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This paper focuses on the stability and dynamic characteristics of the coupled
system of nonlinear hydraulic turbine regulating system (HTRS) and power grid
(PG). By establishing a nonlinear mathematical model considering the
downstream surge chamber and sloping roof tailrace tunnel, the coupling
effect and influence mechanism between the hydropower station and power
grid are revealed. First, with regard to the coupled system, HTRS considering
downstream surge chamber and sloping roof tailrace tunnel and PG model is
established. Then, dynamic performance of the coupled system is investigated
based on the nonlinearmathematicalmodel as well as Hopf bifurcation theory and
validated by numerical simulation. Meanwhile, the impact mechanism of HTRS
and PG is revealed by investigating dynamic characteristics. In addition, stability is
studied by using eigenvalue method according to the Jacobian matrix of the
coupled system. Finally, parameter sensitivity is investigated to quantify parameter
effects on system performance. The experimental results indicate that bifurcation
line divides the whole proportional–integral adjustment coefficient plane into two
parts and the region at the bottom of bifurcation line is stability region. HTRS and
PG possess a coupling effect on stable domain and dynamic properties of the
coupled system. The variation of HTRS parameters is most significant for the
coupled system, especially for the inertia time constant of the hydraulic turbine
unit and penstock flow inertia time constant.

KEYWORDS

hydraulic turbine regulating system, power grid, stability, dynamic characteristics, Hopf
bifurcation theory

1 Introduction

In recent years, renewable energy sources including wind and solar power have been
increasingly developed and utilized worldwide (Zhang et al., 2023a; Zhang et al., 2023b).
Especially in China, intermittent renewable energy, which is an important supplementary
form of applied energy, can effectively reduce the increasing load burden on power systems
(Zhang et al., 2023c; Zhang et al., 2023d). However, wind energy appears to be more variable
and less predictable than any other renewable energy source, which makes power systems,
especially those dominated by hydropower, confront significant challenges in terms of power
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balancing and frequency stability (Fu et al., 2023; Xu et al., 2023).
Although hydropower stations possess fast load regulation
capability, the impact of the load disturbance of power grids
(PGs) on hydropower stations cannot be ignored; thus, the
interplay between hydropower stations and PGs necessitates
further investigation.

The hydropower station connected to the PG will quickly come
into the transient process once disturbed by external loads, which
can only be restored to a new stable state through adjustment of the
hydraulic turbine regulating system (HTRS) (Zhang et al., 2017). In
the transient process, flow rate is adjusted by adjusting HTRS guide
vane opening, which results in hydraulic oscillations in pressure
pipeline (Liu et al., 2021). Hydraulic oscillation will impact the PG
through hydropower station, so the transient process and the
influence mechanism between hydropower station and PG
connection need to be studied. Mathematical model is a premise
and foundation for theoretical research. However, the mathematical
model of the downstream surge chamber and pressurized tailrace
tunnel is usually adopted in a hydropower station. Little
consideration is given to the influence of the sloping roof tailrace
tunnel and downstream surge chamber on the stable region and
dynamic characteristics. Moreover, the surge chamber and sloping
roof tailrace tunnel are rarely included in the modeling of
hydropower stations and the interaction mechanism with the PG.

Mathematical models and analytical methods form the
foundational basis of research into stability and dynamic
characteristics of hydropower stations. The representative
literatures works are as follows:

(1) Mathematical models: The linear model for the dynamic
characteristics analysis of the HTRS has been established and
widely applied. Xu and Guo (2020) developed a model of a
hydropower station with a surge tank (HSST) that accounts for
the non-linear characteristics of turbines. Through this model,
the mechanism by which these non-linear characteristics affect
the stability of the HSST regulating system is determined. Lu
et al. (2022) established a model of three turbines sharing a long
tailrace for the actual hydropower generation system with three
turbines sharing a long tailrace, considering three typical
operating conditions. A novel U-shaped rectifying impulse
turbine for oscillating water column wave energy conversion
was proposed by Guo et al. (2023), where the steady-state
performance and transient characteristics of the impulse
turbine were studied. Zheng et al. (2022) investigated the
precise modeling of hydraulic transient characteristics in a
complex tailrace system for the ultra-low frequency
oscillation phenomenon that took place in a large
hydropower plant. Zhao et al. (2021a) established four
models of hydropower governor systems in two regulation
modes to analyze the effect of model simplification on
stability. Zhao et al. (2021b) conducted a systematic study on
improving overall regulation performance by modeling a
pumped storage unit, collaborative optimization, and
operational evaluation. Zhang et al. (2017) established a
dynamic model of pump turbines in S-shaped regions by
introducing non-linear piecewise functions with relevant
parameters. Xu et al. (2018) proposed an instantaneous
linearized control autoregressive integrated moving average

model of pumped storage units. The model accurately
describes the hydraulic and mechanical dynamic
characteristics. Yang et al. (2019a) analyzed the non-linear
dynamics of turbine drivetrains and designed adaptive fixed-
time control strategies, which is inspirational for the stability
control of hydropower units. Zhu and Guo (2019) established a
mathematical model of the hydro-turbine governing system
considering non-linear penstock head loss and studied the
setting condition of the surge tank. Guo and Yang (2018)
established the model of the hydro-turbine governing system
with a downstream surge tank and sloping ceiling tailrace tunnel
and revealed their combined effect mechanism on stability. Lai
et al. (2019) established a non-linear mathematical model
considering the non-linear characteristic of head loss in
penstock and studied the stability and dynamic characteristics.

(2) Analytical methods: Dynamic systems are divided into linear
systems and non-linear systems. The Eigenvalue method, Routh
method, and Hurwitz method are often applied for stability and
dynamics analysis of linear systems. For non-linear dynamic
systems, fault-tolerant control, finite-time control, predictive
control, fuzzy control, and intelligent optimization algorithms
are widely employed. For fault-tolerant control, the adaptive
output feedback fault-tolerant control problem of a non-linear
turbine regulation system is studied and the numerical
simulation results indicate the satisfactory control effect of
the scheme in the work of Yi et al. (2020). A backstepping
sliding mode fault-tolerant tracking control problem for a
hydro-turbine governing system considering external
disturbances, actuator faults, and dead-zone inputs was
investigated in the work of Yi and Chen (2019), which
presents a sliding mode fault-tolerant tracking control
method for a hydro-turbine governing system. For finite-time
control, the no-chattering finite-time control problem for a
fractional-order non-linear hydro-turbine governing system
was studied, and a novel robust finite-time terminal sliding
mode control scheme was proposed by Wu et al. (2019). The
H∞ control is integrated with finite-time control theory, a finite-
time H∞ control for the fractional-order hydraulic turbine
governing system was proposed by Liu et al. (2018), and the
stability condition is given in terms of linear matrix inequalities.
Ma et al. (2021) proposed a robust Takagi–Sugeno fuzzy finite-
time H-infinity control method for a non-linear time-delay
HTRS. For predictive control, Tian et al. (2020) investigated
a non-linear predictive control scheme with a state estimator for
a fractional-order hydraulic turbine regulation system. A fuzzy
generalized predictive control method for the fractional-order
hydro-turbine regulating system is studied, and a non-linear
fuzzy generalized predictive controller for the fractional-order
hydro-turbine regulating system is designed based on the
generalized predictive control theory in the work of Shi et al.
(2018). A fuzzy generalized predictive control method for a
time-delay hydro-turbine governing system was investigated,
and a novel fuzzy generalized predictive control scheme for the
time-delay hydro-turbine governing system was proposed by
Tian et al. (2019). For fuzzy control and intelligent optimization
algorithms, Wang et al. (2018) studied a robust finite-time
Takagi–Sugeno fuzzy control method for the hydro-turbine
regulation system. A non-linear singular time-delay model of
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a hydraulic turbine governing system with random disturbances
is proposed, and the generalized Takagi–Sugeno fuzzymethod is
applied to describe the non-linearity of the hydraulic turbine
governing system in the work of Feng and Chang (2018). A
method for designing a multi-objective robust fuzzy fractional-
order proportional–integral–differential controller for a non-
linear hydraulic turbine governing system was presented by
Piraisoodi et al. (2019). The method utilizes evolutionary
computation techniques to achieve its objectives. A novel
non-linear finite-time Takagi–Sugeno fuzzy control scheme
of the hydraulic turbine governing system with mechanical
time delay was proposed by Tian et al. (2021). A
Takagi–Sugeno fuzzy control method based on the frequency
distribution model of disturbance observer was proposed to
improve the anti-interference control performance of the
system (Ma and Wang, 2021).

In summary, the existing literature on modeling and control of
hydropower stations is built on a linear or non-linear model. At
present, the research on the dynamic performance of hydropower
station rarely considers the coupling effect of the surge chamber and
tailrace tunnel and the influence mechanism of load fluctuations in
the PG on the hydropower station. Therefore, to conduct an in-
depth exploration and research in this field that can reveal the
coupling effect of the hydropower station with the PG, bifurcation
theory is an effective mathematical tool for examining non-linear
dynamics, and thus, this paper employs it to investigate stability and
dynamic characteristics of non-linear systems. In summary, the
main research work, innovations, and contributions of this paper are
as follows:

(1) The non-linear mathematical model of a hydropower station
coupled with a PG considering a downstream surge chamber
and sloping roof tailrace tunnel is established

(2) The stability and dynamic properties of the coupled system are
examined in this paper by applying Hopf bifurcation theory

(3) The influence mechanism of the HTRS and PG on the dynamic
performance of the coupled system is revealed

(4) Stability and transition processes of the coupled system are
analyzed by the Jacobian matrix

(5) The aim is to improve dynamic performance and enhance
stability by optimizing the parameters of the hydropower
station and PG

The main structure of this paper is as follows. Section 2 presents
the establishment of a non-linear mathematical model for a
hydropower station and PG, which includes a downstream surge
chamber and sloping roof tailrace tunnel. Section 3 presents
methods and procedures for stability analysis by Hopf bifurcation
theory. In addition, the stability of the coupled system was analyzed
and verified utilizing dynamic equations and stability domain
analysis methods. Section 4 illuminates the impact mechanism of
the hydropower station and PG on stability and dynamic
characteristics through the study of dynamic performance. The
stability and transition process of the coupled system is analyzed
by studying eigenvalues of the Jacobian matrix. Section 5 analyzes
the sensitivity of two subsystem parameters of the hydropower
station and PG. The conclusion of this paper is given in Section 6.

2 Mathematical model of the HTRS
and PG

The coupled system of the hydropower station and PG is
illustrated in Figure 1A. The structure block diagram of the
hydropower station and PG is shown in Figure 1B.

2.1 Mathematical model of the HTRS

As the actuator and core part of the HTRS, the governor which
includes a controller and a servo system can balance the active
power of power systems by adjusting the active power output from
hydropower stations. The controller model applied in this paper
is a parallel PI control structure, which can be represented as
follows:

dy

dt
� −Kp

dxt

dt
−Kixt, (1)

where y is the output signal of the HURS governor; xt is the relative
deviation of the speed; and Kp and Ki represent the proportional gain
and the integral gain, respectively.

The rigid model and elastic water hammer model are often
utilized for a mathematical model of the pressure pipeline. For
hydropower stations with long pressure pipelines, the elastic water
hammer model is preferable to describe the characteristics of water
flow in the pipe. However, as to hydropower stations with short
pressure pipelines, it can be simplified to the rigid model. In this
paper, the non-linear characteristics of flow and head loss are
considered to establish the dynamic equation of the elastic water
hammer model of the pressure pipeline (Liu and Guo, 2021).

dqt
dt

� −h − ZF − 2htqt
H0

Twt
, (2)

where qt is the flow rate of the pressure pipe; h is the relative
deviation of the water head; ZF is the water level of the downstream
surge chamber; ht is the head loss; H0 is the initial water head; and
Twt is the inertial time constant of the water flow.

The dynamic equation of the downstream surge chamber is
(Chaudhry, 2014)

dZF

dt
� qt − qy

TF
, (3)

where Z is the water level change of the downstream surge chamber;
gr represents the flow rate of the diversion tunnel; gy is the flow rate
of the tailrace tunnel; TF is the time constant of the downstream
surge chamber; and TF is a time constant of the surge chamber,
TF � FH0

Qy0
.

The dynamic equation of the sloping roof tailrace tunnel is
(Chaudhry, 2014)

dqy
dt

� ZF − 2hyqy
H0

− zy

Twy + Twx
. (4)

According to the work of Guo et al. (2015), Twx and zy are
derived from Eqs 5, 6, respectively, and then, the dynamic equations
of the sloping roof tailrace tunnel can be obtained by substituting
Eqs 5, 6 into Eq. 4 as shown in Eq. 7.
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Twx � λQy0Vxqy
gH0cW tan α

, (5)

zy � λQy0qy
H0cW

, (6)

dqy
dt

�
−2hyqy
H0

+ ZF − qyQy0λ

H0cW

Twy + qyQy0λVx cot α
gH0cW

, (7)

where hy is the water head loss of the tailrace tunnel; zy is the water
level change of the tailrace tunnel; Twy and Twx represent the time
constant of steady-state flow inertia and transient flow inertia,
respectively; λ is the section coefficient of the tailrace tunnel; c is
the wave velocity at the interface of the open and full-flowmanifolds;

W is the width of the tailrace tunnel; Vx is the flow rate at the open
and full-flow interfaces; and α is the inclination angle of the tailrace
tunnel.

The moment equation and flow equation of the hydraulic
turbine are (Yang et al., 2019b)

mt � exxt + eyy + ehh,
qt � eqxxt + eqyy + eqhh.

(8)

In previous research, the first-order model of a synchronous
generator was commonly employed to describe its inertia moment.
Given the strong mechanical inertia of the hydraulic relay and water
guide system, when the load changes, it is hard for the actuators to
track and adjust quickly in real time, which leads to a lag

FIGURE 1
Coupled system and structure block diagram of the hydropower station and PG. (A)Coupled system of the hydropower station and PG. (B) Structure
block diagram of the hydropower station and PG.
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phenomenon (Ma et al., 2021). To better reveal the dynamic
characteristics of the HTRS coupled with the PG, this paper
employs a second-order model of the synchronous generator,
which depicts not only the rotational inertia but also the
interaction between the electromagnetic power and the power
angle. The mathematical model of synchronous generator is as
follows:

dxt

dt
� mt − egxt +Ka∫ xt − xs( )dt +Da xt − xs( ) +mg( )

Ta
. (9)

Since there is an integral term in Eq. 9, the state variable ξ1 is
defined as ξ1 � ∫ (xt − xs)dt. Equation 9 can be transformed into

dξ1
dt

� xt − xs

dxt

dt
� mt − egxt +Kaξ1 +Da xt − xs( ) +mg( )

Ta
,

(10)

where ξ1 is the intermediate state variable; xs is the relative deviation
value of the grid frequency; eg is the self-regulation coefficient of the
load; Ka is the equivalent synchronization coefficient; Da is the
equivalent damping coefficient; mg is the relative deviation of the
resistance torque; and Ta is the inertial time constant of the unit.

2.2 Mathematical model of the PG

The structural block diagram of the equivalent PG is shown in
Figure 2. Load disturbance only considers mg, ignoring load
disturbance in the PG, i.e., pl = 0. The dynamic equations of the
equivalent PG can be deduced from Figure 2 as shown in the
following (Guo and Peng, 2020):

dξ2
dt

� xs − ξ2
Tg

,

dxs

dt
�
Bpt −Dsxs − ξ2

TgRg

Ts
,

(11)

where ξ2 is the intermediate state variable; Tg is the inertia time
constant of the servo motor in the grid model; B is the power
conversion coefficient; pt is the power output; Ds is the self-
regulation coefficient of the equivalent load; difference
coefficient; and Rg is the inertia time constant of the grid
equivalent unit.

By integrating Eqs 1–4 and Eqs 9–11, the eighth-order non-
linear state equations are obtained as Eq. 12, which can reflect the
coupling effect of the HTRS and PG.

dxt

dt
� 1
Ta

−mg − egxt + exxt −Da xt −xs( )+ eyy+ eh
eqh

qt − eqxxt − eqyy( )−Kaξ1[ ]
dy

dt
�−Kixt −Kp

Ta
−mg − egxt + exxt −Da xt −xs( )+ eyy+ eh

eqh
qt − eqxxt − eqvy( )−Kaξ[ ]

dξ1
dt

�xt −xs

dxs

dt
� 1
Ts

− Ds −BDa( )xs +BDaxt +BKaξ1 − ξ2
RgTg

[ ]
dξ2
dt

�xs − ξ2
Tg

dqt
dt

� 1
Twt

−2htqt
H0

− 1
eqh

qt − eqxxt − eqvy( )−ZF[ ]
dZF

dt
� 1
FH0

qt −qy( )Qy0

dqy
dt

� g cW −2hyqy +H0ZF( )−qyQy0λ( )
cgH0TwyW+qyQy0Vxλcotα

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

3 Stability of the non-linear HTRS

3.1 Stability analysis method

Hopf bifurcation (Strogatz, 2014; Wiggins, 2013) is a simple
yet important dynamic bifurcation phenomenon in non-linear
systems, which is a type of localized dynamic bifurcation;
specifically, as the bifurcation parameter varies, the system
bifurcates abruptly from the equilibrium at the non-hyperbolic
equilibrium from the extremal limit loop phenomenon.

FIGURE 2
Structural block diagram of the equivalent PG.
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Accordingly, Hopf bifurcation theory with theoretical
applicability, simple program design, and high calculation
accuracy is generally applied to conduct non-linear analysis.
Meanwhile, Hopf bifurcation theory has been applied to the
dynamics research of the HTRS in relevant works. Thus, this
theory can be adopted in this paper to investigate the non-linear
dynamical behavior of the coupled system.

Under external perturbations, the system will generate steady-
state or unsteady-state limit-loop oscillations at Hopf bifurcation
points, which correspond to supercritical and subcritical
bifurcations, respectively. The Jacobian matrix of the coupled
system at the equilibrium point XE is J(μ) = Dfx(XE,μ).
Accordingly, the characteristic equation of the Jacobian matrix
can be derived by det(J(μ) - λI) = 0 as follows:

λn + a1λ
n−1 + a2λ

n−2 +/ + an−1λ + an � 0, (13)
where λ and ai(μ) (i = 1,2, ,n) are eigenvalues and coefficients of the
polynomial det(J(μ) - λI) = 0, respectively.

The existence of Hopf bifurcation can be validated by the
following well-known Hurwitz criterion (Hassard et al., 1981):

ai > 0 i � 1, 2,/, n( ), (14)

Δ2 � det
a1 1
a3 a2

[ ]> 0, (15)

Δ3 � det
a1 1 0
a3 a2 a1
a5 a4 a3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦> 0, (16)

Δ7 � det

a1 1 0 0 0 0 0
a3 a2 a1 1 0 0 0
a5 a4 a3 a2 a1 0 0
a7 a6 a5 a4 a3 a2 a1
0 a8 a7 a6 a5 a4 a3
0 0 0 a8 a7 a6 a5
0 0 0 0 0 a8 a7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0. (17)

If Eqs 14–17 are satisfied at μ = μc, Eq. 13 has a pair of pure
virtual eigenvalues λ1,2 = ±iωc and the system will bifurcate at μ = μc.
Accordingly, the system will occur with periodic oscillations and
generate limit cycles in phase space. The limit cycle period at Hopf
bifurcation is TLC = 2π∕ωc. Furthermore, the type of Hopf bifurcation
can be determined based on the cross-sectional coefficient σ′(μc) �
Re(dλdμ | μ�μc).

3.2 Stability analysis of the HTRS and PG

According to Eq. 12, variables xt, y, ξ1, xs, ξ2, qt, ZF, and qy are
chosen as state variables of the coupled system, and state vector X =
(xt, y, ξ1, xs, ξ2, qt, ZF, qy)

T can be obtained. With the exception of
state variables, any other parameter in Eq. 12 can be chosen as the
bifurcation parameter, denoted as μ. The choice of bifurcation
parameter μ is based on the purpose of system research. For
example, Kp and Ki are chosen as bifurcation parameters when
studying the effect of the governor on the stability of the whole
system.

The equilibrium point XE = (xtE, yE, ξ1E, xsE, ξ2E, qtE, ZFE, qyE)
T

can be obtained by solving f(x, μ) = 0, i.e., by making Eq. 12 = 0:

xtE � 0

yE �
mg c H0 +2eqh ht +hy( )( )W+ eqhQy0λ( )

c −2eheqy ht +hy( )+ ey H0 +2eqh ht +hy( )( )( )W+ −eheqy + eqhey( )Qy0λ

ξ1E � 0

xsE � 0

ξ2E � 0

qtE �− ceqvH0mgW

2ceheqy ht +hy( )W− cey H0 +2eqh ht +hy( )( )W+ eheqy − eqhey( )Qy0λ

ZFE �− eqymg 2chyW+Qy0λ( )
2ceheqy ht +hy( )W− cey H0 +2eqh ht +hy( )( )W+ eheqy − eqhey( )Qy0λ

qyE �− ceqyH0mgW

2ceheqy ht +hy( )W− cey H0 +2eqh ht +hy( )( )W+ eheqy − eqhey( )Qy0λ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

The Jacobian matrix J(μ) for solving the non-linear coupled
system _x � f(x, μ) is

J μ( ) � Dfx x, μ( ) �

∂ _xt

∂xt

∂ _xt

∂y
∂ _xt

∂ξ1
∂ _xt

∂xs

∂ _xt

∂ξ2
∂ _xt

∂qt
∂ _xt

∂ZF

∂ _xt

∂qy
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The characteristic polynomial of the Jacobian matrix J(μ) is

x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a5x
3 + a6x

2 + a7x + a8 � 0. (20)
Based on the aforementioned stability analysis criterion, the

stability domain can be drawn on the Kp–Ki plane. Parameter values
of the HTRS and PG are Ta = 10 s, Twt = 3.5 s, F = 1,500 m2, Twy =
2.0 s, W = 7.5 m, mg = −0.1, eg = 0, ex = −1, ey = 1, eh = 1.5, ht =
1.46 m, H0 = 80 m, eqx = 0, eqy = 1, eqh = 0.5, hy = 1.12 m, Qy0 =
500 m3/s, Hx = 18.3 m, α = 0.0599282, Da = 0.073, Ka = 2, Ts = 40,
Ds = 0.4, Rg = 0.2, Tg = 40, and B = 0.1, and x denotes the eigenvalue
of the polynomial J(μ) with value 3.

The bifurcation line is a crucial stability indicator comprising all
Hopf bifurcation points on the Kp–Ki plane, which divides the whole
parameter plane into stable and unstable domains. Thus, the location
of bifurcation line determines stability margin in the parameter plane
of the coupled system that also reflects dynamic characteristics.

With respect to the non-linear coupled system researched in
this paper, Ki is chosen as the bifurcation parameter. Then, the
stable domain and bifurcation line of the coupled system can be
determined by solving Eq. 12, and they are shown in Figure 3A.
In Figure 3A, three state points s1, s2, and s3 are chosen to
investigate dynamic response of the coupled system under
different parameter values. Coordinate values of the three
selected state points and respective theoretical states of the

dynamic response are shown in Table 1. In addition, from
Figure 3B, it can be concluded that σ’(μc) > 0, which indicates
that the Hopf bifurcation is supercritical.

3.3 Numerical analysis and stability
verification

According to chaos theory and Hopf bifurcation theory, the
discriminant conditions for Hopf bifurcation to occur in the system
are Eqs 14–17. With the aim of verifying the correctness of the
conclusions in Table 1, numerical simulation experiments are
utilized in this section. Three state points s1, s2, and s3 are
substituted into the state equation to solve the dynamic response
of system state variables. Dynamic characteristics and the phase
space trajectory of the state variables for the three corresponding
state points are shown in Figure 4. The equilibrium point of the
system is often chosen as the initial state of the system when
simulation experiments of non-linear systems are carried out.
Therefore, all the parameters of the system are substituted into
the system of state equations and the equilibrium point of the state
variables of the system is solved, and the state of the equilibrium
point is obtained to be (−0.1335, 0). So, (−0.1335, 0) is chosen to be
the initial state of the system.

The conclusions that can be obtained from Figure 4 are as
follows:

(1) Figure 4A shows that Hopf bifurcation occurs at s1, which is
coherent with the aforementioned theoretical analysis. From the
phase space trajectory in Figure 4A, it can be concluded that at
point s1, the system oscillates from the equilibrium point and
quickly enters limit cycles. Furthermore, when the load
disturbance of the coupled system is mg = −0.1, state
variables xs and xt oscillate with equal amplitude from the
equilibrium point.

FIGURE 3
Non-linear dynamics of the coupled system. (A) Stable domain and bifurcation line of the coupled system. (B) Values of σ’(μc) bifurcation points of
the coupled system.

TABLE 1 Coordinate values of s1, s2, and s3.

State points s1 s2 s3

Kp 1.00 1.00 1.00

Ki(s
−1) 0.52 0.6 0.3

Theoretical states of the dynamic
response of the coupled system

Limit
cycle

Limit
cycle

Equilibrium
point
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FIGURE 4
Dynamic characteristics and phase space trajectory of state variables. (A)Dynamic characteristics and phase space trajectory of state variables for s1.
(B) Dynamic characteristics and phase space trajectory of state variables for s2. (C) Dynamic characteristics and phase space trajectory of state variables
for s3.
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(2) From Figure 3, it can be seen that the s2 point is in an unstable
domain and bifurcation parameters are Kp = 1 and Ki = 0.6.
According to the phase space trajectory of xt and qt in Figure 4B,
it can also be shown that the state of point s2 is unstable, and the
trajectory of state variables gradually diverges from the
equilibrium point. In addition, from dynamic characteristics
of each state variable, it can also be concluded that point s2 is
unstable, which will lead to gradual instability of the system
operation.

(3) Figure 4C investigates dynamic characteristics of point s3
when bifurcation parameters are Kp = 1 and Ki = 0.3. From
Figure 4C, it can be known that state variables begin to
converge gradually from the equilibrium point. Moreover,
from dynamic characteristics of state variables, it can be
concluded that as time increases, the oscillation amplitude
of each variable gradually decreases and finally becomes
stable.

4 Coupling effect of the HTRS and PG

4.1 Influence of dynamic performance

The highly complex dynamic behavior and significant impact on
the stability region are consequences of the complex non-linear
characteristics inherent to the HTRS. In order to reveal the coupling
effect between the HTRS and PG, the coupled system was
partitioned into two subsystems for non-linear dynamics analysis.
This type of analysis enables a deeper understanding of the dynamic
characteristics of the HTRS and PG, revealing the interrelationship
between them and allowing for a more precise evaluation of system
stability.

Subsystem 1 is the hydropower station considering a
downstream surge chamber and sloping roof tailrace tunnel,
while subsystem 2 is the PG. For subsystem 1, since the
downstream surge chamber and sloping roof tailrace tunnel can
decrease water hammer pressure during the transition process of the
hydropower station, the influence of the downstream surge chamber
and sloping roof tailrace tunnel on the operation of the hydropower
station has to be considered. Although the tailrace tunnel can reduce
the loss of outlet kinetic energy by using a turbine runner, water level
fluctuation of the surge chamber and flow inertia variation of the
tailrace tunnel will also interfere with the system. Moreover, the
disturbance interaction not only directly affects stability of the
hydropower station but also generates complex dynamic behavior
during transients. Due to the fact that subsystem 2 is directly
coupled to the hydropower station, changes of PG load and the
connection and exit of power will affect safe operation of the coupled
system. Hence, it is essential to study subsystem 1 and subsystem
2 on the dynamic behavior and stability of the coupled system.

4.1.1 Influence of the HTRS on stable domain and
dynamic characteristics

This section studies the dynamic behavior and stability of the
HTRS. With the state equation of the HTRS, the influence factors of
dynamic characteristics are analyzed by drawing stability domain
and dynamic response under different characteristic parameters.
Parameters F, Ta, Twt, and Twy are selected as characteristic

parameters of the coupled system under load disturbance
mg = −0.1. Then, within a reasonable range, different values of F,
Ta, Twt, and Twy are selected, whose corresponding parameter values
are shown in Table 2. To assist analysis, four state points are selected
and the stability domain and dynamic response are analyzed under
different characteristic parameters.

The impact of characteristic parameters on the stability domain
is demonstrated in Figure 5. Through the analysis of the stability
domain and bifurcation line, the following conclusions can be
obtained.

The horizontal and vertical coordinates of the stability region
and bifurcation line are Kp and Ki, respectively. According to
Figure 5A, F is set as 1,300; 1,500; and 1,700 m2, respectively.
Figure 5A shows a slight influence of F on the stability domain of
the system. As F increases, the bifurcation line of stable domains
of the coupled system moves toward a lower-left corner of the
Kp–Ki plane, indicating that stability is better for smaller F.
Hence, adopting a smaller F value can improve the system’s
stability domain. Nonetheless, it should be noted that the
improvement achieved by adjusting F is limited and F cannot
be regarded as the primary factor for enhancing the stability of
the coupled system.

According to Figures 5B, C, Ta is set as 9, 10, and 11 s. Twt is set
as 2.5, 3.5, and 4.5 s. Figures 5B, C show a significant effect of Ta and
Twt on the stability domain of the system. An intersection of
bifurcation lines of the stability domain exists with different Ta.
To the left side of the intersection point, the stability domain
decreases as Ta increases. However, on the right side of the
intersection point, the change in the stable domain behaves
oppositely. With the increase of Twt, the bifurcation line of the
stability domain of the system moves to the down left corner of the
Kp–Ki plane, indicating that a smaller Twt results in better stability.
Hence, Ta can improve the system stability by determining
appropriate Ta value based on the intersection point. In addition,
to enhance system stability, a smaller Twt value is recommended. In
practical applications, adopting a smaller Twt value is a feasible
measure to improve the system stability.

TABLE 2 Parameter values of characteristic parameters.

Parameter F Ta Twt Twy

S1

1,300 10 3.5 2.0

1,500 10 3.5 2.0

1,700 10 3.5 2.0

S2

1,500 9 3.5 2.0

1,500 10 3.5 2.0

1,500 11 3.5 2.0

S3

1,500 10 2.5 2.0

1,500 10 3.5 2.0

1,500 10 4.5 2.0

S4

1,500 10 3.5 1.5

1,500 10 3.5 2.0

1,500 10 3.5 2.5
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From Figure 5D, Twy is set as 1.5, 2, and 2.5 s. Figure 5D shows a
slight effect of Twy on the stability domain of the coupled system. As
Twy increases, the bifurcation line of the stability domain is shifted
toward the bottom left angle of the Kp–Ki plane, indicating that a
smaller Twy results in better stability. Therefore, for the purpose of
enhancing system stability, a smaller Twy value may be advisable.
However, enhancement extent is small and the Twy value cannot be
taken as the major method to improve the stability of the coupled
system.

By numerical simulation, the influence of four parameters on
dynamic characteristics can be derived, whose results are shown in
Figure 6.

According to the phase space trajectory in Figures 6Ai–iii,
under different values of parameter F, state variables gradually
decay to the equilibrium point. Furthermore, from Figure 6Aiv, it
can be observed that the effect of F on the dynamic response of
state variables is very slight, and it has almost no effect on the
head wave crest of state variables. The values and appearance
times of wave crests are almost the same when F values are
different. The results show that F has almost no effect on dynamic
performance.

The influence of Ta on the dynamic characteristics at load
disturbance mg = −0.1, Ta = 8 s, Ta = 10 s, and Ta = 12 s is
shown in Figure 6B. By observing phase space trajectories of
state variables in Figures 6Bi–iii, it can be seen that when
parameter Ta = 8 s, the phase space trajectory presents divergent
motion; when Ta = 10 s, Hopf bifurcation occurs and limit cycles are
generated; however, at Ta = 12 s, the phase space trajectory gradually
converges. In Figure 6Biv, Ta has almost no effect on the head wave
of state variables but has an enormous effect on the tail wave.
Specifically, with larger Ta, tail wave fluctuations become smoother,
indicating that the system is easier to stabilize, whereas the opposite
is true for smaller Ta.

The influence of Twt on the dynamic characteristics at Twt =
3.25 s, Twt = 3.5 s, and Twt = 3.75 s is shown in Figure 6C. From the
dynamic response and phase space trajectory of state variables in
Figure 6C, it can be seen that state variables undergo divergent,
convergent, and equal amplitude oscillatory motion for different
values of Twt. It is shown that Twt has a very significant impact on the
stability and dynamic performance of the coupled system. By
observing Figure 6Civ, it becomes evident that parameter Twt can
change the operating status and stability, which can be considered a

FIGURE 5
Influence of characteristic parameters on the stability domain. (A) The influence of parameter F on stability domain. (B) The influence of parameter Ta
on stability domain. (C) The influence of parameter Twt on stability domain. (D) The influence of parameter Twy on stability domain.
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primary measure to regulate the dynamic property of the coupled
system.

Figure 6D studies the influence of Twy on the dynamic
characteristics. At different Twy values, Twy has little effect on the
dynamic characteristics of state variables. Moreover, the trends of
state variables are almost the same. To sum up, Twy has little

FIGURE 6
Influence on the dynamic characteristics. (A) The influence of F
on the dynamic characteristics. (B) The influence of Ta on the dynamic
characteristics. (C) The influence of Twt on the dynamic
characteristics. (D) The influence of Twy on the dynamic
characteristics.

FIGURE 7
Influence of each state variables on stability and dynamic
characteristics. (A) Effect of B on stability and dynamic characteristics.
(B) Effect ofDs on stability and dynamic characteristics. (C) Effect of Rg

on stability and dynamic characteristics. (D) Effect of Tg on
stability and dynamic characteristics. (E) Influence of Ts on stability and
dynamic characteristics.
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influence on dynamic performance and generally does not change
the running state of the coupled system.

4.1.2 Influence of the PG on stable domain and
dynamic characteristics

To investigate the influence of the PG on the stable domain and
dynamic properties of the system, stability region, power spectrum,
and dynamic response under different B,Ds, Ts, Rg, and Tg are drawn
and the results are shown in Figure 7. The specific PG parameter
values are given in Table 3.

Figure 7A illustrates the significant influence of B on the stability
region, power spectrum, and dynamic response of the coupled

system. For different values of B, the bifurcation line
demonstrates an intersection point. On the left side of this
intersection, the stability domain increases with the rise of B.
Conversely, on the right side, the stability domain exhibits a
contrary change rate. Figure 7Aii illustrates that there are two
wave peaks in the power spectrum of xs and that B has the same
effect on the two wave peaks. Furthermore, the amplitude of two
subwaves in the xs power spectrum becomes larger as B increases.
The influence of B on the power spectrum of xt is relatively small, but
the effect on the two wave peaks is opposite. The dynamic response
of state variables is illustrated in Figure 7Aiii. B has a substantial
impact on the head wave and a smaller effect on the tail wave. Thus,
B can improve system stability, while not improving the dynamic
response of state variables.

Figure 7B shows the effect of Ds on stability and dynamic
characteristics. According to Figure 7Bi, the stability region
increases slightly with the increase of Ds, which indicates that
Ds can improve the stability of the coupled system. According to
the power spectrum of xt and xs, it can be found that the change
of Ds has little effect on the power spectrum of xt, but has a
significant effect on xs. With the increase of Ds, the amplitude of
the 1st wave decreases, while period and frequency remain
unvaried. From Figure 7Biii, it can be seen that Ds possesses
no prominent effect on the dynamic response of xt. In summary,
as Ds increases, the convergence rate of xs can be accelerated and
the attenuation degree of the power spectrum of xs can be
improved.

It can be seen from Figure 7C that Rg has no significant influence
on the stability region of the coupled system. According to
Figure 7Cii, it can be concluded that Rg has a great influence on
the power spectrum of xs. The period of the 1st wave of xs increases,
and decay rate decreases when Rg becomes larger. However, for the
2nd wave, as Rg increases, the decay rate of xs becomes larger slightly
and the period remains unchanged. It can be obtained from
Figure 7Ciii that Rg possesses a great effect on the dynamic
response of xs, which not only affects the amplitude of oscillation
but also affects convergence time. In conclusion, the Rg impact on

TABLE 3 Specific PG parameter values.

B Ds Ts Rg Tg

State 1

0.1 0.4 40 0.2 40

0.3 0.4 40 0.2 40

0.5 0.4 40 0.2 40

State 2

0.4 0.1 40 0.2 40

0.4 0.4 40 0.2 40

0.4 0.7 40 0.2 40

State 3

0.4 0.4 25 0.2 40

0.4 0.4 40 0.2 40

0.4 0.4 55 0.2 40

State 4

0.4 0.4 40 0.1 40

0.4 0.4 40 0.2 40

0.4 0.4 40 0.3 40

State 5

0.4 0.4 40 0.2 10

0.4 0.4 40 0.2 40

0.4 0.4 40 0.2 70

FIGURE 8
Variation law of eigenvalues of the Jacobi matrix with controller parameters.
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FIGURE 9
Sensitivity analysis to changes of HTRS and PG parameters. (A) Sensitivity analysis to changes of HTRS parameters. (B) Sensitivity analysis to changes
of PG parameters.

FIGURE 10
Sensitivity of HTRS parameters to state variables. (A) Sensitivity of HTRS parameters to state variable qy. (B) Sensitivity of HTRS parameters to state
variable xs. (C) Sensitivity of HTRS parameters to state variable xt. (D) Sensitivity of HTRS parameters to state variable ZF.
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the stabilization domain and dynamic properties of the coupled
system is not significant, so dynamic performance can hardly be
enhanced with the adjustment of Rg.

Figure 7Di indicates that the stability domain corresponding
to each Tg value is almost the same, so the effect of Tg on the stable
domain of the coupled system is small. From Figure 7Dii, it can
be obtained that Tg has almost no effect on the power spectrum of
the state variable xt, while its effect on xs is obvious. Moreover, Tg

not only affects amplitude but also the period of xs. Accordingly,
as Tg becomes larger, the period of the 1st wave of the power
spectrum increases, while the attenuation rate reduces, but there
exists almost no effect on the 2nd wave. From Figure 7Diii, it can
also be found that with the increase of Tg, the regulation time of xs
is longer. Hence, the stability and dynamic properties of the

coupled system cannot be appreciably enhanced with
adjusting Tg.

It can be found from Figure 7Ei that Ts has a significant
impact on the stability region. Specifically, under different Ts

values, there is an intersection of the bifurcation line. On the
left of the intersection, as Ts increases, the stability region
increases. However, on the right of the intersection, the result
is opposite. Figure 7Eii shows that Ts has little influence on xt,
but it has a greater influence on xs and its effect on the
amplitude and period of power spectrum. Correspondingly,
as Ts increases, the amplitude and period of the power
spectrum of xs decrease. Thus, smaller Ts are recommended
to improve stabilization and dynamic properties of the coupled
system.

FIGURE 11
Sensitivity of PG parameters to state variables. (A) Sensitivity of PG parameters to state variable qy. (B) Sensitivity of PG parameters to state variable xs.
(C) Sensitivity of PG parameters to state variable xt. (D) Sensitivity of PG parameters to state variable ZF.
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4.2 Eigenvalue analysis

The Jacobi matrix of the coupled system is obtained by
differentiating state variables according to Eq. 12. According to
matrix theory and Hopf bifurcation theory, a pair of purely
imaginary eigenvalues will appear when Hopf bifurcation occurs,
so this pair of eigenvalues is selected to analyze the stability of the
coupled system, as shown in Figure 8.

Based on Figure 8, it can be concluded that two eigenvalues have
the same change rule with controller parameters. When Ki is
constant, with the increase of Kp, the real part of eigenvalue
increases and the imaginary part decreases. The coupled system
is unstable when the real part of eigenvalues is greater than zero, so it
gradually transitions from the stable region to unstable region as Kp

increases. Furthermore, as Ki increases, the area where the real part
of the eigenvalue is greater than zero gradually increases, indicating
that the instability region gradually increases. Therefore, by
reasonably adjusting the controller parameters, the stability of the
coupled system can be effectively improved.

5 Sensitivity analysis of system
parameters

5.1 Sensitivity analysis of HTRS parameters

The sensitivity of state variables is evaluated using standard
deviation to verify the sensitivity of the coupled system to variations
of HTRS parameters. To facilitate the analysis of the sensitivity of
each parameter to the system state variables, the standard deviation
of each parameter is quantified.

sp �

���������∑n
i�1

xi − �x( )2

n

√√
, (21)

σp � sp∑m
p�1

sp

, (22)

where xi � ∂χj
∂]k
, χ = (qy, ZF, y, qt, xs, xt), and ] = (Ta, F, Twt, Twy). �x

denotes the mean value of xi for all data from i = 1 to i = n. sp is the
standard deviation of χ induced by HTRS parameters. σp is the ratio
of each standard deviation. The sensitivity analysis was performed as
in Figure 9, and the standard deviation was processed to obtain the
ratio of s.d. in order to facilitate the analysis and comparison of the
effect of each parameter on the system. Specific analysis results are
shown in Figures 9A, 10.

Figure 9A describes the sensitivity analysis to changes of HTRS
parameters at mg = −0.1, Kp = 1, and Ki = 0.1. It can be seen from
Figure 9A that the highest standard deviations of qy and ZF are
correlated with Twy while the highest standard deviations of y, qt, xs,
and xt are correlated with Twt and Ta.

The sensitivity of HTRS parameters to state variables is shown in
Figure 10. From Figure 10, it can be concluded that the state variables
qy and ZF aremore influenced byTwywhile effects ofTwt andTa on the
state variables xs and xt are more significant. Thus, qy and ZF are most
sensitive to Twy, but xs and xt are most sensitive to Twt and Ta.

5.2 Sensitivity analysis of PG parameters

This section studies the sensitivity of PG parameters to state
variables. The specific research method and normalization are the
same as in the previous section, and the system operates under load
condition, i.e.,mg = −0.1, Kp = 1, and Ki = 0.1. Sensitivity analysis to
changes of PG parameters is shown in Figure 9B.

According to Figure 9B, state variables of the coupled system are
most sensitive to parameters B and Rg, while the uncertainty sources
of other parameters are less important. The results show that state
variables are most sensitive to variability of B and Rg.

The sensitivity of PG parameters to state variables is shown in
Figure 11. Since the sensitivity of PG parameters to state variables is
not in the same order of magnitude, it is divided into two sub-graphs
for better visualization. From Figure 11, it can be seen that qy, xs, xt,
and ZF exhibited most sensitivity to the variation of B and Rg, while
other parameters are less sensitive.

From Figures 10, 11, it can be concluded that the overall effect of
the variation of HTRS parameters on xt is greater than that of the
variation of PG parameters. On the contrary, the overall effect of
variable PG parameters on qy, xs, and ZF is greater than that of
variable HTRS parameters.

6 Conclusion

To reveal the impact mechanism of the hydropower station to the
PG, the non-linear mathematical model considering a downstream
surge chamber and sloping roof tailrace tunnel is established in this
paper. Then, the Runge–Kutta method and Hopf bifurcation theory
are applied to research the stability and dynamics characteristics of the
coupled system, which are validated by numerical simulations.
Furthermore, the coupling effects of different HTRS parameters
and PG parameters on the coupled system are investigated and
validated with phase space trajectory and dynamic response.
Subsequently, the effect mechanism of governor parameters on the
coupled system stability is revealed by eigenvalue analysis of the
Jacobian matrix. Finally, the correlation between system state
variables and parameters is verified through sensitivity analysis.

Based on the numerical analysis in this paper, conclusions can be
drawn as follows:

(1) The non-linear mathematical model for the coupled system is an
eighth-order non-linear state-space equation that considers the
downstream surge chamber and the sloping roof tailrace tunnel.
Afterward, by employing Hopf bifurcation theory, the stability
and dynamics of the coupled system are analyzed effectively.

(2) With the coupled system under load perturbation, the whole Kp–Ki

plane is divided into two parts by the bifurcation line consisting of
bifurcation points. The stable domain is located at the lower end of
the curve, while the unstable domain comprises the rest of the curve.
Accordingly, the coupled system is stabilized at the equilibrium
point when the state point lies in the stable domain.

(3) The stability of the coupled system can be enhanced by reducing
the cross-sectional area of the downstream surge chamber,
although the effect is limited. The unit inertia time constant
and flow inertia time constant of the pressure pipeline can be
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employed as the main measures to optimize the dynamic
performance of the coupled system.

(4) PG parameters can be reasonably regulated to optimize dynamic
performance according to its impact on the coupled system. In
addition, the influence mechanism of governor parameters on
the stability of the coupled system is determined by analyzing
eigenvalues of the Jacobian matrix.

(5) The sensitivity of the coupled system is greatly affected by the
variation of HTRS and PG parameters. Furthermore, the overall
effect of HTRS parameters on the sensitivity of the system state
variables is greater than that of PG parameters. Based on
sensitivity analysis, it can be concluded that the coupled
system is most sensitive to Ta, Twt, B, and Rg.
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Nomenclature

y The output signal of the HURS governor

Kp, Ki The proportional and integral gains

h The relative change of head

ht Penstock head loss, m

Twt Penstock flow inertia time constant, s

TF Time constant of surge chamber, s

Twy, Twx The steady flow and transient flow inertia of the
tailrace inertia time constant, respectively, s

c Wave velocity at the interface of the open and
full-flow manifolds, m/s

α Inclined roof tailrace tunnel top slope angle, rad

mg Resisting moment, N.m

ξ Intermediate state variables

Rg Power grid equivalent permanent differential coefficient

ex, ey, eh Moment transfer coefficients of the turbine

F Surge chamber cross-sectional area, m2

Tg The inertia time constant of the power grid
equivalent servo motor, s

Hx Water depth at the interface of the free
surface-pressurized flow, m

g Acceleration of gravity, m/s2

xt The relative deviation of rotational speed

qt Pressure pipe flow, m3/s

ZF Downstream surge chamber water level

H0 Initial head of the hydraulic turbine, m

qy Tailrace tunnel flow, m3/s

hy Head loss of tailrace tunnel, m

λ Section coefficient of the tailrace tunnel

Vx Flow rates at the open and full-flow interfaces, m3/s

Ka Equivalent synchronization coefficient

Da Equivalent damping coefficient

Ta The inertia time constant of the hydraulic turbine unit, s

eg Load self-regulating coefficient

eqx, eqy, eqh Discharge transfer coefficients of the turbine

Ts Power grid equivalent unit inertia time constant, s

B Power conversion factor

Qy0 Initial flow of the tailrace tunnel, m3/s

zy Water level change in the tailrace tunnel
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