
structure of the electro-hydraulic servo motor system is shown in Figure 8.
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Figure 8. Structure of the electro-hydraulic servo motor system.

The mathematical expressions are shown as follows:

(1) the mathematical expression of the dead zone

dout =

⎧⎨⎩
din − b, din ≥ b
0, −a < din < b
din + b, din ≤ −b

(14)

where b represents the rage of the dead zone; din represents the input of the dead
zone; dout represents the output of the dead zone.

(2) the mathematical expression of the saturation effect

sout =

⎧⎨⎩
sin, smin < sin < smax
smin, sin < smin
smax, sin > smax

(15)

where sin represents the input of the saturated nonlinear link; smax and smin represents
the upper and lower bounds of the saturated nonlinear link, respectively.

In conclusion, in this section, the schematic of the numerical simulation model is
shown in Figure 9.

 

Figure 9. Schematic of the numerical simulation model.

2.5. The Influence of the Interval Time of Successive Start-Up on the Dynamic Characteristics
of PSUs

There are hydraulic connections between the two PSUs of the same hydraulic unit
in the steady-state operation and transition process. During the process of successive
start-up, the hydraulic disturbance in the system will aggravate the change of flow and
water pressure in the system, which means a more unfavorable dynamic process. The
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hydraulic interference will lead to the different transition processes of the two units with
different successive start-up interval times.

To figure out the most adverse starting interval time, when the two hydraulic coupling
units start up successively under low-water-head conditions. The simulation research
about the influence of the interval time ΔT has been carried out based on a model of
two hydraulic coupling PSU regulation systems. The physical parameters and working-
condition parameters of the model are shown in Table 2. Under the different water-head
operating conditions, with different interval times, the rapidity and stationarity of the
units are analyzed during the progress of successive start-ups. The simulation tests are
based the MATLAB 9.2. The rapidity is quantitatively characterized by the rise time Tr of
the rotating speed, while stationarity is quantitatively characterized by the integral time
absolute error (ITAE) of the rotating speed, a relatively comprehensive index. Then the
dynamic process of the evaluation index of the unit successive start-up process when the
ΔT takes on different values is recorded and compared. The results of the simulation study
are as follows.

Table 2. The physical parameters and working-condition parameters of the model.

Components Values

Water head Hu = 716 m Hl = 190 m Hmin = 526 m Hs = 540 m Hmax = 554 m
Suter transformation k1 = 10 k2 = 0.9 Cy = 0.2 Ch = 0.5

Generator J = 96.84 tm2

Governor TID = 1 s T = 0.1 s k0 = 7 TyB = 0.05 Ty = 0.3 s
Direct guide vane

control kc = 1/27

Figure 10a shows the function between the ΔT and Tr of the two PSUs under three dif-
ferent water-head conditions. Under three different water-head conditions, the curves can
be divided into three sections according to the status of the fluctuation:ΔT ∈ [0, 6 s],ΔT ∈
(6 s, 20 s] and ΔT ∈ (20 s, 50 s]. Specifically, in the range of ΔT ∈ [0, 6 s], the Tr changes
little under three different conditions and the interval time has little effect on it. In the range
of ΔT ∈ (6 s, 20 s], the Tr curves have a severe fluctuation under all of the three different
conditions. Moreover, with the water head decreasing, the fluctuation is more severe. In
the range of ΔT ∈ (20 s, 50 s], under the conditions of 554 m and 540 m, the Tr is almost
a constant with different ΔT. But under the condition of 526 m, the Tr increase with the
increase of ΔT.

 

(a)  (b)  

Figure 10. Influence of interval time ΔT on Tr and ITAE of rotational speed.
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Figure 10b shows the function between the ΔT and ITAE of the two PSUs under
three different water-head conditions. The ITAE curves are similar under the conditions
of 554 m and 540 m. The variation curves of ITAE showed a trend of decreasing firstly,
then increasing, and finally decreasing again, and the variation law was relatively simple.
However, under the 526 m conditions, the ITAE curve has a more complex fluctuation.
Especially in the range of ΔT ∈ [0, 8s], the ITAE decreases with the increase of ΔT. Then in
the range of ΔT ∈ (8s, 20s], the curve of ITAE fluctuates irregularly with the increase of ΔT.
In the range of ΔT ∈ (20s, 50s], the ITAE curve is similar to the other two conditions, and
the value of the ITAE increases firstly with the ΔT increases, then decreases again.

To sum up, under different conditions with different water-heads, during the progress
of the hydraulic coupling PSUs successive start-up, with the increase of ΔT, the value
of Tr and ITAE changes greatly. This is due to the fact that, when the ΔT different, the
operation state of 1#PSU is completely different than when the 2#PSU is started, and the
hydraulic environment and water shock wave in the diversion system must be very differ-
ent. Therefore, with different ΔT, the values of Tr and ITAE show great changes. Especially
under the conditions of Hmin = 526 m, compared to other conditions, with different ΔT,
the influence of the hydraulic disturbance between two PSUs is more complicated on the
dynamic progress of successive start-ups.

3. Optimization Schemes

In this section, the multi-objective grey wolf optimizer algorithm (MOGWO) has been
used to solve the successive start-up strategy of two hydraulic coupling PSUs under low-
water-head extreme conditions. MOGWO, with the characteristics of simple principle, few
parameters to adjust, fast convergence, and strong global search ability, has been widely
used in solving multi-objective optimization problems.

3.1. Optimization Algorithm

The optimization process of MOGWO is shown as follows.
Step 1: Assigning suitable values to related parameters, including the number of

optimization variables; the number of gray waves individuals, n; maximum iterations M,
and the number of Pareto archives, and other basic parameters for multi-optimization, such
as the grid inflation parameter, the number of grids per each dimension, leader selection
pressure parameter, and extra repository member selection pressure.

Step 2: Initializing the variable to be optimized Xi(k) (i = 1, 2, . . . n), and k represents
the number of iterations.

Step 3: Inputting X to the model of successive start-up, calculating the fitness function
and position vectors of every individual, and judge whether the constraint conditions are
satisfied. If the answer is yes, then it is ready for the next step; if not, then it is best to return
to Step 1.

Step 4: Comparing the fitness function of each individual, determining the dom-
inant relationship between individuals, saving the non-dominated individuals in the
Pareto archive.

Step 5: Calculating the distance for each Pareto archive individual and choosing the
α, β, and δ gray waves individuals; the α, β, and δ represent the best, second-best, and
third-best solutions respectively, and they are the leaders of the herd that in the Pareto
archive and others are named as w.

Step 6: Updating the position of the current w individuals with Equations (16)–(18)⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dα =

∣∣∣C1 · Xα − X(k)

∣∣∣
Dβ =

∣∣∣C2 · Xβ − X(k)

∣∣∣
Dδ =

∣∣∣C3 · Xδ − X(k)

∣∣∣ (16)
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⎧⎨⎩
X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

(17)

X(k+1) =
X1 + X2 + X3

3
(18)

where both the A and C are coefficient vectors.
Step 7: Calculating the value of fitness, comparing it with the individuals in the

Pareto archive of the (k − 1)th generation, and updating the Pareto archive according to
the dominance relationship.

Step 8: Calculating the distance between each individual in the Pareto archive, and, if
the number of non-dominated individuals is more than the archive size, removing some
individuals, as many as necessary according to the archive size.

Step 9: Updating the best, second-, and third-best solution.
Step10: Determining whether the maximum iteration criteria are satisfied; if the

answer is yes, it is best to return to Step 6, and if not, output the optimal Pareto solution is
the next step.

The optimization process is shown in Figure 11.

 

Figure 11. The optimization process for a successive start-up strategy.
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3.2. Objective Function

Researchers pay more attention to the rapidity and stationarity of a unit when it starts
up. Rapidity is quantitatively characterized by the rise time of the rotating speed, while
stationarity is quantitatively characterized by the integral time absolute error (ITAE) of
the rotating speed, a relatively comprehensive index. However, the rapidity and stability
are irreconcilable, so it is impossible to get the best result for the two indices at the same
time. In actual production, usually the aim is to achieve the optimal combination of these
two performance indices. In this study, select the sum of the rise time of the rotating speed
of two PSUs and the sum of the ITAE of two PSUs as the objective function. The two
optimization objectives can be expressed as Equation (19).{

min f1 = Tr1 + Tr2
min f2 = ITAE1 + ITAE2

(19)

3.3. Optimizer Variables

During the process of start-up, the guide vane opening change process is shown in
Figure 12. In the figure, θ represents the inclination angle of the guide vane opening
ascending process line, and kc represents the maximum velocity of guide vane opening
change. The yc represents the maximum relative opening of the guide vane during the
start-up process. In this study, the kc has been set as 1/27.

Figure 12. Schematic diagram of guide vane opening change process.

yc and the controller parameters are selected as the optimization variables. In Section 2,
interval time had great influence on the process of successive start-up and should be
selected as an optimization variable. Moreover, due to the different operation statuses
during successive start-ups, the two hydraulic coupling PSUs should own different control
parameters, and the optimization variables in the two cases are shown as Equations (20)
and (21), respectively.

X1 = (Kp, Ki, Kd, yc, ΔT) (20)

X2 = (Kp1, Ki1, Kd1, λ1, μ1, yc1, ΔT, Kp2, Ki2, Kd2, λ2, μ2, yc2) (21)

On the right side of Equation (20), subscript 1 and 2 represent the 1# PSU and 2# PSU,
respectively.

3.4. Constraint Conditions

In the actual production process, there are specific constraints on the relevant indicators
of the start-up process. In this paper, three constraints are mentioned as follows.

(1) The upper and low boundaries of the optimization variables X

X ∈ [L, U] (22)
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where L and U represent the upper and lower boundaries, respectively. Specific values of
the L and U are shown in Table 3.

Table 3. The boundaries of the optimization variables.

Variables Boundaries Values

X1
L1 0.1 0.1 0.1 0.1 1 0.2 0
U1 10 8 8 1 2 0.3 40

X2
L2 0.1 0.1 0.1 0.1 1 0.2 0 0.1 0.1 0.1 0.1 1.0 0.2
U2 10 8 8 1 2 0.3 40 10 8 8 1 2.0 0.3

(2) Oscillation times of rotation speed

According to the requirements of the start-up transition process of the PSUs, the
number of rotation speed oscillations shall not exceed two times.

(3) Limitation of water hammer pressure

The water hammer pressure of each link in the system shall not exceed the upper limit
obtained by regulation guarantee calculation.

4. Numerical Calculation Experiment of Successive Start-Up under Low-Water-Head
Extreme Conditions

In the real station, there are two main guide vane opening strategies for PSUs, one-
stage starting and two-stage starting. The control methods used by these two methods are
traditional PID control. However, under low-water-head extreme working conditions, the
pumped storage unit can easily fall into the ‘S’ region during the process of start-up, and
it’s difficult for the PID controller to obtain an excellent control effect. The fractional-order
PID (FOPID) has two more adjustable parameters than the traditional PID, so it has better
control flexibility and can obtain a better adjustment effect. In this paper, two schemes are
compared with others. Specifically, the controller and the parameters in the study on the
successive start-up process are variable. PIDDP and FOPIDDP are researched respectively
in this paper.

A pumped storage station in China has been selected as the reference system for this
study, and the relevant parameters are the same as this real station. An accurate model
of the speed regular system of two hydraulic coupling PSUs has been proposed, and a
simulation study has performed in MATLAB 9.2. Two kinds of strategies for successive
start-up under low conditions have been researched in this paper.

In this paper, set the number of gray wave individuals n = 100, and the maximum
iterations M = 300. The results of the optimization of successive start-up strategies with
two different controllers are as follows.

In this paper, the optimization result is a Pareto archive, which consists of a series of
non-inferior solutions. Figure 13 shows the Pareto archive, and the value of the optimization
variables in the Pareto archive are listed in Appendix A Tables A1 and A2. As shown in
Figure 13, the Pareto archive under PID control is dominated by the Pareto archive under
FOPID control. In other words, it is indicated that the FOPID controller obtains a better
Pareto archive than the traditional PID controller.

In this paper, we use the method of relative objective proximity [28] to obtain the best
solution under the two different controllers as shown in Figure 13. The value of these two
solutions is shown in Table 4.

Inputting the best solution to the control system of the PSUs, we can obtain the
dynamic processes of the performance indexes, including the rotating speed, flow, and
actual working water-head curves during the process of successive start-up under low
extreme water-head conditions, shown in Figures 14–16. The start-up process curves of the
two PSUs, respectively, during the successive start-up process of the two schemes in the
full-characteristic curves are shown in Figures 17 and 18.
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Figure 13. Comparison diagram of the Pareto archive of four schemes.

Table 4. Optimal solution of the best solution.

Schemes Kp1 Ki1 Kd1 λ1 μ1 yc1 ΔT Kp2 Ki2 Kd2 λ2 μ2 yc2

PIDDP 0.8220 4.7674 3.5252 0.2996 15.4059 0.5409 3.6460 1.7732 0.2903
FOPIDDP 1.137 1.694 5.452 0.300 1.066 0.298 28.45 1.273 1.999 5.484 0.149 1.066 0.299

  

(a) 1#PSU (b) 2#PSU 

Figure 14. The rotational speed dynamic curves of the two PSUs.

  
(a) 1#PSU (b) 2#PSU 

Figure 15. The flow dynamic curves of the two PSUs.
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(a) 1#PSU (b) 2#PSU 

Figure 16. The dynamic curves of the actual working water head of the two PSUs.

  
(a) Q11~n11 (b) M11~n11 

Figure 17. Start-up process curves in the full-characteristic curve of the 1# PSU.

  
(a) Q11~n11 (b) M11~n11 

Figure 18. Start-up process curves in the full-characteristic curve of the 2# PSU.

The maximum and the rise time of the rotational speed were recorded, and the
oscillation number of the rotational speed of the four schemes is shown in Table 5.

Table 5. The quantitative index of the rotational speed.

Schemes

1#PSU 2#PSU

Maximum
(p.u.)

Rise Time
(s)

Number of
Oscillation

Maximum
(p.u.)

Rise Time
(s)

Number of
Oscillation

PIDDP 1.02 20.74 2 1.017 20.64 1
FOPIDDP 1.009 20.66 1 1.019 19.99 0
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Figure 14 shows the dynamic process of the rotational speed of the two PSUs, respec-
tively, during the successive start-up process under low- water-head extreme conditions
with two different controllers. It is easy to get that the rotational speed rise time is approxi-
mate for the two coupling PSUs under two different controllers; to be specific, the difference
value is within 1 s. For the 1# PSU alone, the speed rise time has little difference under
two different controllers. However, the overshoot of the rotational speed is smaller under
the FOPID controller than under the PID. The dynamic process of the FOPID controller is
much better with smaller oscillation, stability time, and steady-state error. For the 2# PSU
alone, we can obtain that the rotational speed overshoot under the two controllers is greatly
approximate. However, the dynamic curves of the rotational speed are more approximate
under the FOPID, with the smallest number of oscillations. In conclusion, combined with
Figure 14 and Table 5, it is obvious that the rotational speed indicators under the FOPID
are better than under the traditional PID.

Figure 15 shows the dynamic process of the flow of the two PSUs, respectively, during
the successive start-up process under low-water-head extreme conditions with two different
controllers. In Figure 15a, for the 1# PSU alone, before the unit flow curve come to the first
wave peak, the control of the PSUs is in the open-loop stage, so the flow dynamic process
is roughly the same with two different controllers. When the simulation time t = ΔT,
with the 2# PSU start-up, due to the water interference in the diversion system, the flow
curves of unit 1# all have obvious oscillations. After that, closed-loop adjustment is carried
out under PID and FOPID control strategies, respectively. As shown in Figure 15a, the
flow dynamic process curves of 1# PSU have an obvious under different controllers when
t ∈ [20s, 50s]. Moreover, under the FOPID, the flow oscillation attenuation is faster. As
shown in Figure 15b, the flow dynamic process of unit 2# is similar under two different
controllers, and both can quickly decay to the steady-state.

Figure 16 shows the dynamic process of the actual working water head of the two
PSUs, respectively, during the successive start-up process under low-water head extreme
conditions with two different controllers. The value of the water head is relative to the
Hs. Compared to the dynamic curves of the two PSUs, it is obvious that the start-up of 2#
PSU could lead to a considerable oscillation in the process of the 1# PSU. At the same time,
the hydraulic interference between the two PSUs will also cause a violent oscillation of
the dynamic process curve of 2# PSU. Combining the actual working water-head dynamic
curves of the two PSUs with different controllers, the dynamic process of the two PSUs are
roughly similar in general, but the oscillation attenuation of the dynamic process curve
under the FOPID is faster.

Figures 17 and 18 shows the start-up process curves in the full-characteristic curves of
the two PSUs, respectively, during the successive start-up process under low-water-head
conditions. For 1# PSU, as shown in Figure 17, the start-up process curves can avoid falling
into the reverse ‘S’ region better under the FOPID. However, under the traditional PID, the
start-up process curves fall into the reverse ‘S’ region, and both the flow characteristics and
torque characteristics show reciprocating oscillations in this region. For 2# PSU, as shown
in Figure 18, the start-up process curves can better avoid falling into the reverse ‘S’ region
under the FOPID. However, under the traditional PID, only the flow characteristics can
avoid falling into the reverse ‘S’ region, but torque characteristics also show reciprocating
oscillations in this region. It can be summed up that, with the FOPID, the two PSUs can
avoid falling into the reverse ‘S’ region better during the process of successive start-up
under low-water-head extreme conditions.

5. Conclusions

The successive start-up strategy of two hydraulic coupling PSUs under low-water-
head extreme conditions was studied in this paper. An accurate model of successive
start-up was established. The influence of interval time on the dynamic characteristics
of successive start-up was analyzed. A novel optimization scheme with FOPIDDP was
proposed for successive start-up. For comparison, the optimization scheme PIDDP was
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also tested. Moreover, MOGWO was adopted to solve the Pareto archive of the parameters
of novel optimization schemes. All numerical simulation experiments were completed in
MATLAB 9.2.

Several conclusions can be extracted from this study:

(1) The interval time ΔT could make a great influence on the successive start-up process;
when ΔT is greater than a certain value, the instability of the PSUs will be intensified,
especially for 1# PSU. Operating teams can refer to the research results of this paper
to select the optimal interval time.

(2) The results show that the multi-objective optimization aiming at the speed rise time
and ITAE value of the two units can effectively reduce the risk of falling into the anti-S
instability zone when the units are successively started at low-water-head conditions.

(3) With muti-objective optimization, the Pareto archive provides a series of feasible
solutions for decision-makers. Based on the result, the operating teams can select
the optimal solution according to their actual demand and therefore can obtain the
maximum benefit.

(4) The multi-objective optimization method with FOPID is feasible and conducive to
avoiding the ‘S’ region during the process of successive start-up under-low-water
head extreme conditions.

The results of this paper are helpful in solving the difficulty of regulating and control-
ling the hydraulic coupling PSUs under low-head conditions.
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Appendix A

Table A1. Pareto archive under PID controller.

Solutions Kp1 Ki1 Kd1 yc1 Kp2 Ki2 Kd2 yc2 ΔT

1 1.1925 4.7705 3.8386 0.3000 1.0264 3.7686 1.7617 0.3000 24.8353
2 1.1841 4.8417 3.8247 0.3000 1.0211 3.7870 1.8279 0.3000 25.7208
3 0.8434 4.8025 3.3461 0.2991 0.5425 3.5893 1.7219 0.2956 15.2920
4 0.8220 4.7674 3.5252 0.2996 0.5409 3.6460 1.7732 0.2903 15.4059
5 0.8548 4.8194 3.3967 0.3000 0.5542 3.6370 1.8115 0.3000 15.4788
6 0.8144 4.6661 3.6072 0.3000 0.5509 3.5573 1.8191 0.2971 15.4504
7 0.8385 4.7589 3.3806 0.2990 0.5413 3.5597 1.7238 0.2946 15.4116
8 0.8146 4.7299 3.6102 0.3000 0.5489 3.6101 1.7905 0.2919 15.4256
9 0.8197 4.6696 3.6107 0.2998 0.5541 3.5570 1.8281 0.2969 15.5383

10 0.8203 4.6707 3.6111 0.3000 0.5522 3.5608 1.8247 0.2976 15.5976
11 0.8715 4.7503 3.6393 0.2999 0.5895 3.6629 1.7932 0.2901 15.5248
12 0.6285 4.7633 3.9859 0.2996 0.6314 3.9650 1.6867 0.2998 27.8300
13 0.8225 4.6906 3.6173 0.3000 0.5542 3.5862 1.8210 0.2959 15.7242
14 0.6425 4.7612 3.9762 0.2999 0.6399 3.9593 1.6977 0.2998 27.6187
15 1.0271 4.6495 3.5825 0.3000 0.6910 3.6774 1.7781 0.3000 15.4626
16 0.8545 4.8164 3.4118 0.3000 0.5541 3.6412 1.8111 0.2997 15.6067
17 1.2055 4.8233 3.8714 0.3000 0.9807 3.8226 1.9135 0.3000 25.5276
18 0.7513 4.8524 3.9405 0.3000 0.6625 3.9626 1.8100 0.3000 27.1635
19 0.5686 4.7506 3.9798 0.2984 0.6008 3.9461 1.6692 0.2993 27.8832
20 0.6550 4.7633 3.9743 0.2999 0.6573 3.9548 1.6987 0.2999 27.6223
21 0.8556 4.7457 3.6342 0.2996 0.5829 3.6513 1.7865 0.2899 15.2710
22 0.8477 4.7970 3.4457 0.3000 0.5569 3.6209 1.7398 0.2968 15.7298
23 0.8606 4.7962 3.3957 0.2999 0.5633 3.6284 1.8035 0.2999 15.4701
24 1.1936 4.7938 3.8537 0.3000 1.0299 3.7861 1.8083 0.3000 25.0752
25 0.6059 4.7542 3.9805 0.2986 0.6285 3.9491 1.6773 0.2994 27.8763
26 1.0301 4.9349 3.8476 0.3000 0.7399 3.9261 1.8736 0.3000 25.9410
27 1.1878 4.8585 3.8922 0.3000 0.9429 3.8568 1.9236 0.3000 25.6958
28 1.1430 4.9518 3.9508 0.3000 0.8703 3.9426 2.2738 0.3000 24.9287
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Table A2. Pareto archive under FOPID controller.

Solutions Kp1 Ki1 Kd1 λ1 μ1 yc1 Kp2 Ki2 Kd2 λ2 μ2 yc2 ΔT

1 1.179 1.673 5.567 0.296 1.077 0.298 1.262 1.997 5.421 0.146 1.053 0.296 28.58
2 1.178 1.673 5.563 0.296 1.076 0.298 1.262 1.988 5.420 0.146 1.053 0.296 28.57
3 1.136 1.680 5.504 0.292 1.077 0.298 1.268 1.985 5.470 0.146 1.065 0.299 28.58
4 1.173 1.687 5.524 0.297 1.082 0.297 1.293 2.000 5.480 0.144 1.062 0.300 28.52
5 1.070 1.662 5.459 0.298 1.072 0.297 1.281 1.955 5.343 0.149 1.054 0.295 28.53
6 1.075 1.665 5.472 0.297 1.072 0.297 1.277 1.964 5.351 0.148 1.055 0.296 28.57
7 1.075 1.666 5.472 0.297 1.072 0.297 1.278 1.964 5.355 0.148 1.056 0.296 28.58
8 1.139 1.700 5.423 0.300 1.059 0.298 1.270 2.000 5.500 0.150 1.061 0.300 28.25
9 1.138 1.694 5.453 0.300 1.066 0.298 1.274 2.000 5.486 0.149 1.067 0.299 28.47

10 1.133 1.692 5.472 0.300 1.067 0.298 1.272 1.998 5.476 0.149 1.066 0.299 28.45
11 1.137 1.694 5.452 0.300 1.066 0.298 1.273 1.999 5.484 0.149 1.066 0.299 28.45
12 1.139 1.694 5.460 0.300 1.067 0.298 1.274 2.000 5.486 0.149 1.068 0.299 28.50
13 1.139 1.700 5.425 0.300 1.059 0.298 1.270 2.000 5.500 0.150 1.061 0.300 28.26
14 1.143 1.674 5.574 0.296 1.076 0.298 1.277 1.989 5.435 0.148 1.074 0.299 28.56
15 1.130 1.670 5.545 0.296 1.076 0.298 1.273 1.983 5.434 0.148 1.071 0.297 28.58
16 1.107 1.678 5.492 0.292 1.077 0.298 1.263 1.967 5.396 0.147 1.060 0.292 28.58
17 1.134 1.670 5.551 0.296 1.076 0.298 1.275 1.983 5.428 0.148 1.071 0.297 28.56
18 1.132 1.672 5.549 0.295 1.076 0.298 1.274 1.982 5.422 0.148 1.071 0.297 28.55
19 1.141 1.676 5.569 0.296 1.076 0.298 1.275 1.986 5.436 0.148 1.074 0.299 28.58
20 1.141 1.673 5.569 0.296 1.076 0.298 1.277 1.987 5.433 0.148 1.073 0.299 28.56
21 1.056 1.651 5.476 0.290 1.067 0.299 1.277 1.972 5.335 0.150 1.080 0.300 28.35
22 1.156 1.686 5.581 0.296 1.077 0.299 1.280 1.994 5.446 0.149 1.075 0.300 28.52
23 1.152 1.683 5.575 0.296 1.076 0.298 1.279 1.990 5.444 0.149 1.074 0.300 28.50
24 1.058 1.654 5.477 0.290 1.067 0.299 1.279 1.973 5.342 0.150 1.080 0.300 28.37
25 1.129 1.671 5.537 0.295 1.076 0.298 1.272 1.982 5.425 0.149 1.069 0.297 28.60
26 1.143 1.674 5.574 0.296 1.076 0.298 1.277 1.989 5.435 0.148 1.074 0.299 28.56
27 1.130 1.670 5.545 0.296 1.076 0.298 1.273 1.983 5.434 0.148 1.071 0.297 28.58
28 1.141 1.677 5.566 0.295 1.076 0.299 1.275 1.986 5.437 0.148 1.073 0.299 28.56
29 1.110 1.678 5.497 0.292 1.077 0.298 1.263 1.966 5.393 0.147 1.062 0.292 28.59
30 1.107 1.678 5.492 0.292 1.077 0.298 1.263 1.967 5.396 0.147 1.060 0.292 28.58
31 1.134 1.670 5.551 0.296 1.076 0.298 1.275 1.983 5.428 0.148 1.071 0.297 28.56
32 1.132 1.672 5.549 0.295 1.076 0.298 1.274 1.982 5.422 0.148 1.071 0.297 28.55
33 1.141 1.676 5.569 0.296 1.076 0.298 1.275 1.986 5.436 0.148 1.074 0.299 28.58
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Abstract: Deterioration trend prediction of hydropower units helps to detect abnormal conditions of
hydropower units and can prevent early failures. The reliability and accuracy of the prediction results
are crucial to ensure the safe operation of the units and promote the stable operation of the power
system. In this paper, the long short-term neural network (LSTM) is introduced, a comprehensive
deterioration index (CDI) trend prediction model based on the time–frequency domain is proposed,
and the prediction accuracy of the situation trend of hydropower units is improved. Firstly, the
time–domain health model (THM) is constructed with back-propagation neural network (BPNN)
and condition parameters of active power, guide vane opening and blade opening and the time–
domain indicators. Subsequently, a frequency-domain health model (FHM) is established based
on ensemble empirical mode decomposition (EEMD), approximate entropy (ApEn), and k-means
clustering algorithm. Later, the time–domain degradation index (TDI) is developed according to
THM, the frequency-domain degradation index (FDI) is constructed according to FHM, and the CDI
is calculated as a weighted sum by TDI and FDI. Finally, the prediction model of LSTM is proposed
based on the CDI to achieve degradation trend prediction. In order to validate the effectiveness of the
CDI and the accuracy of the prediction model, the vibration waveform dataset of a hydropower plant
in China is taken as a case study and compared with four different prediction models. The results
demonstrate that the proposed model outperforms other comparison models in terms of predicting
accuracy and stability.

Keywords: hydropower units; degradation trend prediction; comprehensive deterioration index;
long and short-term neural network; ensemble empirical mode decomposition; approximate entropy

1. Introduction

Hydropower units, as the critical equipment for hydropower energy conversion, have
always been a focus of attention in the power industry for their safety and stability [1–7].
Along with the continuous development of the unit to the large scale as well as the complex,
the degree of integration is getting higher and higher, and the structure is also becoming
more and more sophisticated [6]. With the increase in accumulated operation time, hy-
dropower units are prone to abnormal vibration, equipment exhaustion, unit deterioration,
and other occurrences [5]. As the deterioration degree increases, the equipment perfor-
mance of the unit will decline gradually until equipment breakdown happens [7]. Not
only will the safe and stable operation of hydropower units and power stations be affected,
but this will also bring about economic losses such as the additional cost of maintenance.
Consequently, in considering the safety and stability of the hydropower unit and the power
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system, it is helpful to accurately predict the operating status trend of the hydropower unit
to prevent early failure by detecting abnormal conditions of the hydropower unit. In this
way, scientific and reliable maintenance plans and measures can be planned to optimize
the comprehensive benefits of power plant operation. It is, therefore, of major significance
to conduct research related to the condition trend prediction of hydropower units [1–7].

At this time, the research on health performance trend prediction of hydropower units
is still at the initial stage, and the research experience of rotating machinery is summarized
that the equipment quality degradation trend prediction is classified into three steps: (a) es-
tablishing a health state model; (b) constructing deterioration index (DI); and (c) achieving
the trend prediction of the hydropower unit degradation [1]. The construction of a sensible
equipment health state model, the proposal of DI that actually describe the operating state
of the unit, and the adoption of an accurate predictive trend prediction model are the
essential elements to realize the trend prediction of hydropower unit deterioration. In the
existing domestic and international studies, the health model (HM) is constructed by ana-
lyzing the correlation between the stability parameters reflecting the operating condition
of the unit and the working condition parameters. As abnormal vibration is one of the
main causes of unit performance deterioration, the stabilization-related signals such as
vibration and oscillation of the unit’s shaft system can well describe the operating condition
of the unit. Examples of stability parameters used to construct the HM in the current
study are the original monitoring data, such as the original measured point values of frame
vibration and shaft oscillation, sometimes domain indicator values, such as peak-to-peak
and standard deviation (SD), and related working condition parameters, such as working
head, active power, and guide vane opening, etc., which can be one-dimensional or multidi-
mensional [1–16]. Shan et al. [1] used back-propagation (BPNN) in their study to establish
a health state model with working condition parameters and horizontal vibration values of
the Y-direction of the lower bracket. The relative error between the vibration health value
and the measured vibration value was used as the DI. And the multi-objective particle
swarm algorithm was used to optimize the parameters of the kernel extreme learning ma-
chine, and the optimized kernel extreme learning machine model was used to construct the
prediction model. Fu et al. [2] applied modal decomposition to the turbine guide Y-direction
oscillation monitoring data, aggregated and reconstructed the obtained modal components,
and calculated the phase space matrix of each reconstructed modal component, as well as
used support vector machines to predict each phase space matrix and summed the pre-
dicted values of each component to obtain the final predicted value of the oscillation degree
and to achieve the deterioration prediction of the unit operating condition assessment.
An et al. [7] developed an HM based on the radial basis function neural network (RBF)
for the vibration peaks in the horizontal direction of the upper bracket of the unit and the
working condition parameters and calculated the ratio of the health value to the measured
value to obtain the unit degradation degree. This time series of the unit degradation degree
is decomposed into several intrinsic mode functions (IMFs), and the complexity of the
modal components is determined by calculating the approximate entropy (ApEn) of each
modal component. When the ApEn is high, the RBF neural network is selected to predict
the series. When the ApEn is small, a gray-system model is selected to predict the sequence,
and the predictions of the decomposed components are summed to obtain the prediction
results of the initial time series. In a similar way, An et al. [8] constructed an HM based on
the horizontal vibration of the upper support and the water head and active power. The
ratio of the true value to the healthy value under the current working condition parameters
was used to evaluate the degree of unit deterioration for the current working condition. A
gray-system model and RBF were used to construct the prediction model. Related research
work [15,16] similarly developed HMs containing working head and active power for the
prediction of the degradation trend of hydropower units.

After analysis of the above studies, it can be seen that: (1) The form of constructing the
health status model of hydropower units in the existing studies is relatively easy, and most
of the stability parameters for constructing the HM only consider the detection value of the
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original single measurement point or a single time-domain index value, and such stability
parameters cannot objectively reflect the operating status of the units comprehensively;
(2) The form of constructing the DI is also relatively simple, which cannot authentically
characterize the state change trend of hydropower units, and the large-scale historical data
generated by the condition monitoring system is not effectively applied, and the reliability
of its prediction results needs to be advanced [6]. Therefore, to address the shortcomings of
constructing unit HM and DI in the current hydropower deterioration trend prediction, it is
suggested that a comprehensive deterioration index (CDI) of hydropower units should be
constructed with both the time-domain health model (THM) and frequency-domain health
model (FHM), so as to comprehensively consider the change characteristics and trends
of the operating state of hydropower units in the time-frequency domain to achieve the
real-time prediction of hydropower unit deterioration degree. The research objective is to
predict the deterioration level of hydropower units in real time.

State trend measurement is a time series prediction problem where the historical
state index values are used to predict the future state index values for the purpose of
predicting the future operating state of the unit. Whether a time series can predict future
data based on historical data is dependent on the correlation between its future and
historical data [17]. The time series reflecting the deterioration trend of the hydropower
unit is between the unpredictable white noise time series and the fully predictable periodic
signal time series, and therefore, it can be considered to be predictable to a reasonable
degree. Due to the strong volatility and nonlinearity of the vibration signal, the calculated
deterioration indicator series is strongly non-smooth and contains some noisiness, so it is a
challenging topic to achieve an accurate prediction of the indicator series [5]. Experts and
scholars have conducted relevant studies and proposed some prediction methods [1–19].
Qin et al. [17] established a long short-term memory neural network (LSTM) prediction
model for wind speed prediction on the original wind speed series. Wang et al. [18]
proposed a short-term wind speed prediction method based on ensemble empirical mode
decomposition (EEMD) and an optimized BPNN. Lu et al. [3] proposed a state trend
prediction model for hydropower units based on EEMD and genetic algorithm parameter
seeking BPNN. Fu et al. [2] established a state trend prediction model for hydropower
units based on aggregated EEMD and SVM theory, which can effectively predict the unit
state. Yang et al. [19] proposed a prediction model combining wavelet transform and SVM
to achieve short-term prediction of vibration signals. Due to the existence of background
noise and electromagnetic interference, the state signals of hydropower units are often
non-smooth, which can significantly affect the prediction results. Therefore, the signal
needs to be pre-processed before building the prediction model [2]. Through the above
literature analysis, the complexity and non-stationarity of the hydropower unit vibration
signal lead to the inaccuracy of prediction, and the prediction accuracy of the deterioration
trend of hydropower units needs to be enhanced further. LSTM has a unique memory and
forgetting pattern, which can effectively deal with the long-term dependence of time series
and effectively use the historical input information of time series to achieve an accurate
prediction of the deterioration trend of hydropower units [17].

Through the above analysis, a trend prediction model for hydropower units based
on CDI and LSTM is proposed in this paper. Firstly, a THM based on BPNN is con-
structed, and the Sparrow Search Algorithm (SSA) is used to optimize the parameters of
BPNN; meanwhile, an FHM based on EEMD combined with approximate entropy and
K-mean clustering is constructed; secondly, the time-domain deterioration index (TDI)
and frequency-domain deterioration index (FDI) are calculated separately, in particular,
the TDI is the variation of the real-time value relative to the health value, and the FDI is
the Euclidean distance between the real-time feature vector and the health center vector.
After a while, the CDI is obtained through weighted calculation, which can comprehen-
sively and objectively reflect the operating trend and deterioration degree of the unit; a
series of smooth modal components are obtained by modal decomposition of the CDI, and
the LSTM-based prediction model is constructed for each modal component to make a
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prediction, and the prediction results of each component are summed to obtain the final
prediction result, which reflects the future operating status of the hydropower unit. In
this paper, the validity of the CDI to characterize the operating status of hydropower units
and the validity of the prediction model to reflect the deterioration trend of the units are
examined by the actual operation cases of a hydropower plant in China.

2. Theoretical Background

2.1. SSA Algorithm and BPNN

An artificial neural network is a mathematical model established by simulating the
structure of the human brain. BPNN is a feed-forward neural network with the forward
transmission of signal and reverse transmission of error. Although it is widely used, there
are disadvantages, such as the tendency to fall into local minima and slow convergence
speed [20–23]. The setting of initial weights and thresholds of BPNN has a strong influence
on the training effect of the network. In this paper, the initial values of BPNN weights and
thresholds are optimized using the SSA, and the neural network is trained twice to achieve
the global optimum.

Sparrow Search Algorithm (SSA) is a swarm intelligence algorithm proposed in
2020 based on the optimization of social features of a population. The algorithm simulates
sparrow foraging and anti-predation behaviors, distinguishes individuals into finders,
followers, and vigilantes, and accomplishes the acquisition of resources by continuously
updating individual positions, each of which corresponds to a solution, thus obtaining
the mathematically optimal solution. Compared with traditional algorithms, the spar-
row search algorithm has a simpler structure, is easy to achieve, and has fewer control
parameters and better local search capability [24]. If the number of individuals in the
population is n, then the population consisting of all individuals can be expressed as shown
in Equation (1).

X = [X1, X2, · · · Xn]
T (1)

where Xi represents an individual in the set i = 1, 2, · · · , n.
The respective corresponding fitness function for each individual is shown in Equation (2).

F = [ f (X1), f (X2), · · · f (Xn)]
T (2)

where f (Xi) represents the fitness of each individual in the set i = 1, 2, · · · , n.
Where the discoverer location is updated in the following way, as shown in Equation (3).

xt+1
i,j =

{
xt

i,j· exp
(

−i
α×itermax

)
, R2 < ST

xt
i,j + Q·L, R2 ≥ ST

(3)

where t represents the number of current iterations, xt
i,j represents the position of the ith

individual in the tth generation in the jth dimension, α is a random number, α ∈ (0, 1),
itermax is the maximum number of iterations, R2 represents the warning value, R2 ∈ [0, 1],
ST represents the safety threshold, ST ∈ [0.5, 1], Q is a random number obeying normal
distribution, L is the all-1 matrix of 1 × dim, and the dim represents the dimensionality.

The position of the follower is updated as shown in Equation (4).

xt+1
i,j =

⎧⎪⎪⎨⎪⎪⎩
Q· exp

(
xt

worst−xt
i,j

i2

)
, i > n

2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣·A+·L, i ≤ n
2

(4)

where xt
worst denotes the position of the worst adapted individual in the tth generation, and

xt+1
P denotes the position of the best adapted individual in the t+1th generation. A denotes

the matrix of 1 × dim, and each element is randomly preset to −1 or 1, A+ = AT(AAT)
−1.
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The vigilantes’ positions are updated, as shown in Equation (5).

xt+1
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt

best + β·
∣∣∣xt

i,j − xt
best

∣∣∣, fi �= fg

xt
best + k·

(∣∣∣xt
i,j−xt

best

∣∣∣
| fi− fw |+ε

)
, fi = fg

(5)

where xt
best indicates the global optimal position in the tth generation, β is the control step,

following a normal distribution with a mean 0 and variance 1, k ∈ [−1, 1], k is a random
number, and ε is set as a constant to avoid the denominator being 0. fi denotes the fitness
value of the current individual; fg and fw denote the fitness values of the current global
optimal and worst individuals, respectively.

2.2. Empirical Modal Decomposition and Approximate Entropy
2.2.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD), proposed by Huang et al. [25], is an effective
method for adaptive analysis of nonlinear and non-smooth signals. The basic idea of EMD
is to perform adaptive smoothing on the original signal and obtain a series of IMFs by
decomposing it step by step. Ensemble empirical mode decomposition (EEMD) improves
on the traditional EMD decomposition by adding Gaussian white noise to the original data
several times to compose a new signal, and the uniform frequency distribution of Gaussian
white noise effectively avoids the modal aliasing phenomenon that exists when using EMD
for signal decomposition [26]. The EEMD decomposition steps are as Equations (6)–(8).

(1) Add the white noise ni(t) with a set noise level to the original signal xi(t) to form
the new signal:

xi(t) = x(t) + ni(t) (6)

where ni(t) denotes the ith additive white noise sequence, xi(t) denotes the additional
noise signal of the ith trial, i = 1, 2, · · · , M, M is the overall average number of times, which
is the number of times white noise is added, and its value ranges from 100 to 300.

(2) To decompose the synthesized new signal by EMD, a series of IMFs components
cij(t), and a residual term rij(t) are obtained:

xi(t) =
J

∑
j=1

cij(t) + rij(t) (7)

The number of IMF components is m, which cij(t) is the jth component of the decom-
position after adding white noise for the ith time, J is the number of IMFs.

(3) Repeat steps (1) and (2) M times, and average the overall results, and the result is
the IMF component of the original signal x(t) obtained by EEMD decomposition:

cj(t) =
1
M

M

∑
i=1

cij(t) (8)

where cj(t) is the jth IMF of the EEMD decomposition, i = 1, 2, · · · , M, j = 1, 2, · · · , J.
Through the EEMD algorithm, the signal is decomposed into a series of IMF components at
different time scales, and the fluctuations of each IMF component are smoother compared
to the original signal. The advantage of smoothly processing the nonlinear nonstationary
indicator series by using EEMD decomposition to avoid the errors due to direct prediction
could, in theoretical terms, lead to more accurate prediction results [27].

2.2.2. Approximate Entropy

ApEn characterizes the complexity of a sequence, and the higher the complexity of the
sequence, the higher the approximate entropy value [28]. Approximate entropy is widely
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used in biomedical signal detection [29] and mechanical equipment fault diagnosis [30],
and it has corresponding applications in the field of financial system complexity measure-
ment [31]. Approximate entropy is resistant to strong external interference, does not require
a long data length, and can be applied to deterministic signals or noisy signals.

For the data sequence {x1, x2, · · · , xN}, its ApEn is calculated as follows [28].
(1) Form a set of m − dimensional vectors of {xi} in a continuous order:

X(i) = [x(i), x(i + 1), · · · x(i + m − 1)] (9)

where Xi represents an individual in the set, i = 1, 2, · · · , N − m + 1, N is the number of
time series data points and m is the length of the window.

(2) Define the distance d[X(i), X(j)] between X(i) and X(j) to be the one with the
largest value of the difference between the two corresponding elements, as follows:

d[X(i), X(j)] = max|x(i + k)− x(j + k)|, k ∈ (1, m − 1) (10)

where for each value of i, calculate the distance d[X(i), X(j)] between X(i) and the remain-
ing corresponding elements of X(j) (j = 1, 2, · · · , N − m + 1, j �= i).

(3) Iterate through each value, count the number of d[X(i), X(j)] < r (r is the similarity
tolerance, which is a pre-determined threshold, r > 0), and compare the value with the
total number of vectors N − m + 1, which denote as Cm

i (r).

Cm
i (r) =

1
N − m + 1

num{d[X(i), X(j)] < r} (11)

where i = 1, 2, · · · , N − m + 1, j = 1, 2, · · · , N − m + 1, j �= i.
(4) Firstly, perform the logarithmic operation on Cm

i (r), and then find its average value
for all i, denoted as Φm(r), as follows:

Φm(r) =
1

N − m + 1

N−m+1

∑
i=1

ln Cm
i (r) (12)

(5) Increase the number of dimensions to m + 1 and repeat steps (1) to (4) to obtain
Cm+1

i (r) and Φm+1(r), as follows:

Cm+1
i (r) =

1
N − m

num{d[X(i), X(j)] < r} (13)

Φm+1(r) =
1

N − m

N−m

∑
i=1

ln Cm+1
i (r) (14)

(6) The ApEn of the sequence is calculated by the following equation:

ApEn(m, r) = lim
N→∞

[Φm(r)− Φm+1(r)] (15)

In practical engineering applications, N is a finite value, at this time, the ApEn of the
sequence can be calculated by the following equation:

ApEn(m, r, N) = Φm(r)− Φm+1(r) (16)

where m is the pattern dimension, given before calculating the approximate entropy; r is
the similarity tolerance.

It was shown that the value of ApEn(m, r, N) is related to the values of m, r, and
N [26]. When m = 2 and r = (0.1 ∼ 0 .25)σx (σx is the SD of the original data series {xi}),
ApEn(m, r, N) is almost independent of the data length N, as follows:

ApEn(m, r, N) ≈ ApEn(m, r) (17)
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Therefore, in practical calculations, the sequence length is generally between 100–5000,
the mode dimension m = 2, and the similarity tolerance r = (0.1 ∼ 0 .25)σx, which is
chosen in this paper as m = 2, r = 0.2σx, σx is the SD of original data.

2.3. Long Short-Term Memory Neural Network

LSTM is developed on the foundation of a recurrent neural network (RNN) [32], which
combines short-term memory and long-term memory through a special gate. The LSTM is
based on the recurrent neural network (RNN) [32], which combines short-term memory
and long-term memory with a special gate structure so that the network output has a
strong correlation with current and historical inputs, solving the issue that the traditional
recurrent neural network only has short-term memory, and can effectively use the time
series history information to deal with the long-term correlation of time series.

The basic structure of LSTM is divided into three layers: input layer, hidden layer,
and output layer. The hidden layer controls the information transmission by setting the
threshold unit (gate structure), which gives it a unique memory pattern, and the structure
of LSTM is shown in Figure 1.

Wf bf

sigmoid

Wi bi

sigmoid

Wc bc

tanh

Wo bo

sigmoid

tanh

Wy by

sigmoid

xt

ht-1

ct-1 ct

ht

ft it
tc

yt

ct

ot

Figure 1. The structure of LSTM.

It can be seen that the LSTM hidden layer contains three main gate structures, namely:
forgetting gate, input gate, and output gate. Where the forgetting gate is used to filter
to retain the information of neuron ct−1 history state at moment t − 1, the input gate
determines the storage of new input information xt of neuron at moment t, and the output
gate is used to control the information delivery of the output value ht of the hidden layer.
According to Figure 1, the forward propagation algorithm of the LSTM can be derived as
shown in Equations (18)–(24).

ft = sig(Wf ·[ht−1xt] + b f ) (18)

it = sig(Wi·[ht−1xt] + bi) (19)

c̃t = tanh(Wc·[ht−1xt] + bc) (20)

ct = ft·ct−1 + it·c̃t (21)

ot = sig(Wo·[ht−1xt] + bo) (22)

ht = ot·tanh(ct) (23)

yt = sig(Wy·ht + by) (24)
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where Equation (18) represents the forgetting gate, Equations (19) and (20) represent the
input gate, Equation (21) is the neuron state update expression, Equations (22) and (23) are
the output gates, and Equation (24) is the calculation output of the neuron at moment t.
xt is the network input information at moment t, ht−1 is the network hidden layer state
output value at moment t − 1, c̃t is the input gate candidate state value, ct−1 and ct is the
neuron state at different moments, sig is the sigmoid activation function, Wf , Wi, Wc, Wo,
Wy are the corresponding weight matrix, b f , bi, bc, bo, by are the corresponding threshold
vectors, and yt is the network prediction output at moment t.

After completing the forward propagation of the LSTM, it then enters the back-
propagation process; that is, the LSTM is extended into a deep network in time order,
and the weights and thresholds are updated iteratively using the back-propagation through
time (BPTT) algorithm [33] and the chain rule until the optimal solution is obtained.

3. The Proposed Prediction Model Based on the CDI

3.1. Proposed Model

In this paper, in order to detect the failure signs of hydropower units in advance, realize
fault warning, provide sufficient time margin for on-site maintenance and repair work,
and thus improve the economic and social benefits of power stations, the EEMD-LSTM
prediction model based on the CDI (CDI-EEMD-LSTM) in the time-frequency domain
is proposed by making full use of the condition monitoring data of the industrialized
information platform of hydropower units. The specific flow of the prediction model is
shown in Figure 2, which includes four steps.

Step 1: The HMs of hydropower units are constructed, and this section is divided into
two steps. The flowchart of Step 1 is shown in Figure 2.

(1) Constructing a THM of the unit based on SSA-BPNN, with the input being the
operating parameters of the unit’s historical health state and the output being the time-
domain indicators of the unit’s historical health state.

(2) Constructing an FHM based on EEMD-APEN and K-mean clustering algorithm,
EEMD decomposition is performed on the vibration waveform numbers of the unit’s
historical health state to obtain the ApEn of each modal component, which constitutes a
high-dimensional frequency-domain feature vector, and the health center vector of the
hydropower unit is obtained by automatic clustering.

Step 2: The HMs and the health center vector are used to construct the CDI of the
hydropower unit, which is divided into three steps. The flowchart of Step 2 is shown in
Figure 3.

(1) Input the real-time operating parameters into the THM, obtain the health value
under the current operating parameters, and calculate the relative error between the health
value and the actual value as the TDI.

(2) Obtain the frequency-domain eigenvectors of the real-time waveform data of the
unit vibration based on EEMD-ApEn, and calculate the Euclidean distance between the
real-time frequency-domain eigenvectors and the health center vector as the FDI.

(3) Weight and sum the TDI and the FDI to construct the CDI in the time–frequency
domain for hydropower units.

Step 3: The CDI-EEMD-LSTM prediction model is constructed.
To further improve the accuracy of trend prediction, EEMD is combined with LSTM.

The EEMD of the CDI is performed first, the LSTM prediction model is constructed for
each modal component obtained, and the fixed-length data is used as the input of the
LSTM prediction model. With the superior accuracy of LSTM in time series prediction,
each modal component is predicted, and eventually, the future state trend of the unit health
index series is obtained by accumulation. The flowchart of Step 3 is shown in Figure 4.

Step 4: Evaluation and analysis of prediction results.
The prediction results of the CDI-EEMD-LSTM model were evaluated.
The process is shown in Figure 5.
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Figure 2. Flowchart of Step 1: (a) is the flowchart of constructing THM; (b) is the flowchart of
constructing FHM.
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Figure 5. Trend prediction of hydropower unit health status based on CDI.

3.2. Evaluation Indicators

So as to evaluate the effectiveness of SSA-BPNN and CDI-EEMD-LSTM, this paper
evaluated the prediction results using mean absolute percentage error (MAPE), root Mean
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square error (RMSE), and correlation coefficient (CC). MAPE, RMSE, and CC are calculated
as shown in Equations (25)–(27), respectively. The lower the RMSE and MAPE, the higher
the accuracy of the model prediction. The CC is used to measure the strength of linear
correlation between two variables, and a higher value indicates a higher correlation between
the two, which also characterizes the more accurate prediction results.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y′i
y′i

∣∣∣∣× 100% (25)

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (26)

Rxy =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(27)

4. Experiment Results and Analysis

Vibration signals contain abundant state characteristics, so they can be employed in
engineering applications to assess the health status of equipment [34–36]. The condition
information of hydropower units is also embedded in the vibration signals, and the actual
conditions of unit operation can be obtained by analysis of the vibration signals of hy-
dropower units [37]. In order to validate its effectiveness and engineering application value,
this paper uses actual measurement data of hydropower units for experimental analysis.

A hydroelectric power station unit No. 3 is used as the research object, which is a
vertical shaft semi-parachute type. The water turbine type frame is ZZA315-LJ-800, the
rated speed is 107.1 r/min, the rated power is 200 MW, the rated head is 47 m, and the
generator model is SF200-56/11950. On 28 August 2015, during the start up of Unit No. 3,
there were obvious abnormal noises in the upper frame, waterwheel chamber, worm shell
and tail pipe, etc. The noise of each department was more intense when the unit was loaded
with 200 MW, and there were also obvious vibration and abnormal noises in the cement
foundation along the −X direction in the inlet hole of the tail pipe of the hydraulic turbine.
On 30 August, it was found that the steel plate of the middle ring of the runner chamber of
the No. 3 unit was dislodged, the middle ring and the lower ring had serious cracks, and
the blade skirt was seriously damaged.

Through retrospective analysis, the technicians deduced that the lining of the runner
chamber fell off between 28 August 2015 at 14:17:03 and 28 August 2015 at 14:37:12. It is
caused by the defects in the construction of the runner room, coupled with poor operating
conditions, resulting in the fatigue damage of the runner room, the emergence of cracks, and
the increase in vibration of the steel structure parts of the runner room, which eventually
leads to the combination bolt loosening and shearing, and the rotor blade rubs against the
cracked steel plate in the middle ring of the rotor chamber causing the steel plate to be torn
and fall off.

A total of 507 sets of data, including point value data and waveform data, were
obtained from the power station condition monitoring system before and after the failure
of unit No. 3, with a sampling interval of about 20 min. Each set of data contains X and
Y pendulum waveforms of the upper guide bearing, X and Y pendulum waveforms of
the thrust bearing, X and Y pendulum waveforms of the water guide bearing, and axial
vibration A, B, and C waveforms. Each waveform contains 16 key phases, with a total
of 4096 points, and the sampling frequency is 458 Hz. Before the failure, unit No. 3 was
operating at 63% of guide vane opening, 20% of blade opening, and working head of 50 to
55 m, and the vibration waveform data of axial A direction at the working point near this
condition was selected for prediction analysis and verification of unit deterioration trend.
All numerical simulation experiments are completed in MATLAB 9.2.
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4.1. Constructing the CDI in the Time-Frequency Domain for Hydropower Units
4.1.1. Constructing a Time-Frequency Domain Health Model

Step 1: Constructing a THM for the unit.
The sample data (active power, guide vane opening and blade opening) of the health

condition of a hydropower plant hydropower unit No. 3 are used as input, and the SD
of the unit’s axial A-directional vibration waveform is used as output. Compared with
other time-domain indicators, the waveform SD can objectively reflect the operating status
of hydropower units, and can identify unit health or fault conditions or even multiple
fault categories [38]. The mapping relationship between waveform SD Y(t) and operating
parameters X(t) is constructed as Equation (28):

Y(t) = fSSA−BP[Xt1(t), Xt2(t), Xt3(t)] (28)

where [Xt1(t), Xt2(t), Xt3(t)] ∈ X(t).
The SD of the axial A-directional vibration waveform Y(t) and the corresponding

operating conditions (active power Xt1(t), guide vane opening Xt2(t) and blade opening
Xt3(t)), of 170 sets were selected when the unit was in the initial healthy state in the
middle and early August. Moreover, 110 groups were randomly selected as the training
set, 30 groups as the validation set, and 30 groups as the test set for the THM. The original
values of the SD of the waveform of the axial A-direction vibration of the unit are shown in
Figure 6, where the timepoint is the sample points in chronological order.

Figure 6. SD of the original axial A-directional vibration waveform.

When using SSA for the initial weights and initial thresholds of BPNN for the opti-
mization search, to avoid over-learning and under-learning, both the initial weights a and
thresholds b are set to [−30, 30], and MAPE is selected as the fitness function of SSA. The
settings and modeling results of BPNN are shown in Table 1 and Figure 7.

Table 1. The parameters of BPNN.

Epochs Training Function Goal Learning Rate

5000 traingda 1e−7 0.1

From Table 1 and Figure 7, it is observed a good fit between the fitting output calculated
by the THM and the real SD. The RMSE of the THM is 0.1806 and MAPE is 30.23%, which
shows that the error values are low and the model is fitted with high precision. It can
accurately reflect the relationship between the operating parameters and the time-domain
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characteristics under the unit’s health condition and provides a basis for constructing a TDI
sequence for the unit.

SD
M
A
PE

Figure 7. Fitting results and fitting errors of SSA-BP HM.

Step 2: Construct the FHM and a frequency-domain health center feature vector.
While time-domain features can characterize the unit deterioration condition to a

certain degree, in practice, the frequency-domain features of the vibration signal can reflect
more information about the unit status, and the nonlinearity and non-stability of the unit
deterioration trend will also be reflected by the signal frequency-domain features. Therefore,
it is necessary to consider the frequency-domain characteristics of the unit to construct
the CDI.

In this paper, to construct an FHI based on EEMD decomposition with ApEn and
K-mean clustering, the unit frequency-domain feature vectors are extracted based on
EEMD-ApEn, and the central feature vector in the health state is obtained using K-mean
clustering. The specific steps implemented in this paper are shown below.

(1) 170 sets of axial A-directional vibration waveform data corresponding to the THM
are selected, and EEMD is performed for each set of waveform data with noise level
k = 0.2, overall mean M = 100, and the number of decompositions is 6. The eigenmodal
components IMF1 ∼ IMF6 are obtained after decomposition.

(2) Calculate the ApEn of each modal component separately to obtain the frequency-
domain feature vector L in the health state.

L = [ApEn1, ApEn2, · · · , ApEn6] (29)

(3) The feature vectors of the unit health samples are automatically clustered using
the K-means method to obtain the cluster center Ω in the health condition, and the cluster
center Ω is the health center vector of the FHM. This health center vector value characterizes
the frequency-domain feature vector possessed by the unit during normal operation, so
it can be used as the health vector to evaluate the unit deterioration from the frequency-
domain perspective.

4.1.2. Constructing the Comprehensive Degradation Index

This section is divided into three steps.
Step 1: Obtain a sequence of TDI.
A sequence of TDI is constructed from the sample data of the unit in the process of

developing from the healthy state to the fault state. A number of 230 sets of working
parameters of the unit are selected in chronological order, and the working condition data
during the development of the unit fault are input into Equation (28) to obtain the health
value Y(t) under the current corresponding working condition, and the relative error
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between the actual value T(t) and the health value Y(t) is adopted as the TDI of the unit,
and the mathematical expression is Equation (30).

R1(t) =
Y(t)− T(t)

T(t)
× 100% (30)

where R1(t) is the sequence of vibration signal time-domain deterioration indicators as
shown in Figure 8, which represents the deviation degree and deviation direction of the
time-domain characteristics of the unit relative to the normal value in the physical sense.
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Figure 8. Unit time-domain degradation index sequence R1(t).

The actual values of SD of axial vibration waveforms are compared with the healthy
values, as shown in Figure 9. From Figure 9, it can be observed that the difference between
the actual value series and the healthy value series is not significant at the beginning
of operation, and the unit is well in health at this time. With an increasing operating
time of the unit, the gap between the actual value series and the healthy value series
gradually increases, the operating performance of the unit gradually deteriorates, and the
TDI deviates toward the trend of more than the healthy value and the deviation degree
increases sharply.
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Figure 9. Comparison between T(t) and Y(t).
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As shown in Figures 5 and 6, the TDI series has a strong non-stationary nature
with fluctuating changes. The degree of deviation of the healthy value generally has
an increasing trend, indicating that the condition of the unit gradually deteriorates with
increasing operation time.

Step 2: Obtain a sequence of FDI.
The 230 sets of vibration waveform data corresponding to the CDI are selected, and

the frequency-domain features of the unit are extracted based on EEMD-ApEn to obtain
the frequency-domain feature vector collection L(t), and the Euclidean distance between
the L(t) and the health center vector Ω is calculated to obtain the sequence of FDI R2(t).
R2(t) is calculated as Equation (31).⎧⎨⎩ R2(t) =

‖L(t)−Ω‖
‖Ω‖ × 100%, R1(t) > 0

R2(t) = −‖L(t)−Ω‖
‖Ω‖ × 100%, R1(t) < 0

(31)

where R2(t) is sequence of the FDI shown in Figure 10, which physically indicates the
deviation of the unit frequency-domain characteristics relative to the normal value, and
constant positive because of the Euclidean distance. L(t) is the approximate entropy
eigenvector of the actual measured vibration signal at time t. In order to ensure the
homogeneity between the frequency-domain and time-domain degradation directions to
avoid the phenomenon of mutual cancellation, R2(t) and R1(t) need to have the same sign,
which means the TDI and FDI deviate from the normal value at the moment of the same
time to maintain the same direction.

Timepoint
100 2000
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0.12

2
()

R
t

Figure 10. The sequence of FDI R2(t).

As shown in Figure 10, the R2(t) series has a strong non-smoothness and fluctuates
with an overall increasing trend, which also indicates that the FDI can reflect the changing
characteristics of the unit state gradually deviating from the healthy state with increasing
operation time.

Step 3: Obtain the CDI in the time–frequency domain.
The TDI R1(t) and the FDI R2(t) are weighted and summed to obtain the time series

of CDI in the time–frequency domain of hydropower units, as shown in Equation (32).

R(t) = ω1·R1(t) + ω2·R2(t) (32)
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where ω1 and ω2 are the weighting coefficients. To enhance the sensitivity of the degrada-
tion index to the abnormal data, the weights are taken as shown in Equations (33) and (34).

ω1 =
|R2(t)|

|R1(t)|+ |R2(t)| (33)

ω2 =
|R1(t)|

|R1(t)|+ |R2(t)| (34)

As seen in Figure 11, the R(t) series indicates that the unit health deteriorates gradually
with increasing operating time.
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Figure 11. The sequence of CDI in the time–frequency domain of the unit R(t).

4.2. Prediction Model of Unit Deterioration Trend Based on CDI-EEMD-LSTM

Based on the unit CDI obtained in Section 4.1, combined with the signal processing
capability of EEMD and the time series prediction capability of LSTM, a forecasting in-
vestigation on the future trend of unit health status is carried out. To be consistent with
engineering practice, the first 3/4 of the series in chronological order is used as the training
set XTrain and the remaining part as the test set XPred. In the CDI-EEMD-LSTM, the CDI
sequence can be decomposed into different frequency modal components by EEMD, and
the fixed-length data in each modal component is used as the input of the LSTM, and the
powerful nonlinear fitting ability of the LSTM is used to make single-step prediction for
each modal component, and the prediction results of each modal component are accumu-
lated to finally output the single-step prediction results of the CDI sequence. RMSE, MAPE,
and similarity coefficient CC are employed as prediction effectiveness evaluation metrics,
which are calculated as shown in Equations (25)–(27). The division of the training set and
the prediction test set of the integrated degradation index is shown in Figure 12.

(1) Determining the input step length

The length of input data in LSTM affects the effect of prediction; too long input length
will lead to information redundancy and affect the efficiency of the prediction model;
too short will affect the accuracy of the prediction model. Firstly, the input length of the
CDI prediction model is calculated by computing the autocorrelation coefficient of the
index series. The autocorrelation of the CDI time series is shown in Figure 13, and the
autocorrelation coefficient of each index is still above the 95% confidence level when the
delay step is <10. In order to calculate the prediction effect of time series with different
input step lengths within delay Step 10, RMSE, MAPE, and similarity coefficient R were
used as evaluation indicators. The test was repeated 20 times, and the results are shown
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in Table 2. When the input length is 8, the RMSE and MAPE metrics of the prediction
results are the smallest, and the similarity coefficient CC is the largest, so the input length
of the model is determined to be 8 and the prediction step is 1, that is, LSTM is an 8-input,
1-output network.
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Figure 12. Division of training set and prediction test set of CDI.
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Figure 13. Sequential autocorrelation analysis of CDI.

Table 2. Evaluation of prediction effects with different input lengths.

Input Length RMSE MAPE/% CC

2 0.0320 22.66 0.7563
4 0.0306 23.64 0.7404
6 0.0310 24.86 0.7360
8 0.0292 21.67 0.9030
10 0.0334 26.48 0.6754

(2) Signal decomposition

Firstly, a series of indicators h is decomposed by EEMD to obtain each modal com-
ponent, as shown in Figure 14. In terms of the number of sets and decomposition noise
intensity selection, with the increase of the number of sets, the effect of Gaussian white
noise added in the EEMD process on the decomposition effect gradually decreases and

181



Energies 2022, 15, 6273

stabilizes, and different studies have shown that the effect of noise intensity on the result
error is also relatively mild [39,40], so when using EEMD to process the time series of the
degradation index, the number of sets is set to 100, and the auxiliary noise intensity is 0.2.
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Figure 14. Modal components of the CDI.

(3) Analysis of prediction results

The prediction results of the proposed CDI-EEMD-LSTM are shown in Figure 15, and
the evaluation indexes are shown in Table 3. Based on the signal processing capability of
EEMD and the nonlinear fitting capability of LSTM, the prediction value of the model is
almost consistent with the trend of the real value and can well reflect the fluctuation of
the series R(t). The RMSE is 0.019, the MAPE is 15.1%, and the CC is 0.903, which can
accurately predict the changing trend of the unit health status.

Figure 15. Prediction results of CDI-EEMD-LSTMNN.

Table 3. Index of prediction evaluation of CDI-EEMD-LSTM prediction model.

Prediction Model MAPE/% RMSE CC

CDI-EEMD-LSTM 15.1 0.019 0.903
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Figure 16 shows the prediction results of LSTM for each modal component of the CDI,
and it can be seen that the prediction results of each component basically match the actual
values. Further analysis of the prediction errors of each component shows that the smoother
the modal component, the better the prediction outcome. Among the prediction results for
all six modal components, the IMF1 component has the maximum prediction error and is
the main source of deviation between the predicted and actual values of the index.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. Prediction results of each modal component of the CDI. (a) is the prediction result of IFM1;
(b) is the prediction result of IFM2; (c) is the prediction result of IFM3; (d) is the prediction result of
IFM4; (e) is the prediction result of IFM5; (f) is the prediction result of IFM6.

4.3. Multi-Model Comparison Validation
4.3.1. Comparison of Indexes

The unit characteristics indexes can reflect the unit state changes, and it can be known
from the literature [6] that the SD, peak-to-peak value, skewness, and kurtosis of the signal
waveform increase constantly with time, reflecting the trend of unit deterioration in the
same way as the CDI of the unit. The trends of the CDI proposed in this paper are consistent
with the trends of the DI proposed in the literature [6]. In order to measure the sensitivity of
the CDI proposed in this paper to reflect the state change of the unit, the indicator gradient
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rate (IGR) of the indexes is applied. Calculate the IGR of each index, that is, the sharpness
of changes, to measure the sensitivity of the indexes to the change of unit status. The four
points of H, I, II, and III, where the change of indexes amplitude is obvious, are selected in
Figure 17, and the indexes are known to be healthy at the point of H. The change of the
indexes’ amplitude at the point I, II, and III relative to the amplitude of the indexes at the
point of H is calculated as the IGR of the indexes, separately. The calculation is shown in
the following Equations (35)–(37).

k1 =

∣∣∣∣ r(I)− r(H)

r(H)

∣∣∣∣ (35)

k2 =

∣∣∣∣ r(II)− r(H)

r(H)

∣∣∣∣ (36)

k3 =

∣∣∣∣ r(III)− r(H)

r(H)

∣∣∣∣ (37)

where r(I), r(II), and r(III) are the amplitudes of signal SD, kurtosis, skewness, and peak-
to-peak values at moments I, II, and III, respectively; k1, k2, and k3 are the IGR of signal SD,
kurtosis, skewness, and peak-to-peak values at moments I, II, and III.
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Figure 17. IGR of each index.

The IGR of each index is shown in Table 4 and Figure 17. In Table 4, where A, B, C, D,
and E respectively represent the indicators: SD, kurtosis, skewness, peak-to-peak, and CDI.
It can be seen that the IGR of the CDI is much better than the other indexes, which indicates
that the index is more sensitive to the changes in the unit’s operation status and can be
more representative of the deterioration process from normal to failure than the traditional
time and frequency-domain indexes.

Table 4. IGR of each indicator.

IGR A B C D E

k1 0.022 0.095 0.317 0.055 0.700
k2 0.146 0.237 0.627 0.467 3.715
k3 0.134 0.063 0.219 0.104 4.463
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4.3.2. Comparison of Predicted Results

To further verify the advantages of the proposed model prediction model in predicting
the trend of failure sign indicators of hydropower units, four control groups were designed
to verify the accuracy of the prediction model, where the four control groups are EEMD-
GA-BP (the first control group), original sequence-LSTM (the second control group), EMD-
LSTM (the third control group), and EEMD-SVM (the fourth control group). The selection
of these models is based on the basic model and similar model to the proposed model, and
the first control group is proposed in the 42nd literature [41], and the fourth control group
is proposed in the second literature [2]. The proposed model is compared with four control
groups and the original sequence. In the control group experiments, the training set and
test set divisions and all parameters of the LSTM network are kept the same as those of the
experimental group, and in using EEMD-GA-BPNN for deterioration indicator prediction,
the BPNN structure is a three-layer structure of input layer-hidden layer-output layer,
and the initial weights of the neural network and the initial threshold value of the neural
network are optimized by genetic algorithm. The final prediction results obtained for each
comparison model and the experimental model after training are shown in Figure 18. The
evaluation indexes of the 5 prediction models are compared, as shown in Table 5.
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Figure 18. Comparison of prediction results of different prediction models.

Table 5. Evaluation indicators of prediction results of different forecasting models.

Predicted Models RMSE MAPE CC

EEMD-GA-BPNN 0.313 0.047 0.576
EEMD-SVM 0.232 0.191 0.831

Original Sequence-LSTM 0.285 0.037 0.621
EMD-LSTM 0.152 0.021 0.884

Proposed model 0.151 0.019 0.903

It can be visually seen from Figure 18 that among the several prediction models
compared, the constructed EEMD-LSTM model prediction results are more closely matched
to the actual change trend of the deterioration indicators. In contrast, when the LSTM is
used to predict the original indicator sequence directly, the non-smoothness of the sign
indicators during the normal-to-fault evolution leads to a serious deviation of the prediction
results from the actual changes of the indicators.

The prediction result of the EEMD-GA-BPNN model is similar to that of the EEMD-
SVM model, but the prediction result of the LSTMNN model is better than that of the
BPNN and SVM models. From Table 5, it is observed that EMD-LSTM and EEMD-LSTM
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outperformed EEMD-GA-BP and EEMD-SVM in all evaluation metrics. In the EEMD-
LSTM model compared with the EEMD-GA-BP model, the RMSE and MAPE decreased
by 0.162 and 0.028, respectively, and the CC improved by 0.327, while compared with the
EEMD-LSSVM model, the RMSE and MAPE decreased by 0.081 and 0.172, respectively,
and the CC improved by 0.072. The superiority of the LSTM model in nonlinear fitting is
demonstrated. It can be shown that the LSTM has an outstanding prediction effect and
higher accuracy for time-series indicators during the unit state fading process compared
with the traditional BPNN and SVM and has a great advantage in the self-learning of time
series. It can thus be shown that the LSTM is feasible for the prediction model of the time
series of deterioration indicators.

Meanwhile, according to each evaluation index in Table 5, it can be seen that EEMD-
LSTM compared with the original sequence-LSTM model, RMSE and MAPE decreased
by 0.134 and 0.018, respectively, and CC improved by 0.282, which greatly improved
the prediction accuracy. Compared with the EMD-LSTM model, RMSE and MAPE were
reduced by 0.001 and 0.002, respectively, and CC was improved by 0.019. It can be seen
that the EEMD-LSTM model has the best evaluation indicators and the highest prediction
accuracy. The EEMD-LSTM predicts the degraded indicators more effectively than the EMD-
LSTM, indicating the advantage of EEMD over EMD in signal smoothness decomposition,
which shows that decomposing the mutated signals into smoothed component signals and
reducing the non-smoothness and non-linearity of the indicator sequences can enhance the
accuracy of prediction.

In the case study of this paper, the default values given by the toolbox are used for
most of the parameters of the LSTM model, which may lead to a slight increase in the
evaluation metrics. Overall, the overall prediction performance of the proposed EEMD-
LSTM model is better than several of the remaining comparative models and can be used
to predict the deterioration trend of hydropower units.

5. Conclusions

In order to improve the measurement accuracy of non-stationary and non-linear state
trends of hydropower units, a trend prediction model (EEMD-LSTM) based on CDI is
proposed in this paper. A THM is established by considering the mapping relationship
between operating parameters such as active power, guide vane opening and blade open-
ing, and the time-domain indicators, and an FHM is constructed based on EEMD-ApEn
and the K-mean clustering algorithm. Based on the above health models, TDI and FDI
were constructed, respectively, and the CDI was formed by weighted fusion. The main
conclusions of this paper are as follows:

1. Autocorrelation analysis was performed on the deteriorated indicator series to obtain
the appropriate correlation length. Too long or too short correlation length of the
indicator series can cause excessive prediction errors. The analysis showed that the
prediction input step length of the deterioration indicator series could be 8 steps when
using historical data for prediction.

2. The EEMD-LSTM model compared with the EEMD-GA-BPNN model, RMSE and
MAPE decreased by 0.162 and 0.028, respectively, and CC enhanced by 0.327, while
compared with the EEMD-SVM model, RMSE and MAPE decreased by 0.081 and 0.172,
respectively, and CC enhanced by 0.072. It can be obtained that the LSTM is more
effective in predicting the time-series indicators in the asymptotic process, which is
outstanding relative to the traditional prediction model in terms of time series self-
learning. Thus, it can be shown that LSTM is feasible for predicting the deterioration
trend of hydropower units.

3. EEMD-LSTM compared with the original sequence-LSTM model, RMSE and MAPE
were reduced by 0.134 and 0.018, respectively, and CC was improved by 0.282, and
the prediction accuracy was greatly improved. Compared with the EMD-LSTM
model, RMSE and MAPE are reduced by 0.001 and 0.002, respectively, and CC is
improved by 0.019. The EEMD-LSTM model has the highest evaluation prediction
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accuracy. EEMD-LSTM outperforms EMD-LSTM in predicting degraded indicators,
which shows the advantage of EEMD over EMD in signal smoothness decomposition,
thus showing that decomposing mutated signals into smooth component signals and
reducing the non-smoothness and non-linearity of indicator sequences can enhance
the prediction accuracy.

In the case study of this paper, most of the parameters of the LSTM model use the
default values given by the toolbox, which may lead to a slight increase in the evaluation
metrics. Overall, the overall prediction performance of the proposed EEMD-LSTM model
is better than the remaining several comparative models and can be used to predict the
deterioration trend of hydropower units.
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Abstract: This paper proposes a novel 1D-3D approach for the stability characteristics of the hy-
dropower generation system (HGS) in transition processes. First, a 1D-3D coupling model was
established for the HGS in the load-reduction process. Second, a sensitivity analysis of the HGS’s
parameters to the rotation speed and discharge was conducted. Third, the pressure pulsation charac-
teristics of the HGS with three typical guide vane openings were analyzed during the load-reduction
process. The results show that with the closure of the guide vane, the discharge gradually decreases
and it is sensitive to the change in hydraulic parameters. The rotation speed fluctuates at the early
stage of the transition process and is easily affected by mechanical parameters. In addition, the
pressure pulsation inside the Francis turbine is more intense under small openings than large open-
ings, and the primary frequency of pressure pulsation under three opening degrees is the blade
frequency. The 1D-3D coupling model successfully integrates the advantages of traditional methods
and provides a reference for predicting system stability and exploring the stability mechanism.

Keywords: 1D–3D coupling model; transition stability; sensitivity analysis; pressure pulsation;
hydro power

1. Introduction

The hydropower generation system (HGS) is playing an increasingly important role
in the world’s energy applications [1,2]. The rapid growth of intermittent energy sources,
such as wind power and photovoltaic, has changed the world’s energy structure [3,4].
Therefore, as the proportion of hydropower units increases, the hydropower station is
shifting from traditional power generation to peak load and frequency regulation. Due to
the intermittent characteristics of wind power and photoelectric power, the requirements
of real-time balance of electric energy in the power system cannot be satisfied. With rapid
start–stop characteristics of changing load, the hydropower generation system has therefore
become the best choice for complementary energy [5,6].

The HGS has received a lot of attention in recent years. There are some risks in the
quality of the power grid due to the randomness and unpredictability of intermittent
energy [7–9]. To keep the balance between active power and reactive power in the power
grid, a higher requirement is put forward for the flexible operation of HGS. Moreover, the
stability problem caused by the flexible operation and operation switching has also become
a research hotspot. In the transition process of the HGS, the hydraulic–mechanical–electrical
subsystem shows a cooperative variation relationship [10]. However, due to the difference
in the response time to flow, the machinery, and electricity, the hysteresis appears in a
cooperative variation relationship, causing energy fluctuations across the whole system [11].
In addition, the energy fluctuation of the HGS is particularly obvious when the operation
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switching time is long. The excessive energy fluctuation behavior under the transition
process (short time, large scale) not only affects the performance of hydropower but also
undoubtedly reduces the service life of the HGS [12,13].

The stability of the HGS in the transition process is a hot issue in many fields, such as
the design and operation of hydraulic machinery. It is divided into two kinds of research.
First, based on the theory of computational fluid dynamics, the stability mechanism is
revealed by observing the internal flow field behavior of the hydroturbine [14,15]. For exam-
ple, Simon Pasche et al. investigated the birth and the growth of the synchronous pressure
wave in Francis turbines, which brought deeper comprehension of the synchronous wave
generation mechanism [16]. Zhou et al. used baffles in the draft tube to hinder the swirling
flow emerging from a Francis turbine runner during part-load operation [17]. Zhou et al.
found the pressure fluctuation in the vaneless zone. The finding is of great significance in
terms of understanding the influence of the clearance flow on the load rejection process [18].
The unsteady behavior of the Francis turbine at several operating points was simulated
by Ahmed Laouari [19]. The results showed that the strong pressure pulsation and torque
oscillations occurred even at the best efficiency operating point. Various studies [20–24]
also verified the feasibility of pressure pulsation and velocity distribution of an ultra-high
head turbine in a hydropower station under rated and part-load operation. Second, the
whole HGS model was established, and the stability law was investigated by combining
mathematics and dynamics theory. Guo et al. investigated system stability considering
the coupling effect of water potential energy in the surge tank and power grid [25]. Xu
et al. established the Hamiltonian model of the HGS with a multi-hydroturbine, and the
stability was simulated by introducing several kinds of disturbance [26]. Li identified the
fast–slow behavior of the hydropower generation system, which caused the system energy
fluctuation [27].

The method of 1D and 3D coupling modeling has been applied in many fields. David
et al. discussed several different physical application models, based on the Newton-based
method, and adopted the coupling strategy from the loosely coupled Gauss–Seidel and
operator splitting methods to the tightly coupled method, achieving a breakthrough in the
understanding of coupling problem progress [28]. Zhang et al. studied the performance
of neutron and thermal-liquid coupling algorithms in transient problems. Three methods,
including operator splitting semi-implicit (OSSI), Picard iteration (PI), and Jacobi-Free
Newton–Krylov (JFNK), were used for comparison. The results show that the improved PI
and JFNK coupling algorithm can achieve better computing performance in TINTE due
to its better accuracy and stability [29]. Peng et al. used the OpenMC software coupled
with the commercial computational fluid dynamics of ANSYS. The realization and parallel
performance of the PI algorithm of grouped Gauss–Seidel type and grouped Jacobi type
were studied. The results show that the adaptive load balancing algorithm can improve
the computational efficiency of the block Jacobi algorithm and the performance of the
Gauss–Seidel algorithm [30]. Cheng et al. simulated the whole process of water flow and
reconnection for the pumped storage system, and showed that the two high-amplitude
single pulses generated by the axial force and radial force of the flow channel during this
process are destructive [31]. Liu et al. simulated the extreme case of simultaneous load
shedding in a prototype pumped storage system. The results show that the maximum
pressure is caused by strong static and dynamic interference (RSI), and the maximum
pressure upstream of the runner exceeds the industry standard [32]. The application of
the two aforementioned methods enriches the stability theories in transition processes.
However, both methods have their limitations: (1) The systematic model can only idealize
the dynamic process for a long time, which cannot be accurately solved due to the inability
of fluid characteristics; (2) due to the complexity of the system, the internal properties
cannot be used for calculation; (3) the transition process of the HGS involves collaborative
changes in multiple subsystems, and the internal characteristic method cannot meet the
requirements of collaborative changes for the subsystems of the HGS.
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Motivated by the above analysis, the stability of the HGS was studied during the
load-reduction process. Three innovations appear in this paper. First, the synergic model is
innovatively introduced, which combines the advantages of system modeling and inner
characteristic modeling. Second, the sensitivity of different subsystem parameters to the
system output is determined during load-decreasing process. Third, the pressure pulsation
inside the hydroturbine under three typical guide vane openings was obtained from a
transient perspective.

This paper is organized as follows: Section 2 introduces the synergic system model.
Section 3 presents the dynamic behavior and the pressure pulsation under different turbine
locations. Section 4 provides the conclusions.

2. The Internal Characteristic Model of the Hydropower Generation System

Figure 1a is the sketch map of the HGS. Figure 1b is the inner flow field diagram of
the turbine. Traditional systematic modeling was used to model each subsystem separately
to study the characteristics of the HGS. The dynamic behavior of subsystems (generators,
pressure pipe, penstock, Francis turbine generator, and tailrace tunnel) are easy to describe
with ordinary differential equations (ODEs). However, as the energy transformation hub of
the HGS, the complexity of the Francis turbine structure creates the turbulent characteristics
of flow, which cannot be described using ODEs. Therefore, with systematic modeling, it is
difficult to express the transient flow characteristics in the Francis turbine. Compared with
systematical modeling, internal characteristic modeling focuses on the refined modeling of
a single Francis turbine subsystem, as shown in Figure 1b. The application of the turbulence
equation describes the characteristics of the fluid in a more detailed and accurate way,
and reveals the unstable mechanism of the unit more intuitively. However, the main
drawback or barrier to the internal characteristic modeling method is the reduction process
of computing resources and data, which will remain difficult to resolve for the foreseeable
future. Combining the advantages of the two approaches, Section 2 establishes the 1D-3D
coupling model of the HGS.

Figure 1. The sketch map of the hydropower generating system and internal characteristic Francis
turbine model.

2.1. Hydroturbine Model

As the hub of the energy conversion of the HGS, the turbine converts kinetic energy of
flow into mechanical energy. The classical hydroturbine model adopts the hydroturbine
torque and flow as output, which is expressed as{

Mt = Mt(H, n, a)
Q = Q(H, n, a)

, (1)

where Mt is the active torque of hydroturbine, and Q is the flow of hydroturbine inlet. Both
torque and flow are the function of the water head H of the turbine inlet, rotation speed n,
and guide vane opening a.
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Expand Equation (1) in an arbitrary operational state using Taylor theory. Therefore,
the limitation increment of torque and flow are

ΔMt =
∂Mt
∂a Δa + ∂Mt

∂n Δn + ∂Mt
∂H ΔH

ΔQ = ∂Q
∂a Δa + ∂Q

∂n Δn + ∂Q
∂H ΔH

(2)

The essence of Equation (2) means the variance of output (Mt and Q) equals the sum
of the variance of input (a, n, and H) under their direction.

2.1.1. External Characteristic Method of the Turbine

In the external characteristic method, the full characteristic curve of the hydroturbine
is regarded as the boundary condition for calculating the long transition process of the
HGS. In this paper, the model of the Francis turbine came from a hydraulic machinery
experiment platform in Norway [33].

From Equation (2), the partial derivative represents the direction differential. The
differential form of Equation (2) is transformed as follows:

·
Mt =

∂Mt
∂a

·
a + ∂Mt

∂n
·
n + ∂Mt

∂H

·
H

·
Q = ∂Q

∂a
·
a + ∂Q

∂n
·
n + ∂Q

∂H

·
H

(3)

The calculation step for six coefficients ( ∂Mt
∂a , ∂Mt

∂n , ∂Mt
∂H , ∂Q

∂a , ∂Q
∂n and ∂Q

∂H ) with partial
derivative form are obtained in [34].

2.1.2. Pressure Pipe

In the actual design of a hydropower station, the assumption of the elasticity of the
pipe wall causes a big error. Therefore, the pressure pipe model, which considers the elastic
water hammer and pipe friction, is as follows [35]:

...
q +

24
T2

r

.
q +

96 f
T3

r
q = − 3

hwTr

..
h − 12 f

hwT2
r

.
h − 24

hwT3
r

h (4)

By introducing the state variables (x1, x2, and x3) into Equation (4), the pressure pipe
model is expressed as ⎧⎨⎩

.
x1 = x2 + b2h
.
x2 = x3 + b1h
.
x3 = −a0x1 − a1x2 + (b0 − a1b2)h

(5)

In addition,
q = x1 (6)

where a0 = 96 f
T3

r
,a1 = 24

T2
r

,b0 = − 24
hwT3

r
,b1 = − 12 f

hwT2
r

,b2 = − 3
hwTr

; f is the frequency; hw is the
pipe characteristic coefficient; and Tr is the period of the water hammer.

Couple Equations (3), (5) and (6) and the dynamic equation of the water head is

.
h =

1
eqh

(−eqx
.

ω − eqy
.
y + x2 + b2h) (7)

2.1.3. Generator

To study the dynamic characteristics of the generator during the load-reduction pro-
cess, the second order model of the synchronous motor is adopted as follows [12]:{ .

δ = ω1ω
.

ω = 1
Tab

(mt − me − Dω)
(8)
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where δ is the angle of rotor; w is the angular speed; Tab is the time constant value of
unit inertia; and D is the damping coefficient. ω1 = 2π f0, where f0 is the power grid
frequency of 50 HZ. Taking the influence of the rotation speed change on torque into
generator damping, we obtain me = pe, where me is the electromagnetic torque, and pe is

the electromagnetic power. Its equation is Pe =
E′

qVs
x′d ∑

sin δ + V2
s

2
x′d ∑ −xq ∑
x′d ∑ xq ∑

sin 2δ, where E′
q

is the transient voltage of q axis; Vs is the infinite bus voltage; x′dΣ is the transient reactance
of d axis; and xqΣ is the synchronous reactance.

2.2. Internal Characteristic Model of the Turbine

Figure 2 shows the inner characteristic model of the Francis turbine, including the
volute, the guide vane, the hydroturbine runner, and the draft pipe. The diameter of the
hydraulic turbine runner Ds = 0.394 m, the blade number z = 30, the fixed guide blade
number zc = 30, the active guide blade number z0 = 28, the rated flow Q = 0.2 m3/s, the
rated water head H = 11.94 m, the rated speed n = 325 r/min, the rotation frequency f =
5.42 Hz, and the blade passing frequency f 1 = 108.33 Hz.

 

Figure 2. Calculation model of the Francis turbine.

2.2.1. Meshing

Figure 3 shows the Mesh of computational domain about the model of Francis turbine,
including volute, runner and draft tube. The total number of mesh points for the rotor
blade and water tube was 12,960,875. When the rated operating point was not constant, the
results of the Y+ value for all walls were averaged after the two rotations of the intermediate
wheel when time t was 0.34 s. The results are shown in Table 1. The Y+ value refers to the
dimensionless distance from the centroid of the first layer to the wall surface. According to
the mesh-independent verification in the literature [33,36], the mesh met the calculation
requirements.

Figure 3. Mesh of computational domain.
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Table 1. Meshing and Y+ values.

Ref [33] Ref [36] This Paper

Number of
meshing/106 12.03 14.59 12.96

Y+

Volute 65 69.80
Fixed guide

vane 65 22.8 65

Y+ active guide
vane 11 17.2 11

Runner 11 6.1 9
draft tube 40 38.20

From Table 1, Y+ refers to the dimensionless distance from the center of mass of the
first layer mesh to the wall surface, which is related to the velocity, viscosity, shear stress,
etc. It is used to represent the fineness of the mesh. The smaller Y+, the more precise the
solution of the flow in transition processes. According to the mesh-independent verification
in the literature [33,36], the meshing met the computational requirements.

2.2.2. Turbulence Model

The k-w turbulence model was selected in the internal characteristic method. The wall
surface was set as a no-slippage wall surface. The inlet boundary condition was set as the
flow inlet, and the outlet boundary condition was set as free flow. The calculation precision
was set as 10−4. The average static pressure was 114.98 kpa. When the rotor was fixed, the
rotor interface was set as the frozen rotor. The transient freeze action interface was set to
transient rotor-stator type. The time step of the unsteady flow calculation was the time
(0.000567 s) for the rotation of 4◦ of the rotor. The sampling time was 10 cycles, and the
runner rotated 360◦ per cycle. Data from the last two cycles were selected for a pressure
pulsation characteristics analysis.

2.2.3. Monitoring Points

To obtain the information of the internal pressure pulsation of the Francis turbine
during the transition process, several monitoring points were set up inside the volute, the
inlet of the runner, and inside the draft pipe, as shown in Figure 4. Inside the volute, four
monitoring points were set from the inlet to the nose, denoted as G1 to G4, as shown in
Figure 4a. At the entrance of the runner, three monitoring points were evenly arranged
along with the height, namely, P1, P2, and P3, as shown in Figure 4b. Five monitoring
points, Q1 to Q5, were set up inside the draft pipe from the inlet to the outlet, as shown in
Figure 4c.

Figure 4. Location of monitoring points in the Francis turbine.

3. Stability Analysis of the HGS and Turbine

The transition stability of the HGS generally includes the system stability and flow
stability. The systematical model allows for observation for long time scales. Moreover,
the application of the parameter sensitivity analysis method in the systematical model
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can provide a meaningful direction for enhancing system stability during the operation
switching process. Compared with the systematic model, the internal characteristic method
focuses on the Francis turbine. The characteristics of kinetic flow, the distribution of sound
noise, and the dynamic and static interference between machinery and flow can be better
described. Therefore, combining the advantages of the two methods, coupled modeling
was carried out to study the system stability and the flow stability in the Francis turbine
during the load-reduction process.

The systematical model was simulated to obtain the system characteristics, including
parameter responses and parameter sensitivity. The values with typical GVOs under
the load-reduction process were extracted as the boundary condition of the following
internal characteristic model. The pressure pulsation under the different location of the
hydroturbine was obtained.

3.1. HGS Dynamic Response during the Load-Reduction Process

Hydropower units close the guide vane to reduce its power output to balance the
decline in the power load. Due to the structure of the unit, the system behavior and
internal flow characteristics of the unit differ greatly under different GVOs. Therefore,
three typical GVOs (3.91◦ small opening, 9.84◦ rated opening, and 12.43◦ large opening)
under the load-reduction process were selected to study the HGS system behavior and the
transient pressure behavior of the turbine. Please note that the value of system responses
are represented in relative deviation form (discharge q, rotation speed w, and GVO y), which
take values (Q = 0.2 m3/s, n = 325 r/min, a = 9.84◦) under rated operation as reference.

Figure 5 is the parameter response (discharge q, rotation speed w, and GVO y) of the
HGS during the load-reduction process. The rotation speed (w) and discharge (q) appeared
to fluctuate when the guide vane closes from 0.3 (12.43◦) to −0.7 (3.91◦) according to a linear
law for 50 s. Specifically, the discharge (q) decreased from 0.3 to −0.4, and the maximum
value 0.09 (354.25 r/min) of rotation speed (w) appeared at t = 1.8 s. In addition, values
(discharge q, rotation speed w, and GVO y) at three typical guide vane openings are shown
in Table 2.

Figure 5. Responses of the HGS during load-reduction process.

Table 2. HGS values under typical guide vane openings.

Guide Vane
Opening (GVO)

Timing Point (s) Discharge (m3/s)
Rotation Speed

(r/min)

12.43◦ (large opening) 2.7 0.2686 352.95
9.84◦ (rated opening) 15 0.2526 0
3.91◦ (small opening) 45 −0.1535 316.55
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Sensitivity Analysis under Three Typical GVOs

Sensitivity analysis is a useful method by which dynamic systems can be described by
ordinary differential equations. It can measure the influence of different input parameters
to a single variable output [37–39]. Herein, it was used to identify the structure and
parameters of a dynamic model and obtain the contribution to system variables. A fast
method by Simeone Marino was introduced [40], and the six parameters (D, xd, xq, hw, Tab,
and Tr) were simulated to measure the contribution to the discharge and rotation speed. In
addition, parameter sensitivity under three typical GVOs were explored. The sensitivity
indexes are shown in Figure 6.

Figure 6. Parameter sensitivity under three typical GVOs (12.43◦, 9.84◦, and 3.91◦).

Figure 6 shows the sensitivity index of six parameters (D, xd, xq, hw, Tab, and Tr) under
three typical GVOs (12.43◦, 9.84◦, and 3.91◦) during the load-reduction process. A notable
feature of discharge (Figure 6a) was that the sensitivity indexes were equal whereas the
rotation speed exhibited little difference under different GVOs. In addition, parameters hw
and Tr deduced the significant influence while the parameters D, xd, xq, hw, Tab, and Tr did
not affect discharge. For rotation speed, the sensitivity value of the Tab parameter nearly
reached 1.

The character parameters played a significant role in the corresponding subsystem. In
particular, during the decreasing load process, hydraulic parameters (hw and Tr) made a
great contribution to the discharge output, whereas the rotation speed was more sensitive
to the unit inertial time constant (Tab). The electrical parameters (xd and xq) had little
influence on the flow and rotation speed.

In the next part, the related values under three typical GVOs are used as operation
input to study the flow character of the Francis turbine, respectively. Then, the transient
inner pressure pulsation is obtained.

3.2. Analysis of Pressure Pulsation

The characteristics of the pressure pulsation inside the turbine during the load-
reduction transition process are analyzed in this section based on the results of external
characteristics. Sections 3.2.1–3.2.3 describe the pressure pulsation characteristics of the
draft pipe, runner inlet, and volute inlet of the turbine, respectively. In addition, to facilitate
a more intuitive analysis of the pressure pulsation information, the pressure pulsation
coefficient was defined, and its calculation formula is as follows:

Cp =
pi − Pave

Pave
(9)

where Cp is the pressure pulsation coefficient; pi is the static pressure value; and Pave is the
average value of static pressures.
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3.2.1. Draft Tube

Figure 7 shows the spectral characteristics in the draft tube under the three guide vane
openings. It can be seen from Figure 7 that the main frequency of the pressure pulsation in
the draft tube of the large opening condition and the rated opening condition is the low
frequency pulsation (2.71 Hz), which is 0.5 times that of the frequency conversion (fr = 5.42),
and the pressure pulsation frequency in the draft tube of the small opening condition is
mainly for low frequency pulsation (5.42 Hz) and leaf frequency (162.6 Hz). With the
closure of the guide vane, the pressure pulsation amplitude in the draft tube gradually
decreased. The maximum pressure pulsation amplitude was 0.0036 under the large opening
condition, which is 80 times the maximum amplitude of the pressure pulsation under the
small opening condition. Under the rated opening condition, the maximum pressure
pulsation amplitude appeared in the draft pipe elbow. Because the flow direction was
abrupt and the flow rate was large when the fluid flows through the draft pipe elbow, the
unevenness of the internal flow was intensified, the water flow was disordered. For the
large opening condition and small opening conditions, the pressure pulsation amplitude
at the inlet of the draft tube was the largest. The reason for this is that when the working
condition deviates from the optimal condition, the inlet water flow of the runner obviously
deviates from the normal outlet, resulting in a ring volume, which causes a large draft tube
vortex.

(a) Large opening condition (b) Rated condition (c) Small opening condition 

Figure 7. Outlet pressure pulsation frequency domain diagram.

3.2.2. Runner Inlet

The spectral characteristics of each monitoring point at the inlet of the runner under
the three vane opening degrees are shown in Figure 8. The pressure pulsation frequency at
the inlet of the runner was mainly low frequency pulsation (5.42 Hz) and leaf frequency
(162.6 Hz). The low frequency pulsation amplitude gradually increased from the upper
crown to the lower ring direction, and the effect closer to the lower ring leaf frequency was
more significant, mainly because the direction of the flow changed from the radial direction
to the axial direction at the inlet of the runner and the angle near the lower ring. The change
was closer and at a right angle, and the water flow was more disordered. As the guide vane
opening decreased, the influence of the leaf frequency first decreased and then increased,
indicating that the influence of the vortex in the draft tube gradually decreased.
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(a) Large opening condition (b) Rated condition (c) Small opening condition 

Figure 8. Runner pressure pulsation frequency domain diagram.

3.2.3. Volute

Figure 9 shows the spectral characteristics of each monitoring point in the volute under
three guide vane openings. Under the three GVOs, the main frequency was abundant,
which mainly presented as low frequency pulsation, 0.5 multiple blade frequency pulsation,
and blade frequency pulsation. Therein, the low frequency pulsation amplitude was smaller
with the opening of the guide vane. The working condition was obviously reduced, and
the low-frequency pulsation amplitude of the small opening condition was almost zero.
This is because the low-frequency pulsation generated in the draft tube was large and
propagated upstream to the volute, which caused the volute to be significantly affected by
the low-frequency pulsation. In the small opening condition, the low frequency pulsation
generated in the draft tube was small, the amplitude of the low frequency pulsation in the
volute was significantly reduced, and the main frequency of the pressure pulsation at the
G4 point near the nose was the leaf frequency, which was due to the nasal end distance.
The runner was closer and more susceptible to the rotation of the runner blades. With the
decrease in the opening degree of the guide vane, the 0.5-fold leaf frequency and the leaf
frequency pulsation in the volute first decreased and then increased, mainly because the
large opening degree condition and the small opening degree condition deviated from
the optimal working condition. The resulting pressure pulsation and the instability of the
runner also increased. The pressure pulsation caused by the rotation of the runner blade
propagated upstream and the influence on the volute was also increased. Under rated
opening conditions, the flow behavior was relatively stable, which was favorable for the
pressure pulsation component caused by the rotation of the runner to propagate upstream,
and the volute was affected by the rotation of the runner blade.

(a) Large opening condition (b) Rated condition (c) Small opening condition 

Figure 9. Volute pressure pulsation frequency domain diagram.

3.3. Distribution of Pressure Pulsation

The advantage of the 3D method lies in the visualization of the internal flow state,
including the streamline pressure field distribution and energy field. The visualization of
the internal flow state was helpful to directly reveal the mechanism of unstable operation
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in the transition process of the Francis turbine. This was then used to improve the efficiency
design of the runner. Therefore, based on the comparison of the pressure pulsation in
different locations of the turbine in Section 3.2, the pressure field was visualized to explore
the distribution propagation law of pressure pulsation under the load reduction process, as
shown in Figure 10.

Figure 10. Pressure pulsation distribution in the volute, runner, and draft tube under three GVOs.

Figure 10 shows the pressure pulsation distribution of the turbine volute, the runner
inlet, and the draft tube from top to bottom. The static pressure in the volute increased
with the increase in the load. The static pressure in the volute section decreased gradually
along the radial direction from the volute wall to the volute outlet, and a minimum value
appeared in the initial spiral section. The reason for this phenomenon is that, under
nonoptimal GVOs, the flow stability in the volute was relatively poor, leading to obvious
changes in the static pressure distribution under 3.91◦. For the runner, there was an obvious
negative pressure zone on the suction side of the leading edge at 12.43◦ and 3.91◦. This is
because the guide vanes at 12.43◦ and 3.91◦ were far from the optimal working condition.
The outlet velocity of the guide vane produced a circumferential velocity component, and
the water flow at the runner and the impeller underwent cavitation erosion, forming a
negative pressure area. When moving to the rated operating point, the circumferential
velocity component decreased, the water loss stability was improved, and the negative
pressure area disappeared. Compared to that at 3.91◦, the distribution of the low-pressure
zone at 12.43◦ was not uniform. In the process of load reduction, the negative pressure area
of the draft tube decreased and then increased. Under the nonoptimal GVOs, the outlet
velocity of the turbine runner produced a circumferential velocity component, which led to
flow disorder in the straight cone section and elbow section of the draft tube, forming a
large negative pressure area.

4. Conclusions

This paper explores the dynamic character of a HGS and pressure pulsation in the full
flow path of a Francis turbine during the load decreasing process. A 1D-3D coupling model
for a HGS was established. Through the results, the following conclusions were obtained.
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(1) The systematical model shows the dynamical response of the HGS during the
load-reduction process. The discharge gradually decreased with the closure of the guide
vane, and the rotation speed reached a maximum value at the initial stage of the guide
vane action; then, it converged to 0.

(2) The sensitivity analysis indicated the coupling relationship among subsystems
based on the systematical model. Hydraulic parameters (hw and Tr) had significant effects
on the discharge output. The rotation speed output was mainly influenced by the machinery
parameter (Tab). The findings are useful for understanding the effects of parameters on
system stability when different subsystems are running together.

(3) The amplitude of pressure pulsation was the largest under a small opening (3.91◦),
and the smallest under a large opening (12.43◦). The main pressure pulsation frequency of
the Francis turbine was the blade frequency under different GVOs. In off-design conditions
(12.43◦and 3.91◦), the flow at the inlet of the runner obviously deviated from the normal
outlet, resulting in extremely unstable pressure pulsation at the draft tube inlet.

(4) The 3D pressure pulsation distribution showed that the negative pressure zone
obviously diffused along the inner boundary of the volute, the leading edge of the runner,
and the straight cone section of the draft tube, as the GVOs were far from the rated opening
(9.84◦). Therefore, the flow stability suffered. Correspondingly, the system parameters
under off-design conditions fluctuated sharply, which further caused the mechanical vi-
bration and power signal fluctuation. These findings provide mechanism support for the
instability phenomenon in the transition process.
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