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Abstract

Fast and accurate torque control and low current harmonic distortion of electrical drives

are mandatory requirements in most industrial applications. To fulfil these requirements,

model predictive control (MPC) is expected to be an effective control strategy in the

near future. The finite-state predictive torque control (FS-PTC) of motor drives is an

MPC strategy. In FS-PTC, a finite number of possible control actions—voltage vectors

in this study—are evaluated against control objectives (torque, flux and other system

constraints) in an iterative prediction loop. After this, an optimum voltage vector is

selected by minimising a predefined cost function and applied to the motor terminals

via an inverter. The cost function includes prediction errors of control objectives with

weighting factors and other system constraints. Using the weighting factors, various con-

trol objectives of different magnitudes, as well as units, are combined in the same cost

function. However, designing a cost function with appropriate weighting factors is a com-

plex task. In addition, a conventional FS-PTC is computationally expensive, as it uses

all voltage vectors available from the inverter for the predictions of control objectives.

The computational burden is increased rapidly with the number of admissible voltage

vectors and objectives to be controlled, resulting in a low sampling frequency and con-

sequent degraded control performance. Complex calculations in the prediction loop also

increase the computational burden. This thesis develops a simplified FS-PTC algorithm

based on selected prediction vectors (SPVs). This reduces the number of voltage vec-

tors required to be predicted and the objectives to be controlled. The sign of torque or

stator flux deviation and the position of stator flux are used to select the prediction vec-

tors. The proposed SPVs strategy also assists reducing the average switching frequency

for a two-level voltage source inverter fed induction motor (IM) drive. As a result, the

cost function is simplified, as the frequency term is not required. To take advantage
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of multi-level inverter drives that offer the benefits of low harmonic distortion in stator

currents as well as low torque ripple and switching frequency, this thesis proposes to

integrate the FS-PTC with a three-level neutral-point clamped (3L-NPC) inverter driven

IM drive. The neutral-point voltage variation problem inherited from the topology of

3L-NPC VSI is easily handled by considering the voltage variation as a variable to the

cost function. Similarly, apart from the inverter topology itself, the average switching

frequency is reduced further, and is maintained as almost constant for a particular speed

at different load torques. Using the SPVs strategy reduces the computational burden

for the proposed three-level inverter fed drive without affecting the system performance.

However, an appropriate weighting factor is required for torque and flux errors in the cost

function. This leads to the development of a second simplified FS-PTC which does not

require complex torque calculations in the prediction loop and hence tuning effort on the

weighting factor. A new reference stator flux vector calculator (RSFVC) with an inner

proportional-integral torque regulator is employed to convert the torque and flux ampli-

tude references into an equivalent stator flux reference vector. This stator flux reference

is used in the cost function for the flux error calculation. The required processing power

for the RSFVC-based FS-PTC is further reduced by combining it with the SPVs strat-

egy. The proposed simplified FS-PTC strategies in terms of computational efficiency, cost

function design, torque and flux responses, robustness and average switching frequency

are validated through experimental results.

Finally, a speed-sensorless simplified FS-PTC of IM supplied from a 3L-NPC inverter

is proposed. For sensorless operation, PTC requires an estimated speed and rotor/stator

flux. In this study, the rotor speed and flux are estimated accurately using an extended

Kalman filter (EKF). Due to the large number of available voltage vectors, the FS-PTC

with EKF for a multi-level inverter-fed sensorless drive is computationally expensive.

Consequently, the controller requires a long sampling time that yields worse torque, flux

and speed responses, especially at low-speed. The proposed SPVs strategy is employed

to overcome this problem. Experimental results illustrate that the proposed sensorless

strategy can estimate speed accurately over a wide speed range, including the field-

weakening region, while maintaining robustness and excellent torque and flux responses.
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Chapter 1

Introduction

1.1 Background

The electric motor is an energy conversion medium that converts electrical energy into me-

chanical energy through mechanical rotation. An electromagnetic interaction (i.e., force)

taking place inside the motor produces the rotation. By controlling the rotational force

effectively, the number of revolutions of the motor shaft per unit time (i.e., the motor’s

speed) can be controlled efficiently. An electric motor with proper control arrangements is

known as a variable or adjustable speed drive, and is used for many automated industries,

such as metal rolling, paper, plastic and steel, fibre processing and textile mills, rail vehi-

cle and robotics. The modern industrial economy depends largely on electric motors [1].

Many other applications of electric motors exist, such as elevators, household appliances,

pumps and compressors, disc drives, machine tools and industrial fans. Recent devel-

opments include electric vehicles, which are becoming another promising application of

electric motors [2].

1.1.1 DC and AC motors

Based on the type of required power source, electric motors can be divided into two

categories: direct current (DC) and alternating current (AC) [3]. DC motors consist

mainly of two independent parts: armature (rotor) and field (stator). These elements are

powered separately from two constant or DC sources; thus, the stator and rotor magnetic
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fields are independent. Current flows in the armature winding is time varying, even

though the supplied terminal current is DC. A brush-commutator (a mechanical switch)

arrangement in the DC motor turns the DC into AC, and ensures the time varying current

in the armature winding. An interaction between this time varying electric field and the

constant magnetic field from the field circuit creates a rotational force that accelerates the

rotational part ‘armature’ of the motor. The time varying current in the armature winding

produces a time varying magnetic field. As the two magnetic fields are independent,

designing a controller for the DC motor is an easy task. However, the commutator and

associated brushes make the DC motor bulky, and require frequent maintenance. The cost

of the motor is also high due to the brush-commutator arrangement. In contrast, an AC

motor is powered from an AC source, as mentioned earlier; the brush and commutator are

not required. This is why an AC motor is simpler in construction and less expensive than

a DC motor. Prior to the 1960s, DC motors were used traditionally as variable speed

drives, whereas AC motors were used as constant speed drives for different industrial

applications [4]. Later on, the advent of semiconductor devices and their continuous

progression put AC motor in situations where DC motors dominated. Various types of

converter topologies and different pulse width modulation (PWM) strategies have made

it possible to use AC motors as variable speed drives by changing the supplied constant

voltage and frequency into variable voltage and frequency.

AC motors are classified into two categories: synchronous and asynchronous. The

rotor of a synchronous motor (SM) rotates at the same speed as the frequency of the stator

current; thus, it is called ‘synchronous’. For an asynchronous motor, the rotor runs at

lower speeds than the synchronous speed. All induction motors (IMs) are asynchronous.

They have been used widely in different industrial applications. An IM consists mainly of

a stator (stationary part) and a rotor (rotational part). Based on the rotor structure, IMs

are further classified into two groups: squirrel-cage and wound. In the cage type, the rotor

circuit is shorted itself; in the wound type, the rotor terminals are available outside. The

squirrel-cage type IM with a voltage source converter has received universal acceptance

by industry [5]. Unlike DC motors, rotor and stator variables in an IM are dependent on

each other. Because AC supply is applied only to the stator terminals, which creates a
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rotating magnetic field (stator flux) in the stator core. An electromotive-force (EMF) is

induced in the rotor circuit through induction, so called IM. Subsequently, the induced

EMF causes rotor current and the rotor magnetic field (rotor flux), as the rotor circuit

is shorted. The magnitude of the induced rotor voltage is dependent on the relative

velocity (i.e., slip) between the stator flux and the rotor conductors. An electromagnetic

interaction between the magnetic field from the stator and the electric field from the

rotor creates a rotational force (the torque) that accelerates the rotor. As the stator and

rotor variables are coupled, designing controllers for IM is a relatively complex task. The

complexity is further increased if high performance control is required. The controllers are

designed in such a way that the stator and rotor fields can be controlled independently.

Consequently, torque and flux can be controlled separately. This decoupled control of IM

ensures a similar performance to that of the separately excited DC motors.

1.1.2 Existing classical control strategies: FOC and DTC

High performance control—the fast and accurate torque control, low current total har-

monic distortion (THD)—of electrical drives is a mandatory requirement for many indus-

trial applications [6]. Two well established high performance control strategies exist for

AC drives: field orientation control (FOC) [7] and direct torque control (DTC) [8]. FOC

was first introduced in the 1970s and brought a revolution in AC motor control [9]. DTC

was introduced in the 1980s and offered a simpler control structure than FOC [8]. Both

controllers have been accepted widely in different industrial applications, pushing tradi-

tional DC motors towards obsolescence. In the FOC, the stator currents are decomposed

into two components: d-axis component for flux and q-axis component for torque, to

realize the behaviour of a separately excited DC machine. Both currents are regulated by

two linear proportional-integral (PI) controllers in the synchronously rotating reference

frame. A decoupled control of torque and flux is achieved by aligning the d-axis with the

rotor flux position. Finally, the gate pulses of a particular inverter are generated using

space vector modulation (SVM) to produce the desired voltage vector. The FOC strategy

provides good dynamic torque and flux responses with constant switching frequency [10].

However, the control structure is complex because of two PI regulators, SVM blocks and
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axis transformation which requires a high resolution shaft-mounted speed sensor. More-

over, the robustness of the controller has significant parameter dependency. In contrast,

the DTC structure [8] is simpler as it does not have any axis transformation (between the

synchronous and stationary frames) and modulation blocks. This control strategy has

emerged as an alternative to the FOC strategy [11]. It uses a predefined switching table

based on the stator flux position and error signs of torque and flux to select the most

appropriate voltage vector for the inverter. The controller provides quick dynamic re-

sponse. However, the DTC structure includes two hysteresis blocks for controlling torque

and flux, which produces more ripple in the torque and flux and variable switching fre-

quency [12]. Moreover, varying the switching frequency over a wide range yields more

ripple in torque. Research continues on the DTC strategy to negate these drawbacks and

to ensure energy efficient operation of motor drives [13]. This thesis focuses on another

promising control strategy named predictive torque control (PTC). This controller has

neither modulation nor hysteresis blocks, and is thus a simpler structure compared with

the FOC and DTC. The PTC concept is based on model predictive control (MPC), as

discussed below.

1.1.3 Background, principle and basic structure of MPC

MPCwas first introduced in 1960s and received industrial acceptance in the late 1970s [14].

Since then, MPC has become popular for different industrial applications [15–17], espe-

cially in the chemical industry, where desired control objectives do not change frequently.

This means that the time constant in chemical processes is long enough to undertake the

required calculations online and to update the control actions. At that time, MPC was

not suitable for dynamic adaptive systems, such as power electronics applications, where

the desired control objectives change frequently and hence require a shorter time constant.

It is because the speed of available digital signal processors (DSPs) was not high enough

to accomplish the necessary calculations within the short control duration. Neverthe-

less, MPC applications to power electronics started from 1980s. Initially, the controller

was applied to high-power and low-switching frequency applications [18]. Later, due to

the continuous development of DSPs, MPC has been spread out in different branches of

4



power electronics [19].

MPC is not a single control idea, but rather a family of control strategies. However,

all control strategies (to a greater or lesser degree) are based on the following principle

(see also Fig. 1.1):

1) The future or predicted outputs of the controller ŷ(t+ k), k = 0 · · ·N are predicted

over a predefined control horizon N , called the prediction horizon, using the available

information until time t. The available information includes a model of the system,

the measured system states y(t) and the control input u(t) applied to the system.

If any particular state is not available for measurement, it has to be obtained using

the mathematical model of the system.

2) The sequence of future optimal control actions u(t + k), where k = 0 · · ·N − 1,

is calculated by minimising a cost function. The cost function includes prediction

errors and other system constraints. The optimal control actions try to maintain the

predicted outputs ŷ(t+ k) as close as possible to the reference y∗(t+ k).

3) Among N optimal control actions in a sequence within the prediction horizon, only

the first element of the sequence is applied as the optimal control action to the

system. It is a repetitive procedure from step 1) for every prediction horizon.

The basic structure of MPC is shown in Fig. 1.2. It consists mainly of two parts:

prediction/plant model and optimiser. The plant model—mostly a state-space model for

power electronics applications—predicts the control outputs using past inputs, present

plant outputs and future optimal control inputs. The past inputs are already known,

and the present plant outputs are obtained by measurements or estimations. Another

fundamental part, the optimiser, outputs the proposed control inputs, which are used in

the prediction model. The optimiser works based on the cost function, prediction/future

errors and system constraints. Generally, all control objectives that depend on the type

of application are set in the cost function in terms of prediction errors with appropriate

weighting factors. The errors are obtained simply using absolute or quadratic values. A

quadratic function is better than an absolute value for good tracking accuracy [20]. The

weighting factors in the cost function are selected based on the importance of a particular

5



1 t2 t t 1 t 2 t kt  

N

)(ty

)(ˆ kty  

)(tu

Nt  

)( ktu  

)(* ty )(* kty  

past future / predictions

prediction errors

......

Figure 1.1: Working principle of MPC.

Prediction model

Optimiser

Past inputs 

Future inputs

 
!

Predicted

outputs

Future errors

ConstraintsCost function

Reference

trajectory

Present outputs

Figure 1.2: Fundamental structure of MPC [16].

control objective in relation to the other control objectives. Selecting an appropriate

weighting factor is not an easy task, and it is a new direction of research for MPC. Another

variable of the optimiser, the system constraint, is considered using a logic function. If the
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predicted value of the desired variable is within a predefined limit, it gives a zero value,

or otherwise infinity—a very high value—to the optimiser. The whole MPC procedure

is implemented through a micro-controller embedded in the system. The performance of

the system is dependent on the speed of the micro-controller and the required number

of calculations. For a specific micro-controller, a large number of calculations demands

long control duration, which degrades the control performance. The computational load

of the MPC algorithm is determined mainly by the prediction model’s complexity, the

type of cost function and constraints, the prediction horizon length and the number of

control objectives.

Based on prediction horizons, there are two types of MPC: one-step (short) and longer

prediction horizons. With long prediction horizons, the performance of MPC is expected

to be better. However, the calculation effort will increase exponentially, and the model

errors lead to a worsening of the control variables. Moreover, designing a cost function

would be complex, especially for motor drive applications. These (computational burden,

model errors and cost function design) are the main obstacles in implementing the longer

prediction horizons based MPC. On the other hand, short prediction horizon has been

successfully applied to various power electronics applications [20]. The modelling of a

system and designing the cost function are very simple and intuitive. Hence, in this

thesis, short prediction horizon based MPC has been considered.

1.2 Literature review

1.2.1 Predictive torque control (PTC)

MPC for motor drives has drawn much attention from the research community in the

last few years, due to its simple concept, intuitive features, easy inclusion of nonlineari-

ties, multivariable optimisation and ease of practical implementation [19–31]. Moreover,

MPC meets the requirements of modern control systems, such as using plant model

and digital control platforms, and allows consideration of system constraints and restric-

tions [28]. The recent advent of new powerful processors and their successful applications

in power electronics have also increased the interest in MPCs [32–38]. There are two
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types of MPC [23, 26]: continuous control set MPC (CCS-MPC) and finite control set

MPC (FCS-MPC). In CCS-MPC, the controller generates a continuous output for a mod-

ulator, and the modulator generates the switching states for the inverter to generate the

required voltage. Due to the presence of the modulator, the controller yields a constant

switching frequency. Conversely, in FCS-MPC, the finite number of control actions avail-

able in the system—inverter switching states for motor drives—are evaluated against the

desired control objectives. The outputs of the controller are discrete, and are directly

used to switch the power switches on/off in the inverter. The controller yields a variable

switching frequency due to the absence of a modulator. The FS-PTC of motor drives

is an FCS-MPC strategy [29, 39–43]. In FS-PTC, torque and stator flux are predicted

for the finite number of admissible switching states of a voltage source inverter (VSI).

The switching state that minimises torque and flux ripple most is chosen as the optimal

switching state, and is obtained by actuating a predefined cost function. Several targets,

variables and constraints with appropriate weighting factors can be included in the cost

function and controlled simultaneously. The selected optimum switching state is applied

directly to the inverter to produce the voltage vector to be applied to the motor terminals

in the next sampling instant, without requiring an intermediate modulation stage [29].

Another important advantage of PTC is that it has no inner current control loop. As

a result, the controller yields fast dynamic response. However, for speed control, the

PTC structure has a cascaded linear PI controller based on the outer speed-loop. The

speed can also be controlled directly by introducing a speed error function to the cost

function [44]. In that case, the speed state should be predicted using a motor model in

discrete time steps. Nevertheless, the PTC structure is simpler compared with the classi-

cal control strategies of FOC and DTC [7,8,45]. A comprehensive study comparing PTC

and existing classical control strategies is detailed in [45,46]. According to this research,

the PTC can achieve a similar or even better (under some conditions) performance when

compared with the DTC and FOC strategies. A detailed comparison between the clas-

sical control and PTC is presented in Table 1.1 to better illustrate the existing methods

and the necessity to develop new algorithms. It can be seen that, in most cases, PTC

can compete with the FOC and DTC. However, it has some inherent limitations, such
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as the variable switching frequency, higher computational cost, weighting factor tuning

and higher current distortion [46]. Researchers are currently trying to overcome these

problems [47,48].

Table 1.1: Comparison among FOC, DTC and PTC

Index FOC DTC PTC

Structural complexity higher lower lower

Axis transformation yes no no

Modulator yes no no

Parameter sensitivity higher lower higher

Position sensor yes no no

Switching frequency fixed variable variable

Inclusion of system nonlinearity hard hard easy

Dynamic response slower faster faster

Torque and flux ripple lower higher lower

Current THD lower higher higher

Computational complexity lower lower higher

Weighting factor no no yes

1.2.2 Two- and three-level inverters for PTC

Generally, several types of power converters are employed to produce the voltage vec-

tors applied to motor terminals. These include two-level VSI (2L-VSI), neutral-point

clamped VSI, cascaded H-bridge inverter, flying-capacitor inverter and matrix convert-

ers [29]. Among these, the 2L-VSI is used extensively in industry applications [20]. For

medium- and high-power applications, multilevel converters—most prominently three-

level inverters—are preferred over 2L-VSI. However, in a three-level inverter, the number

of admissible switching states is 27; all switching states should be evaluated through the

cost function in FS-PTC, which is inevitably time consuming. The computational burden

grows rapidly with the number of admissible switching states of an inverter resulting in a

low sampling frequency of the control algorithm. In fact, considering even all eight admis-
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sible switching states of 2L-VSI becomes computationally expensive to achieve complete

benefits of FS-PTC (such as torque and flux ripple reduction) through multiobjective

optimisation and/or a long prediction horizon N ≥ 2 [49].

A 2L-VSI has some inherent limitations. The maximum voltage rating of the semicon-

ductor switches in the inverter limits the maximum dc-link voltage. The inverter requires

a higher switching frequency and produces more harmonic content in the output voltage

and current due to the limited number of voltage levels. Additionally, for the DTC and

PTC strategies with 2L-VSI, the switching frequency varies over a wide frequency range.

As a result, the controllers suffer from a significant torque and flux ripple. Moreover, a

2L-VSI produces high dV/dt at the output voltage, which leads to machine windings in-

sulation and bearing failure [50]. It is also the cause of some conducted electromagnetic

interference (EMI) during the drive system operation. In contrast, multilevel inverter

topologies—the most commonly used is the three-level neutral-point clamped (3L-NPC)

VSI—can reduce many of these limitations considerably [51].

The 3L-NPC VSI has many advantages over the 2L-VSI such as lower ripple, switching

frequency, stress on semiconductor switches and harmonic content in the output voltage

and current [51]. However, the inverter has some drawbacks, such as neutral-point voltage

variation (caused by capacitor voltage unbalance) [52], higher common mode voltage [53]

and unequal loss distribution among semiconductor devices [54]. Among these draw-

backs, the neutral-point voltage variation has serious effects on control performance [55].

It increases the torque and flux ripple as well as the distortion in stator currents. The

inverter requires higher value capacitors due to unequal voltage sharing. Moreover, it

imposes higher voltage stress on the semiconductor switches, which can outweigh the

aforementioned advantages of a 3L-NPC VSI. Fortunately, the opposite effect of redun-

dant vectors (small vectors) on the dc-link capacitors charge can be employed to ensure

the capacitor voltages balance [52].

Research has already been conducted on three-level inverter DTC motor drives, some

of which consider the aforementioned drawbacks [12, 50, 52]. In most cases, high per-

formance control is achieved by sacrificing the simplicity of the basic DTC [52]. On

the other hand, it is proved that the MPC can control the neutral-point voltage varia-
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tion effectively in a very intuitive way without sacrificing the simplicity of the control

structure [56]. However, the MPC control strategy has been applied successfully to par-

ticular multilevel power converter applications [29,56–62]. These applications are mostly

in current and power control, where the objective function is relatively easy to design.

In contrast, motor drive control is more complex; thus, more research is required in this

area to test the effectiveness of the FS-PTC with multi-level inverters. References [63,64]

have reported on the three-level inverter fed PTC IM drive. In [64], analysis has been

conducted for high-speed operation, in which the improved torque response is achieved

by using a specially fabricated microprocessor [65], which is not available commercially

for electrical drive applications. Additionally, the range of average switching frequency

variations in FS-PTC has not been addressed in [63,64].

1.2.3 Sensorless PTC

Before achieving wide industrial acceptance, PTC must fulfil some requirements. One of

the main requirements is speed encoderless (simply called sensorless) control. A speed

sensor requires additional space, software and electronic circuits to install into the system,

which increases the system cost. In particular, sensorless operation is important for the

IM, since the machine often requires to operate in a hostile environment.

For sensorless PTC operation, the rotor speed must be estimated accurately using a

proper observer. The estimated speed, together with the measured stator current and

dc-link voltage, is fed back to the predictive controller for stator current prediction,

and consequently the torque. Accurate estimation is particularly important for PTC as

estimation error leads to incorrect predictions, which subsequently yield a sub-optimal

selection of the voltage vectors.

Different sensorless strategies for the classical controllers have already been published

in the technical literature, based on different observers, such as the sliding mode observer

(SMO) [66], extended Kalman filter (EKF) [67–70], model reference adaptive system

(MRAS) [71] and the Luenberger observer (LO) [72]. The performance of these observers

should now be tested extensively in relation to the PTC. The aim here is to determine

an optimum observer. Currently, sensorless predictive control is usually designed based
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on stator current control—the predictive current control (PCC) [73–75]—or both the

stator flux and torque control (the PTC [76–78]). Attention concentrates on the proper

design of observers for the estimations of stator/rotor flux and rotor speed. Two differ-

ent kinds of observers—stator voltage model for stator flux and full-order sliding mode

observer (FOSMO) for speed—are proposed in [76]. These observers are combined with

a prediction model developed by using sliding mode feedback for stable operation of the

machine over a wide speed range. The controller produces high current THD at low

speeds. In [77], an encoderless FS-PTC is proposed with a compensated MRAS observer.

An online stator resistance estimator confirms the robustness of the controller against pa-

rameter uncertainty. However, the stator current THD is still very high at lower speeds,

and the control performance is affected significantly by the noisy estimated speed. To

improve the low-speed performance, a speed independent observer and prediction models

are proposed in [78], using a revised prediction model and a FOSMO. The controller

produces a satisfactory speed response, even though the estimated speed is still noisy.

In addition, the observer is influenced considerably by the stator resistance variations,

producing oscillations in the torque and flux responses. In the aforementioned stud-

ies [76–78], low-speed drive performance has not been analysed under full-load torque.

Analyses have been conducted only for the 2L-VSI. Moreover, all possible voltage vec-

tors produced by the inverter have been evaluated for prediction and actuation in the

FS-PTC, requiring additional computation.

Based on the aforementioned literature review, integration of the FS-PTC with the

3L-NPC VSI driven IM drives without speed-sensor will be an interesting research topic

and would present a practical application. Unfortunately, to date, the performance of

a sensorless FS-PTC has not been explored for a 3L-NPC inverter. The main reason

for this is the required computational burden of the control algorithm, which limits the

sampling frequency and degrades the control performance.

1.2.4 Implementation challenges of PTC

As mentioned earlier, computational burden is an implementation challenge of the FS-

PTC algorithm; this topic is open for research. The computational burden depends on the
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number of prediction vectors and the complexity of calculations—mainly stator current

and torque—in the iterative prediction loop. The prediction vectors are defined as the

voltage vectors required for prediction and actuation in the prediction loop to determine

the optimum voltage vector. In recent years, research has been conducted to reduce the

number of calculations required [47,79–91]. In [47], a computationally efficient predictive

DTC for medium voltage drives is proposed. By adopting branch and bound algorithm

and by discarding some optimal sequences, the number of switching sequences is reduced.

The performance is further improved with a modified sphere decoding algorithm [79]. The

number of possible switching sequences is also reduced in [80] to reduce the torque ripple

by using a long prediction horizon, even though the number of calculations is still high.

Recently, a fast MPC strategy with a sub-module voltage sorting balanced method has

been presented in [81] for modular multilevel converter for medium/high-voltage motor

drive systems. The MPC algorithm is simplified by reducing the number of calcula-

tions required in the variable prediction process and the finite control set from possible

switching states to selected output voltage levels. Other published techniques to reduce

the number of calculations and thus simplify MPC design include the single prediction

methods [82, 83], the sector distribution method [82, 84], choosing a subset of adjacent

vectors [85], a modified switching algorithm [86], the double-vector-based approach [87],

graphical algorithm [88], an efficient FPGA implementation [89], a deadbeat (DB) con-

cept [90] and the Lyapunov function based approach [91]. The former techniques [82–91]

have been applied to power converters only for current, voltage and/or power control,

where the objective function is relatively easy to design. The control algorithms may

not work for motor drives, as the control aspects are complex and completely different

to those considered in [82–91]. Recently, a DB solution has been proposed in [92] to

reduce the computational burden of the original FS-PTC. The controller seems effective

for a multilevel converter or for a long predictive horizon (N > 1). However, complex

calculations to determine the DB voltage vector outweigh the the controller’s advantage

for a short prediction horizon (N = 1). A computationally viable simulation study on

MPC-based variable speed drive is presented in [93], where a modified sphere decoding

algorithm is employed to solve the optimisation problem. For speed sensorless motor
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drives [94], reducing the computational burden is important as the execution time of a

speed observer is significant compared to the control duration. In this case, the controller

itself should be computationally efficient.

Another key issue in FS-PTC implementation is selecting the weighting factors used

in the cost function [29]. Because different control objectives in the cost function have

different magnitudes and units. The weighting factors bring the control variables in a

relation to combine them in the same cost function. They are also used to tune the

importance or cost of a particular objective in relation to the other control objectives.

Different strategies using online and offline search procedures are proposed in [95–97];

these depend greatly on system parameters and require a comprehensive mathematical

analysis. When the desired control objectives are more than two, trial and error methods

are used running computer simulations, which are extremely time consuming [98–100]. To

avoid this, a multiobjective ranking-based strategy is proposed in [49] for PTC. However,

the computational burden is greatly increased, even for the 2L-VSI, due to the use of

all admissible inverter switching states. Moreover, the aforementioned algorithm is only

applied for two control objectives; in general (including switching frequency with torque

and flux errors), three control objectives are required for PTC [42]. A two-vector-based

PTC without weighting factor is proposed in [101, 102]. The weighting factor is avoided

by converting the torque and flux magnitude references into an equivalent stator flux

reference vector. The torque reference conversion is performed based on the position of the

rotor flux and the angle between the stator and rotor flux. Thus, the conversion technique

is rotor flux oriented and dependent on the machine parameters. The computational

burden of the control algorithm has not been addressed in the analysis. In addition, the

method proposed in [101] considers a pulse generation technique similar to a modulation

stage to fix the switching frequency. Some other solutions are proposed, such as the

fuzzy decision-making strategy [103, 104], sorting-based strategy [105] and look-up table

based weighting factor [106]. In [104], fuzzy PTC is presented for the 3L-NPC VSI fed

IM drive, with no need to tune the weighting factors. However, the tuning effort for the

priority coefficients of each membership function is still required. This means that the

proposed method does not truly solve the weighting factor problem. Its practical value
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should also be evaluated. Because the fuzzy-decision-making strategy is not as easy as

conventional PTC. Besides, only the simulation results are illustrated, and it is observed

that the dc-link capacitor voltages fluctuate over a large range. Hence, the weighting

factor tuning issue is still an open question in relation to the PTC.

1.3 Thesis objectives

The objectives of this thesis are as follows:

1) Development of a simplified FS-PTC based on selected prediction vectors (SPVs) to

reduce the number of prediction vectors and hence the computational burden.

2) Integration of the FS-PTC with a 3L-NPC inverter driven IM drive to take the

advantages of low harmonic distortion in the stator currents, small torque ripple and

low average switching frequency. In addition, application of the SPVs approach in

the FS-PTC to reduce the computational burden of the control strategy without

affecting system performance.

3) Development of a second simplified FS-PTC of the 3L-NPC inverter fed IM drive

based on the reference stator flux vector calculator (RSFVC), which does not require

complex torque calculations in the prediction loop and hence tuning the weighting

factor between torque and flux errors in the cost function.

4) Development of a speed-sensorless FS-PTC for the 3L-NPC VSI driven IM drive,

and application of the SPVs approach in the FS-PTC to reduce the computational

burden of the control algorithm.

1.4 Thesis structure

This thesis is organised as follows. Chapter 2 presents the modelling of the IM and power

converters. The state-space model of the IM in a stationary reference frame is presented.

The principle and mathematical models of both 2L-VSI and 3L-NPC VSI used in this

study are described.
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Chapter 3 presents a simplified FS-PTC, based on SPVs, to reduce the number of

prediction vectors and hence the computational burden for a 2L-VSI fed IM drive. The

structure of a conventional FS-PTC and its limitations are discussed. The chapter also

shows how the proposed strategy yields a simpler design of cost function compared with

the conventional FS-PTC strategy. The effectiveness of the proposed strategy is verified

by experiment.

Chapter 4 proposes the integration of the FS-PTC with a 3L-NPC inverter driven

IM drive. The proposed strategy is discussed step-by-step. To reduce the computational

burden of the algorithm, the SPVs approach is applied. The experimental outcomes are

discussed. The performance is compared with the performance achieved through the

existing classical FOC and DTC strategies. Finally, another performance comparison

between the proposed 3L-NPC VSI and the 2L-VSI fed IM drives is presented.

Chapter 5 gives a second simplified FS-PTC strategy based on RSFVC, which does not

require complex torque calculations in the prediction loop; thus, there is no weighting

factor for torque and flux errors in the cost function. The chapter reveals that the

proposed strategy requires less calculation effort, which is further reduced by including

the SPVs strategy with the RSFVC. Experimental verification is illustrated and compared

with the FS-PTC proposed in Chapter 4.

Chapter 6 presents a speed-sensorless FS-PTC strategy for IM drive supplied from

a 3L-NPC VSI. An EKF is introduced for rotor speed, rotor flux and stator current

estimation; thus, the speed-sensor is avoided. The SPVs strategy is applied to the FS-

PTC to reduce the calculation effort. A comparison between the SPVs- and RSFVC-based

simplified FS-PTC strategies is presented, and selecting SPVs approach (between two

proposed simplified approaches) for sensorless operation is justified. The experimental

outcomes are illustrated and discussed to verify the effectiveness.

Finally, Chapter 7 gives the key achievements presented in the thesis and concludes

with some future prospects.
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Chapter 2

Modelling of the Induction Motor

and Converters

2.1 Introduction

MPC requires an accurate mathematical model of the system. In addition, the model

should be expressed in discrete form for digital implementation. This chapter describes

the system’s mathematical model. In this thesis, the system is comprised mainly of a

three-phase IM with a speed encoder mounted on the rotor shaft, three-phase power

converters and a DSP. In the PTC, the discrete mathematical model of the system is

used to predict the desired control objectives.

This chapter is organised as follows. Section 2.2 gives the state-space representation

of a three-phase system. Section 2.3 presents the mathematical model of the IM. The

converter models are described in Section 2.4.

2.2 State-space representation of three-phase systems

State-space representation makes an AC circuit simple to represent and easy to under-

stand and analyse. As mentioned earlier, this study considers a three-phase squirrel-cage

IM. The IM is supplied from a three-phase AC source. It is well known that the three

phases (a− b− c) are located 120◦ apart in space, as shown in Fig. 2.1. They are linearly
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dependent on each other, which complicates the system model. To simplify the notation

of three-phase electrical variables, such as voltage, current and flux, the variables can be

modeled adequately using a two-axis reference frame. The two-axis representation of the

three-phase system is called ‘state-space representation’. This two-axis reference frame

may be stationary (α−β) or synchronous (d−q), as shown in Fig. 2.1. For the state-space

representation, the components of a particular variable along a − b − c coordinates are

projected on α − β or d − q coordinates. The two coordinates in each reference frame

are mutually perpendicular to each other, and linearly independent. This independence

makes it possible to control both the flux and torque of an AC machine independently,

similar to a separately excited DC machine.
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Figure 2.1: State-space two-axis representation of three-phase (a−b−c) systems showing

the relationship between the stationary (α−β) and synchronous (d−q) reference frames.

Using the current as an example, the transformation of the a−b−c frame to an α−β
frame—which is known as Clarke transformation—is expressed in matrix form as
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Sometimes it is necessary to transform the α−β frame into a d−q frame, especially in

vector control (i.e., FOC) design for motor drives. The transformation is called as Park

18



transformation and can be expressed as
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where θs is the angle between the α− β and d− q reference frames, as shown in Fig. 2.1.

Direct transformation from the a− b− c frame to the d− q frame (or vice versa) is also

used for dynamic modelling of a three-phase system [107].

The current components of iα and iβ are sinusoidal, as the current vector is rotates at

a constant speed with respect to the α− β frame. In contrast, the id and iq components

are normally constant or piece-wise constant, and are thus linearised. The aforementioned

two transformations are equally applicable for voltage and flux, and the transformations

are reversible.

The state-space representation of the IM variables in both the α−β and d−q reference
frames is

stator voltage: vs = vsα + jvsβ, vs = vsd + jvsq;

rotor voltage: vr = vrα + jvrβ, vr = vrd + jvrq;

stator current: is = isα + jisβ, is = isd + jisq;

rotor current: ir = irα + jirβ, ir = ird + jirq;

stator flux: ψs = ψsα + jψsβ, ψs = ψsd + jψsq;

rotor flux: ψr = ψrα + jψrβ, ψr = ψrd + jψrq.

2.3 State-space model of the IM

The state-space model of a squirrel-cage IM in the α−β reference frame can be described

by Eqs. (2.1)–(2.6):

stator voltage equation: vs = Rsis +
dψs

dt
(2.1)

rotor voltage equation: 0 = Rrir +
dψr

dt
− jωeψr (2.2)

stator flux equation: ψs = Lsis + Lmir (2.3)
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rotor flux equation: ψr = Lmis + Lrir (2.4)

electromagnetic torque equation: Te = 1.5pℑm {ψ∗
s · is} (2.5)

torque balance equation: J
dωm

dt
= Te − Tl (2.6)

where vs is the stator voltage vector, is is the stator current vector, ir is the rotor current

vector, ψs is the stator flux vector, ψr is the rotor flux vector, Te is the electromagnetic

torque, Tl is the load torque, ωm is the rotor angular speed, ωe is the rotor angular

frequency, p is the number of pole pairs and the remaining parameters are the machine

parameters.

The rotor angular frequency ωe is related directly to the rotor angular speed ωm by

the number of pole pairs p as

ωe = pωm· (2.7)

The stator voltage Eq. (2.1) shows the relationship among the supplied voltage, stator

ohmic drop and stator inductance drop. The inductance drop has two components: stator

leakage-inductance drop and back EMF. At steady-state, the ohmic drop is negligible

compared with the back EMF; thus, the stator flux is directly proportional to the supplied

voltage. This assumption is generally used in the DTC strategy [8]. As the rotor of a

squirrel-cage type is short circuited itself, the applied voltage at the rotor side is zero,

as shown in Eq. (2.2). We can see that the induced rotor voltage is proportional to the

slip (relative velocity between stator flux and rotor speed). Thus, in normal operations

under a certain frequency, the induced rotor voltage is maximum at zero-speed (slip is

equal to 1) and minimum at around synchronous speed (slip is close to 0). By replacing

the variable ir from Eq. (2.2) with the variables ψr and is, the modified rotor voltage

equation becomes

dψr

dt
= Rr

Lm

Lr

is −
(

Rr

Lr

− jωe

)

ψr. (2.8)

Equation (2.8) is called the rotor current model of the IM, in which is and ψr are

considered as state variables. For a speed sensorless controller, ωe is also treated as a

state variable. Generally, the rotor current model is used to estimate the rotor flux. Using
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Eqs. (2.3) and (2.4), a relationship is established between the stator and the rotor fluxes

as

ψ̂s =
Lm

Lr

ψ̂r + σLsis (2.9)

where σ = 1 − L2
m

LsLr
is the total leakage factor. Equation (2.9) is used to estimate the

stator flux.

Some other parameters—not physical—are used frequently in machine modelling for

compact expression. These are given in the following.

Rotor coupling factor: kr =
Lm

Lr

Equivalent resistance referred to stator: Rσ = Rs + k2rRr

Transient stator time constant: τσ = Lσ

Rσ

Leakage inductance: Lσ = σLs

Rotor time constant: τr =
Lr

Rr

The electromagnetic torque developed by the motor is estimated using Eq. (2.5).

The estimated torque quality is dependent directly on the stator current and stator flux

and, thus on the measurement and estimation, respectively. In PTC, predictions of both

the stator flux and stator current are required to predict the torque. Equation (2.1) is

employed for stator flux prediction. The stator current is predicted using the equivalent

equation of the stator and rotor dynamics of a cage type IM [108]; the expression in

compact form is

dis
dt

= − 1

τσ
is +

1

τσRσ

{(

kr
τr

− jkrωe

)

ψr + vs

}

. (2.10)

The torque balance in Eq. (2.6) is useful for designing a speed controller for motor drives.

If the load torque Tl connected with the motor changes, the controller should compensate

for any effects on speed. The motor will then spin at the command speed.

In this study, the continuous motor model, as shown in Eqs. (2.1)–(2.6) and (2.8)–(2.10),

is discretised using forward-Euler or backward-Euler approximation, whichever is useful

for a particular condition. The approximations are

forward-Euler approximation:
dx

dt
≈ x(k + 1)− x(k)

Ts
(2.11)
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backward-Euler approximation:
dx

dt
≈ x(k)− x(k − 1)

Ts
(2.12)

where x is the state variable that needs to be discretized and Ts is the sampling time.

2.4 Converters models

In this work, two types of converters are considered to produce the necessary voltage

vectors: 1) two-level (2L) and 2) 3L-NPC VSI.

2.4.1 Two-level inverter

The circuit topology of a 2L-VSI is shown in Fig. 2.2. The inverter produces two different

levels of voltage, +Vdc or −Vdc, at the output terminals, so called 2L-VSI. The required

switching state variables Sx for each phase x = {a, b, c} are either logic ‘1’ or ‘0’. The

two switching signals in each phase are complementary. Hence, only one switching signal

is generated by the controller. Another switching signal is generated by using logic

inversion and dead-time generator circuits. However, because of simplicity, dead-time

compensation is not considered in this study. All possible switching states s are shown

in Table 2.1. The switching states, in terms of vector for three phases, can be expressed

as

S =
2

3
(Sa + aSb + a

2Sc) (2.13)

where a = ej
2π
3 .

A 2L-VSI produces eight voltage vectors corresponding to eight different state vectors

at the output terminals, as shown in Fig 2.3. The voltage vectors generated by the

inverter can be defined by

v =
2

3
(va + avb + a

2vc) (2.14)

where va, vb and vc are phase voltages.

22



+

–

aS bS cS

aS bS cS

dcV

dci

ai bi ci

av

 

!

 

bv cv

Figure 2.2: Circuit topology of a 2L-VSI showing positive convention for voltages and

currents.
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Figure 2.3: Space distribution of all admissible voltage vectors of the 2L-VSI.

The voltage vectors can also be expressed in terms of state vectors and the dc-link

voltage as

v = SVdc. (2.15)

In this work, the inverter is considered as a nonlinear discrete system. The discrete

nonlinear voltage vectors, as shown in Table 2.1, are the only control actions to drive the

motor.
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Table 2.1: Voltage vectors of the 2L-VSI

vn s = [sasbsc] v = vα + jvβ

v0 0 0 0 0

v1 1 0 0 2/3Vdc

v2 1 1 0 1/3Vdc + j
√
3/3Vdc

v3 0 1 0 −1/3Vdc + j
√
3/3Vdc

v4 0 1 1 −2/3Vdc

v5 0 0 1 −1/3Vdc − j
√
3/3Vdc

v6 1 0 1 1/3Vdc − j
√
3/3Vdc

v7 1 1 1 0

2.4.2 3L-NPC inverter

The circuit topology of a 3L-NPC VSI is shown in Fig. 2.4. The inverter produces three

different levels of voltage—Vdc/2, 0 and −Vdc/2—at the output terminals. These are

based on the proper selection of switching signals applied to each semiconductor switches

in phase x = {a, b, c}. For this reason, the inverter is called 3L-NPC VSI. The switching

state variables {Sx1, Sx2} with phase x may be either logic ‘0’ or ‘1’. The lower two

switching signals in each phase are complementary with the upper two switching signals.

Thus, in practice, only the upper two switching signals for each phase are generated by the

controller. Afterward, the other two switching signals in each phase are generated using

logic inversion and deadtime generator circuits. The possible combinations of switching

signals for each phase x are shown in Table 2.2. In each phase of the inverter, the output

pole is connected to ‘+’, ‘−’ or ‘0’, by turning on simultaneously the upper two switches,

the lower two switches or the middle two switches, respectively. By connecting the output

pole to ‘+’, ‘−’ or ‘0’, the inverter generates Vdc/2, −Vdc/2 or 0, respectively, at the output
terminals of the inverter phase. Including 19 different voltage vectors, the inverter can

produce 27 voltage vectors, as shown in Fig. 2.5. Each of the voltage vectors is shown

with the required levels of dc-link voltage, enclosed in a rectangular box, for the three

phases. Based on their amplitudes, the voltage vectors are classified into four groups:

zero vectors {v0 · · ·v2}, small vectors {v3 · · ·v14}, medium vectors {v15 · · ·v20} and large
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Figure 2.4: Schematic diagram of a 3L-NPC VSI showing positive convention for voltages

and currents.

vectors {v21 · · ·v26}. Complex representation of all possible voltage vectors with vα and

vβ components and the corresponding top two switching states of each phase are shown

in Table 2.3. A nonlinear discrete model of the inverter [28] is used to produce these

voltage vectors. The switching states with a similar colour and a similar phase position

in the α − β plane in Fig. 2.5 produce similar voltage vectors in magnitude. However,

they (the small vectors) have an opposite effect on the dc-link capacitor charge, which

facilitates balancing the capacitor voltages.

Table 2.2: Possible switching combinations of each phase x = {a, b, c}
Switching states Output

Sx1 Sx2 S̄x1 S̄x2 vx0

1 1 0 0 +Vdc/2

0 1 1 0 0

0 0 1 1 −Vdc/2

Capacitor voltage unbalance in a 3L-NPC VSI occurs at the neutral-point ‘0’, which

is called as neutral-point voltage variation. As the neutral-point voltage variation is the

difference between two capacitor voltages, it is simply known as the ‘neutral-point volt-

age’. For motor drive applications, the neutral-point voltage increases torque and flux

ripple, and distortion in the output stator current. Moreover, it imposes additional volt-
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Figure 2.5: Admissible 27 voltage vectors of the 3L-NPC VSI showing the small vectors

of equal magnitude (but an opposite effect on the dc-link capacitor charge) with a similar

colour.

age stress on the semiconductor switches. Hence, the neutral-point voltage is controlled

online using dynamic model of the capacitor. The discrete dynamic equations of two

capacitor voltages are expressed as

Vc1(k + 1) = Vc1(k) +
1

C
ic1(k)Ts (2.16)

Vc2(k + 1) = Vc2(k) +
1

C
ic2(k)Ts (2.17)

where Vc1(k) and Vc2(k) are the two measured capacitor voltages, C is the capacitance

of each capacitor, ic1(k) and ic2(k) are the currents flowing through the capacitors and

Ts is the sampling time. The currents ic1(k) and ic2(k) are calculated based on only the

upper two switching states {Sx1, Sx2} in each phase x = {a, b, c} of the inverter. The

calculations are as follows:

ic1(k) = idc − Sa1(k)ia(k)− Sb1(k)ib(k)− Sc1(k)ic(k) (2.18)
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ic2(k) = idc +

(

1− Sa2(k)

)

ia(k) +

(

1− Sb2(k)

)

ib(k) +

(

1− Sc2(k)

)

ic(k) (2.19)

where idc is the dc-link current supplied by the dc source.

Equations (2.16)–(2.19) show that the capacitor voltages—Vc1(k + 1) and Vc2(k +

1)—and thus the neutral-point voltage at instant k+1 can be calculated using the present

measured load currents, measured capacitor voltages and applied switching state. In this

study, we have not needed to calculate dc-link current idc. This is because we only need

the difference between two capacitor voltages. Since, idc is the common term in Eqs.

(2.18) and (2.19), it will be cancelled automatically.
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Table 2.3: Complex representation of all possible voltage vectors of the 3L-NPC VSI

showing corresponding the upper two switching states s of each phase

vn s = [sa1sa2sb1sb2sc1sc2] v = vα + jvβ

v0 0 0 0 0 0 0 0

v1 0 1 0 1 0 1 0

v2 1 1 1 1 1 1 0

v3 1 1 0 1 0 1 1/3Vdc

v4 0 1 0 0 0 0 1/3Vdc

v5 1 1 1 1 0 1 1/6Vdc + j
√
3/6Vdc

v6 0 1 0 1 0 0 1/6Vdc + j
√
3/6Vdc

v7 0 1 1 1 0 1 −1/6Vdc + j
√
3/6Vdc

v8 0 0 0 1 0 0 −1/6Vdc + j
√
3/6Vdc

v9 0 1 1 1 1 1 −1/3Vdc

v10 0 0 0 1 0 1 −1/3Vdc

v11 0 1 0 1 1 1 −1/6Vdc − j
√
3/6Vdc

v12 0 0 0 0 0 1 −1/6Vdc − j
√
3/6Vdc

v13 1 1 0 1 1 1 1/6Vdc − j
√
3/6Vdc

v14 0 1 0 0 0 1 1/6Vdc − j
√
3/6Vdc

v15 1 1 0 1 0 0 1/2Vdc + j
√
3/6Vdc

v16 0 1 1 1 0 0 j1/
√
3Vdc

v17 0 0 1 1 0 1 −1/2Vdc + j
√
3/6Vdc

v18 0 0 0 1 1 1 −1/2Vdc − j
√
3/6Vdc

v19 0 1 0 0 1 1 −j1/
√
3Vdc

v20 1 1 0 0 0 1 1/2Vdc − j
√
3/6Vdc

v21 1 1 0 0 0 0 2/3Vdc

v22 1 1 1 1 0 0 1/3Vdc + j
√
3/3Vdc

v23 0 0 1 1 0 0 −1/3Vdc + j
√
3/3Vdc

v24 0 0 1 1 1 1 −2/3Vdc

v25 0 0 0 0 1 1 −1/3Vdc − j
√
3/3Vdc

v26 1 1 0 0 1 1 1/3Vdc − j
√
3/3Vdc
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2.5 Summary

This chapter has presented a state-space dynamic model of the IM in the stationary

reference frame and the discrete mathematical models of both the 2L-VSI and 3L-NPC

VSI. The chapter has discussed the relationships among different variables in the IM. It

has also explained how the IM model and the nonlinear discrete inverter models may be

considered in the predictive controller. Finally, a mathematical model is presented to

control the neutral-point voltage inherited from the 3L-NPC topology.
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Chapter 3

A Simplified FS-PTC for Two-Level

Inverter Fed IM Drive

3.1 Introduction

This chapter presents a simplified FS-PTC based on SPVs to reduce the number of pre-

diction vectors and hence the computational burden. The prediction vectors are defined

as the number of voltage vectors required for predictions of the desired control objectives,

such as torque and flux. The position of stator flux and the sign of torque-error have

been considered to lessen the number of prediction vectors. Two adjacent forward/back-

ward voltage vectors with an appropriate zero vector are always selected as the prediction

vectors; thus, the average switching frequency of the power converter is reduced when

compared to a conventional FS-PTC strategy. Including the frequency term in the cost

function is not required; this would yield a simpler design of the cost function compared

to conventional FS-PTC. To make a comparison with the existing all voltage vectors

based FS-PTC scheme, a 2L-VSI is employed to produce the necessary voltage vectors.

This chapter addresses the first objective of the thesis, and part of the contribution

is published in [109, 110]. The chapter is organised as follows. Section 3.2 describes the

conventional FS-PTC step-by-step, and highlights some of its limitations. The proposed

SPVs-based simplified FS-PTC is described in Section 3.3. The computational efficiency

improvement in the proposed strategy is discussed in Section 3.4. Section 3.5 illustrates
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the experimental outcomes.

3.2 Conventional FS-PTC and its limitations

A conventional FS-PTC model comprises two steps: prediction and cost function optimi-

sation, as shown in Fig. 3.1. However, the prediction requires a preliminary estimation

step. Some variables unavailable for measurement are estimated in the estimation step.

The performance and required computational burden of the model are analysed for a

2L-VSI.

Cost function 
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Prediction 

model
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IM 
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Figure 3.1: Conventional FS-PTC scheme for the 2L-VSI fed IM drive, where all possible

voltage vectors are used as prediction vectors.

3.2.1 Estimation

In an FS-PTC system, estimations of stator flux ψ̂s and rotor flux ψ̂r are required based

on the present measurements of stator current is and rotor speed ωm. Conventionally, the

rotor current model of the IM shown in Eq. (2.8) is employed to estimate the rotor flux.

Then, the simple relationship between the stator and rotor flux is used to estimate the

stator flux. The execution frequency of the estimator is the same as that of the controller.

Using the standard backward-Euler approximation, the estimations of rotor and stator

flux in discrete form can be expressed as
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ψ̂r(k) = ψ̂r(k − 1) + Ts






Rr

Lm

Lr

is(k)−
(

Rr

Lr

− jωe(k)

)

ψ̂r(k − 1)






(3.1)

ψ̂s(k) =
Lm

Lr

ψ̂r(k) + σLsis(k). (3.2)

The estimated electromagnetic torque can then be obtained as

T̂e(k) = 1.5pℑm
{

ψ̂s(k)
∗ · is(k)

}

. (3.3)

3.2.2 Prediction

The first step of predictive control is performed by predicting the stator flux and torque.

The selection of variables to be predicted is dependent on the desired objectives. More

numbers of variables mean that the controller requires more calculations. Conventionally,

all possible voltage vectors {v0 · · · v7} are evaluated to predict the desired objectives.

The stator voltage model of the IM is generally used for stator flux prediction. Using the

forward-Euler approximation, the voltage model in discrete time steps can be expressed

as

ψp
s(k + 1) = ψ̂s(k) + Tsvs(k)− TsRsis(k). (3.4)

In order to predict the electromagnetic torque, the stator current is also predicted.

Hence, the predictions of the stator current discretising Eq. (2.10) and then the torque

can be expressed as

ips(k + 1) =

(

1− Ts
τσ

)

is(k) +
Ts

(τσ + Ts)

{

1

Rσ

[(

kr
τr

− jkrωe(k)

)

ψ̂r(k) + vs(k)

]}

(3.5)

T p
e (k + 1) = 1.5pℑm {ψp

s(k + 1)∗ · ips(k + 1)} (3.6)

3.2.3 Cost function optimisation

The predicted variables are evaluated by a predefined cost function. Generally in FS-

PTC, the cost function includes absolute values of torque-error (T ∗
e − T p

e ) and flux-error
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(|ψ∗
s| − |ψp

s|). Hence, the cost function can be defined as

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣

∣

∣

∣

(3.7)

where T ∗
e (k + 1) is the reference torque and T p

e (k + 1) is the predicted torque, ψ∗
s is the

reference stator flux (which is always kept constant if field-weakening is not considered)

and ψp
s(k+1) is the predicted stator flux; k and k+1 are the present and next sampling

instant. In this study, the weighting factor λf sets the relative importance of the stator

flux compared with the torque. Since the sampling time is very small, it is a common

practice to assume T ∗
e (k) as T

∗
e (k + 1) [46].

For average switching frequency reduction, a switching transition term nsw is included

in the cost function and can be defined as [28]

nsw(k + 1) =
∑

x={a,b,c}
|sx(k + 1)i − sx(k)| (3.8)

where sx(k+1) is the probable switching state for the next time instant k+1, sx(k) is the

applied switching state to the inverter at the time instant k and i is the index of possible

voltage vectors {v0···v7}. Using the total number of switching transitions nsw(T ) over the

duration T , the average switching frequency f̄sw per semiconductor switch is calculated

by f̄sw = nsw(T )/12/T . In the later part of this chapter, the conventional FS-PTC with

switching transition term in the cost function is defined as FS-PTC(f̄sw).

In order to protect from over-current, the cost function g must include another term

Im which is designed based on the maximum current capacity of the stator winding.

Therefore, the term Im can be defined as

Im =











∞, if |ips(k + 1)| > Imax

0, otherwise.

(3.9)

Thus, the complete cost function g for the controller is

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣

∣

∣

∣

+ λnnsw(k + 1) + Im (3.10)

where λn is the weighting factor of nsw. The fourth term Im does not need a weighting

factor. Under normal operating condition, the value of Im is 0 and thus it has no effect on
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Figure 3.2: Conventional FS-PTC algorithm showing the complex prediction and opti-

misation loop.

g. During experiment, the value of Imax is set to 130% rated current. Hence, current ripple

will not lead instability. Selecting proper weighting factors for the other three different

objectives is a difficult task. The desired system performance may not be achieved due

to improper selection of the weighting factors.

The switching state that yields minimum g in Eq. (3.10) is stored as an optimal

switching state Sopt(k + 1), which is used as Sopt(k) in the next sampling instant. The

switching state Sopt(k) produces voltage vector vopt(k) which is applied to the motor

terminals at instant k. The algorithm of the conventional FS-PTC is shown in Fig. 3.2.

A complex loop of prediction and optimisation is apparent; this must be executed for all

possible voltage vectors from a power converter.
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3.2.4 Limitations of the conventional FS-PTC

The drawbacks of the conventional FS-PTC can be summarised as follows:

1) All voltage vectors are evaluated for prediction and optimisation, which is compu-

tationally expensive. The computational burden limits the sampling frequency and,

thus, degrades control performance.

2) When a switching transition term is included in the cost function to reduce the av-

erage switching frequency, the computational burden is increased further. Moreover,

selecting weighting factors for three different control objectives is difficult and, thus,

designing a cost function is complex.

3.3 Proposed FS-PTC using SPVs

The structure of the proposed FS-PTC is similar to the conventional FS-PTC, as shown

in Fig. 3.3. The main differences are the selection of prediction vectors vj and the design

of cost function, where j may be three values among n = {0 · · · 7}. Conventionally,

all voltage vectors of a 2L-VSI are employed for prediction and optimisation. In the

proposed FS-PTC, only three—one zero and two active vectors—of the possible eight

voltage vectors are evaluated. Thus, the computational burden is reduced.
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! Figure 3.3: Proposed FS-PTC using SPVs strategy.
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Figure 3.4: Space distribution of all admissible voltage vectors of a 2L-VSI showing the

selection strategy of the prediction vectors.

3.3.1 Selecting prediction vectors

The selection process of prediction vectors is proposed based on the DTC strategy [8].

The prediction vectors are selected using the present position of the stator flux ψ̂s and

the sign of torque-error δTe = (T ∗
e − T̂e). The position of stator flux θ̂s is estimated as

θ̂s = arctan

(

ψ̂βs

ψ̂αs

)

. (3.11)

We may recall that a 2L-VSI produces six active vectors {v1, · · · ,v6} and two zero

vectors {v0,v7}. In this study, only v0 is considered as the zero vector in the prediction

and optimisation steps, to reduce the computational burden. This assumption is valid as

no switching frequency term is included in the cost function, and the effects of v0 and v7

on torque and flux are similar. After optimisation, if the stored optimal voltage vector

is a zero vector, then an appropriate zero vector (either v0 or v7) is selected so that one

switching transition occurs. The number of switching transitions is calculated using the

applied optimal switching state at time instant k. The space distribution of all voltage

vectors in the α − β plane, showing the selection strategy of the prediction vectors, is

shown in Fig. 3.4. Here, it is apparent that the active voltage vectors change periodically

by an angle of π/3 rad steps. Accordingly, the α − β plane is divided into six sectors to
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identify the direction of rotation as

(2N − 3) π/6 ≤ Θ(N) ≤ (2N − 1) π/6 (3.12)

where Θ(N) is the sector with N = 1, · · · , 6.
Let us consider that the stator flux ψ̂s is rotating in the counterclockwise direction.

At a particular instant, different voltage vectors influence the torque and flux differently,

and the possible conditions of torque deviation are δTe > 0, δTe < 0 and δTe = 0, and flux

deviation are δψs > 0, δψs < 0 and δψs = 0, where δψs =
(

|ψ∗
s| −

∣

∣

∣ψ̂s

∣

∣

∣

)

. In Fig. 3.4, the

effects of all active vectors in terms of increase, decrease, or unchanged torque and flux

are indicated by the symbols ‘↑’, ‘↓’ and ‘=’, respectively, when the stator flux is located

in sector I. These effects on torque and flux are analysed to determine the sign of torque-

or flux-error. If ψ̂s is located in sector I and the torque-error δTe > 0, then the voltage

vectors that satisfy torque increase (Te ↑) condition (as shown in Fig. 3.4) are selected as

prediction vectors. Hence, the possible active prediction vectors are two adjacent forward

vectors v2(1 1 0) and v3(0 1 0), which are represented by solid arrows on the tip of the

stator flux ψ̂s, as shown in Fig. 3.4. Selecting the two adjacent forward voltage vectors

also ensures the possible condition of stator flux deviation δψs > 0 or δψs < 0. Similarly,

for the same position of stator flux, if δTe < 0, the possible active prediction vectors are

two adjacent backward vectors v6(1 0 1) and v5(0 0 1). These are represented by dashed

arrows on the tip of the stator flux ψ̂s in Fig. 3.4. Generally, the active vectors are always

employed with a zero vector for the IM to reduce the torque and flux ripple effectively.

Including a zero vector satisfies the possible conditions of δTe = 0 and δψs = 0. From

Fig. 3.4, we can see that the active vectors v1(1 0 0) or v4(0 1 1) might also satisfy the

condition δTe = 0. However, applying a zero vector is more effective than the active

vectors when δTe = 0. This is because the stator flux speed should be controlled so it

is as slow as possible. Hence, the total number of prediction vectors is three, whereas

it is seven (considering one zero vector) in the conventional FS-PTC. A similar analysis

is carried out when the stator flux is located in the other sectors. The selected active

prediction vectors for all the sectors are shown in Table 3.1.

It is obvious that if θ̂s(k−1) and θ̂s(k) lie in the same sector and the signs of δTe(k−1)

and δTe(k) are same, then maximum one switching transition is possible between two
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Table 3.1: Stator flux position θ̂s(k) and torque-error δTe dependent active prediction

vectors
❍
❍
❍
❍

❍
❍
❍
❍
❍

δTe

Θ
I II III IV V VI

δTe > 0 v2,v3 v3,v4 v4,v5 v5,v6 v6,v1 v1,v2

δTe < 0 v5,v6 v6,v1 v1,v2 v2,v3 v3,v4 v4,v5

active vectors, due to the SPVs. Hence, the proposed SPVs strategy also reduces the

average switching frequency of the power converter.

It is apparent from Fig. 3.4 that another switching table based on θ̂s (see Eq. 3.11) and

flux-error δψs instead of torque-error δTe can be developed. The possible active prediction

vectors based on δψs for all sectors are shown in Table 3.2. However, a relatively lower

priority on the stator flux in the cost function must be set compared with the δTe-based

prediction vectors to achieve satisfactory torque and flux performance. This is because

the stator flux gets priority over the torque when δψs-based prediction vectors (see Table

3.2) are considered. Performance in terms of computational burden, torque ripple and

flux ripple will be almost similar. However, δTe-based prediction vectors are considered

in this case.

Table 3.2: Stator flux position θ̂s(k) and stator-flux-error δψs dependent active prediction

vectors
❍
❍
❍
❍

❍
❍
❍
❍
❍

δψs

Θ
I II III IV V VI

δψs > 0 v6,v2 v1,v3 v2,v4 v3,v5 v4,v6 v1,v5

δψs < 0 v3,v5 v4,v6 v1,v5 v6,v2 v1,v3 v2,v4

3.3.2 Optimum voltage vector selection

Since two adjacent voltage vectors are selected for the prediction and optimisation, only

one switching transition occurs at a particular time instant under a certain condition, as

mentioned previously. Hence, the average switching frequency is reduced, and inclusion
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of the switching frequency term in the cost function is not required. This also reduces

the computational burden of the proposed control strategy. The cost function used in

the proposed simplified FS-PTC is as follows:

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣

∣

∣

∣

+ Im. (3.13)

It is obvious that selecting the weighting factors in Eq. (3.13) is simpler compared to

Eq. (3.10) used in the conventional FS-PTC.

In a real-time implementation, the control algorithm calculation time introduces one-

step time delay that must be compensated [111]. This is done by two steps ahead pre-

diction. The predicted stator flux ψp
s(k + 1) and stator current ips(k + 1) are used as the

initial states for predictions at time instant k + 2. To predict ψp
s(k + 1) and ips(k + 1),

the optimum voltage vector vopt(k) applied to the motor terminals at the instant k is

employed in Eqs. (3.4) and (3.5), respectively. In this case, for selecting the prediction

vectors, ψp
s(k + 1) instead of ψ̂s(k) and T

p
e (k + 1) instead of T̂e(k) are used to calculate

θ̂s and δTe, respectively. The predictions of the stator flux and torque at instant k + 2

can be expressed as

ψp
s(k + 2) = ψ̂s(k + 1) + Tsvopt(k)− TsRsis(k + 1) (3.14)

ips(k + 2) =

(

1− Ts
τσ

)

is(k + 1) +
Ts

(τσ + Ts)
× blankblank

{

1

Rσ

[(

kr
τr

− jkrωe(k + 1 )

)

ψ̂r(k + 1) + vopt(k)

]} (3.15)

T p
e (k + 2) = 1.5pℑm {ψp

s(k + 2)∗ · ips(k + 2)} . (3.16)

As the rotor time constant τr is much greater than the sampling time Ts and the

rotor flux changes slowly compared to the stator flux, it is a general practice to assume

ωe(k) = ωe(k + 1) and ψ̂r(k) = ψ̂r(k + 1), respectively.

Hence, to implement the delay compensation scheme [111], the optimum voltage vector

is selected by minimising the following cost function:

g =

∣

∣

∣

∣

∣

T ∗
e (k + 2)− T p

e (k + 2)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 2)|
∣

∣

∣

∣

∣

+ Im. (3.17)
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3.3.3 Average switching frequency reduction

The selection of only one zero vector, either v0 or v7, with two active vectors for the pre-

diction and optimisation may increase the average switching frequency. For this reason,

if v0 is selected as the optimum voltage vector, an appropriate zero vector, either v0 or

v7, is selected in such a way that only one switching transition occurs at a particular

time instant. For example, if the applied voltage vector at the time instant k is v2(110)

and the optimum voltage vector actuated for the next time instant k + 1 is v0, then the

switching state ‘111’ is selected instead of ‘000’ as the optimal switching state. Therefore,

the state ‘000’ is selected after ‘100’, ‘010’ and ‘001’; otherwise, ‘111’ is selected as the

zero vector.

3.3.4 Overall control structure

The complete schematic of the proposed simplified FS-PTC is shown in Fig. 3.5, which

includes four parts: 1) rotor and stator flux estimation; 2) prediction vectors selection;

3) stator flux and torque prediction; and 4) cost function optimisation (optimum voltage

vector selection). The rotor speed is measured using an encoder mounted on the motor

shaft. A PI controller is employed to produce the reference torque, based on the speed

error. The speed error is calculated by comparing the measured speed with the reference

speed. The constant rated stator flux reference is commanded from outside the controller,

as field-weakening is not considered in the present analysis. Both the aforementioned

reference quantities (torque and flux) are used directly in the cost function to actuate the

optimum switching state Sopt which produces optimum voltage vector.

3.3.5 Proposed control algorithm

The overall control procedure can be summarised by the following sequences.

Step 1) Measurement : Sampling is(k), Vdc(k) and ωm(k).

Step 2) Apply : Apply the optimum voltage vector vopt(k) to the motor terminals.

Step 3) Estimate: Estimate the rotor flux ψ̂r(k) and the stator flux ψ̂s(k) using Eqs.

(3.1) and (3.2), respectively.
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Figure 3.5: Proposed simplified FS-PTC system using torque-error-based SPVs.

Step 4) Predict : Predict the stator flux ψp
s(k + 1), stator current ips(k + 1) and torque

T p
e (k + 1) using Eqs. (3.4)–(3.6).

Step 5) Select prediction vectors : Select the active prediction vectors using Table 3.1.

Step 6) Predict and calculate cost : Predict the stator flux ψp
s(k + 2), stator current

ips(k + 2) and torque T p
e (k + 2) using Eqs. (3.14)–(3.16). Then, evaluate the

predicted stator flux and torque by calculating the cost using the cost function

(3.17). Execute these predictions and cost calculation loop for the selected two

active vectors and one zero vector.

Step 7) Optimise: Select vopt(k+2) which results minimum g in Eq. (3.17) and replace

it with an appropriate zero vector if selected vopt(k+2) is a zero vector. Return

to step 1).

3.4 Computational efficiency improvement in the pro-

posed FS-PTC algorithm

The proposed control algorithm is implemented using a dSPACE DS1104 R&D controller

board with ControlDesk and MATLAB Simulink software packages. The execution time

is measured with the dSPACE profiler [112]. The execution time of the proposed control
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Figure 3.6: Execution times of the proposed and the conventional control algorithms.

algorithm is reduced, as the number of prediction vectors is less. The proposed algo-

rithm requires additional calculations for the prediction vectors selection (calculations

not used in the conventional PTC). However, the calculations are very simple. Therefore,

the required extra execution time is much less—1.28 µs—than the reduced time in the

prediction and optimisation steps.

The execution time of the proposed algorithm, compared to the conventional control

algorithm, is illustrated in Fig. 3.6. Here, the average execution time of the conventional

FS-PTC algorithm T̄conventional without switching transition term in the cost function

is 27.68 µs, which is further increased to 30.54 µs if the switching transition term is

included in the cost function. The average execution time of the proposed simplified

algorithm T̄proposed is 21.5 µs. Hence, the reduced average execution times with and

without switching transition term in the cost function are 30% and 22%, respectively. As

the speed control loop is executed in every 2.5 ms, the execution time is increased in every

2.5 ms. Table 3.3 shows a comparison of overall execution times. Of course, the execution

time is hardware- and (above all) programming-dependent. As the same hardware and

programming techniques are used for all cases in this study, the comparison is fair.
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Table 3.3: Overall execution times comparison between the proposed and conventional

control algorithms

Index ——————Execution times (µs)——————

Conventional Conventional (f̄sw) Proposed

Measurement 6.63 6.67 6.64

Estimation 1.60 1.60 1.60

Prediction vectors selection 0.00 0.00 1.28

Prediction and optimisation 26.08 28.94 18.66

Total 38.30 42.20 31.76

3.5 Experimental results

The proposed controller is verified by experiment. The machines and controller parame-

ters are given in Appendix A. The experimental setup is discussed and shown in Appendix

B. The sampling time of the controller is set to 50 µs.

The performance of the proposed control system is measured mainly in terms of stator

current THD, torque ripple, flux ripple and average switching frequency. A major effect

of harmonic currents in rotating machinery is increased heating due to iron and copper

losses at the harmonic frequencies. The harmonic components thus affect the machine

efficiency, and can also affect the torque developed. Flux variations may produce higher

current THD, and torque ripple causes acoustic noise in the system. The switching

frequency affects the converter efficiency. Because the switching loss in the converter is

directly proportional to the switching frequency.

The performance of the proposed simplified FS-PTC is compared with the two cases

of conventional FS-PTC: 1) without and 2) with switching transition term in the cost

function. All the voltage vectors {v0 · · · v7} are evaluated if switching transition term is

considered in the cost function. Otherwise, seven different voltage vectors are evaluated

and an appropriate zero voltage vector (either v0 or v7) is then selected, as explained in

Section 3.3.3.

The following investigations are conducted to test the effectiveness of the proposed

FS-PTC algorithm:
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Figure 3.7: Experimental waveforms of speed, stator current, estimated torque and es-

timated stator flux at no-load torque under rated-speed (1415 r/min) reversal condition

for the proposed SPVs-based FS-PTC.

a) transient capability of the FS-PTC under rated-speed reversal;

b) steady-state behaviour at medium- and low-speed operations;

c) investigation of average switching frequency;

d) robustness against external rated-load torque disturbance;

e) step rated-torque-transient characteristics;

f) step rated-speed-transient characteristics.

3.5.1 Investigation of transient capability under rated-speed re-

versal

First, a reverse speed operation of the proposed FS-PTC at rated-speed of 1415 r/min

without load torque (although the dc machine is connected to the fed motor) is performed.
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Figure 3.8: Experimental waveforms of speed, stator current, estimated torque and es-

timated stator flux at no-load torque under rated-speed (1415 r/min) reversal condition

for the conventional FS-PTC.

Figure 3.7 shows the behaviour of the control system. From top to bottom, the curves are

the speed, stator current, estimated torque and stator flux. The stator flux is constant at

its rated value of 1.0 Wb. For comparison, same curves are plotted for the conventional

all vectors based FS-PTC, where switching transition term is not included in the cost

function, as shown in Fig. 3.8. It is seen that the performance in terms of torque and

flux ripple is comparable. During speed reversal, the ripple is slightly increased for both

the proposed and conventional control systems. This is because of high current flowing

in the stator winding. The THD of the stator current ia (calculated with 10 cycles up

to 10 kHz) for the proposed FS-PTC is 6.48%, whereas it is 6.35% for the conventional

FS-PTC. This slightly higher current THD for the proposed FS-PTC is due to the low

average switching frequency. The average switching frequencies are 1.91 and 2.11 kHz for

the proposed and conventional control systems, respectively. For THD calculation, the

data is captured in ControlDesk and analysed in MATLAB.
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Figure 3.9: Experimental waveforms of speed, stator current, estimated torque and es-

timated stator flux at no-load torque under rated-speed (1415 r/min) reversal condition

for the flux-error-based FS-PTC.

From Fig. 3.7, it can be noted that a very small dip is present in the stator flux

response during speed reversal at time 0.4 s around. This is because the prediction

vectors are selected based on the torque-error (see Table 3.1) regardless of the stator-

flux-error. During the transient, at a particular position of the stator flux, the voltage

vector that produces more torque is selected to reduce the torque-error and is applied

to the motor terminals. Moreover, the vector producing more torque, in most cases,

decreases stator flux and causes flux transient. One possible solution of this problem is

to set a higher value of the weighting factor λf in the cost function, Eq. (3.17), during the

transient than the steady-state condition. Another possible solution is to use the stator

flux-error-based prediction vectors (see Table 3.2). In that case, a less priority should be

set on the stator flux—small λf in the cost function—compared to the torque-error-based

prediction vectors to achieve satisfactory torque and flux performance.

In order to justify the proposed solution mentioned earlier, the flux-error-based pre-
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Figure 3.10: Experimental steady-state waveforms of stator current, estimated torque and

estimated stator flux at 1000 r/min with 4.0 Nm load torque for the proposed SPVs-based

FS-PTC.

diction vectors are considered. A reverse rated-speed of 1415 r/min operation without

load torque is performed, and the behaviour of the control system is illustrated in Fig. 3.9.

It can be seen that there is no dip in the stator flux response during speed reversal at

time 0.4 s around, while the system performance—stator current THD, torque ripple

and stator flux ripple—is comparable with the torque-error-based prediction vectors (see

Fig. 3.7). Hence, the problem can be solved using flux-error-based prediction vectors.

3.5.2 Steady-state behaviour at medium- and low-speed opera-

tions

Figures. 3.10 and 3.11 show the steady-state characteristics of the proposed and conven-

tional control systems, respectively, at a speed of 1000 r/min with 4.0 Nm load torque.

It is observed that the torque and flux ripple is similar; the differences are 0.04 Nm and

0.002 Wb, respectively. However, the THD of the stator current for the proposed FS-PTC

is marginally higher due to lower average switching frequency. The frequency spectra of
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and estimated stator flux at 1000 r/min with 4.0 Nm load torque for the conventional

FS-PTC.

the stator currents using the proposed and conventional control algorithms are presented

in Figs. 3.13(a) and 3.13(b), respectively. The average switching frequency f̄sw for the

proposed control algorithm is lower by 16.62%. Moreover, the frequency spectrum is less

distributed over a wide frequency range compared to the conventional control algorithm.

This also confirms the reduction in the average switching frequency. To reduce the av-

erage switching frequency of the conventional FS-PTC, the switching transition term is

included in the cost function. Then, a weighting factor is imposed on the frequency term,

provided that the torque and flux ripple is almost similar. The responses of the system

and the frequency spectrum of the stator current are presented in Figs. 3.12 and 3.13(c),

respectively. The THD of the stator current is similar to the proposed control. However,

the average switching frequency is still higher. If a greater weight is imposed on the

switching transition term to reduce the average switching frequency further, the torque

ripple increases (while keeping the weight of the stator-flux-error constant). Hence, se-

lecting the weighting factors is a complex task. In this sense, the proposed FS-PTC is

simpler compared to the conventional FS-PTC. Table 3.4 summarises the steady-state
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Figure 3.12: Experimental steady-state waveforms of stator current, estimated torque

and estimated stator flux at 1000 r/min with 4.0 Nm load torque for the conventional

FS-PTC with average switching frequency reduction.

performance of the proposed and conventional FS-PTC systems.

Table 3.4: Quantitative steady-state performance comparison between the conventional

and the proposed control schemes with ωm = 1000 r/min, Tl = 4 Nm and Ts = 50 µs

Index Conventional (f̄sw) Conventional Proposed

THD (for ia) (%) 5.77 5.55 5.75

Torque ripple (Nm) 1.40 1.26 1.30

Flux ripple (Wb) 0.03 0.028 0.026

Average Switching frequency (kHz) 2.97 3.43 2.86
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Figure 3.13: Experimental frequency spectra of stator current ia at 1000 r/min using

(a) proposed algorithm, (b) conventional algorithm and (c) conventional algorithm with

average switching frequency reduction.

To test the low-speed performance, the machine is operated at 300 r/min at 50% rated-

load torque. The waveforms corresponding to the proposed and conventional control

algorithms are presented in Figs. 3.14 and 3.15, respectively. It is observed that the THD

of the stator current, the torque ripple and the flux ripple are similar, provided that

the switching frequency term is not included in the cost function. From the frequency

spectra of the stator current, as shown in Figs. 3.17(a) and 3.17(b), it is seen that the
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Figure 3.14: Experimental steady-state waveforms at 300 r/min with 50% rated-load

torque for the proposed SPVs-based FS-PTC.

average switching frequency of the proposed FS-PTC is 4.90 kHz; In contrast, this is

4.83 kHz for the conventional FS-PTC. If the average switching frequency reduction is

considered, the THD of the stator current is increased from 5.21% to 5.60%, as shown

in Fig. 3.16, yielding slightly higher torque ripple by 0.05 Nm. However, the average

switching frequency is reduced, as shown in Fig. 3.17(c), from 4.83 to 4.72 kHz. The

improvement in average switching frequency is not significant at low speed, while keeping

torque and flux ripple similar. It is noted that the frequency spectrum for the proposed

FS-PTC algorithm is less distributed over a wide frequency range compared with both

cases of the conventional FS-PTC algorithms.
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for the conventional FS-PTC with average switching frequency reduction.
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Figure 3.17: Experimental frequency spectra of the stator current ia at 300 r/min using

(a) proposed algorithm, (b) conventional algorithm and (c) conventional algorithm with

average switching frequency reduction.
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3.5.3 Investigation of average switching frequency

Figure 3.18(a) presents the average switching frequencies for the proposed and conven-

tional control algorithms at different speeds and load torques. The average switching

frequencies are comparable at low- and high-speeds with 50% or higher of the rated-

load torque. The reduction in average switching frequencies for the proposed FS-PTC is

significant—maximum 25% of average switching frequency—for the speed range of 400

to 1200 r/min, as can be seen in Fig. 3.18(b). The improvement in average switching

frequency is also obvious from Fig. 3.18(c). However, in the whole operating range of the

machine, the variation ranges of average switching frequencies for the conventional and

proposed FS-PTC strategies are similar (1.58–5.58 kHz for both cases).

3.5.4 Investigation of robustness against rated-load torque dis-

turbance

Figures 3.19 and 3.20 illustrate the responses to an external rated-load torque disturbance

for the proposed and conventional control algorithms, respectively. The load torque,

which is dependent on the rotor speed, is suddenly changed from 0 (no-load torque)

to 7.4 Nm (full-load torque) at 1000 r/min. For both cases, it is observed that the

stator current THD and the torque and flux ripple are similar before and after added

load. During the load torque change, the stator flux remains constant at its rated value,

which ensures decoupled control of the torque and flux. The motor speed returns to its

original value within a short time (0.19 s), and the speed responses are identical during

load disturbance. The average switching frequencies for the proposed FS-PTC algorithm

before and after added load torque are 3.02 and 2.60 kHz, respectively; whereas the

average switching frequencies before and after added load torque are 3.67 kHz and 3.09

kHz, respectively, for the conventional FS-PTC algorithm.
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Figure 3.18: Experimental (a) average switching frequencies f̄sw from 200 to 1400 r/min

and 0 to 7 Nm, (b) reduction in f̄sw, and (c) f̄sw vs. speed with torque as parameter.
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r/min for the conventional FS-PTC.
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3.5.5 Step rated-torque-transient characteristics

Step rated-torque-transient characteristics of the proposed FS-PTC are tested, and illus-

trated in Fig. 3.21. A step rated-torque reference of 7.4 Nm is commanded. It is seen

that the torque rise times for the proposed and the conventional control algorithms are

very close with 0.5 ms versus 0.53 ms, respectively. Both control algorithms exhibit fast

dynamic response, that indicate the equivalency of the proposed and the conventional

control algorithms under rated-torque-transient condition.
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Figure 3.21: Experimental step rated-torque-transient of the proposed and conventional

control algorithms at a step speed command from 0 to 1000 r/min.
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3.5.6 Step rated-speed-transient characteristics
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Figure 3.22: Experimental step rated-speed-transient of the proposed and conventional

control algorithms.

Finally, rated-speed-transient behaviour of the proposed control algorithm is investi-

gated and presented in Fig. 3.22. Initially, the machine is started with 100 r/min, and

then a step rated-speed reference of 1415 r/min is commanded. Similar to the conven-

tional control algorithm, the proposed FS-PTC can track the reference speed accurately

without any significant overshoot, as can be seen in Fig. 3.22. Moreover, the speed rise

times for both control algorithms are comparable.
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3.6 Summary

This chapter has proposed a simplified FS-PTC algorithm that employs only three voltage

vectors instead of the eight used in conventional FS-PTC for prediction and optimisa-

tion. The number of prediction vectors is reduced without any complex calculations. A

reduction in the average switching frequency of each semiconductor switch is achieved

by not including the switching transition term in the cost function, as is the case with

conventional FS-PTC. The reduced number of control objectives in the cost function

makes the selection of weighting factors simpler than in the conventional method. The

proposed FS-PTC algorithm is verified by experiment. The maximum reduction in the

average execution time and the average switching frequency of each semiconductor switch

are 30% and 25% over the conventional FS-PTC, respectively. This is achieved without

sacrificing the torque and flux performance achieved in the conventional method. Good

performance in terms of stator current THD, robustness against load torque disturbance,

step torque response and step speed response is also achieved using the proposed simpli-

fied SPVs-based FS-PTC.
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Chapter 4

FS-PTC of a 3L-NPC Inverter Fed

IM Drive

4.1 Introduction

The FS-PTC of a 2L-VSI fed drive suffers from high torque and flux ripple and average

switching frequency, due to the limited number of available voltage vectors of the power

converter. To take advantage of multi-level inverter drives that offer the benefits of lower

harmonic current distortion, torque ripple and switching frequency over the 2L-VSI, this

chapter proposes to integrate the FS-PTC with a 3L-NPC inverter driven IM drive. The

drawback inherited from the topology of the 3L-NPC VSI, such as neutral-point voltage,

is handled easily by treating it as a variable to the cost function. Similarly, apart from the

inverter topology itself, the average switching frequency is reduced further. The variation

range of average switching frequency is small, even almost constant at a particular speed

at different load torques. The computational burden of the control algorithm is reduced

by using the proposed SPVs strategy. This is achieved without affecting the system

performance, including torque and flux ripple, torque dynamic, capacitor voltage balance

and average switching frequency. The performance of the proposed controller is compared

with that of the well established FOC and DTC strategies at a particular operating

point. Another comparison between the two-level and the 3L-NPC inverter fed drives

is presented to prove the logicality of selecting the multilevel instead of the two-level
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Figure 4.1: Proposed FS-PTC of a 3L-NPC inverter fed IM drive.

inverter.

This chapter addresses the second objective of the thesis, and part of the contribution

is published in [113]. This chapter is organised as follows. The proposed control algo-

rithm is discussed in Section 4.2. The computational capacity requirements and problem

associated with the proposed FS-PTC are discussed in Sections 4.3 and 4.4, respectively.

Section 4.5 presents the solution to the problem. Experimental results are presented in

Section 4.6. The performance of the proposed FS-PTC is compared with the classical

FOC and DTC strategies in Section 4.7. Another comparison between the two-level and

the 3L-NPC inverter fed drives is presented is Section 4.8.

4.2 Proposed FS-PTC model

The basic structure of the proposed 3L-NPC VSI fed IM drive is similar to that of the

2L-VSI fed drive, as explained in Chapter 3. There are two structural differences: 1)

replacing the 2L-VSI with the 3L-NPC VSI and 2) the number of required switching

signals (12 for the 3L-NPC and 6 for the 2L-VSI). Due to the 3L-NPC inverter feature,

the present analysis considers one additional control objective, the neutral-point voltage.

The performance and required computational burden are analysed for the 3L-NPC VSI.

The proposed FS-PTC model consists of three stages: estimation, prediction and cost

function optimisation, as shown in Fig. 4.1. The voltage vector in the stationary reference
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frame vopt shown in Fig. 4.1 is calculated using the measured dc-link voltages {Vc1, Vc2}
and applied switching state Sopt. The following subsections describe the main steps of

the proposed FS-PTC.

4.2.1 Estimation of the rotor and stator flux

Similar to the 2L-VSI fed drive, the discrete rotor current model of the IM, as expressed

by the Eq. (3.1), is used for the rotor flux estimation. The stator flux is then estimated

based on the relationship between the rotor flux and the stator flux, as shown in Eq.

(3.2).

4.2.2 Predictions of control objectives

After estimating the stator and rotor flux, all control objectives—such as the stator

flux, electromagnetic torque, neutral-point voltage, average switching frequency and over-

current—are predicted in the proposed FS-PTC. The stator flux and torque are predicted

using the Eqs. (3.4)–(3.6); thus, these equations will not be repeated here.

As mentioned previously, it is necessary to control the capacitor voltage unbalance,

also called the neutral-point voltage ∆Vc12. A large capacitor voltage unbalance may

damage the semiconductor devices. It is also the cause of large torque and flux ripple.

The neutral-point voltage is always attempted to maintain at zero value. Hence, it is

necessary to investigate the effects of a given switching state on the capacitor voltages

at instant k+1. Using Eqs. (2.16)–(2.19), the predicted neutral-point voltage at instant

k + 1, ∆Vc12(k + 1) can be defined as

∆Vc12(k + 1) = ∆Vc12(k)−
Ts
C
∆ic12(k + 1) (4.1)

where ∆Vc12(k) = Vc1(k) − Vc2(k), ∆ic12(k + 1) = ic1(k + 1) − ic2(k + 1). It is useful

to mention that ∆ic12(k + 1) can be calculated from Eqs. (2.18) and (2.19) without

calculating the dc-link current idc, as idc is a common variable in both equations.

For the average switching frequency reduction, the number of switching transitions

nsw is predicted at each time step. The calculation of nsw is different from Eq. (3.8), as

two switches are on at a particular time instant in each arm for the 3L-NPC inverter.
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The calculations are as follows

nsw(k + 1) =
∑

x={a,b,c}

∣

∣

∣

∣

∣

Sx1(k + 1)i − Sx1(k)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Sx2(k + 1)i − Sx2(k)

∣

∣

∣

∣

∣

(4.2)

where Sx(k + 1) is the probable switching state for each phase x = {a, b, c} for the next

time instant k+1, Sx1(k) and Sx2(k) are the applied switching state Sopt(k) to the inverter

at the time instant k and i is the index of possible voltage vectors {v0 · · · v26} shown in

Fig. 2.5.

4.2.3 Cost function optimisation

All the aforementioned predicted variables are evaluated using a predefined cost function

to determine the optimum voltage vector vopt. The cost function includes the absolute

values of torque-error (T ∗
e −T p

e ), flux-error (|ψ∗
s| − |ψp

s|), neutral-point voltage ∆Vc12 and
number of switching transition nsw. Hence, the cost function can be defined as

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣
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∣

∣

+ λf

∣

∣

∣

∣

∣
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∣

∣

∣
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∣

∣

∣

∣

+ λnnsw(k + 1)

(4.3)

where λf , λcv and λn are the three weighting factors of flux error, neutral-point voltage

and the number of switching transition, respectively. In this study, the weighting factor

λf sets the relative importance of the stator flux over the torque.

Over-current protection is also implemented using Eq. (3.9). Thus, the complete cost

function g for the controller is

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣
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∣

blankblank

+λcv

∣

∣

∣

∣

∣

∆Vc12(k + 1)

∣

∣

∣

∣

∣

+ λnnsw(k + 1) + Im.

(4.4)

In Eq. (4.4), the term Im does not need a weighting factor. Imposing proper weighting

factors on the other three different objectives is very important. Otherwise, the desired

system performance may not be achieved due to improper selection of the weighting

factors.
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In this study, λf is first tuned online, running the 3L-NPC inverter as a two-level

inverter (by considering only large voltage vectors {v21 · · ·v26} produced by the 3L-NPC

inverter). The stator flux requires more priority than the torque to achieve low torque

and flux ripple. The neutral-point voltage ∆Vc12 is then included in the cost function,

and the inverter is run as desired 3L-NPC inverter. The weight λcv is tuned online

until the two capacitor voltages are perfectly balanced, and, thus, the ∆Vc12 is around

zero. It is observed that the torque and flux ripple is less sensitive to the λcv variation,

while increasing λcv. Even, the neutral-point voltage does not change after a certain

value of λcv, while maintaining a similar torque and flux performance. Eventually, the

number of switching transitions nsw is included in the cost function. After a certain value

of λn—while increasing—∆Vc12 is inversely related to the average switching frequency.

Increasing the value of λn decreases the average switching frequency but increases ∆Vc12.

Hence, λn is tuned online and is set to the certain value (as mentioned earlier); after that

certain value, the ∆Vc12 starts to increase.

The delay compensation scheme [111] is employed to overcome one step delay caused

by digital implementation. All control objectives are predicted for the instant k + 2.

The stator flux, stator current and torque are predicted using Eqs. (3.14)–(3.16). The

neutral-point voltage and the number of switching transitions are predicted simply by

taking the predicted variables ∆Vc12(k + 1) and nsw(k + 1) one step forward using Eqs.

(4.1) and (4.2), respectively, and the expressions are as follows:

∆Vc12(k + 2) = ∆Vc12(k + 1)− Ts
C
∆ic12(k + 2) (4.5)

nsw(k + 2) =
∑

x={a,b,c}

∣
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∣

∣

∣
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∣
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∣

∣

∣

∣

∣

(4.6)

where ∆Vc12(k + 1) is assumed as ∆Vc12(k), since the variation is very small within two

adjacent sampling instant. For the calculation of ∆ic12(k+2), the measured phase currents

ia(k), ib(k) and ic(k) are employed to avoid α−β to a− b− c frame transformation. The

switching states Sx1(k + 1) and Sx2(k + 1) are equal to the Sopt(k).

All admissible voltage vectors should be evaluated for the predictions at instant k+2,
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and the final cost function becomes

g =

∣
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+ λnnsw(k + 2) + Im.

(4.7)

Among the 27 available voltage vectors from the 3L-NPC VSI, the voltage vector

that yields minimum g is selected as voltage vector vopt, and is then applied to the motor

terminals via the inverter in the next sampling instant.

4.2.4 Proposed control algorithm

The overall control procedure can be summarised by the following sequences.

Step 1) Measurement : Sampling is(k), Vc1(k), Vc2(k) and ωm(k).

Step 2) Apply : Apply the optimum voltage vector vopt(k).

Step 3) Estimate: Estimate the rotor flux ψ̂r(k) and the stator flux ψ̂s(k) using Eqs.

(3.1) and (3.2), respectively.

Step 4) Predict and evaluate: Predict stator flux ψp
s(k + 2), stator current ips(k + 2),

torque T p
e (k + 2), neutral-point voltage ∆Vc12(k + 2) and number of switching

transitions nsw(k + 2) using Eqs. (3.14)–(3.16), (4.5) and (4.6), respectively.

Also test the predicted current ips(k + 2) using Eq. (3.9) to avoid over-current

in the stator winding. Then, evaluate the predicted variables by calculating the

cost g using Eq. (4.7). Perform these predictions and evaluations for all the 27

voltage vectors.

Step 5) Optimise: Select vopt(k + 2) that results minimum g in Eq. (4.7). Return to

step 1).
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4.3 Computational capacity requirements for the pro-

posed control algorithm

The proposed control algorithm is coded in C, and is implemented using a dSPACE

DS1104 R&D controller board with ControlDesk. The required execution time is 59.15

µs, as shown in Table 4.1. The execution time is measured on a 250 MHz PowerPC in the

DS1104 using the command ‘RTLIB TIC START’ and ‘RTLIB TIC READ’ in C. Most

of the execution time is spent on the predictions—76.24% of the total execution time.

Execution times for the predictions of torque and flux, neutral-point voltage, number

of switching transitions and over-current are 17.4, 8.82, 9.15 and 8.54 µs, respectively.

Hence, at the expense of a very small execution time, the neutral-point voltage and aver-

age switching frequency of the inverter can be controlled effectively using FS-PTC. It is

apparent that execution times for other stages of the proposed controller are insignificant

when compared with the predictions stage.

Table 4.1: Execution times of the proposed FS-PTC algorithm

Index Execution time (µs)

Measurement 4.39

Switching 0.12

Voltage and current calculations 0.72

Estimation 1.60

Predictions 45.1

Optimisation 6.25

Switching frequency calculation 0.56

Total 59.15
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Figure 4.2: Simplified FS-PTC scheme for the proposed 3L-NPC inverter fed IM drive

using the SPVs.

4.4 Problem of FS-PTC with the 3L-NPC VSI fed

IM drive

Evaluating all the possible voltage vectors in the predictions stage requires a long ex-

ecution time, as shown in the rectangular box in Table 4.1. The processing time of

the predictions step is significant compared to other steps. The requirement for more

computation limits the sampling frequency and thus degrades the control performance.

4.5 Proposed FS-PTC with the SPVs strategy

To avoid the aforementioned drawback, the SPVs strategy for the prediction and opti-

misation steps of the proposed FS-PTC is employed, as shown in Fig. 4.2. Except the

prediction vectors block, the structure of the SPVs-based FS-PTC is similar to the all

vectors based proposed FS-PTC, as can be seen in Fig. 4.2. The selected number of

prediction vectors reduces the computational burden of the algorithm without affecting

the system performance.
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Figure 4.3: Stator-flux-error based selection of the possible prediction vectors. The rect-

angular boxes in grey indicate the prediction vectors when ψ̂s is located in sector I and

δψs ≥ 0.

4.5.1 Selecting the prediction vectors

The prediction vectors selection strategy has already been explained in Section 3.3.1

for the 2L-VSI. There were two options for selecting the prediction vectors: 1) torque-

error-based and 2) flux-error-based. For the 2L-VSI, the torque-error-based strategy was

discussed in Section 3.3.1. The present analysis considers the flux-error-based selection

strategy. This is more computationally efficient than the torque-error-based strategy.

The reason for this computational efficiency is explained at the end of this sub-section.

The following section discusses the flux-error-based SPVs strategy.

Consider that the stator flux ψ̂s is rotating in a counter-clockwise direction in the

α− β plane divided into six sectors, as shown in Fig. 4.3. If ψ̂s is located in sector I and

the flux-error δψs ≥ 0, then the voltage vectors that satisfy the flux increase ‘↑’ condition,
as shown in Fig. 4.3, are selected as prediction vectors. Accordingly, the possible active

prediction vectors are the vectors that lie in the right-half of the α-β plane, as indicated
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in grey in Fig. 4.3. The SPVs also ensure all the possible conditions for torque-error.

Similarly, for the same position of the stator flux, if δψs < 0, the possible active prediction

vectors are the voltage vectors lie in the left-half of the α-β plane. Generally, the active

vectors are always employed with a zero vector for the IM to reduce the torque and flux

ripple effectively. Including a zero vector also satisfies the possible conditions of δTe = 0

and δψs = 0. Hence, considering one zero vector, the total number of prediction vectors

is fourteen, whereas this is 27 in conventional FS-PTC. Evaluation of only one zero vector

in the prediction loop may increase the average switching frequency. However, use of all

three zero vectors in the prediction loop is computationally expensive. For this reason,

it would be useful to select an appropriate zero vector after the prediction loop. Hence,

considering the computational complexity, one zero vector is used in the prediction loop.

The possible prediction vectors for all the sectors for δψs ≥ 0 are shown in Table 4.2.

The same table of prediction vectors can also be used for δψs < 0; however, the sector in

which the stator flux lies should be reversed. For example, if the stator flux is located in

sector I and δψs < 0, the sector IV should be selected for the possible prediction vectors.

Table 4.2: Possible prediction vectors for δψs ≥ 0 for the SPVs-based simplified FS-PTC

strategy

Sector Prediction vectors

I v1,v3,v4,v5,v6,v13,v14,v15,v16,v19,v20,v21,v22,v26

II v1,v3,v4,v5,v6,v7,v8,v15,v16,v17,v20,v21,v22,v23

III v1,v5,v6,v7,v8,v9,v10,v15,v16,v17,v18,v22,v23,v24

IV v1,v7,v8,v9,v10,v11,v12,v16,v17,v18,v19,v23,v24,v25

V v1,v9,v10,v11,v12,v13,v14,v17,v18,v19,v20,v24,v25,v26

VI v1,v3,v4,v11,v12,v13,v14,v15,v18,v19,v20,v21,v25,v26

If the torque-error-based selection strategy is followed, at a particular position of

ψ̂s, two additional small vectors will be included in the prediction vectors, as shown in

Fig. 4.4. Eight small vectors instead of six participate in the pool of prediction vectors.

This increases the number of prediction vectors. For example, if ψ̂s is located in sector

I and δTe ≥ 0, all the voltage vectors along and above the α−axis will be selected, as
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Figure 4.4: Torque-error-based selection of the possible prediction vectors. The rectan-

gular boxes in grey indicate the prediction vectors when ψ̂s is located in sector I and

δTe ≥ 0.

shown in grey in Fig. 4.4. The total number of prediction vectors will be 16, whereas

this is 14 for the flux-error-based strategy. Thus, the flux-error based SPVs strategy is

considered in this study.

4.5.2 Prediction and optimisation

For the predictions of control variables and optimisation of voltage vector, the same

mathematical relations as those used in the all vectors based FS-PTC are employed. The

only difference is that the value of the weighting factor λf in Eq. (4.7); λf is re-tuned.

As explained in Chapter 3, a comparatively small value of λf is required for a similar

performance with the proposed all voltage vectors based FS-PTC. It is noted that Eq.

(4.7) contains the weighting factor λn for average switching frequency reduction. This

was not necessary for the SPVs-based 2L-VSI fed FS-PTC drive. However, it is required

for the 3L-NPC VSI, as all the SPVs are not adjacent and more than one switching
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transition may occur.

Table 4.3: Comparison between the execution times of the all vectors based FS-PTC and

the SPVs-based FS-PTC algorithms

Index ——————Execution times (µs)———————

all vectors based FS-PTC SPVs-based FS-PTC

Measurement 4.39 4.39

Switching 0.12 0.12

Voltage and current calculations 0.72 0.72

Estimation 1.60 1.60

Selection of prediction vectors 0.0 1.28

Predictions 45.1 24.36

Optimisation 6.25 3.4

Switching frequency calculations 0.56 0.56

Total 59.15 36.90

4.5.3 Improvement in computational efficiency

The execution time is measured on the same 250 MHz PowerPC in the DS1104. The

required execution time is 36.9 µs, whereas the all voltage vectors based FS-PTC requires

59.15 µs, as shown in Table 4.3. Hence, the overall computational efficiency is improved

by 38%. Particularly, in the prediction stage, the computational efficiency is improved by

46%—from 45.1 to 24.36 µs, as shown in the rectangular boxes in Table 4.3. Improvement

is also obvious in the optimisation stage. The proposed control algorithm requires extra

calculations for selectiing prediction vectors; however, this is insignificant (only 1.28 µs)

compared to the total execution time.

4.6 Experimental Results

The control algorithm is coded in C and, thus, the cross compilation between MATLAB

Simulink and C, as it is done in the chapter 3, is avoided. The controller parameters are
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given in Appendix A. The experimental setup is shown in Appendix B. The sampling

period of the controller is set to 70 µs.

First, the effectiveness of the proposed all voltage vectors based FS-PTC of the 3L-

NPC inverter fed drive in terms of torque and flux ripple, stator current THD, capacitor

voltage balance and average switching frequency of the inverter is tested. The perfor-

mance is compared to the SPVs-based FS-PTC strategy. A comparative analysis at a

particular operating point is then conducted with the well established classical FOC and

DTC strategies. Finally, another comparison between the 2L-VSI and 3L-NPC VSI fed

IM drives is presented. The effectiveness of the proposed FS-PTC is investigated for the

followings:

a) steady-state behaviour at medium- and low-speed operations;

b) transient capability of the FS-PTC under speed (rated) reversal;

c) weighting factor λcv sensitivity of the controller;

d) robustness against an external rated-load torque disturbance;

e) step rated-torque-transient characteristics;

f) average switching frequency.

4.6.1 Investigation of the steady-state behaviour at medium-

and low-speed operations

Figure 4.5 shows the steady-state behaviour of the proposed FS-PTC system at a speed

of 1000 r/min at full-load torque (7.4 Nm). From top to bottom, the curves are the

stator current, estimated torque, stator flux and neutral-point voltage. The performance

in terms of the torque and flux ripple is good (0.90 Nm and 0.02 Wb, respectively).

The neutral-point voltage ∆Vc12 is within 1.1 V(p–p)—0.19% of the used dc-link volt-

age—which is acceptable. The THD of the stator current ia, calculated with 20 cycles up

to maximum 5 kHz using MATLAB powergui, is 3.43%. Figure 4.6 shows the responses

for the SPVs-based FS-PTC strategy. It can be seen that the THD of the stator current,
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Figure 4.5: Experimental steady-state waveforms for the proposed all vectors based FS-

PTC at 1000 r/min under rated-load torque. From top to bottom, stator current, torque,

stator flux and neutral-point voltage.

torque and flux ripple, and neutral-point voltage are similar to the all voltage vectors

based FS-PTC strategy.

Figure 4.7 illustrates the steady-state low-speed behaviour of the machine for the

proposed FS-PTC at 200 r/min at 50% rated-load torque. The THD of the stator current,

torque ripple and stator flux ripple are 4.14%, 0.83 Nm and 0.017 Wb, respectively. From

Fig. 4.7, it is clear that two capacitor voltages are balanced, and the neutral-point voltage

∆Vc12 is around 1 V(p–p). Hence, the overall low-speed performance of the proposed FS-

PTC system is acceptable. The low-speed performance is also compared to that of the

SPVs-based FS-PTC, as illustrated in Fig. 4.8. The low-speed performance of the SPVs-

based FS-PTC strategy is similar to the all voltage vectors based FS-PTC strategy.
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4.6.2 Investigation of the transient capability under rated-speed

reversal

In order to test the transient capability of the proposed FS-PTC, the sudden reverse speed

operation at the rated-speed of 1415 r/min without load torque is performed. However,

the dc machine is connected to the fed motor. Figure 4.9 presents the behaviour of

the control system. The stator flux is constant at its nominal value of 1.0 Wb. The

performance in terms of torque and flux ripple is good; the torque ripple and the flux

ripple are 0.8 Nm and 0.018 Wb, respectively. During the speed reversal, the ripple is

slightly increased. This is because of the higher current flowing in the stator winding.

The two capacitor voltages are also increased due to the regenerative process. The stator

flux produces good sinusoidal stator current waveform; the THD of the stator current

ia is 4.42%. It is important to note that the capacitor voltages are balanced with very

small fluctuations in both the transient and steady-state conditions; the maximum volt-

age fluctuation is 1.5 V during the transient. More importantly, the neutral-point voltage

is always within 1V—0.17% of the used dc-link voltage—as shown in a small scale rep-

resentation in Fig. 4.9. Hence, the neutral-point voltage has very negligible effect on the

torque and flux ripple. Similar behaviour is investigated at the rated-speed-transient for

the SPVs-based FS-PTC strategy, as illustrated in Fig. 4.10.
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4.6.3 Weighting factor λcv sensitivity of the controller

The weighting factors designing for the cost function of the proposed controller is not

as complicated. This is because after a certain value of the weighting factor λcv of the

neutral-point voltage ∆Vc12, the performance of the controller is almost unaffected with its

change. To clarify these statements, another steady-state test is carried out at 700 r/min

at no-load torque, and the weight λcv is increased from 0.00001 to 0.001 gradually within

the time 0.0 to 0.5 s. The torque, stator flux and neutral-point voltage are unaffected

with the change of λcv, as it can be seen from Fig. 4.11. Hence, λcv does not affect the

controller performance after a certain value. This insensitivity of the controller facilitates

the selection of a proper value of another weighting factor λn in the cost function.
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Figure 4.11: Experimental steady-state sensitivity analysis of the proposed controller

with the change of weighting factor λcv of the neutral-point voltage ∆Vc12 in the cost

function at 700 r/min.
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4.6.4 Investigation of the robustness against a rated-load torque

disturbance

The robustness of the proposed control system against an external rated-load torque dis-

turbance is tested, and is depicted in Fig. 4.12. There is a slight drop in the speed due to

the load disturbance. The controller recovers the original speed within a short time (0.32

s). The load, which is dependent on rotor speed, is suddenly changed from no-load (0.8

Nm) to rated-load torque (7.4 Nm) as a disturbance on the machine. The torque ripple,

flux ripple and fluctuations of dc-link voltages are slightly increased by 31.25%, 29.41%

and 33.13%, respectively, after added load, as shown in Fig. 4.12. This is because the

stator current magnitude is increased. However, the stator current THD is reduced by

22.95%. This improvement is due to the increase of the power component—load compo-

nent—of the stator current. Although the two dc-link voltages are reduced by 4V around

after added load and fluctuate within a range, they are almost balanced in all operating

conditions, as can be seen in Fig. 4.12. Hence, the neutral-point voltage is very small

and, thus, the control performance is unaffected by the neutral-point voltage. During

load change, the stator flux remains as constant at its rated value, which ensures decou-

pled control of torque and flux. The robustness against a rated-load torque disturbance

is also investigated for the SPVs-based FS-PTC strategy; the responses are shown in

Fig. 4.13. It is seen that all the responses are similar to the all voltage vectors based

FS-PTC strategy.

82



−5

0

5
i a
[A

]

0

5

10

T
∗ e
,T̂

e[
N
m
]

0.95

1

1.05

|ψ
∗ s
|,
|ψ̂

s
|[
W

b]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
285

290

295

V
c1
,V

c2
[V

]

T ime[s]


 
 
 
 
 
 
 
 

120

140

160

ω
∗ m
,ω

m
[r
a
d
/
s]

292

294
288

291 V
c2

V
c2

V
c1

V
c1

Torque ripple=0.8 Nm

THD=4.42% THD=3.79%

Flux ripple=0.022 WbFlux ripple=0.017 Wb

Torque ripple=1.05Nm

ω∗

m ωm

Figure 4.12: Experimental dynamic behaviour of the machine for the proposed FS-PTC

at rated-speed under an external rated-load torque disturbance.

4.6.5 Step rated-torque response characteristics

Figure 4.14 illustrates the step rated-torque response characteristics. Initially, the ma-

chine is started with 100 r/min, and suddenly a step speed of 1000 r/min is then com-

manded to achieve a step torque command. The controller only selects large and medium

voltage vectors—most prominently v22 or v16 in this case—during torque transient; this

yields fast dynamic response, as shown in Fig. 4.14. The torque rise time of the proposed

controller is 0.5 ms, which is excellent. From Fig. 4.14, it is clear that the dc-link volt-

ages are balanced in both transient and steady-state conditions. Figure 4.15 shows the

step rated-torque transient characteristics for the SPVs-based FS-PTC strategy. During

the transient, the controller selects medium vectors (in this case v20) continuously. This

yields fast dynamic response, similar to the proposed all voltage vectors based FS-PTC

strategy.
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Figure 4.13: Experimental dynamic behaviour of the machine for the proposed SPVs-

based FS-PTC at rated-speed under an external rated-load torque disturbance.
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Figure 4.14: Experimental step rated-torque response of the proposed FS-PTC strategy

showing selected inverter switching state and dc-link voltages.
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4.6.6 Investigation of the average switching frequency

Another investigation is conducted to observe the average switching frequency behaviour

of the proposed FS-PTC strategy. We may recall that the switching transition term is

included in the cost function to reduce the average switching frequency f̄sw of the inverter

and, thus, the switching losses. In the whole operating range of the machine, the average

switching frequencies are reduced by up to 1.49 kHz (46%) with respect to the controller

without switching transition term in the cost function, as shown in Fig. 4.16(a). For easy

plotting, in Fig. 4.16(a), the average switching frequencies corresponding to the full-load

torque (7.4 Nm) and rated-speed (1415 r/min) have been considered against the load

torque of 7 Nm and the speed of 1400 r/min, respectively. The reduction in f̄sw depends

on the operating conditions of the motor—different speeds with different connected loads.

Figure 4.16(b) shows that the average switching frequencies are reduced by significantly

up to 1000 r/min with different connected loads. More importantly, the average switching

frequencies are not varied over a wide frequency range in all operating conditions. For a

particular speed, the maximum variation in average switching frequency is 9% of its max-

imum average value (1.78 kHz), which is almost constant, over a wide speed range of 200

to 1400 r/min at 0–7.4 Nm load torque. Figure 4.17(a) shows the average switching fre-

quency and its variation at different speeds and loads for the SPVs-based FS-PTC and all

vectors based FS-PTC. The average switching frequency under both control strategies is

influenced by different speeds and loading conditions. Figure 4.17(b) gives clear informa-

tion about the variation range of average switching frequency in all operating conditions;

the variation ranges are 1.37–1.95 kHz and 1.28–1.78 kHz for the SPVs and all vectors

based FS-PTC strategies, respectively. In case of the SPVs-based FS-PTC, the average

switching frequency is slightly higher (maximum 380 Hz) than the all voltage vectors

based FS-PTC at the speed range of 800 to 1100 r/min, as illustrated in Fig. 4.17(c).

This is because a different weighting factor between torque and flux errors is employed in

the cost function. Besides, including only one zero vector in the prediction loop somewhat

increases the average switching frequency. However, at a particular speed, the maximum

variation in average switching frequency is similar—within 11% of the maximum average

value of 1.95 kHz—to the proposed all voltage vectors based FS-PTC. As the deviation
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is small, it is acceptable.
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Figure 4.16: Experimental average switching frequencies f̄sw for the proposed all vectors

based FS-PTC from 200 to 1400 r/min and 0 to 7 Nm. (a) With and without the

switching transition term included in the cost function, and (b) reduction in average

switching frequencies.
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Figure 4.17: Experimental average switching frequencies for the SPVs-based FS-PTC.
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4.7 Performance comparison of FS-PTC with the FOC

and DTC strategies

For the comparison purpose, other classical control methods (FOC and DTC) are also

implemented with the same experimental setup, as shown in appendix B. As the FS-PTC

is a variable switching frequency strategy, the average switching frequency at the specific

operation point is considered as a reference for the implementation of the FOC and DTC

strategies to achieve the fairest possible comparison. Hence, all the control strategies are

implemented with an equivalent switching frequency. The operation point is set at 1000

r/min at rated-load torque (7.4 Nm) condition.

FOC is implemented as the guideline presented in [46]; the control structure is shown

in appendix B (see Fig. B.6). The current is sampled at around 14.3 kHz (70 µs).

The carrier frequency of the modulator in FOC is set to 1.78 kHz. This is because the

maximum average switching frequency for the proposed FS-PTC at 1000 r/min under

different load torques (0 to 7.4 Nm) is around 1.78 kHz. However, the average switching

frequency for the FS-PTC at 1000 r/min at full-load torque is 1.51 kHz. The maximum

average switching frequency is considered as the carrier frequency in FOC for the fairest

possible comparison. The gain coefficients of the two PI current controllers are tuned in

ControlDesk; the controller parameters are given in Appendix A (see Table A.5).

For the implementation of the DTC strategy, a two-level hysteresis flux regulator and

a five-level hysteresis torque regulator are employed [114], and the control structure is

shown in Appendix B (see Fig. B.7). The flux and torque hysteresis bands chosen are

0.01 Wb and 1.40 Nm, respectively. The two bands are tuned in such a way that the DTC

strategy yields a similar average switching frequency to that of the proposed FS-PTC.

The redundant states of the inverter are used to control the neutral-point voltage. As

discussed in Chapter 2, each small vector has an alternative, and they (an small vector

and the corresponding redundant) have the opposite effect on the dc-link capacitors

charge. If a small vector is selected from the switching table and the difference between

two capacitor voltages are out of permissible limit, then an appropriate small vector

(between the selected small vector and its alternative redundant vector) is chosen. The
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Figure 4.18: Experimental steady-state waveforms of stator current, estimated torque,

estimated stator flux and neutral-point voltage for the DTC strategy at 1000 r/min under

rated-load torque condition.

small vector is selected based on the sign of the capacitor voltage difference to control

the capacitor voltages and, thus, the neutral-point voltage. The sampling time of the

controller is set to 70 µs, which is the same as the proposed FS-PTC strategy.

Figures 4.18 and 4.19 show the responses of the system for the DTC and FOC strate-

gies, respectively. From Fig. 4.18, it is clear that the classical DTC suffers not only from

the large torque and flux ripple but also from the large current THD. By comparing be-

tween Figs. 4.5 and 4.19, it can be seen that the proposed FS-PTC strategy can compete

with the FOC strategy at an equivalent switching frequency. To make a much clearer

comparison, detailed quantitative results are presented in Table 4.4. The switching fre-

quency for the FOC strategy is slightly higher. This is because, as mentioned previously,

the maximum average switching frequency for the proposed FS-PTC at 1000 r/min and

under different loading conditions is 1.78 kHz. During experiment, it is observed that

FOC yields smaller steady-state torque and flux ripple, and current THD than the FS-
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Figure 4.19: Experimental steady-state waveforms of stator current, estimated torque,

estimated stator flux and neutral-point voltage for the FOC strategy at 1000 r/min under

rated-load torque condition.

PTC at the switching frequency of 2 kHz. However, for the fairest possible comparison,

those results have not been considered in the present analysis. In Table 4.4, the abbrevi-

ations fav and fcon indicate the average and constant switching frequencies, respectively.

It is important to note that the computational burden of the proposed FS-PTC is much

higher compared to the both DTC and FOC strategies. However, the computational

burden of the proposed FS-PTC is already reduced by 38% using the SPVs strategy.
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Table 4.4: Quantitative comparison of the steady-state performance for different con-

trol strategies at 1000 r/min at full-load torque (7.4 Nm) with an equivalent switching

frequency

Index DTC FOC FS-PTC FS-PTC (SPVs)

Torque ripple (Nm) 3.0 1.3 0.90 0.90

Flux ripple (Wb) 0.06 0.05 0.02 0.02

THD for ia (%) 10.80 6.55 3.43 3.5

Neutral-point voltage (Vp−p) 1.6 2.0 1.1 1.4

Switching frequency (kHz) 1.55 (fav) 1.78 (fcon) 1.51 (fav) 1.71 (fav)

Calculation time (µs) 9.34 19.7 59.15 36.90
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Figure 4.20: Experimental step rated-torque response of the DTC strategy.
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Figure 4.21: Experimental step rated-torque response of the FOC strategy.

Figs. 4.14, 4.20 and 4.21 also show that the torque dynamic of the proposed FS-PTC

is faster than FOC strategy and is similar to the DTC strategy, as expected.
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4.8 Performance comparison between the two- and

three-level inverter fed IM drives

Finally, Table 4.5 presents another quantitative performance comparison between the

2L-VSI and 3L-NPC VSI fed IM drives. In both cases, all the available voltage vectors

are evaluated in prediction and optimisation steps of the FS-PTC strategy. The compu-

tational capacity requirement for the algorithm of 3L-NPC VSI fed drive is higher than

the 2L-VSI fed drive; thus, the algorithms are implemented with different sampling fre-

quencies. It is shown that the THD of the stator current, torque ripple, flux ripple and

average switching frequency for the 3L-NPC inverter are reduced by 28.7%, 41.9%, 31%

and 51.3%, respectively, compared to the two-level inverter, as more number of voltage

vectors are available in the 3L-NPC inverter. For this comparison, the steady-state per-

formance at 1000 r/min at rated-load torque (7.4 Nm) is considered. The variation range

of average switching frequency over a wide speed range is reduced significantly. However,

the torque rise time is similar as 2L-VSI fed drive. This is because long and medium

voltage vectors are selected during torque-transient.

Table 4.5: Quantitative dynamic performance comparison between the two- and three-

level inverter fed IM drives

Index 2L-VSI 3L-NPC VSI

THD for ia (%) 4.81 3.43

Torque ripple (Nm) 1.55 0.90

Flux ripple (Wb) 0.029 0.020

Average switching frequency (kHz) 3.10 1.51

Variation range of average switching frequency (kHz) 1.58–5.58 1.28–1.78

Torque rise time (ms) 0.53 0.50
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4.9 Summary

This chapter has proposed an FS-PTC of IM drive, fed by a 3L-NPC VSI. The effec-

tiveness of the proposed controller has been verified by extensive experimentation. The

controller limits the neutral-point voltage within 0.2% of the dc-link voltage; thus, the

drawback inherited from the converter topology is tackled effectively by including the

voltage in the cost function. The average switching frequency is significantly reduced

(apart from the inverter topology itself) by up to 46%. This is achieved by including the

number of switching transitions in the cost function. The variation in average switching

frequency for a particular speed at different load torques is within 9% of the maximum

average switching frequency, which is almost constant. Good dynamic performance in

terms of stator current THD, torque and flux ripple, robustness against load disturbance

and step torque response is also achieved due to the increased number of voltage vectors

available in the 3L-NPC VSI. The computational burden of the proposed FS-PTC is re-

duced by 38% using the SPVs strategy, without affecting the dynamic performance of the

system. Experimental results also verify that the dynamic performance of the proposed

FS-PTC is better than the classical DTC and FOC strategies at the specific operation

point (equivalent switching frequency). Finally, another comparison between the 2L-VSI

and 3L-NPC VSI fed drives is presented, showing the superiority of the 3L-NPC inverter

over the two-level inverter in terms of current THD, torque and flux ripple, and average

switching frequency and its variation range over a wide speed range.
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Chapter 5

Simplified FS-PTC Using Reference

Stator Flux Vector Calculator

5.1 Introduction

Apart from the number of available voltage vectors, complex torque calculations in the

prediction loop of FS-PTC strategy increase the computational complexity. Thus, the

FS-PTC algorithm demands more processing power, especially when phase number and

inverter levels increase. Another problem is the selection of an appropriate weighting

factor between torque and flux errors in the cost function. This chapter proposes a second

simplified FS-PTC for the 3L-NPC VSI fed IM drive, which does not require torque

calculations in the prediction loop and hence tuning effort on the weighting factor. The

torque error is processed outside the prediction loop through a PI controller. A RSFVC

is then employed to convert the torque and flux amplitude references into an equivalent

stator flux reference vector. This flux reference is used in the cost function for stator

flux error calculation. To reduce the computational complexity further, the proposed

RSFVC is combined with the SPVs-based FS-PTC strategy, which is called a compound

FS-PTC. Experimental results confirm that the proposed RSFVC-based FS-PTC reduces

the computation time significantly and retains the advantages of conventional FS-PTC,

such as fast dynamic response, robustness, low torque and flux ripple, and low stator

current THD. It is useful to mention here that the all voltage vectors based FS-PTC
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Figure 5.1: Proposed RSFVC-based simplified FS-PTC scheme.

proposed in chapter 4 is called a conventional FS-PTC in this chapter.

This chapter addresses the third objective of the thesis. The chapter is structured

as follows. The proposed RSFVC is discussed in Section 5.2. The control algorithm is

summarised in Section 5.3. Section 5.4 presents a compound FS-PTC strategy, which is

a combination of both RSFVC and SPVs. The computational efficiency improvement is

discussed in Section 5.5. Section 5.6 presents experimental results and discussion.

5.2 Proposed RSFVC-based FS-PTC

The proposed RSFVC-based simplified FS-PTC strategy comprises four steps: estima-

tion, reference flux vector calculation, prediction and optimisation, as shown in Fig. 5.1.

The prediction loop is simplified by removing the complex torque calculations from the

prediction loop. However, the stator flux is predicted inside the loop. No tuning effort

is required for the weighting factor between torque and flux errors. The steps of the

proposed RSFVC-based FS-PTC are discussed below.

5.2.1 Estimation

The estimation process of the stator and rotor flux is same, as detailed in Chapters 3 and

4.
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5.2.2 Reference flux vector calculation

An equivalent stator flux reference vector ψ∗
s is produced using the RSFVC, and is applied

to the controller for optimisation. Fig. 5.2 shows in detail the reference flux vector

generated by the RSFVC. The angular slip frequency ωsl (output of the torque regulator),

measured rotor speed ωm, position of the stator flux θ̂s at instant k and the amplitude of

the stator flux |ψ∗
s| (which is assumed to be constant) are used as inputs to the RSFVC.

In Fig. 5.2, the reference angular frequency of stator flux ω∗
s is produced by summing

ωsl and the rotor angular frequency ωm. A PI controller is adopted to regulate the

torque, as there is a nonlinear relationship exists between the torque dynamic and slip

frequency under a constant |ψs| [8,115]. Reference [8], explains analytically that the rate

of increasing of torque is almost proportional to the step difference of ωsl. From [115],

the expression of torque in terms of slip frequency is

Te(t) = K
(

1− e−
t
τ

)

ωsl (5.1)

where K = 3
2
P L2

m

RrL2
s
|ψ∗

s|2 and τ = σ Lr

Rr
.

The Laplace transform of Eq. (5.1) is

Te(s) = K

(

1

τs+ 1

)

ωsl(s) ⇒
Te(s)

ωsl(s)
=

K

τs+ 1
. (5.2)

Equation (5.2) shows that the relationship between the torque and slip frequency is

equivalent to a first-order system. Hence, the PI controller is capable of tracking the

reference torque. The equivalent system of the inner torque control loop with PI controller
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is shown in Fig. 5.3. Another PI controller for the outer speed-loop generates the reference

torque. This reference torque is used to produce ωsl. Hence, the new stator flux reference

vector ψ∗
s is an optimal reference based on both torque and flux amplitude references.

The proposed RSFVC differs from the previous work published in [116], as the IM

has a slip between the stator and rotor flux. In addition, the reference vector calcula-

tor in [116] was employed with a space vector modulation (SVM) based modified DTC

strategy.

5.2.3 Prediction

The predictions of the stator flux, neutral-point voltage ∆Vc12 and number of switching

transitions nsw are same, as detailed in Chapter 4.

5.2.4 Cost function optimisation

Considering only the torque and flux errors, the cost function g for the conventional

FS-PTC is

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣

∣

∣

∣

(5.3)

Using the calculated new reference stator flux vector ψ∗
s, the cost function (5.3) can

be expressed as

g =

∣

∣

∣

∣

∣

ψ∗
s −ψp

s(k + 1)

∣

∣

∣

∣

∣

. (5.4)

A weighting factor λf is avoided and hence the tuning effort.

Splitting into α and β components, Eq. (5.4) can be rewritten as

g =

∣

∣

∣

∣

∣

ψ∗
sα − ψp

sα(k + 1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ψ∗
sβ − ψp

sβ(k + 1)

∣

∣

∣

∣

∣

. (5.5)
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Taking into account all the predicted variables, the complete cost function becomes

g =

∣

∣

∣

∣

∣

ψ∗
s −ψp

s(k + 1)

∣

∣

∣

∣

∣

+ λcv

∣

∣

∣

∣

∣

∆Vc12(k + 1)

∣

∣

∣

∣

∣

+ λnnsw(k + 1) (5.6)

where λcv and λn are the two weighting factors of neutral-point voltage ∆Vc12(k+1) and

number of switching transitions nsw(k + 1), respectively.

Equation (5.6) shows that the cost function still contains two weighting factors (λcv

and λn). However, the process of selecting these two weighting factors is well defined.

First, λcv is tuned online until the ∆Vc12 is around zero, while λn is set to zero. Then, the

λn is tuned online until the ∆Vc12 starts to increase. Details about the tuning procedures

of λcv and λn have already been discussed in Chapter 4.

The delay compensation scheme [111] has been implemented to avoid one step delay

caused by digital implementation. In this case, the cost function (5.6) is modified to

g =

∣

∣

∣

∣

∣

ψ∗
s −ψp

s(k + 2)

∣

∣

∣

∣

∣

+ λcv

∣

∣

∣

∣

∣

∆Vc12(k + 2)

∣

∣

∣

∣

∣

+ λnnsw(k + 2) (5.7)

Among all the possible 27 switching states of the 3L-NPC VSI, the state that yields

minimum g in Eq. (5.7) is selected as the optimal state Sopt, and applied to the motor

terminals via the inverter.

5.3 Proposed control algorithm

The overall control procedure can be summarised by the following sequences.

Step 1) Measurement : Sampling is(k), Vc1(k), Vc2(k) and ωm(k).

Step 2) Apply : Apply the optimum voltage vector vopt(k).

Step 3) Estimate: Estimate the rotor flux ψ̂r(k) and the stator flux ψ̂s(k) using Eqs.

(3.1) and (3.2), respectively.

Step 4) Calculate: Calculate the equivalent reference stator flux vector ψ∗
s using RS-

FVC, as shown in Fig. 5.2.
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Step 5) Predict and evaluate: Predict the stator flux ψp
s(k + 2), neutral-point voltage

∆Vc12(k+ 2) and number of switching transitions nsw(k+ 2) using Eqs. (3.14),

(4.5) and (4.6), respectively. Then, evaluate the predicted variables by calcu-

lating the cost g using Eq. (5.7). Perform these predictions and evaluations for

all the 27 available voltage vectors.

Step 6) Optimise: Select vopt(k + 2) that results minimum g in Eq. (5.7). Return to

step 1).

5.4 Compound FS-PTC: combination of the RSFVC

and SPVs

The computational complexity of the proposed RSFVC-based FS-PTC is simplified fur-

ther by reducing the number of iterations of the prediction loop. To do this, the SPVs

strategy discussed in Chapter 4 is integrated with the proposed RSFVC-based FS-PTC,

which is called compound FS-PTC; the control structure is shown in Fig. 5.4. The con-

trol strategy consists of estimation, reference flux vector calculation, selecting prediction

vectors, predictions and cost function optimisation. As the SPVs strategy and RSFVC

have already been discussed separately, here the compound FS-PTC will not be discussed

again. However, it is useful to mention that the output of the RSFVC (i.e., ψ∗
s) is used

in the SPVs strategy for the flux-error calculation, and only 14 selected voltage vectors

(instead of 27) are evaluated in the prediction loop. In addition, the gain coefficients of

yhe PI speed and torque regulators are kept unchanged.
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Figure 5.4: Compound FS-PTC scheme using both RSFVC and SPVs.

5.5 Computational efficiency improvement in the RSFVC-

based FS-PTC algorithm

The control algorithm is coded in C environment. The required execution time of the

proposed control algorithm is 36.82 µs, as shown in Table 5.1. This was 59.15 µs for

the conventional FS-PTC algorithm. The computational efficiency of the prediction

loop—comparing the values shown in the rectangular boxes—is improved by 56%. The

overall computational efficiency of the control algorithm is improved by 38%. This is in-

creased to 49% by including the SPVs strategy. The RSFVC takes only 4.40 µs. Hence,

at the expense of a small execution time, the complex torque calculations are excluded

from the prediction loop.

5.6 Experimental Results

The control algorithm is directly loaded to the dSPACE DS1104 R&D controller board

through ControlDesk. The machines and the controller parameters are given in Appendix

A. The experimental setup is shown in Appendix B. The sampling period of the controller

is set to 70 µs.

Because of the inner torque control loop, the structure of the proposed RSFVC-based
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Table 5.1: Execution times of the RSFVC-based FS-PTC, compound FS-PTC (RSFVC

and SPVs) and conventional FS-PTC algorithms

Index —-blankblanExecution time (µs)———————

RSFVCbla Compound Conventional

Measurement 4.39 4.39 4.39

Switching 0.12 0.12 0.12

Voltage and current calculations 0.72 0.72 0.72

Estimation 1.60 1.60 1.60

Reference flux vector calculation 4.40 4.40 0.0

Prediction vectors selection 0.0 1.28 0.0

Predictions 19.73 13.1 45.1

Optimisation 4.89 3.75 6.25

Switching frequency calculation 0.56 0.56 0.56

Total 36.82 30.33 59.15

FS-PTC is slightly different from the conventional FS-PTC structure. Hence, the stability

of the proposed controller against parameters variation and dc-link voltage unbalance is

tested at first. Then, the performance of the RSFVC-based FS-PTC in terms of torque

and flux ripple, stator current THD, capacitor voltage balance and average switching

frequency of the inverter is assessed by the following investigations:

a) stability against parameters variation and dc-link voltage unbalance;

b) steady-state behaviour;

c) speed-transient capability under rated-speed reversal;

d) robustness against rated-load torque disturbance;

e) torque-transient characteristics;

f) average switching frequency.
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Figure 5.5: Experimental responses under step changes of Rr and Rs in the controller

from 1 to 1.25 pu.

5.6.1 Stability test against parameters variation and dc-link

voltage unbalance

The effects of Rr and Rs variation on the proposed control system are illustrated in

Fig. 5.5, where controller parameters are step-changed by 0.25 pu. Since, the rotor

current model is employed for the rotor flux estimation, the observer is influenced by the

rotor resistance variation and insensitive to the stator resistance variation. Hence, the

electromagnetic torque is increased by 8% (from 5 to 5.4 Nm) and the stator flux remains

constant at 1.0 Wb. However, the oscillations in torque and flux are similar before and

after changing the parameters in the controller. It can be seen that the rotor speed can

follow the reference speed properly and the system is stable. The estimated torque and

flux in Fig. 5.5 are based on the actual Rr and Rs, whereas the prediction model is based

on the wrong Rr and Rs.

Fig. 5.6 shows the stability of the proposed control scheme with a 20% voltage un-
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Figure 5.6: Experimental stability test at 200 r/min and 50% rated-load torque under

the dc-link voltage unbalance by 20%.

balance. The machine is operated at 200 r/min with 50% rated-load torque. The torque

and flux responses show that the system is stable under the dc-link voltage unbalance.

However, the torque ripple is slightly increased due to the neutral-point voltage. The

unbalance condition is produced online by setting λcv = 0 in the cost function (5.7). This

investigation is carried out with a dc-link voltage 400 V to avoid capacitor over voltage.
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5.6.2 Investigation of the steady-state behaviour

Figure 5.7(a) shows the steady-state behaviour of the proposed FS-PTC strategy at a

speed of 1000 r/min at full-load torque (7.4 Nm). The performance in terms of torque

and flux ripple is good; the torque ripple is 0.95 Nm and the flux ripple is 0.018 Wb. The

two capacitor voltages are balanced, and the neutral-point voltage is thus around zero.

The THD of the stator current ia, calculated with 20 cycles up to maximum 5 kHz using

MATLAB, is 3.5%. The current THD, torque and flux ripple, and neutral-point voltage

are similar to the conventional FS-PTC, as illustrated in Fig. 5.7(b). Similar results have

also been achieved for the compound FS-PTC, as shown in Fig. 5.8.

Steady-state low-speed behaviour is also tested at 200 r/min with 50% rated-load;

the responses are illustrated in Fig. 5.9(a). The torque ripple, stator flux ripple and

stator current THD are 0.86 Nm, 0.016 Wb and 4.3%, respectively. The low-speed per-

formance is similar to the high-speed performance, as shown in Fig. 5.7(a) with different

load torques. This confirms that the control system yields similar performance over a

significant part of the operating range. From Figs. 5.9(a) and 5.9(b), it is seen that

the low-speed performance of the RSFVC-based FS-PTC is similar to the conventional

FS-PTC. The compound FS-PTC also yields similar low-speed performance to the con-

ventional FS-PTC, as illustrated in Fig. 5.10.

Since the simplified FS-PTC strategies (RSFVC-based FS-PTC and compound FS-

PTC) require less calculations, the controllers can be implemented with higher sampling

frequency. The steady-state performance will then be improved. To test this steady-state

improvement, the sampling time is set to 45 µs, and the responses for the RSFVC-based

FS-PTC at 200 r/min at 3.7 Nm load torque are illustrated in Fig. 5.11. The current

THD, torque ripple and flux ripple are reduced by 32.6%, 37.5% and 20.9%, respectively,

as expected. As the sampling frequency is increased, the average switching frequency will

be increased. There is an almost linear relationship between the sampling frequency and

average switching frequency, as shown in Fig. 5.12. Hence, a trade-off must be maintained

between the switching losses and the performance of the system (such as torque ripple,

flux ripple and current THD).
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Figure 5.7: Experimental steady-state waveforms at 1000 r/min at rated-load torque. (a)

RSFVC-based FS-PTC and (b) conventional FS-PTC.
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Figure 5.8: Experimental steady-state waveforms at 1000 r/min at rated-load torque for

the compound FS-PTC.
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Figure 5.9: Experimental steady-state low-speed behaviour of the machine at 200 r/min

at 50% rated-load torque. (a) RSFVC-based FS-PTC and (b) conventional FS-PTC.
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Figure 5.10: Experimental steady-state waveforms at 200 r/min at 50% rated-load torque

for the compound FS-PTC.
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Figure 5.12: Relationship between the sampling frequency and average switching fre-

quency.
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5.6.3 Investigation of speed-transient capability under rated-

speed reversal

Figure 5.13 demonstrates the speed-transient behaviour of the RSFVC-based FS-PTC

strategy. The test is performed by reversing the motor speed from +1415 r/min (148

rad/s) to −1415 r/min (-148 rad/s) at no-load torque. The torque is limited to 10

Nm—135% rated torque. It can be seen that the stator flux is constant at its nominal

value of 1.0 Wb. The performance in terms of torque and flux ripple is good; the ripple

observed are 0.8 Nm and 0.016 Wb, respectively. During speed reversal, the ripple is

slightly increased. This is because of higher current flowing in the stator winding. The

THD of the stator current ia is 4.5%. The two capacitor voltages are balanced and,

thus, the neutral-point voltage has negligible effect on the torque and flux ripple. Similar

behaviour is observed for the compound FS-PTC, as shown in Fig. 5.14.
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Figure 5.13: Experimental waveforms of speed, stator current, torque, stator flux and

two capacitor voltages at no-load torque at rated-speed (1415 r/min) reversal condition

for the RSFVC-based FS-PTC.
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Figure 5.14: Experimental waveforms of speed, stator current, torque, stator flux and

two capacitor voltages at no-load torque at rated-speed (1415 r/min) reversal condition

for the compound FS-PTC.

5.6.4 Investigation of robustness against rated-load torque dis-

turbance

The robustness of the control system against an external rated-load torque disturbance

is tested, and is illustrated in Fig. 5.15. The load torque is suddenly changed from

no-load to rated-load torque (7.4 Nm) as a disturbance on the fed machine. A small

dip and a slight overshoot are apparent in the speed response due to the load torque

disturbance, and the controller recovers the original speed within a short time (0.14 s).

The stator current THD is reduced by 13.7%. This improvement is due to the increase

of the power component of stator current. The torque ripple and flux ripple are slightly

increased after the load is applied. The two capacitor voltages are balanced and, hence,

the control system is unaffected by neutral-point voltage. During the load change, the

stator flux remains constant at its rated value, which ensures decoupled control of torque

112



−5

0

5
i a
[A

]

0

5

10

T
∗ e
,T̂

e
[N

m
]

0.95

1

1.05

|ψ
∗ s
|,
|ψ̂

s
|[
W

b]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
285

290

295

V
c1
,V

c2
[V

]

Time[s]

120

140

160

ω
∗ m
,ω

m
[r
ad

/s
]

ωm
ω∗

m

THD=3.9%
THD=4.5%

Torque ripple=0.8 Nm
Torque ripple=1.1 Nm

Flux ripple=0.016 Wb Flux ripple=0.020 Wb

Figure 5.15: Experimental dynamic behaviour of the machine for the RSFVC-based FS-

PTC at rated-speed under an external rated-load torque disturbance.

and flux. Similar behaviour is observed for the compound FS-PTC, as shown in Fig. 5.16.

However, the speed recovery time after load disturbance is slightly longer—0.24 s, which

is still acceptable.
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Figure 5.16: Experimental dynamic behaviour of the machine for the compound FS-PTC

at rated-speed under an external rated-load torque disturbance.

5.6.5 Torque-transient characteristics

Figure 5.17(a) shows the step rated-torque-transient characteristics of the system. The

step rated-torque (7.4 Nm) is achieved by changing the command speed from 100 r/min

to 1000 r/min. During the transient, the controller selects the large and medium voltage

vectors—in this case v20, v21, or v26. This yields a fast dynamic response, as shown in

Fig. 5.17(a). The torque rise time for the RSFVC-based FS-PTC is 0.46 ms, whereas

this is 0.5 ms for the conventional FS-PTC, as shown in Fig. 5.17(b). The difference in

torque rise time is only 40 µs, which is less than a sampling period. Hence, the proposed

simplified FS-PTC strategy retains the fast dynamic behaviour of the conventional FS-

PTC strategy. From Fig. 5.17(c), it can be seen that the compound FS-PTC also retains

the torque-transient behaviour of the conventional FS-PTC.
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Figure 5.17: Experimental step rated-torque-transient characteristics showing the torque-

transient and selected inverter switching states. (a) RSFVC-based FS-PTC, (b) conven-

tional FS-PTC and (c) compound FS-PTC.
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5.6.6 Investigation of average switching frequency

Figure 5.18(a) plots the average switching frequencies for the RSFVC-based FS-PTC

over a wide speed range from 200 to 1400 r/min under different load torques from 0

to 7 Nm. The average switching frequency varies with the change of speed and load

torque. However, the switching frequency variation for a particular speed at different

load torques is very small (3% of the maximum average switching frequency which is 1.66

kHz at 1200 r/min), as can be seen from Fig. 5.18(b). The average switching frequencies

for the proposed FS-PTC under different operating conditions are also compared with

the conventional FS-PTC, as shown in Figs. 5.18(a) and 5.18(b). It can be seen that the

average switching frequencies for the proposed and the conventional FS-PTC are very

close. The absolute deviations in average switching frequencies are shown in Fig. 5.18(c);

the maximum deviation is around 250 Hz. Fig. 5.18(b) shows that the variation ranges

of average switching frequencies are 1.24–1.66 kHz and 1.28–1.78 kHz for the simplified

and the conventional control strategies, respectively, in all operating conditions.

Figure 5.19(a) illustrates the average switching frequency behaviour of the com-

pound FS-PTC in comparison with the conventional FS-PTC. It is seen that the average

switching frequencies at low- and high-speed operations are similar, as it is evident in

Fig. 5.19(b). At the speed range 600 to 1000 r/min, the average switching frequencies are

slightly higher—maximum 600 Hz at 1000 r/min at 4 Nm load torque—for the compound

FS-PTC than the conventional FS-PTC. As torque and flux performance is comparable,

this slight increase in average switching frequency is acceptable.
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Figure 5.18: Experimental investigation of the average switching frequencies f̄sw for the

proposed RSFVC-based FS-PTC in comparison with the conventional FS-PTC.
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Figure 5.19: Experimental investigation of average switching frequencies f̄sw from 200 to

1400 r/min and 0 to 7 Nm. (a) f̄sw for the compound and conventional FS-PTC, and (b)

absolute differences between the average switching frequencies.
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5.7 Summary

This chapter has proposed a second simplified RSFVC-based FS-PTC for the IM drive fed

by a 3L-NPC inverter. The simplified FS-PTC does not contain complex stator current

and torque calculations inside the prediction loop. At the expense of a very small execu-

tion time—only 4.40 µs—the torque and stator flux amplitude references are converted

to an equivalent stator flux reference vector. The overall computational efficiency is im-

proved by 38% over the conventional FS-PTC algorithm. This is further increased to 49%

by developing a compound FS-PTC, without affecting the system performance. Thus, the

required processing power of the micro-controller is reduced. If the computational burden

is not an issue for a particular micro-controller, the proposed RSFVC-based FS-PTC can

be implemented with a higher sampling frequency than the conventional FS-PTC algo-

rithm. When the sampling frequency is increased, the experimental results have shown

that the performance is improved. Tuning effort on the weighting factor between the

torque and flux errors is avoided by not predicting the torque inside the prediction loop.

Experimental results verify that the RSFVC-based FS-PTC system is stable against pa-

rameters variation and dc-link voltage unbalance. The proposed controller yields torque

and flux ripple, stator current THD, neutral-point voltage, torque and speed dynamics,

and average switching frequency similar to those of the conventional FS-PTC strategy.

In addition, the controller is robust against rated-load torque disturbance and yields an

almost constant average switching frequency over a wide speed range; the maximum av-

erage switching frequency variation is 3% of the maximum average switching frequency

at a particular speed.
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Chapter 6

Simplified Sensorless FS-PTC of a

3L-NPC Inverter Fed IM Drive

6.1 Introduction

This chapter proposes a speed encoderless (or simply a sensorless) FS-PTC of IM sup-

plied from a 3L-NPC inverter. For sensorless operation, PTC requires estimated speed

and rotor/stator flux. This study estimates the rotor speed and flux using an EKF.

Due to the complexity of EKF and the large number of available voltage vectors, the

FS-PTC for a multi-level inverter-fed drive is computationally expensive. Consequently,

the controller requires longer execution time that yields worse torque, flux and speed

responses, especially at low-speed. To reduce the computational burden of the PTC al-

gorithm, the proposed SPVs strategy is employed. A comparison between the SPVs- and

RSFVC-based simplified FS-PTC strategies is presented, and selecting SPVs from the two

proposed simplified approaches for sensorless operation is justified. Experimental results

illustrate that the proposed sensorless strategy can estimate the speed accurately over a

wide speed range, including the field-weakening region, while maintaining robustness and

excellent torque and flux responses.

This chapter addresses the fourth objective of the thesis, and part of the contribution

is published in [94,117–119]. The chapter is organised as follows. A comparison between

the SPVs- and RSFVC-based FS-PTC strategies is presented in Section 6.2. An EKF
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based sensorless FS-PTC is proposed in Section 6.3. In the same section, the SPVs

strategy is applied to the sensorless FS-PTC to reduce the computational burden of

the algorithm. Section 6.4 summarises the proposed control algorithm. The required

computation time of the proposed algorithm is discussed in Section 6.5. Experimental

outcomes are illustrated and discussed in Section 6.6.

6.2 Comparison between the SPVs- and RSFVC-based

FS-PTC strategies

A detailed comparison between the SPVs- and the RSFVC-based FS-PTC strategies is

presented in Table 6.1. Structurally, the SPVs-based FS-PTC strategy is simpler than the

RSFVC-based FS-PTC strategy. This is because the RSFVC-based technique contains

one additional PI controller and cascade connection. The main advantage of the RSFVC-

based FS-PTC is that it does not require weighting factor tuning between the torque and

flux errors in the cost function. However, this research shows that the SPVs-based FS-

PTC (with the tuned weighting factor between torque and flux errors) yields a similar

steady-state and transient performance to the RSFVC-based FS-PTC. This is detailed

in Chapters 4 and 5. In the present comparative analysis, the steady-state performance

is considered at 1000 r/min at rated-load torque (7.4 Nm). The required computational

effort for both control strategies is similar.

We may recall that the main objective of this chapter is to analyse the sensorless

FS-PTC performance of the 3L-NPC inverter fed IM drive. For a sensorless regenerative

operation, a system may be unstable, especially at lower speeds [120]. Over-current may

flow in the stator winding due to system instability. Hence, it is important to consider

over-current protection in the controller design. Hardware based over-current protection

can be implemented; however, the implementation cost and complexity will be increased.

In PTC, the over-current can be controlled easily by predicting the stator current in the

prediction loop (this was explained in Chapters 3 and 4). The RSFVC-based FS-PTC

with the stator current prediction in the prediction loop will not be as computationally

efficient. Apart from this, an effort has been made to retain the fundamental structure of
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Table 6.1: Comparison between the SPVs- and the RSFVC-based FS-PTC strategies for

the 3L-NPC inverter fed IM drive

Index SPVs-based FS-PTC RSFVC-based FS-

PTC

Total number of PI controllers One Two

Additional cascade connections (com-

pared to fundamental)

One (SPVs block) Two (PI controller

and RSFVC blocks)

Torque prediction Direct Indirect

Weighting factor λf tuning required not required

Predictive over-current protection Possible Not possible

Calculation time (µs) 36.90 36.82

Steady-state torque ripple (Nm) 0.90 0.95

Steady-state flux ripple (Wb) 0.020 0.018

Neutral-point voltage (Vp−p) ≤ 1.4 < 1

THD for ia (%) 3.5 3.5

Average switching frequency (kHz) 1.51 1.54

Torque rise time (ms) 0.5 0.46

the FS-PTC in the present sensorless analysis. Hence, the SPVs approach (instead of the

RSFVC approach) is considered to ensure that the proposed sensorless control algorithm

is computationally efficient.

6.3 Proposed SPVs-based sensorless FS-PTC

The FS-PTC strategy requires speed, stator current, stator flux and rotor flux informa-

tion. The states that are not available for measurements, such as stator and rotor flux,

are estimated using a suitable observer. In a sensorless operation, the rotor speed is also

estimated. For the proposed speed sensorless drive, the rotor speed and flux are estimated
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Figure 6.1: Proposed sensorless SPVs-based FS-PTC of IM drive fed by a 3L-NPC VSI.

using an EKF. The stator flux is then estimated from the estimated rotor flux using a

simple relationship between them, see Eq. (3.2). Instead of the measured stator current,

the estimated stator current is fed back into the predictive controller. The overall control

structure is shown in Fig. 6.1. It consists of four stages: estimation, prediction vectors

selection, predictions and optimisation. The steps are discussed in the following sections.

The performance and required computational burden are analysed for the 3L-NPC VSI.

6.3.1 EKF for rotor speed and flux estimations

To obtain rotor speed and flux information, an extended rotor current model of the IM

is employed in the EKF. The sixth-order nonlinear extended model of the IM, affected

by system and measurement noises (for tuning of EKF), is given by [68,94]:

ẋ = f(x, v) + w(t) (6.1)

y = Cox+ u(t) (6.2)

where x = [isα isβ ψrα ψrβ ωm Tl]
T ,

v = [vsα vsβ]
T ,
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





,

Co is the model output matrix, w(t) is the system/process noise and u(t) is the measure-

ment noise. The covariance matrices of w(t) and u(t) are Q and R, respectively. Apart

from the estimated stator current in the controller, treating Tl as a state is useful for the

low-speed estimation.

The output matrix Co and the covariance matrices, Q and R, are given by

Co =





1 0 0 0 0 0

0 1 0 0 0 0



 (6.3)

Q = cov(w) = E
{

wwT
}

(6.4)

R = cov(u) = E
{

uuT
}

. (6.5)

The continuous model in Eqs. (6.1) and (6.2) is discretised for implementation of the

EKF using the standard forward-Euler approximation—Eq. (2.11).

The recursive form of the EKF, including stochastic uncertainties, may be expressed

by the following system of equations [70].

Prediction process:

x̂[k|k − 1] = x̂[k − 1|k − 1] + f (x̂[k − 1|k − 1], v[k])Ts (6.6)

P [k|k − 1] =
∂f (x[k], v[k])

∂x[k]
P [k|k]∂f (x[k], v[k])

∂x[k]

T

+Q (6.7)

where x̂ is the state estimate, P is the state estimate error covariance matrix and

∂f/∂x|x̂[k],v̂[k] is the corresponding Jacobian matrix which involves linearisation of non-

linear state space model of the IM. For simplicity, all covariance matrices are assumed to

be diagonal [70].
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Kalman gain:

K [k] = P [k|k − 1]CT
(

CP [k|k − 1]CT +R
)−1

(6.8)

Innovation process:

x̂[k|k] = x̂[k|k − 1] +K[k] (y[k]− Cx̂[k|k − 1]) (6.9)

P [k|k] = P [k|k − 1]−K[k]CP [k|k − 1] (6.10)

The predictions in Eqs. (6.6) and (6.7) are updated with the present measurements

by Eqs. (6.9) and (6.10) using the Kalman gain calculated in Eq. (6.8).

Equation (6.9) yields the desired estimated rotor speed ω̂m, rotor flux ψ̂r and stator

current îs.

The stator flux is calculated using the relationship

ψ̂s =
Lm

Lr

ψ̂r + σLsîs. (6.11)

There is time delay between measurement and estimation. This delay degrades control

performance, especially at lower speeds. Hence, the estimated current, instead of the

measured current, is used in the stator flux estimation as well as in the prediction model

to avoid this.

6.3.2 Selecting prediction vectors

The prediction vectors are selected based on the SPVs strategy. As the SPVs strategy

has already been described in Chapter 4, it will not be repeated here. Between the

two strategies (torque-error-based and flux-error-based), the stator-flux-error based one

is selected in this study.

6.3.3 Prediction and optimisation

After the prediction vectors are selected, the control objectives—stator flux, torque,

neutral-point voltage and number of switching transitions—are predicted. The outcomes

of the observer—ω̂m, ψ̂r and îs, are employed in the model for the predictions.
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The stator flux is predicted using the stator voltage model of the IM, as shown in

Eq. (2.1). Using the estimated stator current, the expression in a discrete-time step is

repeated here as follows:

ψp
s(k + 1) = ψ̂s(k) + Tsvs(k)− TsRsîs(k). (6.12)

All predictions for other control objectives are similar, as detailed in Chapter 4. We

may recall that the predicted variables are actuated by minimising a predefined cost

function in order to determine an optimum voltage vector. Considering over-current

protection, the cost function is as follows:

g =

∣

∣

∣

∣

∣

T ∗
e (k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

|ψ∗
s| − |ψp

s(k + 1)|
∣

∣

∣

∣

∣

blankblank

+λcv

∣

∣

∣

∣

∣

∆Vc12(k + 1)

∣

∣

∣

∣

∣

+ λnnsw(k + 1) + Im.

(6.13)

Among the SPVs, the voltage vector that yields minimum g is selected as the voltage

vector vopt, and is applied to the motor terminals via the inverter in the next sampling

instant.

For the field-weakening operation, the reference torque T ∗
e and the reference stator

flux ψ∗
s in the cost function (6.13) are replaced by the new references of torque and flux

as [94]:

ψ∗
s,new =

ωm,base

ω̂m

·ψ∗
s (6.14)

T ∗
e,new =

ωm,base

ω̂m

· T ∗
e (6.15)

where ωm,base is the base speed of the fed machine.

The new reference of stator flux ψ∗
s,new is also used to calculate the flux-error δψs to

select an appropriate pool of prediction vectors.

Hence, the new cost function to minimise under field-weakening is

g =

∣

∣

∣

∣

∣

T ∗
e,new(k + 1)− T p

e (k + 1)

∣

∣

∣

∣

∣

+ λf

∣

∣

∣

∣

∣

∣

∣ψ∗
s,new

∣

∣− |ψp
s(k + 1)|

∣

∣

∣

∣

∣

blankblank

+λcv

∣

∣

∣

∣

∣

∆Vc12(k + 1)

∣

∣

∣

∣

∣

+ λnnsw(k + 1) + Im.

(6.16)

The delay compensation scheme [111] has been implemented to avoid one step delay

caused by digital implementation.
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6.4 Proposed sensorless control algorithm

The proposed sensorless FS-PTC procedure can be summarised by the following se-

quences.

Step 1) Measurement : Sampling is(k), Vc1(k), Vc2(k) and ωm(k). The measured speed

ωm(k) is used only for comparison.

Step 2) Apply : Apply the optimum voltage vector vopt(k).

Step 3) Estimate: Estimate the rotor speed ω̂m(k) and flux ψ̂r(k), and stator current

îs(k) using the EKF. Also estimate the stator flux ψ̂s(k) using Eq. (6.11).

step 4) Calculate: Calculate the new reference of the stator flux and torque for the

field-weakening operation using Eqs. (6.14) and (6.15), respectively, if required.

Step 5) Select : Select the prediction vectors using the SPVs strategy (see Subsection

4.5.1 in Chapter 4).

Step 6) Predict and evaluate: Predict the stator flux ψp
s(k+2), stator current ips(k+2),

torque T p
e (k + 2), neutral-point voltage ∆Vc12(k + 2) and number of switching

transitions nsw(k+2) using Eqs. (6.12) (forwarding one step for instant k+2),

(3.15), (3.16), (4.5) and (4.6), respectively. Also test the predicted current

ips(k + 2) using Eq. (3.9) to avoid over-current in the stator winding. Then,

evaluate the predicted variables by calculating the cost g using Eq. (6.13) (for

normal operation) or (6.16) (for field-weakening operation). Perform this step

for the selected 14 voltage vectors.

Step 7) Optimise: Select vopt(k+2) that results minimum g in the cost function. Return

to step 1).
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6.5 Computational capacity requirements for the pro-

posed control algorithm

The proposed control algorithm is coded in C and is implemented using dSPACE DS1104

R&D controller board with ControlDesk. The required maximum execution time is 91.87

µs, as shown in Table 6.2. Most of the execution time is spent on the estimations (rotor

speed and flux) and predictions: 62% and 27%, respectively. However, the prediction

time is comparatively short in relation to the control duration of 91.43 µs. If all the

possible 27 voltage vectors of the inverter, instead of the proposed selected 14 voltage

vectors, were used then the predictions stage would have been required 45.10 µs. Thus,

the average predictions time is reduced by 46%, from 45.1 µs to 24.36 µs. However, the

overall computational burden of the proposed sensorless PTC is reduced by 20%. For this

reason, it is possible to execute the proposed sensorless control algorithm within 100 µs.

Otherwise, the control algorithm would have been required around 120 µs. The average

execution times for other stages of the proposed controller are insignificant compared

with the estimations and predictions stages.

Table 6.2: Average execution time of the proposed SPVs-based sensorless FS-PTC algo-

rithm

Index –Average execution times (µs)–

SPVs All vectors

Measurement 4.39 4.39

Switching 0.12 0.12

Voltage and current calculations 0.72 0.72

Estimations using EKF 56.60 56.60

Prediction vectors selection 1.28 0.00

Predictions 24.36 45.10

Optimisation 3.40 6.25

Switching frequency calculations 0.56 0.56

Total 91.43 113.74
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6.6 Experimental results

The experimental results are obtained from the 3L-NPC inverter-fed sensorless FS-PTC

drive. The controller parameters are given in Appendix A. The same experimental setup,

as used in Chapters 4 and 5, is used. However, a dc-dc converter is used for loading the

fed motor at low-speed. The sampling time of the controller is set to 100 µs.

The elements of the covariance matrices in EKF are tuned by extensive experimenta-

tion. The covariance matrices used are as follows.

Q = diag ([10−7 10−7 10−7 10−7 0.1 10−7], 0)

R = diag ([100 100], 0)

The diagonal elements of initial state estimate error covariance matrix P (0) are all equal

to 10−9. All initial values of state’s X(0) are assumed as 0. Using these tuned covariance

matrices, the following investigations are carried out:

a) transient behaviour under rated-speed reversal;

b) steady-state behaviour;

c) low-speed behaviour with and without load torque;

d) robustness against an external rated-load torque disturbance;

e) step torque-transient characteristics;

f) rotor resistance sensitivity of the controller;

g) dynamic behaviour in the field-weakening region.

6.6.1 Transient behaviour under rated-speed reversal

The reverse speed operation of the proposed FS-PTC system at a rated-speed of 1415

r/min (148 rad/s) without load torque is performed, and the behaviour of the control

system is illustrated in Fig. 6.2. From top to bottom, the curves are the three speeds,

stator current, estimated torque, estimated stator flux and two dc-link capacitor voltages.

The zoomed measured and estimated speed responses confirm that the estimated speed

follows the actual speed accurately. Figure 6.2 shows that the stator flux is constant at
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Figure 6.2: Experimental waveforms of speeds, stator current, estimated torque, esti-

mated stator flux and two capacitor voltages under rated-speed (1415 r/min) reversal

condition.

its nominal value of 1.0 Wb. The stator flux produces good sinusoidal stator current

waveform. The THD of the stator current ia at steady-state is 5.5%; THD is calculated

with 10 cycles up to maximum 5 kHz (50% of the sampling frequency) using MATLAB.

The performance in terms of torque and flux ripple is good; the torque ripple is 1.0 Nm

and the flux ripple is 0.03 Wb. The capacitor voltages are balanced with very small

fluctuations during the speed-transient. Hence, the neutral-point voltage is effectively

controlled.

The speed estimation error is separately presented in Fig. 6.3. The speed error is

calculated as ∆ωm = ω̂m − ωm; the symbol ‘∧’ indicates the estimated value. To show

a readable and clear error information, an average value of every 25 source data points

is plotted. The mean value of ∆ωm at steady-state is 0.42% of the measured speed. It

can be seen that the estimation errors during the transient and at zero crossing point are
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Figure 6.4: Experimental steady-state waveforms of speeds, speed error, stator current,

estimated torque and estimated stator flux at rated-speed at rated-load torque.

acceptable.

6.6.2 Investigation of the steady-state behaviour

The steady-state tests are conducted at rated-speed at full-load torque, and the responses

are illustrated in Fig. 6.4. The mean value of the steady-state speed estimation error is

0.25% of the measured speed. The controller yields good stator current waveform, torque
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Figure 6.5: Experimental low-speed behaviour at ±60 r/min (±2Hz) at no-load torque.

and flux responses. At steady-state, the calculated stator current THD, torque ripple

and flux ripple are 4.9%, 1.05 Nm and 0.03 Wb, respectively.

6.6.3 Low-speed behaviour with and without load torque

The low-speed dynamic behaviour of the machine is tested for ±60 r/min (±2 Hz) with-

out load torque, and the responses are illustrated in Fig. 6.5. It can be seen that the

estimated speed can track the actual speed accurately; the mean steady-state speed error

is 6.9%. The speed error is higher (26% of the command speed) during the transient.

This is because of the comparatively large current THD and variable switching frequency.

However, the speed tracking accuracy, current THD, and torque and flux ripple are im-

proved compared to the all voltage vectors based FS-PTC, as illustrated in Fig. 6.6. To

convey the performance improvement in the proposed sensorless FS-PTC, the low-speed

responses for the all voltage vectors based FS-PTC are illustrated using the sampling

132




 
 
 
 
 
 

−60

0

60

S
pe

ed
 [r

/m
in

]
 

 


 
 
 
 
 
 


−10

0

10
∆
ω
m
[r
/
m
in
]

−2

0

2

i a
[A

]

−4

0

4

T̂
e
[N

m
]

0 0.2 0.4 0.6 0.8 1.0 1.2
0.95

1

1.05

|ψ̂
s
|[
W

b]

Time[s]

ωm ω̂m ω∗

m

∆ωm = 8.1%

Flux ripple = 0.036 Wb

Torque ripple = 1.15 Nm

THD=12.5%

Figure 6.6: Experimental low-speed behaviour at ±60 r/min (±2Hz) for the all voltage

vectors based FS-PTC at no-load torque using the sampling time of 120 µs.

time of 120 µs. To find an operating range of the system, the reference speed is reduced

to 15 r/min (0.5 Hz) and full-load torque is applied; Fig. 6.7 shows the responses of the

proposed control system. The mean steady-state speed error is 12.03%, and the sys-

tem is stable. The stator current THD at the steady-state is 8.7%. Thus, the proposed

sensorless drive functions well in the low-speed region. Figure 6.8 shows the low-speed

(0.5 Hz) response for the all voltage vectors based FS-PTC. It can be seen that there is

a large speed error (32.11%). In addition, the torque and flux ripple is increased. For

the proposed FS-PTC, the torque ripple and the flux ripple are 1.0 Nm and 0.032 Wb,

respectively; whereas, the ripples are 1.2 Nm and 0.040 Wb for the FS-PTC system using

all the voltage vectors.
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Figure 6.7: Experimental low-speed behaviour at 15 r/min (0.5 Hz) at full-load torque.

6.6.4 Investigation of robustness against rated-load torque dis-

turbance

Figure 6.9 shows the robustness of the system against an external rated-load torque

disturbance. The load is suddenly changed from no-load to rated-load torque (7.4 Nm)

as a disturbance on the fed machine. The motor speed drops slightly, and the controller

recovers within a short time (0.38 s). The speed estimation error is 0.4% of the measured

speed, which is reduced to 0.25% after the load torque is applied. It is noted that the

speed error is not significant during load transient at t =0.325 s. The THD of the stator

current is reduced from 5.42% to 4.88% after the load torque is applied. The stator flux

also remains constant at its rated value during load change, which confirms decoupled

control of torque and flux.
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Figure 6.8: Experimental low-speed behaviour for the all voltage vectors based FS-PTC

at 15 r/min (0.5 Hz) at full-load torque using the sampling time of 120 µs.

6.6.5 Torque-transient characteristics

Step torque-transient is investigated, and the results are presented in Fig. 6.10. Initially,

the machine is started with 100 r/min, and a step speed of 1415 r/min is then commanded

to achieve a step torque command. It can be seen that the controller alters active and

zero vectors frequently in the steady-state condition. Whereas only active voltage vectors

(long and medium) are selected during the transient. This yields fast dynamic torque

response. The torque rise time of the proposed controller is 0.7 ms. It is noted that the

torque rise time is 0.2 ms higher than the controller with speed sensor presented in the

previous chapters. This is because the step torque here is 135% rated-torque (10 Nm),

whereas it was equal to the rated-torque (7.4 Nm) in the previous cases.
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Figure 6.11: Experimental rotor resistance sensitivity at 1000 r/min without load torque.

6.6.6 Rotor resistance sensitivity of the controller

The resistance of the machine changes due to the change of temperature during motor

operation. Accuracy of the rotor current model of IM is sensitive to rotor resistance

variations, especially at high-speed. This is because the change of rotor resistance changes

the rotor time constant. To investigate the rotor resistance sensitivity of the controller,

the rotor resistance is increased gradually from 1 to 1.5 per unit. in the controller, and

the responses are illustrated in Fig. 6.11. It can be seen that the speed error is increased

slightly from 0.6% to 1.0%. However, the estimation error is still acceptable. Figure 6.11

also shows that the torque is increased slightly and the stator flux remains constant at

its rated value. The system is stable without any online parameter estimation.
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6.6.7 Dynamic behaviour in the field-weakening region

Finally, the behaviour of the proposed system in the field-weakening region is investigated.

The tests are conducted without load torque; only inertia of the dc machine is connected

to the fed motor. In order to maintain the speed limit (1800 r/min) of the dc machine, the

dc-link voltage of the inverter is reduced to 300 V (which is 51% rated-voltage). Hence,

the new base speed is about 716 r/min. The speed of the test setup is limited to 250% of

the new base speed. The stator flux is also limited to the range of 33–100% rated stator

flux to avoid very high-speed.

The machine is run up from 15 r/min to 1800 r/min (250% of the new base speed),

and the behaviour of the system is illustrated in Fig. 6.12. The speed profile is divided

into three different regions: region I (up to the base speed 716 r/min), region II (from

716 r/min to 1700 r/min) and region III (higher than 1700 r/min). In the region I, the

torque is constant at its maximum value, so it is called constant torque region. In the

region II, the torque command decreases as the speed increases to keep the delivered

power constant, so it is called constant power region. In this region, the stator flux

decreases proportionally with the increase of speed from the base speed to keep the

back-emf constant. For this reason, the stator current is constant in the region II. The

speed increases further and enters into the region III, where both torque and stator flux

decrease, as the dc-link voltage is not sufficient to inject the required current. The regions

II and III are called as field-weakening region. In all the three regions, the estimated

speed matches with the real speed properly. The mean steady-state speed error is 0.6%

of the measured speed, which is acceptable. The speed transitions, from one region to

another, are seamless. The torque and stator flux can also track their command values

accurately over the whole operating range. The dynamic torque vs. speed response of the

machine corresponding to Fig. 6.12 is also plotted in Fig. 6.13 to show the field-weakening

characteristic.
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Figure 6.12: Experimental dynamic behaviour of the machine in the field-weakening

region in step speed command.
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ing to Fig. 6.12 to show the field-weakening characteristic.
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6.7 Summary

This chapter has proposed a simplified sensorless FS-PTC for IM supplied from a 3L-

NPC inverter. The rotor speed and flux, and the stator current are estimated using an

EKF. Only the rotor current model is employed for tuning the EKF. Using the SPVs

strategy, the computational burden in the predictions step is reduced by 46%. However,

the overall computational burden of the proposed sensorless PTC is reduced by 20%. This

allows implementation of the proposed control algorithm with a low sampling time, which

yields improved torque, flux and speed responses, especially at low-speed. The controller

overcomes the neutral-point voltage problem of the inverter effectively. Experimental

results illustrate that the proposed sensorless controller is capable of estimating the speed

accurately from 15 r/min under full-load torque to a high-speed, including the field-

weakening region. Good stator flux and torque responses are achieved under different

operating conditions. The proposed controller is also robust against external rated-load

disturbance and parameter variation.
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Chapter 7

Conclusions and Future Prospects

The findings of this thesis can be summarised as follows:

1) Two simplified FS-PTC strategies based on SPVs and RSFVC in Chapters 3 and

5, respectively, have been proposed to reduce both the computational burden of the

PTC algorithm and complexity when designing the cost function. It is found that the

computational burden is reduced by up to 49%. Thus, the required processing power

of the micro-controller is reduced significantly. The average switching frequency is

reduced by 25% using the SPVs strategy for a 2L-VSI fed IM drive. It is also shown

that designing a cost function for the proposed FS-PTC strategies is not as complex

as the conventional FS-PTC strategy.

2) The performance of the FS-PTC with a 3L-NPC VSI has been investigated in Chap-

ter 4. It is found that the average switching frequency is less, and its variation range

over a wide speed range is also smaller, than the 2L-VSI fed IM drive. For a particular

speed, the average switching frequency is almost constant at different load torques.

Some other advantages are also apparent, such as low harmonic distortion in the

stator current, and less torque and flux ripple. The neutral-point voltage inherited

from the 3L-NPC inverter has been controlled effectively at around zero value. The

computational burden of the proposed FS-PTC with the 3L-NPC inverter is reduced

by 38% using the SPVs strategy.

3) Finally, a speed-sensorless simplified FS-PTC based on EKF has been demonstrated
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in Chapter 6. The estimated current, instead of the measured current, has been

proposed for the stator flux estimation and predictions to avoid the time delay be-

tween measurement and estimation. It is shown that the controller is capable of

estimating the speed accurately from a very low-speed under full-load torque to a

high-speed, including the field-weakening region. The computational burden of the

proposed sensorless FS-PTC algorithm is reduced by 20% using the SPVs strategy,

which yields improved torque, flux and speed responses, especially at low-speed.

All of the above findings have been experimentally verified. The analysis and verifica-

tion are described fully in Chapters 3–6. The contributions are discussed further, along

with possible future opportunities, below.

Chapter 3 has proposed a SPVs strategy for simplifying the FS-PTC. The simpli-

fied SPVs approach is applied to a 2L-VSI fed IM drive. The proposed controller only

employed three voltage vectors, instead of the eight used in the conventional FS-PTC

for prediction and optimisation. Thus the computational efficiency is improved. A re-

duction in the average switching frequency of each semiconductor switch is achieved by

not considering the number of switching transitions in the cost function. This reduces

the number of control objectives in the cost function. The reduced number of control

objectives in the cost function makes the selection of weighting factors simpler than in

the conventional method. These benefits are achieved without sacrificing the torque and

flux performance.

These findings can assist future research in the following areas:

I) Incorporation of machine parameter estimation, dead-time compensation strategy,

duty cycle control algorithm and more elaborate inverters—multi-level and matrix

converters—within the FS-PTC IM drive strategy. Including these extra features

would be possible due to the reduction in the computational burden proposed in this

thesis.

II) Computationally efficient predictive control of other types of drives and converters.

For example, the proposed simplified approach could be applied easily to a linear

machine for nonlinear force (thrust) control, a permanent magnet synchronous ma-

chine (PMSM) for torque control and grid/PV connected converters for voltage/cur-
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rent/power control. For the linear machine, power-factor correction (PFC) can be

easily combined with the duty cycle control.

III) A simplified DB PTC technique for motor drives with constant switching frequency.

The predicted optimum voltage vector will be updated by a correction voltage to

generate a reference voltage vector. The correction voltage will be produced based

on DB torque and flux. In this case, the predicted optimal torque and flux will

be used with the respective references. Finally, the reference voltage vector will be

produced using SVM technique and applied to the motor terminals.

Chapter 4 has proposed the integration of the FS-PTC with a 3L-NPC VSI driven

IM drive. It has been shown that a three-level inverter fed IM drive produces improved

dynamic torque and flux responses, and stator current THD with the reduced average

switching frequency, compared to the 2L-VSI fed IM drive. The variation range of average

switching frequency in the whole operating range of the machine is also small, which

is a hallmark of the proposed FS-PTC. For a particular speed, the average switching

frequency is almost constant at different load torques. The inherent neutral-point voltage

problem of a 3L-NPC inverter is handled easily by treating the neutral-point voltage as

a variable to the cost function, and is maintained at around zero. The performance

of the proposed controller has also been compared with the well established classical

FOC and DTC strategies at the specific operation point. Experimental results show

that the proposed FS-PTC yields better overall performance at a particular operating

point. However, the computational burden of the proposed FS-PTC is much higher. To

reduce the computational burden, the SPVs strategy is applied to the proposed 3L-NPC

inverter fed IM drive. As a result, the computational burden of the proposed algorithm

is significantly reduced without affecting the dynamic performance of the system. The

proposed 3L-NPC VSI is of course expensive and is complex in structure when compared

with a 2L-VSI. However, this study illustrates the effectiveness of the fundamental FS-

PTC with a 3L-NPC VSI using today’s commercially available DSP.

Chapter 5 has proposed a second simplified RSFVC-based FS-PTC for the IM drive

supplied from the 3L-NPC inverter. Apart from the number of possible prediction vectors

discussed in Chapters 3 and 4, the computational burden is evidently a consequence of
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the complex calculations in the prediction loop of the FS-PTC strategy. The proposed

RSFVC-based FS-PTC does not contain complex stator current and torque calculations

inside the prediction loop. Thus the controller demands less processing power. The re-

quired processing power for the RSFVC-based FS-PTC is further reduced by developing

a compound FS-PTC strategy. This is the combination of the RSFVC- and SPVs-based

FS-PTC strategies. The tuning effort on the weighting factor between torque and flux

errors is also avoided as torque is now not predicted inside the prediction loop. Exper-

imental results show that the proposed controller yields a similar performance to that

achieved with the torque calculations in the prediction loop (discussed in Chapter 4).

The proposed PTC structure contains one additional PI controller and simple block for

the RSFVC. However, the stability test results and the torque-transient response con-

firm that the additional cascade connections have no negative effects on the dynamic

performance of the system.

In future, the analysis proposed in Chapters 4 and 5 should facilitate FS-PTC use for

medium- and high-voltage drive applications, where more inverter switching states may

be available and a higher number of objectives need to be controlled. More specifically,

the following projects are expected to benefit from the proposed FS-PTC strategies.

IV) A dual inverter fed open-end winding machine for fault tolerant operation, where 64

voltage vectors are available. The number of voltage vectors can be reduced using

the proposed SPVs strategy. Zero common mode voltage and zero sequence current

can be controlled by treating them as variables to the cost function.

V) A simplified FS-PTC for a multi-phase machine where additional objectives, such as

common mode voltage and harmonic distortion in a particular plane, require control.

VI) A modified FS-PTC for SM driven by a 3L-NPC inverter, where the torque PI

controller can be eliminated using the relation between torque and load angle; the

torque is proportional to the load angle within a certain range.

VII) A simplified hybrid PTC, a combination of vector control and classical PTC, using

the SPVs strategy. The vector control technique (inner current control loop) will

be used to generate the reference voltage vector. The prediction vectors will be
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selected based on the position of the reference voltage vector. Finally, an optimum

switching state will be selected based on prediction, as with the PTC. In this case, the

computational burden is expected to be reduced significantly, especially in systems

with multi-level converters and multi-phase machine drives in which the number of

voltage vectors is expected to be large.

VIII) FS-PTC of high-power electrical drives fed by a three-level active neutral-point

clamped (3L-ANPC) inverters under device failure conditions. Two types of de-

vice failure may be considered: open failure and short failure. In this project, bal-

anced power loss distribution among the semiconductor devices in the inverter can

be achieved by selecting proper zero switching states. In addition, the reliability of

the system, compared to that of the 3L-NPC inverters, may be improved.

IX) A trade-off can be established between the system’s performance and switching fre-

quency using various control strategies (i.e., FOC, DTC and PTC). A graph of THD

vs. switching frequency can be plotted to show how much higher a switching fre-

quency would be required for FOC and DTC to achieve the same THD as with the

PTC. Similarly, another graph of torque and flux ripple vs. switching frequency can

also be plotted for the same torque and flux ripple as with the PTC.

Chapter 6 has proposed an EKF based simplified sensorless FS-PTC for IM supplied

from the 3L-NPC inverter. The rotor speed and flux, and the stator current are estimated

using the EKF. As both the predictive control and EKF require intensive calculations,

the proposed sensorless strategy is computationally expensive. Using the proposed SPVs

strategy, the computational burden of the predictive algorithm is reduced, enabling im-

plementation of the proposed sensorless control algorithm with a short sampling time.

As a result, the proposed controller yields improved torque, flux and speed responses,

especially at low-speed. To avoid the time delay between measurement and estimation,

the estimated current, instead of the measured current, has been proposed in the stator

flux estimation, as well as in the predictions. Experimental results show that the con-

troller is capable of estimating the speed accurately from a very low-speed under full-load

torque to a high-speed, including the field-weakening region. Good stator flux and torque
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responses are achieved under different operating conditions. The proposed controller is

also robust against external rated-load torque disturbance and parameter variation.

In future, this sensorless work can be extended for the followings.

X) Compensating the rotor resistance variations and a stability analysis of the proposed

controller, to improve the system performance further.

XI) Designing a starting method from zero speed for the proposed sensorless FS-PTC.

As both the initial rotation direction and speed is unknown, the motor may not

start smoothly from zero speed. If the estimated speed is significantly lower than the

actual speed, the sensorless drive may be unstable. Hence, it is useful to design an

observer which will be used only for starting the machine. Once the estimated speed

converges to the actual speed, the original sensorless controller will be activated.

XII) A comparative study of different model-based observers, such as MRAS, SMO and

LO, for an sensorless FS-PTC strategy. This would determine the most appropriate

observer. In FS-PTC, an appropriate observer is vital, as the predictions of control

objectives are dependent on the estimated speed and flux. The errors in the estimated

variables lead to incorrect selection of the voltage vectors, thus degrading the control

performance. In the observer selection process, some parameters will be considered as

the key factors. These could include the structural complexity of the overall system,

the required computational effort, and the control performance. A reduction in the

overall computational burden, as proposed in this thesis, will be more significant for

less complex observers.

XIII) Simplified sensorless FS-PTC strategies are expected to be possible for linear machine

and PMSM drives using the proposed SPVs strategy.

Finally, the experimental results presented in this thesis can be compared with sim-

ulation results to observe practical implementation effects. Simulation results may also

help to provide insight into any unusual phenomena observed experimentally.
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Appendix A

Parameters and specifications

Table A.1: The 415 V, 3-φ, 50 Hz IM param-

eters

Rs = 6.03 Ω ψsnom = 1.0 Wb

Rr = 6.085 Ω Tnom = 7.4 Nm

Ls = 0.5192 H Np = 2

Lr = 0.5192 H J = 0.011787 Kg.m2

Lm = 0.4893 H ωm = 1415 r/min

Table A.2: DC machine ratings

P = 1.1 kW

V = 180 V

Ia = 6.9 A

ω = 1800 r/min

Table A.3: 2L-VSI specification

Maximum dc-link voltage 1200 V

Maximum current 50 A

Converter switches IGBT

Table A.4: 3L-NPC VSI specification

Maximum dc-link voltage 900 V

dc-link capacitors 3300 µF/450 V× 2

Converter switches SKM100GB123D

Gate units SKYPER 32PRO
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Table A.5: Controllers’ parameters for the proposed FS-PTC drives

2L-VSI 3L-NPC VSI RSFVC-based FS-PTC Sensorless FS-PTC

(Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6)

Vdc = 587V Vdc = 587V Vdc = 587V Vdc = 587V

Ts = 50µs Ts = 70µs Ts = 70µs Ts = 100µs

kpω = 0.396, kiω = 9.056 kpω = 0.3, kiω = 3.0 kpω = 0.3, kiω = 5.0 kpω = 0.3, kiω = 3.0

λf = 30, λn=0.05 λf=25,18(for the SPVs) kpTe
= 200, kiTe

= 50 λf=25

Imax=5.0 A λcv = 10−4, λn = 10−6 λf=25 (for the conventional FS-PTC) λcv = 10−4, λn = 10−6

Imax=5.0 A λcv = 10−4, λn = 10−6 Imax=5.0 A

For the FOC strategy

kpω = 0.2, kiω = 10

kp−id = 20, ki−id = 10

kp−iq = 50, ki−iq = 10

iqref−max = 3.537A

|ψrref | = 0.93Wb
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Appendix B

Experimental setup

The experimental setup is shown in Fig. B.1(a). For the experiment with a 2L-VSI, the

same setup is used replacing the 3L-NPC VSI with the 2L-VSI as shown in Fig. B.1(b).

The setup mainly consists of a squirrel-cage IM specified in Table A.1, a 2L-VSI or

3L-NPC VSI and a DC machine. The specifications of the 2L-VSI and 3L-NPC VSI

are given in Table A.3 and A.4, respectively. The inverters have internal high-current

protection circuit, which has not been used in this study. A software based over-current

protection is implemented by applying zero vector continuously if over-current flows in

the stator winding. Some other hardware based protections exist, such as short circuit,

over temperature and under voltage. A permanent magnet dc machine is coupled to the

rotor shaft to analyse the loaded behaviour of the system; the DC machine rating is given

in Table A.2. A rheostat is placed across the dc machine armature to change the load

on the fed motor. However, for the sensorless operation, a dc-dc converter is employed

for loading the motor at a low-speed. Two LEM voltage sensors ‘LV 25-P’ and two LEM

current sensors ‘LA 55-P’ with proper circuit arrangements, as shown in Figs. B.2 and B.3,

respectively, are used to measure the dc-link voltage and stator current. An incremental

encoder of 5000 PPR is mounted on the motor shaft to measure the speed. The outer

speed loop of the controller is sampled in every 2.5 ms to minimize the quantization

error. A digital deadtime generator, as shown in Fig. B.4, is used to inject the required

deadtime between two complementary switching signals; the deadtime used is 2.5 µs.

These complementary switching signals are required to drive the complementary switches
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Figure B.1: (a) Experimental setup with the 3L-NPC VSI and (b) top view of the 2L-VSI.

in the inverter. The voltage level of the output of the deadtime generator is boosted from

+5 to +15 V using the IC ‘HEF4104’. This is done to ensure the adequate voltage level

of the switching signals applied to the semiconductor switches.
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B.1 Modification in the gate circuits of the 3L-NPC

VSI

The 3L-NPC VSI used in this thesis was an ANPC inverter; however, the generated

switching signals by the controller are exactly same as used for a diode clamped inverter,

as discussed in Chapter 2. Every phase of the inverter is constructed with the three gate

units of ‘SKYPER 32PRO’, as shown in Fig. B.5(a). Each gate unit has two IGBT

switches, which has internal cross over protection. Hence, two switches in a unit can

not be turned on at the same time. Both the switches in a unit will be off if two

logic one signals are applied simultaneously. When a logic zero is applied to both the

clamping switches {Sa3, Sa4}, the inverter exactly acts as a diode clamped inverter, and

this strategy is followed to connect the output poles to the positive and negative rails of

the bus bar. As both the switches in gate unit 3 can not be turned on simultaneously, a

logic one signal is applied to both clamping switches for the neutral-point connection. In

this case, the load current can flow in either direction, as shown in Fig. B.5(b). A logic
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Figure B.5: Internal structure of the 3L-NPC inverter and its operating principle for the

neutral-point connection for each phase. (a) Orientation of the gate units for phase a, (b)

illustration of the neutral-point connection for positive and negative load currents ±ia
and (c) generation of the switching signals for the clamping switches.

AND gate ‘HEF4081BP’ is employed for each phase to generate the switching signals

for the clamping switches, as shown in Fig. B.5(c). The switching signals of the gate

unit 3 are used as the inputs to the AND gate. Hence, the clamping switches are turned

on when only neutral-point connection is required. All the possible switching signals for

each phase x = {a, b, c} are shown in Table B.1. Note that only an external logic AND

gate is employed to operate the ANPC inverter as a diode clamped inverter.

Table B.1: All the switching signals and corresponding outputs for each phase of the

3L-NPC inverter

Switching states Output voltage

Sx1 Sx2 S̄x1 S̄x2 Sn vx0

1 1 0 0 0 +Vdc/2

0 1 1 0 1 0

0 0 1 1 0 −Vdc/2
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Figure B.6: FOC scheme used to compare its dynamic performance with the proposed

FS-PTC.
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