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Abstract—This article presents a direct model predictive con-
trol (MPC) scheme for drive systems consisting of a three-
phase three-level neutral-point-clamped (3L-NPC) inverter and
an induction machine (IM). Even though the discussed MPC
algorithm is a direct control strategy, it operates the inverter
at a fixed switching frequency, while the output harmonic
spectrum of the stator current is discrete, with harmonics at non-
triplen, odd integer multiples of the fundamental frequency. As a
result, the proposed method achieves similar or superior steady-
state behavior than that of modulator-based control schemes.
Moreover, thanks to its direct control nature, it exhibits the fast
transient responses that characterize direct controllers due to
the absence of an explicit modulator. Furthermore, the multiple
control objectives of the system, i.e., stator current control and
neutral point (NP) potential balancing, are addressed in one
computational stage, thus avoiding any additional control loops in
a cascaded or parallel structure. This favorable control structure
is facilitated by the adopted modeling approach, according to
which the system behavior is described by the gradient of the
system output. In doing so, not only a simple, versatile system
model is derived, but also the direct MPC can be formulated
as a constrained quadratic program (QP), which can be easily
solved in real time with an in-house solver. The effectiveness of
the proposed control scheme is experimentally verified on a 4-kW
drive system.

Index Terms—AC drives, model predictive control (MPC),
direct control, multiple-input multiple-output (MIMO) systems,
power electronic systems, three-level neutral point clamped
(NPC) inverters.

I. INTRODUCTION

THE three-level neutral-point-clamped (3L-NPC) in-

verter [1] has been widely used in high-power medium-

voltage (MV) applications, such as MV motor drives [2],

wind power generations [3], and electric vehicle charging

stations [4]. Compared to the traditional two-level converters,

the NPC converters can reduce the harmonics of the output

voltage and current, and they are more suitable for higher

voltage and power applications since the voltage stress is
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distributed over the series-connected power devices. However,

the multilevel output and the floating neutral point (NP) make

the modulation and control design more complex.

To address the latter challenge, several studies have focused

on the NP potential balancing problem. As shown in [5], the

NP potential can be balanced by manipulating the common-

mode voltage (CMV). As a result, the modulating signal

that is fed into a carrier-based pulse width modulator (CB-

PWM) can be injected with a suitable CMV signal to achieve

balancing of the NP potential. This signal, e.g., can be derived

from a simple closed-loop NP potential controller based on a

proportional-integral (PI) controller [6]. However, this control

loop becomes unstable when the power factor (PF) approaches

zero. For this reason, the NP potential control loop needs to

be disabled when working in this operating region.

Based on the same principle, the NP potential control in

space vector modulation (SVM) is achieved by manipulating

the ratio of the redundant voltage vectors, which essentially

is equivalent to adjusting the CMV [7]. In this direction, [8]

proposed an SVM method which can effectively balance the

NP potential over a wide range of modulation indices as well

as at zero PF conditions. However, to do so, the inverter

occasionally operates in bipolar mode, which not only is

considerably complicated to implement, but also results in an

increased switching frequency.

An alternative approach that has shown to be particularly

effective with such challenging problems as the discussed one

is direct model predictive control (MPC) with reference track-

ing, also known as finite control set MPC (FCS-MPC). This is

thanks to its ability to tackle several control objectives in one

computational stage by solving a multicriterion optimization

in real time [9]. Indeed, an FCS-MPC scheme for a 3L-NPC

was first presented in [10]. Albeit its simple structure, the

presented FCS-MPC algorithm successfully controls the load

current and NP potential at both steady-state and transient

operation. However, the ℓ1-norm in the objective function and

the single-step prediction horizon lead to deteriorated control

performance as well as potential closed-loop stability issues,

especially when operating at low switching frequencies [11].

To improve the performance of FCS-MPC, it is favorable to

use the ℓ2-norm in the objective function [12], longer predic-

tion horizons [13], [14] and shorter sampling intervals [11],

which, however, pose a big computational challenge for a real-

time implementation [15]. Besides, the direct control nature of



the method, i.e., the controller directly generates the switching

signals without requiring a dedicated modulation stage, gives

rise to a variable switching frequency and a spread current

harmonic spectrum as well as nondeterministic power losses

and unequal distribution of the load, which can be undesirable

in many applications [16], [17].

To address the above-mentioned drawbacks of FCS-MPC,

some direct MPC algorithms with an implicit modulator for

NPC converters have been proposed [18]–[20]. The method

in [18] adopts the concept of optimal switching sequences

(OSSs) [21], according to which the candidate switching

patterns imitate those of CB-PWM/SVM. In a subsequent step,

the optimal one is selected by solving an optimization prob-

lem, and it is applied at the corresponding optimal switching

time instants. In doing so, a fixed switching frequency and

concentrated current harmonic spectra are achieved. However,

the optimization problem that computes the optimal switching

times is formulated as an unconstrained quadratic program

(QP), meaning that it might yield a solution that violates the

physical limits of the converter, e.g., a switching time instant

that is negative or larger than the sampling interval. In such

a case, a simple saturation strategy is normally used, which,

alas, does not always guarantee optimality. To address this, the

OSS-based methods in [19] and [20], introduce constraints to

the optimization problem formulation. However, the design of

the objective functions does not ensure zero—or even small—

reference tracking error at the discrete time instants at steady-

state operation, while it does not directly account for the ripple

of the controlled variables. As a result, when sampling occurs,

the ripple of the current enters the inner control loop, thus

leading to undesired low-frequency harmonics, and increased

overall harmonic distortions [22]. Moreover, the adopted cas-

caded structures lead to uncoordinated control/modulation, and

thus the multi-objective control feature of MPC as well as the

benefits of direct control are not fully exploited [23]. Hence,

as not all features of direct MPC are utilized to the fullest

extent possible, the most favorable steady-state and/or dynamic

system behavior is not ensured.

To tackle the aforementioned issues, a direct MPC method

with an implicit modulator for variable speed drive systems

was proposed in [24]. This method uses the gradient of the

system output to predict the future behavior of the drive. In

doing so, not only a simple and versatile—yet sufficiently

accurate—modeling approach is employed, but also the for-

mulation of the optimal control problem as a constrained QP

is enabled. As a result, its real-time implementation is greatly

facilitated [25] as well as its extension to different power

electronic systems [22]. Furthermore, the objective function

is formulated such that a fixed switching frequency is ensured

along with zero current ripple at the discrete time instants. As a

result, low current distortions are produced with the harmonic

power being concentrated at frequencies which are at odd,

non-triplen integer multiples of the fundamental.

This article employs the above-mentioned direct MPC

scheme to control a three-phase 3L-NPC inverter driving an

induction machine (IM). Besides the control of the stator

current, the developed control algorithm successfully and

effectively balances the NP potential, even under challenging
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Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM).

operating conditions, such as at zero PF. To achieve this, the

NP potential balancing is addressed in the same computational

stage with the stator current control problem to allow for

coordinated—and thus more effective—control. In doing so,

a very simple control structure results, thus demonstrating

the high versatility of the developed algorithm along with its

ability to handle multiple-input and multiple-output (MIMO)

systems with complex and nonlinear dynamics. Moreover, to

facilitate the real-time implementation of the proposed direct

MPC strategy, the deadbeat solution is employed to reduce

the number of candidate switching sequences. As a result, the

maximum number of candidate solutions remains relatively

low and independent of the voltage levels of the converter.

Therefore, this solution enables the extension of the proposed

direct MPC method to multilevel converters with no additional

computational overhead. Furthermore, to further alleviate the

computational load of the proposed MPC method, the QP

algorithm developed in [25] is refined and tailored to the

specific optimization problem at hand. Finally, owing to the

direct control principle of the developed method, fast transients

are achieved, limited only by the available dc-link voltage.

This advantageous steady-state and dynamic performance of

the proposed method is experimentally verified and highlighted

by benchmarking it against conventional field oriented control

(FOC) with SVM.

This paper is structured as follows. Section II introduces

the mathematical model of the drive system that serves as a

case study. The direct MPC scheme is presented in Section III,

and its performance is experimentally evaluated and compared

with three conventional control methods in Section IV. Finally,

Section V concludes the paper.

II. MATHEMATICAL MODEL OF THE SYSTEM

In this work, the modeling of the system is done in the

stationary orthogonal αβ reference frame. To this end, any

variable ξabc = [ξa ξb ξc]
T in the abc-plane is mapped into a

variable ξαβ = [ξα ξβ ]
T in the αβ-plane via ξαβ = Kξabc,1

where

K =
2

3

[

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

]

. (1)

Moreover, throughout this paper, all quantities are normalized

and presented in the per unit (p.u.) system.

1In the sequel of the paper, the subscript αβ used to denote variables in
the αβ-plane is omitted to simplify the notation. Variables in the abc-plane
are indicated with the corresponding subscript.



Fig. 1 shows the structure of a 3L-NPC voltage source

inverter driving an IM. The 3L-NPC is connected to a stiff

dc voltage supply and the NP is floating. Thus, the total dc-

link voltage is constant and it is given by vdc = vdc,up+vdc,lo,

where vdc,up and vdc,lo denote the voltage over the upper and

lower dc-link capacitors, respectively.

Let uabc = [ua ub uc]
T denote the three-phase switch

position of the 3L-NPC, where ux ∈ U = {−1, 0, 1}, with

x ∈ {a, b, c}, is the single-phase switch position. In each

phase, the values −1, 0, and 1 correspond to the phase voltages

−vdc,lo, 0, and vdc,up, respectively. Thus, the output voltage of

the inverter vinv—which is equal to the stator voltage vs—is

vinv = vs =
vdc
2
Kuabc − vnK|uabc| , (2)

where |uabc| = [|ua| |ub| |uc|]
T is the component-wise

absolute value of uabc. In (2), vn stands for the NP potential

given by

vn =
1

2
(vdc,lo − vdc,up) , (3)

and it evolves according to

dvn
dt

=
1

2Xdc
|uabc|

T iabc , (4)

where Xdc is the (inverse) reactance of the dc-link capacitor.

The dynamics of the IM can be described by choosing the

stator current is and the rotor flux ψr as the state of the

machine, i.e., [26]2

dis
dt

= −
1

τs
is +

(

1

τr
I2 − ωr

[

0 −1

1 0

])

Xm

D
ψr +

Xr

D
vs

(5a)

dψr
dt

=
Xm

τr
is −

1

τr
ψr + ωr

[

0 −1

1 0

]

ψr , (5b)

where Rs (Rr) is the stator (rotor) resistance, Xls (Xrs) the

stator (rotor) leakage reactance, and Xm the mutual reactance.

Moreover, τs = XrD/(RsX
2
r +RrX

2
m) is the transient stator

time constant and τr = Xr/Rr the rotor time constant, where

the constant D is defined as D = XsXr − X2
m, with Xs =

Xls +Xm and Xr = Xlr +Xm.

The system of equations (5) can be written in the following

compact continuous-time state-space form

dxm(t)

dt
= Fmxm(t) +Gmvs(t) (6a)

ym(t) = Cmxm(t) , (6b)

where xm = [isα isβ ψrα ψrβ]
T and ym = [isα isβ ]

T .

Combining (6) with (4) and (2) yields that state-space rep-

resentation of the drive system, i.e.,

dx(t)

dt
= F (uabc(t))x(t) +Guabc(t) (7a)

y(t) = Cx(t) , (7b)

where the state vector is x = [xT
m vn]

T , the three-phase

switch position uabc is the system input, and the system

2Note that due to the slower mechanical dynamics, the angular speed of
the rotor ωr is treated as a (relatively slowly) varying parameter rather as a
state variable.

output consists of the stator current and the NP potential, i.e.,

y = [yTm vn]
T . Note that the system matrix F (uabc(t)), the

input matrix G, and the output matrix C are provided in the

appendix.

Finally, by using forward Euler discretization,3 the discrete-

time state-space model of the system is derived as

x(k + 1) = Ax(k) +Buabc(k) (8a)

y(k) = Cx(k) , (8b)

with k ∈ N, A = I + F (uabc(t))Ts, and B = GTs, where

I is the identity matrix of appropriate dimensions, and Ts the

sampling interval.

III. DIRECT MPC WITH FIXED SWITCHING FREQUENCY

FOR 3L-NPC CONVERTER

In this work, the method proposed in [22], [24] is refined

to control the drive system shown in Fig. 1. More specifically,

the NP potential balancing is included in the control problem,

and a switching sequence set definition based on a deadbeat

solution is introduced to reduce the computational burden.

A. Control Problem

The control objectives are threefold. First, the stator current

should be regulated along its reference with as little distortion

as possible and as quickly as possible so that short settling

times are achieved. Second, the NP potential of the 3L-NPC

inverter should be balanced under all operating conditions.

Finally, operation at a constant switching frequency is desired

such that the losses produced in the inverter are constant.

The first two objectives can be achieved by minimizing

the weighted (squared) rms value of the output error. This

is captured in the objective function of the form

J =
1

Ts

∫ Ts

0

(yref(t)− y(t)
TQ(yref(t)− y(t))dt

=
1

Ts

∫ Ts

0

∥

∥

∥
yref(t)− y(t)

∥

∥

∥

2

Q
dt ,

(9)

where yref = [isα,ref isβ,ref vn,ref ]
T is the output reference

vector, and Q ≻ 0 ∈ R
3×3 the penalty matrix. Here, the

penalty matrix is defined as Q = diag(1, 1, λn) with λn > 0
being the weighting factor that adjusts the priority of the NP

potential balancing.

To meet the third control objective, each phase leg is forced

to switch exactly once per sampling interval Ts. To this aim,

the vectors of switching time instants t and switch positions

U are introduced as

t = [t1 t2 t3]
T

U = [uT
abc(t0) uT

abc(t1) uT
abc(t2) uT

abc(t3)]
T .

(10)

where

0 ≤ t1 ≤ t2 ≤ t3 ≤ Ts . (11)

In (10), uabc(t0) denotes the three-phase switch position at

the beginning of the sampling interval, i.e., t0 ≡ 0. At time

3When a higher accuracy is required, e.g., at low sampling frequencies, the
exact discretization can be used for the IM state-space model (6), see [23,
Section 7.2.3] for more details.



TABLE I: Possible switching sequences for a one-step horizon.

Number Phase with the

of switching transition

sequence First Second Third

1 a b c

2 a c b

3 b a c

4 b c a

5 c a b

6 c b a

instant t1, one of the three phase legs switches by applying

the switch position uabc(t1). Similarly, the switch position

changes to uabc(t2) and uabc(t3) at switching instants t2 and

t3, respectively, such that the two other yet inactive phase

legs are switched in a sequential manner. Finally, the switch

position uabc(t3) is applied until the end of the sampling

interval. Thus, the three switching instants divide one sampling

interval into four subintervals [ti, ti+1), with i ∈ {0, 1, 2, 3},

during which the switch position uabc(ti) is applied.4 Based

on the above, it can be understood that the three phases can

switch in 3! = 6 possible chronological orders, as summarized

in Table I.

B. Selection of Candidate Switching Sequences

Even though there are only six chronological orders with

which the three phases can switch, the possible combinations

of switch positions are 48.5 This implies that an equal num-

ber of optimization problems (one for each combination) is

required to be solved in real time. Such a task, however, is

impossible with the available computational resources. Hence,

a method to reduce the possible combinations needs to be

adopted. To this end, a strategy to define the feasible switch

positions within each Ts as well as the initial switch position

is introduced, as explained in the following.

Before assessing the possible switching sequences (see

Table I), the initial switch position at each sampling interval

i.e., uabc(t0), needs to be determined. To do so, the type

of switching transition, defined as ∆uabc(k) = uabc(t3) −
uabc(t0) ∈ {−1, 1}3, needs to be examined.6 In line with

the switching pattern of CB-PWM or SVM, the sign of each

single-phase transition ∆ux(k), x ∈ {a, b, c}, is the same for

all three phases in one sampling interval Ts, and it alternates

between consecutive Ts. For example, if the sign of ∆uabc(k)
is set to be positive in the first Ts, then it is negative in the

next Ts, again positive in the third Ts, and so on.

Following, to unequivocally determine uabc(t0), the dead-

beat solution is employed. This is done by considering only

4Note that t0 ≡ 0 and t4 ≡ Ts denote the beginning and the end of the
sampling interval, respectively.

5This corresponds to the case where uabc(t0) = [0 0 0]T . In such a
case, each single-phase switch position can become either 1 or −1 within
one Ts. As a result, there are 23 = 8 switching sequences for a given order
with which the phases switch. As there are six different chronological orders
for the phases to switch (see Table I), the maximum number of candidate
switching sequences is 8× 6 = 48.

6Directly switching a phase leg from −1 to 1, or vice versa, is forbidden
to avoid a potential shoot-through.

TABLE II: Single-phase switching transitions and initial switch position.

Polarity of Sign of Switching Initial switch

u∗

db,x
∆ux transition for ux position ux(t0)

≥ 0 + 0 → 1 0

≥ 0 − 1 → 0 1

< 0 + −1 → 0 −1

< 0 − 0 → −1 0

the IM dynamics [27]. In doing so, the deadbeat solution is

given by7

vdb,abc =K
−1
(

(CmBm)−1(ym,ref(k+1)−CmAmxm(k)
)

.
(12)

The sign of each entry of vdb,abc determines the feasible

switch positions. Hence, the combination of the polarity of

vdb,x and sign of ∆ux defines the initial switch position

in phase x. For example, if vdb,x ≥ 0 the feasible switch

positions in phase x are either 0 or 1 as a nonnegative output

voltage is required. If ∆ux > 0, it means that ux(t0) = 0 as

a transition from 0 to 1 is required in phase x within Ts. If,

on the other hand, ∆ux < 0, then it holds that ux(t0) = 1
as phase x needs to switch from 1 to 0. Following the

same principle, the feasible switch positions—and eventually

ux(t0)—for the case of vdb,x < 0 are defined. The switching

transitions and initial single-phase switch position are sum-

marized in Table II. Moreover, Fig. 2 provides an illustrative

example of the discussed concept. Therein, it is assumed that

vdb,a, vdb,c ≥ 0, whereas vdb,b < 0. Furthermore, the sign

of ∆uabc(k) for the first sampling interval is assumed to be

positive, implying a negative sign for the second Ts.

Finally, with the information of the initial switch posi-

tion uabc(t0) and possible switching transitions, the feasible

set of switching sequences is constructed by enumerating

the six possible sequences shown in Table I. Let z ∈
{1, 2, . . . , 6} denote the number of sequence, the feasible set

consists of only six candidate switching sequences Uz =
[uT

abc(t0) u
T
abc,z(t1) u

T
abc,z(t2) u

T
abc(t3)]

T .

C. Optimization Problem

In order to have a convex optimization problem, the objec-

tive function is simplified by capturing only the output error at

the switching instants and at the end of the sampling interval,

see [22]. This leads to

J =

3
∑

i=1

∥

∥

∥
yref(ti(k))− y(ti(k))

∥

∥

∥

2

Q

+
∥

∥

∥
Λ(yref(Ts(k))− y(Ts(k)))

∥

∥

∥

2

Q
,

(13)

where the diagonal positive definite matrix Λ ≻ 0 is intro-

duced to more heavily penalize the output error at the end of

the sampling interval. Note that yref(Ts(k)) ≡ yref(k+1) and

y(Ts(k)) ≡ y(k+1). By doing so, the output error at the sam-

pling instants is always kept close to zero, which effectively

eliminates the undesired low-frequency harmonics [22].

7Note that the discrete state-space model of the IM can be obtained with
forward Euler discretization, i.e., Am = I + FmTs and Bm = GmTs.
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(a) Three-phase switching sequence.

t
t0 ≡ 0 Ts 2Ts

t1(k) t2(k) t3(k) t1(k+1) t2(k+1)t3(k+1)

isα

is,ref,α

(b) Stator current (α-component).

Fig. 2: Example of one switching sequence and the corresponding stator
current.

To find the optimal switching instants t∗ and switching

sequence U∗, the evolution of the output y for each possible

switching sequence Uz needs to be computed. Given that the

sampling interval Ts is much smaller than the fundamental

period T1, i.e., Ts ≪ T1, the corresponding output gradients,

given by

m(ti(k)) =
y(k + 1)− y(k)

Ts

=
C((A− I)x(k) +Buabc(ti(k)))

Ts
.

(14)

can be utilized to predict the evolution of the system output.

This yields

y(ti+1(k)) = y(ti(k)) +m(ti(k))(ti+1(k)− ti(k)) , (15)

with i ∈ {0, 1, 2, 3} and t4 = Ts.

In the same manner, the output reference is assumed to

evolve linearly within one sampling interval, i.e., it evolves

with the gradient

mref(k) =
yref(k + 1)− yref(k)

Ts
, (16)

Hence, the output reference over this sampling interval is

yref(t) = yref(k) +mref(k) t . (17)

An example of the evolution of the stator current for a given

switching sequence (the depicted sequence is a → c → b)

Algorithm 1 QP Algorithm for Direct MPC

1: function tz = GRADPROJ (H , f , t0, L, µ, tol)
2: q = µ/L
3: y0 = t0
4: α0 = (

√

(L− µ)2 + 4L− (L− µ))/2
5: for κ = 0, 1, . . . do

6: tκ+1 = PΩ(yκ − (Hyκ − f)/L)
7: if ‖tκ+1 − tκ‖ ≤ tol then

8: tz = tκ+1

9: break
10: end if

11: ακ+1 = (
√

(α2
κ − q)2 + 4α2

κ − (α2
κ − q))/2

12: βκ = (ακ(1− ακ))/(α
2
κ + ακ+1)

13: yκ+1 = tκ+1 + βκ(tκ+1 − tκ)
14: end for

15: return tz
16: end function

and its reference are shown in Fig. 2. Note that the current

reference is generated by an outer loop, and the reference of

the NP potential vn,ref is zero.

Based on the above, the objective function can be written

in the following vector form

J =
∥

∥

∥
r −Mt

∥

∥

∥

2

Q̃
, (18)

where Q̃ = diag(Q, . . . ,Q), while the vector r ∈ R
12 and

the matrix M ∈ R
12×3 are given in the appendix. Therefore,

for each switching sequence Uz , with z ∈ {1, 2, . . . , 6}, the

optimization problem that is solved in real time is

minimize
t∈R3

‖r −Mt‖2
Q̃

subject to 0 ≤ t1(k) ≤ t2(k) ≤ t3(k) ≤ Ts .
(19)

This problem is a convex constrained QP because the Hessian

matrix H = MTM is always positive definite. Therefore,

it can be efficiently solved with the in-house QP algorithm

developed in [25]. This gradient-based algorithm, developed

to exploit the structure of (19), has the advantageous feature

that it can detect unsuited Uz with a simple one-step gradient

projection method. As a result, at most two QPs (19) need to

be solved in real time, thus greatly reducing the computational

burden of the proposed direct MPC scheme. Note that in [25]

the step size of the gradient method is chosen according to the

Barzilai and Borwein (BB) method [28], due to its robustness

to ill-posed QPs. However, the Hessian matrix H in this work

is always well conditioned, i.e., its condition number—which

is defined as the largest eigenvalue of the Hessian matrix

divided by its smallest eigenvalue—is relatively small. There-

fore, the Nesterov fast gradient method [29], [30] is adopted

in this work to calculate the step size, resulting in a more

efficient convergence. Algorithm 1 shows the pseudocode of

the modified QP algorithm, where the so-called Lipschitz

constant L and convexity parameter µ are the maximum and

minimum eigenvalues of the Hessian matrix H , respectively.

Moreover, the vector f is defined as f = 2MTr. Besides,

PΩ denotes the operation that projects any variable onto the



Algorithm 2 Fixed Switching Frequency Direct MPC

Given yref(k), yref(k + 1) and x(k)
1: Compute the deadbeat solution vdb,abc according to (12)

2: Enumerate the possible switching sequences Uz , z ∈
{1, 2, . . . , 6}, based on vdb,abc and the sign of the switch-

ing transitions ∆uabc

3: For each Uz :

Detect if Uz is unsuited;

If not, solve the QP (19). This yields tz and Jz .

4: Solve optimization problem (20). This yields t∗ and U∗.

Return t∗(k) and U∗(k).

≈

=

dc-link

Minimization of

objective function

Calculation of

output gradient

Observer

z−1

IM

ys,ref (t∗ , U∗)

Encoder

is

ωr

ψ̂r

îs

vn

Fig. 3: Fixed switching frequency direct MPC for a three-phase NPC inverter
driving an IM.

feasible region Ω, t0 ∈ Ω is the initial point, and tol ∈ R
+ is

the tolerance. For the details on the projection algorithm PΩ

and the definition of other variables in Algorithm 1, please

refer to [25, Section IV].

In a last step the (globally) optimal switching instants t∗

and sequence U∗ is found by comparing the cost Jz of each

switching sequence, i.e., the following problem is solved

minimize
z∈{1,2,...,6}

Jz . (20)

Finally, the optimal switching sequence U∗ is applied to the

inverter at the corresponding optimal switching instants t∗.

The proposed direct MPC scheme is summarized in the

pseudocode provided in Algorithm 2, while the block diagram

is shown in Fig. 3. Finally it should be mentioned that

a Kalman filter (KF) is implemented to deal with model

uncertainties, parameter variations, measurement noise, etc.,

see [25, Section III-D] and references therein for more details

on the design of the KF.

IV. PERFORMANCE EVALUATION

The performance of the proposed direct MPC scheme is

examined in the laboratory with a three-phase 3L-NPC inverter

driving an IM, as shown in Fig. 1. The inverter is supplied

by a stiff dc source and the NP is floating. The real-time

control platform is a dSPACE SCALEXIO system, consisting

A

B

C

D E

Fig. 4: Setup of the electrical drives test bench. A: dSPACE SCALEXIO
real-time control system, B: Back-to-back 3L-NPC converters, C: Interface,
D: IM, E: PMSM

TABLE III: Rated values of the induction machine.

Parameter Symbol SI Value

Rated voltage VR 400V

Rated current IR 8.73A

Rated stator frequency fsR 50Hz

Rated rotor speed ωmR 1430 rpm

Rated power PR 4 kW

TABLE IV: System parameters in the SI and the p.u. system.

Parameter SI (p.u.) symbol SI (p.u.) value

Stator resistance Rs (Rs) 2.94Ω (0.11)

Rotor resistance Rr (Rr) 0.67Ω (0.024)

Stator leakage inductance Lls (Xls) 8.45mH (0.096)

Rotor leakage inductance Llr (Xlr) 8.45mH (0.096)

Mutual inductance Lm (Xm) 195.25 mH (2.26)

Number of pole pairs p 2

Dc-link voltage Vdc (Vdc) 650 V (1.99)

Dc-link capacitance Cdc (Xdc) 1.6mF (13.43)

of a 4GHz Intel XEON processor and a Xilinx Kintex-

7 field-programmable gate array (FPGA). The controller is

implemented on the processor, and the data acquisition and

generation of the switching signals are done on the FPGA.

The experimental setup is shown in Fig. 4. The rated values

of the IM and the parameters of the system are given in

Tables III and IV, respectively. For the examined scenarios,

the weighting matrices are chosen as Q = diag(1, 1, 5) and

Λ = diag(10, 10, 10). Finally, all results are shown in the p.u.

system.
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Fig. 5: Experimental results of direct MPC at steady-state operation, fsw =
700Hz.

A. Steady-State Operation

The steady-state performance throughout this section is

examined while the IM is operating at nominal speed and rated

torque, implying a fundamental frequency of f1 = 50Hz and

electromagnetic torque Te = 1 p.u. Moreover, the sampling

frequency is chosen as fs = 2700Hz such that a device

switching frequency of fsw = 700Hz results.8 Fig. 5 shows

the performance of the drive system controlled by the proposed

direct MPC. As shown in 5(a), the three-phase stator current

is,abc, measured by an oscilloscope with a sampling frequency

of 50 kHz, tracks its reference with no steady-state error

and low harmonic distortions. The stator current harmonic

spectrum is shown in 5(b), while the total harmonic distortion

8The proposed direct MPC method ensures that there is one switching
transition in each phase leg per Ts. This means that Ts is akin to the
modulation half-cycle of CB-PWM/SVM. Considering a three-level NPC
converter, this implies that there are T1/(2Ts) + 1 switching transitions in
one fundamental period T1. As two consecutive switching transitions give
rise to one pulse, the switching frequency relates to Ts (fs) according to
fsw = 1/(4Ts) + 1/(2T1) = fs/4 + f1/2.
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Fig. 6: Experimental results of FOC at steady-state operation, fsw = 700 Hz.

(THD) is 3.60%, which is relatively low for a low-voltage

machine at the examined switching frequency. In addition, the

harmonic power is mainly concentrated at the odd non-triplen

multiples of the fundamental frequency, which are caused

by the switching nature of the inverter. Besides, some low-

frequency harmonics can also be observed—with the 12th

harmonic being the prominent—which are caused by the

slotting and saturation effects in the IM [31]. Moreover, the

NP potential of the inverter is well balanced, with the deviation

being kept always within 3%, as shown in Fig. 5(d).

For comparison purposes, FOC with PI controllers and CB-

PWM is also implemented. The CB-PWM is with asymmetric

sampling and a suitable common-mode signal is injected to

achieve equivalence with SVM [32]. As for the parameters

of the PIs, they are tuned according to the modulus optimum

method [33]. Furthermore, the NP potential is balanced by

manipulating the CMV in the three-phase modulation signal.

The CMV reference is generated by a simple PI-based closed-

loop controller presented in [6]. The operating conditions,

sampling frequency, and thus switching frequency, are the
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Fig. 7: Three-phase switch position and equivalent modulating signal of direct
MPC at steady state, fsw = 700Hz.

same as those of direct MPC. As shown in Fig. 6, FOC

achieves very similar steady-state performance, i.e., the three-

phase stator current tracks its reference accurately and the

NP potential is well balanced. However, the stator current

has a slightly higher ripple especially of low frequency, as

shown in Fig. 6(b), resulting in a slightly increased THD, i.e.,

3.81% compared to 3.60% of the direct MPC scheme. This

can be explained by the fact that the linear PI controllers of

FOC cannot quickly compensate for the disturbance caused

by the NP potential ripple and the nonlinear effects in the IM,

e.g., slotting and saturation effects. As a result, low-frequency

harmonics (e.g., from 5th and up to 13th, with the 12th again

being the dominant) are pronounced in the harmonic spectrum

of FOC. In contrast, the direct MPC strategy, thanks to its high

control bandwidth, can effectively suppress these harmonics

caused by the floating NP and the nonlinear effects of the IM.

Furthermore, the three-phase switch position uabc generated

by direct MPC and FOC is shown in Figs. 7(a) and 8(a),

respectively. As shown, direct MPC yields a very similar

switching pattern as that of FOC with SVM in steady-

state operation, i.e., each phase switches one level up or

down within one Ts, although there is no explicit modulation

stage. The latter implies that there is no modulating signal

in direct MPC. However, to provide more insight into the

workings of the proposed algorithm, we introduce the variable

ūabc = (
∑3

i=0 uabc(ti)t̃i)/Ts, where t̃i = ti+1 − ti, with

i ∈ {0, 1, 2, 3} and t4 = Ts, which can be interpreted as an

equivalent modulating signal. As can be seen in Figs. 7(b)

and 8(b), the equivalent modulating signal of the direct MPC

scheme is similar to the modulating signal of FOC with SVM.

It is worth noting that ūabc has the shape of a modulating

signal injected with a CMV signal. This is an inherent feature

of the proposed method as no external signals are injected to

the output of the MPC algorithm.

Finally, the tradeoff curves between the current THD and

the switching frequency for direct MPC and FOC are shown

in Fig. 9. Moreover, two conventional FCS-MPC methods are
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Fig. 8: Three-phase switch position and modulating signal of FOC at steady
state, fsw = 700 Hz.
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Fig. 9: Trade-off between current THD and switching frequency for the
proposed direct MPC (blue, solid line), FOC (black, dashed line), FCS-MPC1
(green, dotted line), and FCS-MPC2 (red, dash-dotted line).

also implemented for comparison purposes. Specifically, the

first FCS-MPC method (referred to as FCS-MPC1) has the

objective function

J = ‖is,ref(k+1)−is(k+1)‖1+λvn |vn,ref(k+1)−vn(k+1)| ,

i.e., it does not penalize the switching effort and uses the ℓ1-

norm, while the switching frequency is adjusted by modifying

the sampling interval Ts. The objective function of the second

FCS-MPC method (FCS-MPC2) is based on the ℓ2-norm, and

penalizes the control effort, i.e.,9

J =‖ys,ref(k + 1)− ys(k + 1)‖22+

λvn(vn,ref(k + 1)− vn(k + 1))2 + λu‖∆uabc(k)‖
2
2 .

For this method the sampling frequency is set equal to fs =
16 kHz, while the switching frequency is adjusted by tuning

the weighting factor λu in the objective function.

As can be seen from Fig. 9, FCS-MPC1 yields the worst

steady-state performance over the whole range of the examined

switching frequencies. Moreover, both the proposed direct

MPC and FOC achieve lower current THD than FCS-MPC2
for fsw ∈ [550, 1550]Hz. For FCS-MPC2 to achieve lower

values of THD much higher sampling frequencies would be

9The reader is referred to [11] for insights into the discussed designs of
FCS-MPC.
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Fig. 10: Experimental results of direct MPC at a torque reference step-down
transient.

required which would render its real-time implementation

challenging [11]. Hence, these results demonstrate the advan-

tages of the proposed control method as it is suitable for

a wider range of switching frequencies. This observation is

also supported by the fact that the presented algorithm outper-

forms FOC over the whole range of switching frequencies.

Moreover, as can be seen, at the low switching frequency

range (fsw < 550Hz), the current THD of FOC increases

significantly as fsw decreases, while FOC becomes unstable

at fsw < 400Hz. This is in stark contrast with the performance

of the proposed direct MPC scheme and FCS-MPC2, which

Time [ms]

0 5 10 15 20

-1

-0.5

0

0.5

1

(a) Three-phase stator current is,abc.

Time [ms]

0 5 10 15 20

0

0.5

1

(b) Electromagnetic torque.

Time [ms]

0 5 10 15 20
-0.1

0

0.1

(c) The neutral point potential vn.

Time [ms]

0 5 10 15 20
-1

-0.5

0

0.5

1

(d) Three-phase equivalent modulating signal.

Time [ms]

53 4 6 7 8

-1

-1

-1

0

0

0

1

1

1

(e) Three-phase switch position (zoomed in at transient).

Fig. 11: Experimental results of FOC at a torque reference step-down transient.

still produce relatively low current THD at such low switching

frequencies.

B. Performance During Transients

The transient behavior of the proposed direct MPC is tested

by commanding the torque reference to step from Te,ref = 1
to 0 p.u., and from Te,ref = 0 to 1 p.u., while operating at

the same switching frequency as before, i.e., fsw = 700Hz.
As shown in Fig. 10, where the torque reference step-down

scenario is depicted, the direct MPC scheme quickly regulates

the current—and thus the torque—to their new references,
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Fig. 12: Experimental results of direct MPC at a torque reference step-up
transient.

within around 2ms, while keeping the NP potential well

balanced. Such a favorable behavior can be achieved due to

the polarity reversal of the deadbeat solution v∗db,abc at the

beginning of the transient. As a result, the switch position

uabc(t0) at the beginning of the transient is adjusted to

reflect this change. In doing so, such switch positions and

corresponding switching times are computed that result in the

shortest settling time possible. This point is clearly shown in

Fig. 10(e), where the three-phase switch position is depicted

during the transient. Moreover, the equivalent modulating

signal illustrated in Fig. 10(d) further highlights this behavior.
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Fig. 13: Experimental results of FOC at a torque reference step-up transient.

In comparison, the performance of FOC under the same

scenario is not as good, see Fig. 11. As can be seen, FOC

takes a significantly longer time (around 4ms) to settle to the

new operating point, due to the fact that the available dc-link

voltage is underutilized, as a polarity reversal is not achieved.

Besides, a spike on the NP potential can be observed during

the transient, see Fig. 11(c).

As for the torque reference step-up change, direct MPC

pushes the switching instants to the limits, i.e., at the beginning

or end of each Ts, such that only the switch position (i.e.,

uabc(t0) or uabc(t3)) that regulates the current and torque
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Fig. 14: NP potential balancing.

to their new references as fast as possible is applied for

the whole sampling interval, see Fig. 12. By doing so, the

available dc-link voltage is fully utilized, and the settling time

is only limited by the physical limits of the system. In contrast,

FOC cannot push the modulating signal immediately to the

maximum limit due to its relatively low bandwidth limited

by the integrating element in the controller. As a result, the

direct MPC scheme achieves a significantly faster settling time

of about 2ms, which is almost half of that required by FOC,

see Fig. 13.

C. Neutral Point Potential Balancing

To further verify the active NP balancing capability of the

proposed direct MPC strategy, the drive system is tested at

nominal speed but with no mechanical load, i.e., there is only

magnetizing current. This working condition is recognized as

a critical one for 3L-NPC inverters [6], [8]. For this test a

0.1 p.u. offset is initially introduced to the NP potential. As

can be seen, direct MPC regulates the NP potential quickly to

zero within around 0.2 s, see Fig. 14(a). On the other hand,

FOC cannot exhibit such a favorable balancing property. This

is due to the fact that the PI-based NP controller in FOC

tends to become unstable under no-load conditions [6]. For

this reason, it is typical to disable the NP controller at zero

PF such that natural balancing mechanism of the NP potential

is enabled [34]. As shown in Fig. 14(b), the NP potential

balancing is achieved in about 2 s under such conditions. This

time is one order of magnitude longer than that required

by the presented direct MPC scheme. These results clearly

demonstrate the advantages of the inherent active NP potential

balancing capability of the proposed control method.

D. Computational Burden
The main challenge of the real-time implementation of the

direct MPC scheme is the relatively high computational burden
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Fig. 15: Probability distribution of the number of iteration steps required by
the QP algorithm. The average number of iterations is indicated by the solid
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caused by solving the QP problems. Thanks to the efficient

projection algorithm developed in [25], and its refinement

based on the fast Nesterov gradient method [29], the computa-

tional burden is kept modest. To quantify this, Fig. 15 shows

the probability distribution of the number of iteration steps

nit required by the developed QP solver to find the solution.

As can be seen, at most 15 iterations are required. To further

elucidate this point, Fig. 16 depicts the turnaround time tta,tot
of the whole direct MPC scheme in the dSPACE. As can be

seen, the probability distribution of the turnaround time tta,tot
is concentrated mainly around two locations, depending on

whether one or two QPs are solved in real time. The number

of QPs solved depends on the geometry of the underlying

optimization problem and the ability of the solver to exclude

suboptimal solutions at a very early stage. Nevertheless, in

the worst-case scenario, only two QPs need to be solved,

thus greatly alleviating the computational complexity of the

proposed optimal control method. As a result, the maximum

turnaround time of the developed direct MPC algorithm is

only 41.6 µs, see Table V where the average and maximum

turnaround times of the four discussed control algorithms are

summarized. This time is much smaller than the sampling

interval Ts, which in the case of fsw = 700Hz is about

370 µs, meaning that only about 10% of the available time

is used to execute the controller. In contrast to that, e.g.,

FCS-MPC2, whose sampling time is 62.5 µs, requires about

20/62.5 = 32% of the available time for the controller.

V. CONCLUSIONS

This article proposed a direct MPC strategy for a three-

phase 3L-NPC inverter driving an IM. In contrast to con-

ventional FOC with SVM, the direct MPC scheme directly



TABLE V: The average/maximum turnaround time tta,ave /tta,max of the
four discussed control algorithms running on dSPACE.

Turnaround time FOC FCS-MPC1 FCS-MPC2 Direct MPC

average
15.2 16.4 16.5 37.4

tta,ave (µs)

max
18.2 19.6 19.8 41.6

tta,max (µs)

manipulates the inverter switch positions to fully exploit the

discrete nature of the inverter such that superior performance

is achieved both at steady-state and transient operating condi-

tions. To this aim, the direct MPC scheme implicitly introduces

a fixed modulation cycle and symmetric switching patterns,

i.e., akin to SVM, so that a constant switching frequency and a

discrete output harmonic spectrum with low THD are achieved

at steady state. Moreover, the direct MPC scheme exploits the

characteristic of direct control schemes during transients, i.e.,

it directly manipulates the inverter switch positions such that

the available dc-link voltage is fully utilized, leading to very

short settling times.

Moreover, thanks to the versatility and conceptual simplicity

of the gradient-based model, the direct MPC scheme can easily

formulate the IM current control and inverter NP balancing

problems into one constrained optimization problem. Con-

ventionally, the NP balancing is achieved by an additional

control loop due to its nonlinear dynamics. However, these

cascaded/parallel structures reduce the bandwidth of the con-

troller, or they can even cause closed-loop stability issues,

especially at challenging operating conditions, e.g., a zero PF.

On the other hand, the proposed direct MPC scheme addresses

all the control objectives in one computational stage while

operating the drive system at its physical operation limits.

Thus, the most favorable performance is ensured over the

whole operating regime, while the structure of the controller

remains simple.

Finally, a mechanism is proposed to keep the computational

complexity of the developed optimal control method modest.

Specifically, the feasible set of candidate solutions is limited

depending on the polarity of the deadbeat solution, and the

candidate switching patterns are determined by considering

the allowable switching transitions. As shown, this technique,

combined with the efficient in-house solver tailored to the

needs of the formulated QP underlying direct MPC, enable

the real-time implementation of the proposed algorithm as at

most two QPs need to be solved at each sampling interval. As

a result, the aforementioned benefits of the discussed control

method were verified in a real-world setting.

APPENDIX

The matrices in (7) are

F (uabc(t)) =









Fm

[

−Xr

D
K|uabc|

02×1

]

[

1
2Xdc

|uabc|TK−1 01×2

]

0









,

G =
vdc
2
GmK, C =

[

Cm 02×1

01×4 1

]

.

where

Fm =











− 1
τs

0 Xm

τrD
ωr

Xm

D

0 − 1
τs

−ωr
Xm

D
Xm

τrD
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr











,

Gm =
Xr

D











1 0

0 1

0 0

0 0











, Cm =

[

1 0 0 0

0 1 0 0

]

.

The matrices in (18) are

r =











yref(t0)− y(t0)

yref(t0)− y(t0)

yref(t0)− y(t0)

Λ(yref(Ts)− y(t0)−m(t3)Ts)











and

M =











mt0 03 03

m0 mt1 03

m0 m1 mt2

Λm0 Λm1 Λm2











with

mti =m(ti)−mref

mi =m(ti)−m(ti+1)

where i ∈ {0, 1, 2}.
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