115 research outputs found

    Simplified Finite-State Predictive Torque Control Strategies for Induction Motor Drives

    Get PDF
    This thesis develops a simplified finite-state predictive torque control (FS-PTC) algorithm based on selected prediction vectors (SPVs). This reduces the number of voltage vectors required to be predicted and the objectives to be controlled. The sign of torque or stator flux deviation and the position of stator flux are used to select the prediction vectors. The proposed SPVs strategy also assists reducing the average switching frequency for a two-level voltage source inverter fed induction motor (IM) drive. As a result, the cost function is simplified, as the frequency term is not required. The proposed SPVs based FS-PTC is also applied to a three-level neutral-point clamped inverter driven IM drive. Using the SPVs strategy reduces the computational burden for the proposed three-level inverter fed drive without affecting the system performance. However, an appropriate weighting factor is required for torque and flux errors in the cost function. This leads to the development of a second simplified FS-PTC which does not require complex torque calculations in the prediction loop and hence tuning effort on the weighting factor. A new reference stator flux vector calculator (RSFVC) with an inner proportional-integral torque regulator is employed to convert the torque and flux amplitude references into an equivalent stator flux reference vector. This stator flux reference is used in the cost function for the flux error calculation. The required processing power for the RSFVC-based FS-PTC is further reduced by combining it with the SPVs strategy. Finally, a speed-sensorless simplified FS-PTC of IM supplied from a 3L-NPC inverter is proposed. The sensorless simplified FS-PTC yields improved torque, flux and speed responses, especially at low-speed. The proposed simplified FS-PTC strategies in terms of computational efficiency, cost function design, torque and flux responses, robustness and average switching frequency are validated through experimental results

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Contrôle avancé des convertisseurs de puissance multi-niveaux pour applications sur réseaux faibles

    Get PDF
    139 p.El advenimiento progresivo de las microrredes que incorporan fuentes de energía renovable está dando lugar a un nuevo paradigma de distribución de la electricidad. Este nuevo planteamiento sirve de interfaz entre consumidores no controlados y fuentes intermitentes, implicando desafíos adicionales en materia de conversión, almacenamiento y gestión de la energía.Los convertidores de potencia se adaptan en consecuencia, en particular con el desarrollo de los convertidores multinivel, que integrando los mismos componentes que sus predecesores y un control más complejo, soportan potencias más altas y aseguran una mejor calidad de la energía.Debido al carácter híbrido de los convertidores de potencia, su control se divide comúnmente en dos partes: por un lado, el control de los objetivos continuos vinculados a la función principal de los convertidores de servir de interfaz, y, por otro, el control discreto de los interruptores de potencia, conocido con el nombre de modulación.En este contexto, las exigencias crecientes en términos de eficiencia, fiabilidad, versatilidad y rendimiento hacen necesaria una mejora de la inteligencia de la estructura de control. Para cumplir conestos requisitos, se propone tratar mediante un solo controlador ambas problemáticas, la vinculada a la función de interfaz de los convertidores y la relacionada con su naturaleza discreta. Esta decisión implica incorporar la no-linealidad de los convertidores de potencia en el controlador, lo que equivale a suprimir el bloque de modulación, que constituye la solución tradicional para linealizar el comportamiento interno de los convertidores. Se adopta un planteamiento de Control Predictivo basado en Modelos (MPC) para abordar la no-linealidad y la gran diversidad de objetivos de control que acompañan a los convertidores de potencia.El algoritmo desarrollado combina teoría de grafos ¿con algoritmos de Dijkstra, A* y otros¿ con un modelo de estado especial para sistemas conmutados al objeto de proporcionar una herramienta potente y universal, capaz de manipular simultáneamente el carácter cuantificado de los interruptores de potencia y el continuo de las entidades interconectadas por el convertidor. Se han obtenido resultados sobre la estabilidad y la controlabilidad de los modelos de estado conmutados aplicados al caso particular de los convertidores de potencia.El controlador así desarrollado y descrito se ha examinado en simulación frente a varios casos y aplicaciones: inversor aislado o conectado a la red, rectificador y convertidor bidireccional. Se ha empleado la misma estructura de control para tres topologías de convertidor multinivel: Neutral-Point Clamped, Flying Capacitor y Cascaded H-Bridge. Al objeto de adaptarse a los cambios citados, lo único que varía en el controlador es el modelo del convertidor adoptado para la predicción, así como la función de coste, que traduce los requisitos de control en un problema de optimización a solucionar por el algoritmo. Un cambio de topología resulta en una modificación del modelo interno, sin impacto sobre la función de coste, mientras que variaciones de esta función son suficientes para adaptarse a la aplicación.Los resultados muestran que el controlador logra actuar directamente sobre los interruptores de potencia en función de diversos requisitos. Los desempeños de la estructura de control propuesta son similares a los de las numerosas estructuras dedicadas a cada uno de los casos estudiados, excepto en el caso de operación en modo rectificador, en el que la versatilidad y rapidez de control obtenidos son particularmente interesantes.En definitiva, el controlador planteado puede emplearse para diferentes aplicaciones, topologías, objetivos y limitaciones. Si bien las estructuras de control lineal tradicionales han de modificarse, a menudo en profundidad, para afrontar diferentes modos de operación o requisitos de control, dichas alteraciones no tienen ningún impacto sobre la arquitectura del controlador MPC obtenido, lo que pone de manifiesto su versatilidad, así como su universalidad, también demostrada por su capacidad para adaptarse a diferentes convertidores de potencia sin modificaciones importantes. Finalmente, la solución propuesta elude por completo la complejidad de la modulación, ofreciendo simplicidad y flexibilidad al diseño del control

    A Low-Complexity Optimal Switching Time-Modulated Model-Predictive Control for PMSM With Three-Level NPC Converter

    Get PDF
    Conventional finite control set model-predictive control (FCS-MPC) presents a high computational burden, especially in three-level neutral-point-clamped (NPC) converters. This article proposes a low-complexity optimal switching time-modulated model-predictive control (OST-M2PC) method for a three-level NPC converter. In the proposed OST-M2PC method, the optimal switching time is calculated using a cost function. Compared with the conventional FCS-MPC, the proposed OST-M2PC method has a fixed switching frequency as well as better power quality. The proposed OST-M2PC can operate at a 20-kHz sampling frequency, reducing the computational burden of the processor. Simulation and experimental results validate the operation of the proposed method

    Comprehensive study of finite control set model predictive control algorithms for power converter control in microgrids

    Full text link
    © 2020 Institution of Engineering and Technology. All rights reserved. Advances in power electronics and digital control open a new horizon in the control of power converters. Particularly, model predictive control has been developed for control applications in industrial electronics and power systems. This study presents a comprehensive study on recent achievements of model predictive control algorithms to overcome the challenges in the real-time implementation of power converter control, which is the lowest level control of hierarchical control in microgrids. The study shows that most of these alternate solutions can enhance system reliability, stability, and efficiency. The control platform devices for the real-time implementation of these algorithms are compared. The related issues are discussed and classified, respectively. Finally, a summary is provided, leading to some further research questions and future work

    A Fixed Switching Frequency Direct Model Predictive Control for Neutral-Point-Clamped Three-Level Inverters with Induction Machines

    Get PDF
    This article presents a direct model predictive con-trol (MPC) scheme for drive systems consisting of a three-phase three-level neutral-point-clamped (3L-NPC) inverter and an induction machine (IM). Even though the discussed MPC algorithm is a direct control strategy, it operates the inverter at a fixed switching frequency, while the output harmonic spectrum of the stator current is discrete, with harmonics at non-triplen, odd integer multiples of the fundamental frequency. As a result, the proposed method achieves similar or superior steady-state behavior than that of modulator-based control schemes. Moreover, thanks to its direct control nature, it exhibits the fast transient responses that characterize direct controllers due to the absence of an explicit modulator. Furthermore, the multiple control objectives of the system, i.e., stator current control and neutral point (NP) potential balancing, are addressed in one computational stage, thus avoiding any additional control loops in a cascaded or parallel structure. This favorable control structure is facilitated by the adopted modeling approach, according to which the system behavior is described by the gradient of the system output. In doing so, not only a simple, versatile system model is derived, but also the direct MPC can be formulated as a constrained quadratic program (QP), which can be easily solved in real time with an in-house solver. The effectiveness of the proposed control scheme is experimentally verified on a 4-kW drive system.Peer reviewe
    corecore