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Abstract

Power electronics converters play an essential role in all stages of the energy
conversion. Starting from the production units, until the final consumers
are reached, power electronic converters are required to provide high effi-
ciency energy conversion and quickly respond to changes in such stochastic
environments. With the generation power installation size continuously in-
creasing, more complex topologies have emerged to satisfy the high level
requirements of energy conversion. A more complex topology will of course
require a higher complexity of the control algorithm, that can incorporate all
the non-linearities and the additional control objectives. Traditional cascaded
linear controllers have dominated in the power electronics applications for
many years. However, when designing and implementing these controllers,
the non-linear power electronic converter systems have to be approximated
by linear systems. This can lead to variation of performance. Moreover, mul-
tiple control objectives may slow down the response of the cascaded struc-
tures.

Finite set model predictive control (FS-MPC) algorithm comes from the
family of non-linear algorithms and it is characterized by a straightforward
design and a fast transient response. Multiple control objectives can simply
be implemented in the cost function, which defines the desired behaviour
of the converter. Therefore, one control loop can replace the nested control
loops of the linear controller. Each objective in the cost function comes with
a weighting factor, defining the importance of the objective.

Although many applications of the FS-MPC algorithm were proposed in
power electronics, the algorithm has not yet fully reached the level of matu-
rity observed for the linear controllers. For FS-MPC algorithm applications
in power electronics, well defined design procedures and tools for assessing
the performance and the stability are missing. The goal of this Ph.D. project
is to propose new approaches and tools that can removed some of these lim-
itations.
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FS-MPC algorithm is an attractive alternative for multilevel converters,
which due to higher number of devices and sources, require the implemen-
tation of additional control objectives. It is demonstrated that FS-MPC algo-
rithm can not only be used to achieve a fast transient response and good refer-
ence tracking abilities, but is also able to extend the life-time of the three level
neutral point clamped (NPC) converter. Uneven stress distribution, which is
limiting the maximum output power of the converter, is a well-known prob-
lem of the neutral point clamped converter topology. The proposed FS-MPC
algorithm can achieve a balanced stress distribution and reduce the junction
temperatures of the most stressed devices. For the implementation, no addi-
tional measurements or device information are necessary. Moreover, FS-MPC
algorithms can easily be adapted to optimize the operation of different hy-
brid configurations. In these configurations, the most stressed devices can be
replaced with wide-bandgap devices, which can operate under higher volt-
ages, temperatures and switching frequencies than silicon devices.

As mention before, each objective in the cost function is paired with a
weighting factor. The tuning of these factors is not a trivial task and it can
be time consuming if empirical methods are used. Therefore, an artificial
intelligence aided design is proposed in this project for a fast optimization of
the weighting factors with an analytical performance guarantee. Very good
performance of high complexity optimizations in different converter applica-
tions confirmed the versatility of the proposed method.

If no simplifications or heuristic search algorithms are used, implementa-
tion of FS-MPC can become cumbersome on industrial microprocessor plat-
forms for multi-step horizon algorithms and also for multilevel topologies
with many switching combinations. Extending the prediction horizon can
improve the control performance. When the prediction horizon is extended,
the algorithm needs to find a sequence of switching actions that will min-
imize the cost function. Therefore, to reduce the computational burden of
these applications, a solution based on artificial neural networks (ANN) is
proposed. It was confirmed that ANN, a computationally light structure,
can learn to imitate the FS-MPC algorithm with a very high accuracy. Even
with an extension of the prediction horizon, the computational burden did
not increase. This finding opens up opportunities for the implementation of
not only FS-MPC algorithms but also to include an on-line tuning using new
measurements to improve the controller performance.

Another contribution of this Ph.D. project is a performance verification
tool for FS-MPC algorithm. FS-MPC algorithm is currently missing a uni-
versal approach to validate the performance in stochastic environments. The
proposed approach uses statistical model checking (SMC), a powerful method
for checking the performance of hybrid systems that feature both determin-
istic and stochastic behaviour. By running enough independent simulations,
the SMC is able to predict the system behaviour. It offers the opportunity



to compare effects of different weighting factor combinations and parameter
uncertainties on the control algorithm performance.

In conclusion, the contributions of this Ph.D. projects are aiming to re-
move the limitations of FS-MPC algorithm, show advantages of implemen-
tation on multilevel converters and propose tools that can validate and op-
timize its performance. Thus, it is anticipated that these findings can bring
FS-MPC algorithm one step closer to more power electronics industrial im-
plementations in the near future.





Dansk Resumé

Effektelektroniske omformere spiller en væsentlig rolle i alle faser af den
elektriske energiomsætning. Startende fra el-produktionsenhederne (ved-
varende energikilder) til de endelige el-forbrugere kræves effektelektroniske
omformere for at levere en effektiv el-konvertering og hurtigt at kunne rea-
gere på last ændringer. Da produktionen af el fra vedvarende energikilder
konstant stiger (og størrelsen af enhederne stiger), er der kommet mere kom-
plekse topologier (elektriske kredse) til at opfylde de høje krav til el- konver-
teringen. En mere kompleks topologi kræver oftere en højere kompleksitet af
kontrolalgoritmen, der kan inkorporere alle ikke-lineariteter for at kunne op-
fylde nogle krav til en kontrol-performance. Traditionelle kaskade-koblede
lineære kontrollere har domineret effektelektroniske apparater i mange år.
Ved design og implementering af disse typer kontrol-enheder for de effekt-
elektroniske omformere, der oftest er ikke-lineære, må der imidlertid tilnær-
mes til lineære systemer. Dette kan føre til variation i apparatets performance
afhængig af arbejdspunkt. Samtidig kan flere kontrolmål nedsætte respon-
sen fra de disse typer kontrol-strukturer, hvorfor andre kontrol strukturer er
interessante at undersøge.

Finite-set model prediktiv kontrol (FS-MPC) kontrol algoritmen kommer
fra familien af ikke-lineære kontrol strukturer, og den er kendetegnet ved
et ligetil design og også havende en hurtig dynamik. Flere kontrol-mål kan
simpelt implementeres ved hjælp af en speciel omkostningsfunktion i kontrol
algoritmen, der definerer konverterens ønskede opførsel. En sådan kontrol-
struktur kan erstatte de kaskade-baserede kontrolsløjfer. Hvert mål i omkost-
ningsfunktionen har en vægtningsfaktor, der definerer målets betydning.

Selv om mange applikationer af FS-MPC-algoritmen er blevet foreslået
i effektelektronisk omformere, har algoritmen endnu ikke fuldt ud opnået
det modenhedsniveau, som allerede eksisterer for de lineære kontrollere. Til
FS-MPC-algoritmeapplikationer i effektelektronik mangler veldefinerede de-
signprocedurer og værktøjer til vurdering af ydelsen, samt til analyse af sta-
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biliteten af hele systemet. Målet med dette ph.d. projektet er at foreslå nye
metoder og værktøjer, der kan fjerne nogle af disse begrænsninger.

FS-MPC-algoritmen er eksempelvis et attraktivt alternativ for multi-level-
omformere, som på grund af et større antal komponenter og spændingskilder
kræver implementering af flere kontrolmål. Det demonstreres i afhandlingen,
at FS-MPC-algoritmen både kan bruges til at opnå en hurtigere respons og
har en god evne til at følge en reference, men er samtidig også i stand til
at forlænge levetiden af en tre-niveau effektelektronisk omformer, som også
kaldes en neutral-point clamped (NPC) konverter. En ujævn spændingsdel-
ing imellem kondensatorerne, der ofte begrænser konverternes maksimale
udgangseffekt, er et velkendt problem med NPC konverteren. Den fores-
låede FS-MPC-algoritme kan opnå en afbalanceret spændingsfordeling og
samtidig reducere temperaturerne for de mest stressede effektelektroniske
komponenter. Til implementering af styre-metoden er der ikke behov for
yderligere målinger og det er derfor en meget simpel metode, der er fores-
lået i afhandlingen. Derudover kan FS-MPC-algoritmen let tilpasses til at op-
timere driften af forskellige andre komponent-konfigurationer. I disse konfig-
urationer kan de mest stressede enheder erstattes med wide bandgap kom-
ponenter, som kan arbejde ved højere spændinger, temperaturer og switch
frekvenser sammenlignet med silicium baserede komponenter.

Som nævnt tidligere er hvert mål i omkostningsfunktionen for FS-MPC
forbundet med en vægtningsfaktor. Indstillingen af disse faktorer er ikke en
triviel opgave, og det kan være tidskrævende, hvis der kun anvendes em-
piriske metoder. Derfor foreslås der i PhD afhandlingen at anvende en kun-
stig intelligensunderstøttet design-metode til en hurtig optimering af vægt-
ningsfaktorerne med en analytisk garanteret performance. Der er opnået i
afhandlingen en meget god ydelse af systemet via disse optimeringer, som
har høj kompleksitet og det har bekræftet alsidigheden af den foreslåede
metode.

Hvis der ikke anvendes nogen forenklinger eller heuristiske søgealgorit-
mer, kan implementeringen af FS-MPC blive besværlig på industrielle mikro-
processorplatforme, specielt for algoritmer der kigger længere ud i fremtiden
end kun en samplingsperiode. Udvidelsen af forudsigelseshorisonten kan
naturligvis umiddelbart forbedre kontrolydelsen, men når forudsigelsesho-
risonten udvides, skal algoritmen samtidig finde en sekvens af handlinger,
der minimerer omkostningsfunktionen for FS-MPC. For at reducere bereg-
ningsbyrden for disse applikationer foreslås derfor en løsning baseret på
neurale netværk (ANN). Det er blevet bekræftet i afhandlingen, at ANN er
en beregningsmæssig let struktur at anvende og som kan lære at efterligne
FS-MPC-algoritmen med en meget høj nøjagtighed. Selv ved en udvidelse
af forudsigelseshorisonten (3-4 samples) steg beregningsbyrden ikke nævne-
værdig, når ANN blev anvendt. Denne erfaring åbner muligheden for imple-
mentering af ikke kun FS-MPC algoritmer, men også for at kunne inkludere



en online-optimering ved hjælp af nye målinger for at forbedre kontrollerens
ydelse.

Et andet bidrag fra dette ph.d. projekt er udviklingen af et værktøj til
eftervisning af ydelsen af FS-MPC algoritmer, hvilket hidtil har været meget
vanskeligt. FS-MPC algoritmen mangler en universel tilgang til validering
af ydeevnen i anvendelser med statistiske usikkerheder (stokastisk opførsel).
Den foreslåede fremgangsmåde bruger en statistisk modelkontrol (SMC) al-
goritme, som er en kraftfuld metode til at kontrollere ydelsen af hybride sys-
temer, der indeholder både deterministisk og stokastisk opførsel. Ved at køre
en række uafhængige simuleringer er SMC i stand til at forudsige systemad-
færden. Dette giver mulighed for at sammenligne effekten af forskellige kom-
binationer af vægtningsfaktorer og parameterusikkerheder i forbindelse med
kontrolalgoritmen.

Afslutningsvis har bidragene fra dette ph.d. projekt kunnet fjerne nogle af
begrænsningerne i FS-MPC-algoritmen, det har også vist fordele ved anven-
delse af algoritmen på multi-level-omformere og samt foreslået værktøjer, der
kan validere og optimere den foreslåede algoritmes ydeevne. Det forventes
således, at disse bidrag kan bringe FS-MPC-algoritmen et skridt tættere på en
mere industriel implementering i effektelektroniske systemer i den nærmeste
fremtid.
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Chapter 1
Introduction

“Strive for perfection in
everything you do. Take the best
that exists and make it better.
When it does not exist, design it.”

Sir Henry Royce

1.1 Background

Five important factors define the success factor of every emerging control
method for power electronics converters: control concept simplicity, high-
performance operation, robustness, proof of stability and versatility of the
application [J3]. Due to these factors, for a very long period, the conventional
cascaded linear control has dominated power electronic applications [1]. The
design process of linear controllers is matured with well-defined guidelines
for selecting the controller parameters, evaluating the performance and veri-
fying the stability. However, power electronic converter systems are by nature
non-linear systems, therefore to apply this conventional method, the system
needs to be approximated with a linear system by using the pulse width
modulation (PWM) techniques. Thus, some non-linear characteristics of the
converter system can not be captured by a linear system model and this can
as end-effect lead to limited performance. Also, to avoid overlapping in a cas-
caded structure system as shown in Fig. 1.1, the time constants of each outer
loops have to be slower than the inner loop time constant. This of course will
reduce the overall response speed of the controller.

A non-linear controller could therefore be a better option for power elec-
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Load

= 

≈ 

DC-link

Output 
filter
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Inner control 
loop

Outer control 
loop

Linear 
Controller

Lf 

Cf 

Fig. 1.1: Stand-alone converter system with conventional cascaded linear control.

tronics systems. The reason why non-linear controllers have been considered
unpractical in the early stages of their development, is the disproportion in
the available controller processing power and the computational burden of
the algorithms. Nowadays, the processing power is increasing rapidly and
advanced algorithms that were for long time living as an idea in the simu-
lation software tools, are now ready for experimental validations and even
industrial implementations [2, 3]. Another reason is lack of theoretical un-
derstanding.

One of the non-linear algorithms, that is receiving a lot of attention in
power electronics now, is the finite set model predictive control (FS-MPC) al-
gorithm [4]. The following three characteristics have contributed to the popu-
larity of the algorithm. First, it is a simple control concept. The control objec-
tives in FS-MPC control are defined through cost functions, which typically
have the structure of square of Euclidean distances between the predictions of
the controlled variables and the reference signals. Further, non-linearities like
limitations of the converter current have a straightforward implementation.
Not only reference tracking objectives can be included in the cost function,
but also objectives like harmonics eliminations [5], common-mode voltage
minimization [6], loss distribution[7], active thermal control [8], switching
frequency minimization [9] have been applied. The high performance opera-
tion is a product of a single loop operation, without the cascade structure the
response to disturbances is much faster [10]. Thus the control scheme from
Fig. 1.1 is converted to the scheme shown in Fig. 1.2. Third, applications
of the MPC have spread to almost all power electronic converter topologies
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Fig. 1.2: Stand-alone FS-MPC controlled converter system.

[11], starting from the simple DC-DC boost topologies [12], two-level VSC
converters popular for renewable energy applications [13] and drives [14, 15],
multilevel converters [16, 17] and multi-cell converters [18].

Yet in many industrial applications linear control methods are still domi-
nant while the FS-MPC is viewed as a research topic only. Nonetheless, there
are three applications where model predictive algorithms can yield superior
performance compared to the conventional linear control methods:

• Applications with many control variables. [19]

• Applications where the time constants are too close to each other.

• Applications with significant and dynamic cross coupling of the control
variables. [10]

To come to the stage of industrial implementation in power electronics con-
verters, versatile tools for optimizing the control algorithm design, perfor-
mance and stability need to be developed for the FS-MPC algorithms [11, 20–
22] .

1.1.1 FS-MPC algorithm for control of the NPC converters

With the power installation size continuously increasing, an efficient solution
was needed to cover the wide voltage range of the power electronic converter
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applications. Thus in 1981 [23] the first multilevel topologies were introduced
to improve the efficiency of the variable speed drives. Although the initial ap-
plications were in medium and high voltage range [24], multilevel topologies
have also been spread to the low voltage applications due to the lower total
harmonic distortion (THD) of the output voltage, lower switching losses and
converter filter size compared to the standard 2-level voltage source convert-
ers (VSC). Especially for interconnection of renewable energy sources, they
have become an attractive alternative due to the before mentioned benefits
[25, 26].

One of the multilevel topologies that very quickly spread to various ap-
plications is neutral point clamped (NPC) topology [27]. The configuration
of one phase module is shown in Fig. 1.3. However, it was soon noticed that
in some operating conditions of the converter, the uneven stress distribu-
tion was limiting the maximum output power and the switching frequency.
Especially under nominal operating conditions or low voltage ride through
scenarios, the design margins have to be adapted to the most stressed devices
[28]. In 2001 a new topology was derived from the NPC topology by replac-
ing the clamping diodes with active switches [29]. The implementation of
the active devices, offered more redundancy and options to control the stress
distribution, though by the cost of two more devices, gate drivers and also
power supplies.

Algorithms that can include multiple control objectives are of special in-
terest for multilevel converter topologies like NPC topologies. Due to the
higher number of devices and voltage sources, the complexity of the control
algorithm is much higher then for e.g the conventional 2-level VSC’s [30]. For
example for the 3-level neutral point clamped (NPC) topology in the system
configuration shown in the Fig. 1.2, three variables are controlled: the out-
put voltage on the filter capacitor, DC-link voltage balance and the switching
frequency (if no modulator is used). The configuration is normally used for
stand-alone converter operations like uninterruptible power supplies [31] or
AC microgrids [10]. However, as mentioned before, to keep the converter op-
eration in safe conditions, the most stressed device will define the maximum
allowed output power. Not only does this determine the output power, it
also affects the converter life-time [32]. It is straightforward that the devices
working under higher thermal stress are more prone to fail. Therefore, the
balanced thermal distribution is not only out of interest for converter perfor-
mance but also the reliability. FS-MPC algorithm offers the opportunity to
unite all of the mentioned objectives for the NPC topology in a single control
loop.

The design process of the FS-MPC algorithm can be divided into three
stages depicted in the Fig. 1.4. For the NPC converter 27 different switching
combinations can be applied to achieve 19 different voltage vectors, 8 redun-
dant vectors are used to control the neutral point of the DC-link capacitors.
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Fig. 1.3: Single phase NPC module scheme with an output LC filter.
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Fig. 1.4: Design flow of the FS-MPC algorithm for power electronic converters.

To control the output voltage of the NPC converter in Fig. 1.2 the cost func-
tion needs to contain two objectives: voltage reference tracking and DC-link
balancing:

g = (v∗cα − vP
cα)

2 + (v∗cβ − vP
cβ)

2 + λdc · gdc (1.1)

gdc = (vP
dc1 − vP

dc2)
2 (1.2)

where vP
c αβ and vP

dc1,2 are the predicted filter and DC-link voltages, v∗c αβ are
the defined reference filter voltages and λdc is the weighting factor. To obtain
the predictions of voltages, system equations that define the DC and AC dy-
namics are used. For predicting the DC dynamics, capacitor voltages vdc1,2(t)
and respective charging currents idc1,2(t) are calculated using the following
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equations:

vdc1,2(t) = Cdc1,2
didc1,2(t)

dt
(1.3)

idc1(t) = idc(t)− ∑
x=a,b,c

H1x · i f x(t) (1.4)

idc2(t) = idc(t) + ∑
x=a,b,c

H2x · i f x(t) (1.5)

H1x and H2x are used as indicator functions. The operation logic is the fol-
lowing: H1x will return 1 if the phase leg x ∈ a, b, c is connected to Vdc/2
while H2x returns 1 if the phase leg is connected to −Vdc/2, otherwise the
function returns the value 0. For calculating the future propagation of the
capacitor voltage vc αβ, the LC filter equations are used [31]:

vi αβ(t) = L f
di f αβ(t)

dt
+ vc αβ(t) (1.6)

i f αβ(t) = C f
dvc αβ(t)

dt
+ io αβ(t) (1.7)

L f and C f are filter inductance and capacitance, i f αβ and io αβ are the filter
and load currents, vi αβ are the inverter output voltages. The equations (1.3)-
(1.7) are discretized using the forward Euler method as explained in [10].
In each sampling time the discretized equations will be updated with new
measurements to calculate the predictions of the voltages for the 27 possi-
ble switching combinations. The combinations that will minimize the cost
function (1.1) will be applied to the converter switches. In the experimental
implementation, the predictions are calculated for two steps ahead to com-
pensate for the computational delay [9].

1.1.2 Applications of neural networks in power electronics

Neural networks (NN) are considered as universal function approximators
that can process complex signals in a very short time. They have been imple-
mented in various fields of engineering and they are one of the key elements
in development of humanoid robots, photo and video recognition software
and autonomous driving systems.

First applications of NN in power electronics originate in the early 90’s
[33–35]. The main motivation to use NN in power electronics control systems
was to reduce the computational burden of the control algorithm. Moreover,
the possibility to adapt the NN controller during operation to changing en-
vironment conditions was something other control methods could not offer
at that time. One of the first applications of the NN controller with exper-
imental implementation was reported in 1994 [36]. Further development of
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microprocessor technology opened the door for many more applications in
power electronics [37–40].

Using the NN in combination with MPC is a popular solution in control
design. NN can be used either for solving the optimization problem of the
model predictive controller [32] or to create a system model and afterwards
apply the MPC algorithm [41, 42]. In [42] the use of NN in imitation learning
settings is presented for quadrotors controller. The Model Predictive Con-
touring Control (MPCC) is here used as a supervisor to help the controller
learn to follow the path and avoidance obstacles. Another example for au-
tonomous aerial vehicle controller is presented in [43]. The MPC algorithm
has again taken the role of the supervisor, collecting the observation data un-
der full state observation, which is utilized to train a NN policy. After the
training is completed, the NN is able to chose control actions based only on
observations from vehicles sensors.

NN can also be used to synthesise controllers e.g. a robust model pre-
dictive controller [44], conventional model predictive controller [45] and for
finite-set model predictive controller [46]. In this Ph.D. project two appli-
cations of neural networks in MPC will be demonstrated: optimization of
weighting factors in the cost function and creation of a high accuracy imita-
tor of the FS-MPC power electronics controller.

1.2 Project motivation and research goals

As mentioned in the previous section, the use of model predictive control for
controlling the multilevel converters can bring many advantages compared
to the traditional linear based control algorithms like [20]:

• applications in multi-variable systems

• fast dynamic response

• non-linearities and constraints can easily be included

• nested control loops are replaced by a single control loop

• simple implementation of the controller

Considering these advantages, the overall research question for this Ph.D.
project can be formulated as follows:

• Can the FS-MPC algorihms bring new advantages in terms of control
simplicity and performance to multilevel converter applications?

To answer this question, we have to be aware that there are still some limita-
tions that are stopping the full potential of this advanced control method in
industrial applications [11, 20–22]:
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• missing method for optimum design of the cost function

• missing tools for stability assessment

• missing tools for performance and robustness assessment

• high computational burden of algorithms for multilevel topologies and
especially in multi-step prediction horizon applications

Thus the goal of this Ph.D. project is to propose and validate solutions
which can remove the mentioned limitations and introduce new tools that can
help this control method further development in the power electronics control
applications. In order to achieve this goal, advanced methods and tools with
origins in the statistics and computer science will be adapted for the power
electronics control applications. Moreover, the thermal stress distribution in
multilevel converters, which defines the output power, efficiency and in long
term the reliability of the converter, needs also to be analysed. Such findings
can be used to propose a FS-MPC based algorithm that would provide a
more evenly distributed thermal stress among the devices and increase the
reliability.

The main objectives of this dissertation can be summed up in the follow-
ing research questions:

• How to utilize the FS-MPC algorithm to improve the thermal stress dis-
tribution in multilevel converters and not negatively affect the primary
control objectives?

• How to optimize the cost function design of the FS-MPC algorithm?

• FS-MPC algorithm is missing a tool to assess the performance and ro-
bustness of the algorithm. Can this be done by using a statistical model
checking approach?

• How to reduce the computational burden of a FS-MPC without sacrific-
ing the performance or using heuristic search algorithms and extrapo-
lations? Can artificial neural networks (ANN) be used to imitate such
FS-MPC algorithm?

These questions will be answered in the same order in the dissertation through
the upcoming chapters, that are based on the published journal and confer-
ence papers. Published papers are provided in the Appendix of the disserta-
tion.
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1.3 Project limitations

Several multilevel converter topologies can nowadays be found in industry
and even more in academia. Depending on the structure of the topology or
application, different control objectives are used on the control algorithms.
Therefore, it is necessary to limit the research of this Ph.D. project to one
topology that has a wide application area and a mature technology status.
Neutral point clamped topology, more precisely the three-level neutral point
diode clamped converter (NPC) and active neutral point clamped converter
(ANPC) are selected as the potential application and demonstration topolo-
gies for this Ph.D. project. A two level voltage source converter topology has
also been used in the project to present the application of optimization of the
cost-function design and the use of ANN.

The stand-alone converter configuration with LC output filter, which is
typically found in uninterruptible power supply (UPS) systems or AC micro-
grids is used in the experimental validation of the proposed methods while
grid-connected modes were not investigated in this PhD project. Neverthe-
less, some of the proposed methods can also be applied for grid-connected
converters while some will require adaptations to the new control objectives.

Simulations for evaluating the junction temperature and stress distribu-
tions of the devices in the NPC and ANPC system models are performed
in Plecs. The switching and conducting losses, and thermal parameters are
modelled using the data-sheets of the devices used in the experimental set-up
and provided by the manufacturer for NPC converter SKiiP 28MLI07E3V1
from Semikron [47, 48]. For the ANPC converter, prototype hybrid SiC 3-
level modules from Danfoss are used. At the time the measurements were
conducted, the dynamic parameters of the module were not yet available,
therefore the data used for modelling was obtained from the chip manufac-
turer with the same static chip parameters for the static behaviour [49, 50].

1.4 Thesis Outline

The Thesis is divided into two parts: Report and Selected publications. The
Report consist out of six chapters, which are based on the nine publications
included in Selected publications part. The content of each chapter and
corresponding publications are summarized as follows:

• Chapter 1 : Introduction
State of art in FS-MPC algorithm and applications for multilevel con-
verters are presented. Ph.D. project motivation, research goals and lim-
itations are explained.

• Chapter 2 : FS-MPC for improved stress distribution in multilevel
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converters
FS-MPC algorithms for redistribution of thermal stress in a 3-level NPC
converter and hybrid A-NPC converter are presented. Simulation and
experimental results are analysed to check the effects of the stress re-
distribution objective on the primary reference tracking objective and
secondary DC-link balancing objective.
Based on publications : C1 , C2

• Chapter 3 : Optimization of the cost function design by ANN
An artificial neural network approach for selecting the cost function pa-
rameters is explained. The approach is demonstrated on three design
cases: design for high performance on 2-level VSC for UPS applica-
tion, design for improved reliability on 3-level NPC converter for UPS
application and design for optimal control of induction motor under
different operating conditions. The accuracy of the created ANN sur-
rogate is compared to simulation and experimental results for all three
design cases.
Based on publications : J1 , J2, C3

• Chapter 4 : Performance verification of the FS-MPC algorithms using
the SMC approach
Modelling of the power electronics system using the stochastic timed
automata is explained. Procedure of modelling and using the statisti-
cal model checking to verify the performance of FS-MPC algorithm is
presented and applied on two power converter topologies: 2-level VSC
and 3-level NPC converter.
Based on publications : J3, J4, C4

• Chapter 5 : Supervised imitation learning of model predictive control
systems
A new approach to controller synthesis of FS-MPC algorithms with
high computational burden is presented. An artificial neural network
is used to imitate the original FS-MPC algorithm. High accuracy of the
imitator is observed in the simulations and experiments. It is confirmed
that the computational burden of the FS-MPC algorithm is not increas-
ing with the extension of the prediction horizon.
Based on publications : J5

• Chapter 6 : Conclusion
All contributions of the Ph.D. project are summarized and future re-
search aspects are given.
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1.5 List of Publications

The research outcomes during the Ph.D. study have been disseminated in
journal papers and conference publications as listed in the following. Parts
of these publications are used in the Ph.D. thesis as previously listed.

Publications in Refereed Journals

J1. T. Dragicevic, M. Novak, "Weighting Factor Design in Model Predictive
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Nov. 2019.
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"Optimal Cost Function Parameter Design in Predictive Torque Control
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tron., Status: Under Review.

J3. M. Novak, U. M. Nyman, T. Dragicevic, and F. Blaabjerg, "Analytical
Design and Performance Validation of Finite Set MPC Regulated Power
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2019.
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C1. M. Novak, T. Dragicevic and F. Blaabjerg, "Finite Set MPC Algorithm
for Achieving Thermal Redistribution in a Neutral-Point-Clamped Con-
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Neutral Point Clamped Converter," Proc. of ECCE 2019, Baltimore, MD,
USA, 2019, pp 1–7.

C3. M. Novak, T. Dragicevic, and F. Blaabjerg, "Weighting Factor Design
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• M. Novak, U. M. Nyman, T. Dragicevic and F. Blaabjerg, "Analytical
Performance Verification of FCS-MPC Applied to Power Electronic Con-
verters: A Model Checking Approach," Proc. of COMPEL, Stanford, CA,
US 2017, pp. 1–6.
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Chapter 2
FS-MPC for improved stress
distribution in multilevel
converters

2.1 Background

In the past few years, optimizing the design of power converters to achieve a
desired reliability without over-dimensioning the system has drawn a lot of
attention in the power electronics community. To keep a minimum margin in
the design is not an easy task, especially in applications with different stress-
ing conditions. The neutral point clamped converter topologies are good
examples of a power electronics application where not all components are
exposed to the same level of the stress. During operation, the output power
of a converter is limited by the maximum allowed thermal stress of the most
stressed semiconductor devices. Thus, unequal distribution will limit the
output power of the converter and the switching frequency.

The solution of this problem can be found either in modification of the
hardware or optimization of the control algorithm. An example of hardware
a solution is the ANPC topology, which was introduced in 2001 [23] or an
asymmetric power rating selection method as proposed in [51]. However, it
is well known that different operating points of the NPC converter don’t have
the same stress distribution. This means, that the design of the NPC converter
using the method in [51] will be optimized only for a certain operating point.
Even though a new topology was introduced, the solutions based on the
optimization of the control algorithm were still pursued for the conventional
NPC topology. Compared to the ANPC topology, the conventional NPC
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Fig. 2.1: Voltage vectors (28) and switching states that can be generated by a three phase 3L-NPC
converter. The notation of the switching states defines the connection of the phase leg output to a
positive terminal of the DC-source (p), negative terminal (n) or the neutral point (0). Source:[C1]
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Fig. 2.2: Three phase NPC converter with an output LC filter.

topology has a lower number of components and if a better stress distribution
can be achieved only by modifying the control, it would be a less expensive
solution.

All solutions based on the control algorithm optimization have one key el-
ement in common: the use of the redundant voltage vectors for balancing the
thermal stress distribution. In the NPC topology there are 8 redundant vec-
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tors as shown in Fig. 2.1. Both conventional linear control methods [28, 52–
54] and non-linear methods like predictive control were proposed [8, 19]. In
[28] the authors have developed an optimized space vector modulation for
low voltage ride through (LVRT) scenarios, where the unequal stress distri-
bution is the most evident and later extended it also to moderate modulation
indexes [55]. Other examples of solutions based on the conventional control
solution are [52, 53], where the algorithm evaluates a cost function of the de-
vice junction temperatures to find the optimal relieving switching sequence.
The reason why from the non-linear control methods, MPC was selected to
solve the stress distribution problem is an easy inclusion of multiple objec-
tives in the control algorithm. For the NPC topology, following solutions
could be applied [8, 19]. In [8] a new expression is added in the cost function
for evaluation of the thermal swing based on on-line junction temperature es-
timations and in [19] the lifetime calculation is included in the cost function.
Both of these methods require information about the semiconductor devices
and in [19] even information from reliability experiments is required.

In this chapter, a control algorithm based on the FS-MPC for stress redis-
tribution of the semiconductor devices in a NPC topology will be presented.
The proposed algorithm:

• does not require any information about the semiconductor devices

• does not require additional measurements like junction temperature
measurements

• does not have higher complexity then the conventional FS-MPC

Not only the stress distribution in the NPC converter will be investigated
in this chapter, but also in a hybrid SiC ANPC converter. For the ANPC
topology, solutions based on PWM stategies [56, 57] and model predictive
control [58–60] have been proposed to achieve a balanced stress distribution.
In [61] an online calculation of losses is implemented for estimation of the
junction temperature of the devices. Afterwards, depending on the current
temperature conditions, redundant switching actions are selected from a de-
cision chart. Adaptive double frequency PWM, which uses the duty cycle
to optimize the losses is proposed in [57]. It is not shown if for the imple-
mentation of this method an outer loop for controlling the DC-link voltage
is necessary. The model predictive control algorithms for balancing the de-
vice losses were pursued by the research group in [58–60]. The final design
in [60], is a combination of space vector modulation (SVM-PWM) and MPC.
However, the method was not experimentally validated due to the high com-
putational burden. It was noticed that most of the proposed methods were
missing experimental validation and also measurements of the junction tem-
peratures.
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For this purpose a prototype converter was build using the 3-level hybrid
open modules to measure the device temperatures and analyse the stress dis-
tribution in ANPC converter. A comparison of a conventional carrier based
control algorithm, proposed for this hybrid configuration in [62], and a model
predictive control based control algorithm is performed. The two presented
applications are based on publications [C1] and [C2].

2.2 FS-MPC algorithm for improved stress distri-
bution in a 3-level NPC converter

The conventional cost function used for voltage control of a 3-level NPC con-
verter shown in Fig. 2.2 has two objectives: minimization of the reference
tracking error and balancing of the DC-link capacitor voltages. By using this
cost function in the control algorithm we will obtain a junction temperature
distribution presented for case λt = 0 in Fig. 2.3 and Fig. 2.4. For all four
operating points of the converter a difference in the mean junction tempera-
ture of the outer and inner IGBTs can be noticed, and the temperature of the
clamping diode is also high. The temperature difference is more pronounced
for operating points under nominal current in Fig. 2.3(a) and Fig. 2.4(a).

It is straightforward that if the amplitude of the current flowing through
the device is high, so that the device will have to sustain high thermal stress
during the switching process. Therefore, if it was possible not to switch
the device during this high current periods the stress could be reduced and
the junction temperature would drop. In multilevel converter topologies this
is possible by using the redundant vectors. Avoiding the switching will of
course have a negative consequence on the THD of the converter voltage,
thus a balance between these two objectives need to be found.

In the proposed algorithm, to improve the stress distribution from Fig.
2.3 and Fig. 2.4, the added gt term in the cost function will monitor the am-
plitude of the current I f x(k) and the switching actions in all three converter
phases. It is defined in the cost function as follows:

g = (v∗cα − vP
cα)

2 + (v∗cβ − vP
cβ)

2 + λdcgdc + λtgt (2.1)

gt = |I f a(k)| · na + |I f b(k)| · nb + |I f c(k)| · nc (2.2)

nx = |Sx1(k− 1)− Sx1(k)|+ |S′x2(k− 1)− S′x2(k)|, (2.3)

where Sx1(k) and S′x2(k) are the possible switching states of the upper switch
(S1) and inner switch (S′2), S′x1(k− 1) and S′x2(k− 1) are the switching states
applied in the previous sampling period for converter phases x ∈ a, b, c and
λdc and λt are the weighting factors. The weighting factors can for example
be determined using the ANN design approach proposed in Chapter 3. In
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Fig. 2.3: Mean junction temperature comparison for different weighting factors λt and converter
operating points. Source:[C1]

Subsection 3.2.2 an UPS application of the NPC converter with the cost func-
tion (2.1) was used to present the design approach for improved reliability of
the NPC converter. The ANN was trained using the simulation data. In that
case the data-sheet device data is needed to create the thermal model of the
devices. For a higher accuracy, experimental measurements should be used
to perform the training.

The impact of the cost function (2.1) on the device junction temperatures
can be seen for four cases λt = 0.05 in Fig. 2.3 and Fig. 2.4. For all op-
erating points of the converter, the junction temperature was reduced and
the difference between the outer and inner device temperature was reduced.
The temperature drop is also visible for the clamping diode. For the case
shown in Fig. 2.4(a) the temperature difference between the inner and outer
device was not completely reduced and the inner device was now the one
with a higher temperature. This means that the weighting factor for this case
needs to be reduced, because the inner switch was switching with a higher
frequency than the outer one.
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Fig. 2.4: Mean junction temperature comparison for different weighting factors λt and converter
operating points. Source:[C1]

As mentioned before, during the weighting factor tuning it is also neces-
sary to take care of the impact on the output voltage THD and the DC-link

Table 2.1: Evaluated operation conditions of a 3L-NPC converter with and without thermal
redistribution. Source:[C1]

Vre f (V) Io (A) λt T HDvc (%) ∆Tj1,2′ (°C) TjD3 (°C)

400 50 0 0.5 2 44.5
400 50 0.05 0.53 0.8 43.6
400 100 0 0.35 4.5 70.3
400 100 0.05 0.47 0.2 67.3
280 50 0 0.51 3 50
280 50 0.05 0.52 0.3 48
280 100 0 0.35 7.7 80
280 100 0.05 0.53 4 73.3
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(a) Conventional cost function (λdc= 1, λt=0), THD = 1.29%
(150 V/div)

(b) Proposed cost function (λdc= 1, λt=0.9), THD = 1.35% (150
V/div)

Fig. 2.5: Measured output voltage vc abc from the 3L-NPC experimental set-up. Source:[C1]

balancing performance. In Table 2.1 for the presented four operating points,
the impact on the voltage THD can be seen. For the operating points with the
high current amplitude the impact is more obvious as the proposed algorithm
avoids switching during high current conditions if that is possible. In the ex-
perimental set-up the measurements of the output voltage were conducted
for the operating point Vc = 230 V and Io = 8 A to evaluate the impact of gt
on the voltage THD. The parameters of the experimental set-up are given in
Table 2.2. For the case without gt calculated THD was 1.29% with an average
switching frequency of 7 kHz and for the case when λt = 0.9 the THD was
1.35% with an average switching frequency of 5 kHz. The waveforms can be
observed in Fig. 2.5.
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Chapter 2. FS-MPC for improved stress distribution in multilevel converters

Table 2.2: Parameters of the experimental set-up. Source:[C1]

Parameter Value
DC link voltage VDC = 700 V

DC link capacitors Cdc1,2 = 4 mF

Output filter parameters L f = 2.4 mH, C f = 15 µF

Algorithm sampling time Ts = 25 µs

Weighting factors λdc = 1, λt = 0.9

2.3 FS-MPC algorithm for improved stress distri-
bution in a 3-level hybrid ANPC converter

In order to satisfy the market’s demand for high power density converters
with small and light filters, the switching frequency of the converters has to
be increased to the level where the thermal stress and switching losses of
silicon devices were too high. Thus, wide-bandgap (WBG) devices, which
have a superior performance for high switching frequency conditions, were
introduced. Not all devices in the converter topology need to be replaced
by the WBG devices. By analysing the operating conditions of the converter,
only devices producing high switching losses could be replaced by WBG
devices, while devices that have longer conducting periods can benefit from
Si-IGBT conduction characteristics. In [62–65] examples of hybrid topologies
with the proposed modulations are presented.

In this section the temperature and loss distribution will be analysed for
a hybrid ANPC converter. The configuration of the 3-level module is shown
in Fig. 2.6. The inner devices (S2, S3) of the module are SiC MOSFETs, the
outer (S1, S4) and clamping devices (S5, S6) are Si IGBTs. This configuration
is preferable for an unidirectional power flow with a high modulation index
like photovoltaics, wind turbines or UPS, due to the high stress applied to the
inner devices. As mentioned in the introduction, the key to achieve a high
power output is to design the control algorithm that would provide a bal-
anced thermal stress distribution. In this application, the control algorithm
needs to use the advantage of low switching losses of the SiC MOSFETs.

Eight different switching combinations can be applied to one phase mod-
ule, two that connect the converter output terminal to the negative DC volt-
age, two that connect to the positive DC voltage and four that will produce
the zero voltage at the output. From the eight possible combinations, four
combinations that require only two switches to change the state when transi-
tioning from positive to zero output voltage and negative to zero voltage were
selected for application [62, 66]. These switching combinations can be found
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Fig. 2.6: One phase ANPC open module scheme used in the three phase system for validating
the control method. Source:[C2]

Table 2.3: Switching states of the 3L ANPC converter used in the control algorithm. Source:[C2]

Switching state S1 S2 S3 S4 S5 S6

P 1 1 0 0 0 1

0+ 1 0 1 0 0 1

0− 0 1 0 1 1 0

N 0 0 1 1 1 0

in Table 2.3. In [62] using these switching combinations, a phase-disposition
carried based PWM was applied to the same module configuration as shown
in Fig. 2.6. For the applied PWM, only the inner devices are changing the
state during each half cycle, while the outer and clamping devices change the
state only twice during one period of the modulation signal. However, using
this algorithm an outer loop for control of the DC-link voltage is necessary.

Instead of using the phase-disposition carrier based PWM, MPC algo-
rithm can be used to unify the three control objectives (reference tracking,
DC-link balancing and stress redistribution) in a single control loop. To ef-
ficiently use the inner MOSFET devices, a penalty gp is introduced to the
cost function for switching combinations that require switching of the outer
devices:

g = (v∗cα β − vP
cα β)

2 + λdcgdc + λpgp (2.4)

gdc = (vP
dc1 − vP

dc2)
2 (2.5)

gp = ∑
x=a,b,c

(1− |S2x(k)− S2x(k− 1)|) + (1− |S3x(k)− S3x(k− 1)|), (2.6)
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Chapter 2. FS-MPC for improved stress distribution in multilevel converters

where λdc and λp are the weighting factors, Sx(k− 1) is the applied switching
state in the previous interval and Sx(k) is the current switching state for all
converter phase legs x ∈ a, b, c.

Using the simulation model of the ANPC converter system with an LC
output filter, device losses and device junction temperatures were compared
for the FS-MPC algorithm with a cost function (3.8) and the carrier-based
PWM (benchmark algorithm) from [62]. The converter is operated at nomi-
nal output power (73 kW) and the switching frequency of the carrier-based
PWM controller is set to 15 kHz. For the FS-MPC controller calculated aver-
age switching frequency was 14 kHz. Calculation of converter losses showed
1110 W losses (efficiency η = 0.985) for carrier-based PWM controller and
883 W losses (efficiency η = 0.988) for the FS-MPC algorithm. Although,
the difference in the efficiency was not significant, the stress distributions
were different. Lower losses per device can be spotted for the FS-MPC algo-
rithm in Fig. 2.7(a). The only devices producing the switching losses in the
carrier-based PWM algorithm are the MOSFETs. On the other side, the FS-
MPC algorithm is not exclusively switching only the MOSFETs. On contrary,
switching losses are also spread to the IGBTs, which are not continuously
conducting for half of the period like in [62]. Looking at the junction tem-
peratures of the devices in Fig. 2.7(b), a more balanced distribution is also
visible.

Due to the limitation of the experimental set-up (PCB design, DC-supply
capacity and protection) it was not possible to reproduce the nominal oper-
ating conditions used in the simulations. The thermal measurements using
an IR camera were performed for load current Io = 30 A and Vdc = 260 V. In
Fig. 2.8 the DC-link voltages and the load current waveforms are shown, con-
firming the good performance of the DC-link balancing control. The average
switching frequency of the FS-MPC algorithm was 5.8 kHz, therefore this
switching frequency was used to repeat the measurements for the bench-
mark algorithm. In Fig. 2.9 temperature measurements are shown for the
both control methods. For the benchmark model, the measured temperature
difference of the outer device and clamping device was 3.8 ◦C, and for the
FS-MPC algorithm it was reduced to half. The difference between the inner
and outer device was within 1 ◦C for both control algorithms.
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Fig. 2.7: Simulation results for 3-level ANPC converter using FS-MPC for stress redistribution.
Source:[C2]

2.4 Summary

In this chapter it has been demonstrated that FS-MPC algorithm can be used
to improve the thermal stress distribution of NPC and ANPC converters.
The proposed FS-MPC algorithm for the NPC topology has a simple imple-
mentation, no additional measurements are required and the computational
efforts are not increased. For converter operation under both high and low
amplitude index, it has been shown that the difference between the junction
temperatures of the outer and inner devices was reduced and the THD of the
output voltage was not significantly increased. Moreover, the stress applied
to the clamping diode was also reduced. The most significant drop in the
temperature of the devices was observed during the high load current and
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Fig. 2.8: Experimental measurements during hybrid ANPC converter operation at P = 4 kW
using FS-MPC for stress redistribution. Source:[C2]

low reference voltage.
For the presented hybrid configuration of ANPC converter, a simple pe-

nalization term in the cost function is sufficient to efficiently utilize the low
switching losses of SiC devices. The penalization term ensures that the
switching combinations that don’t switch the Si devices are preferred. It
was experimentally validated that the proposed algorithm can keep the tem-
perature difference between the outer and inner devices at a minimum. Ad-
ditionally, compared to conventional phase disposition PWM, it can also re-
duce the temperature difference between the clamping (S5,S6) and the outer
devices (S1,S4).
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Fig. 2.9: Junction temperature measurement for (P1→ S4 (outer switch), P2→ S3 (inner switch),
P3→ S6 (clamping switch) in Fig. 2.6) in steady state, VDC = 260 V, Io = 30 A. Source:[C2]
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Chapter 3
Optimization of the cost
function design using ANN

3.1 Background

In the FS-MPC control algorithm, the desired behaviour of the converter sys-
tem is specified in a multi-objective cost function. The balance of the objec-
tives is defined by the weighting factors. An overview of typically imple-
mented cost functions for applications in power electronics can be found in
[20]. It can be observed that in most applications at least one weighting fac-
tor is used. The design of these weighting factors is not a simple task, as
the complexity of weighting factor design can raise exponentially with every
new objective e.g. for a cost function with 3 weighting factors whose range is
set from 0 to 10 with a step of 1, this leads to 113 = 1331 possible weighting
factor combinations. Therefore, several different approaches for solving the
problem of weighting factors design have been proposed.

One of the first methods used for the weighting factor selection was
branch and bound search [67]. The positive side of this method is that it
is very easy to use but the selection process is still to empirical. An online
adaptation of the weighting factors was proposed [68–70], however in the
case of [68] it imposed an additional computation burden and in [70] the
tuning was performed only with the aim to minimize the objective that has
the largest error. Authors of [71] proposed an online tuning based on ANN,
where the network is fed by new measurements in each sample time to keep
the performance metrics of the converter within same predefined limits for
safe operation. Applications of the genetic algorithm were proposed by the
authors in [72, 73] where the drawback of the method proposed in [72] is
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that each design objective would require a new set of simulations to perform
the optimization of the weighting factors. There were also proposals to omit
the use of weighting factors in the cost function [17, 74–78]. This is possible
if the two objectives can be joined in one reference value like in [74], where
the torque reference in a motor drive has been joined in the flux reference
or where the two objectives can easily be split into two cost functions like in
[75]. It can be noticed that both approaches are motor drives specific and can
not be easily adapted to other converter applications and cost functions.

The objective of this Ph.D. project was to find a weight tuning method
that would have the following characteristics [J1]:

• Applicable to cost functions with multiple conflicting objectives.

• Not imposing additional computational burden.

• Fast and simple tuning process.

• Guaranteed performance according to user-defined design criteria.

3.2 Application of the ANN cost function design
approach

The proposed approach is based on the artificial neural networks (ANN). The
design process, depicted in the Fig. 3.1, can be separated into three tasks:

• A. Data generation.

• B. ANN training.

• C. Minimization of the fitness function.

In the first step, it is necessary to collect the data sets that will be used to
create a surrogate model of the converter system. The data can be extracted
either from the simulation model or from experiments, with the first being
obviously a much faster approach due to the possibility of parallelizing the
process. Which data performance metrics to use to perform the training
depends on the converter topology and the application. In Fig. 3.1 for the
stand-alone operation of the 2-level VSC, it was sufficient to collect the THD
of the filter capacitor voltage and the average switching frequency for N2

combinations of the two weighting factors. In the second step, those data
sets are used to train the ANN. The advantage of using a surrogate model is
also a much lower execution time compared to a simulation model.

For cases where the relationship between the inputs (performance met-
rics) and outputs (weighting factors) is static, a feed-forward type of ANN is
suggested for use [79]. For example the structure of the ANN used in [C1] is
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Fig. 3.1: Flowchart of the ANN based weighting factors design in the FS-MPC of power elec-
tronic converters. Source: [J1]

shown in Fig. 3.2. Three types of layers can be identified: input, hidden and
output layers. The output of a each neuron is first multiplied by an associ-
ated weight, summed with a bias term and then used to calculate the input
of neurons in the next layer. Back-propagation algorithm, which is also im-
plemented in MATLAB’s Neural Networks toolbox, is used for training the
ANN. In the last step of the design, using the performance metrics, a fitness
function fANN is defined. Minimization of this function will result in an opti-
mized weighting factor combination. In the following subchapters three cost
function design applications will be summarized. The applications are based
on the publications [J1], [C1] and [J2].

3.2.1 Design for optimum output voltage quality of an UPS
system with a 2-level VSC

For this application, the FS-MPC algorithm was implemented with the cost
function given in (3.1), which was proposed in [10] for voltage control of an
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Fig. 3.2: Schematics of a feed-forward artificial neural network (ANN) structure. Source: [C1]

AC microgrid or an UPS system presented in Fig. 1.2:

g =
(

vP
cα − v∗cα

)2
+
(

vP
cβ − v∗cβ

)2
+ λdgd + hlim + λswg2

sw (3.1)

gd = (iP
f α − ioα + C f ·ωre f · v∗cβ)

2 + (iP
f β − ioβ − C f ·ωre f · v∗cα)

2 (3.2)

gsw = ∑
x=a,b,c

|Sx(k)− Sx(k− 1)|. (3.3)

where vP
c and vP

c ∗ are the predicted voltage value and the reference value
of the filter capacitor voltage, iP

f and io are the predicted filter current and
measured load current values, ωre f is the reference frequency, C f and L f
are the output filter parameters, hlim is the current limiting term, Sx(k) is
the applied switching state of the converter and Sx(k − 1) is the previous
one. Two objectives can be identified in the presented cost function with
weighting factors (λd, λsw): minimization of the reference tracking error and
minimization of the switching frequency.

As mentioned, the first step in the design approach is data collection from
the simulation model. For this purpose two performance metrics were de-
fined: THD of the filter capacitor voltage and the average switching fre-
quency fsw avg. Overall, 441 simulations were performed for different weight-
ing factor combinations. These data sets were used to train the ANN. Using
the performance metrics two fitness functions can be structured:

fANN,1 = THD2
ANN (3.4)

fANN,2 = THD2
ANN + 3 · f 2

ANN sw (3.5)
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(a) Plot for the fitness function fANN given in (3.4). Obtained optimum weighting
factors: λd = 2.005 and λsw = 1.605.

(b) Plot for the fitness function fANN given in (3.5). Obtained optimum weighting
factors: λd = 0.8 and λsw = 10.

Fig. 3.3: Obtained optimal weighting factors for proposed fitness functions. Source:[J1]

In (3.5) coefficient 3 was chosen arbitrary to put more importance on the
frequency minimization. The two fitness function plots showing the optimal
weighting factor combinations are presented in Fig. 3.3. These weighting
factors were used in simulation model and the experiments shown in Fig.
3.4 to test the accuracy of the performance metrics predicted by the ANN. A
summary of these simulations and experiments is shown in Table 3.1. It can
be observed that predicted performance metrics from the ANN match very
well the responses of the simulation model (<3% error) and fairly well the
metrics obtained in the experimental setup (<10% error).

Extended experimental validations of the obtained cost function param-
eters for different loads, parameter mismatch and transient response can be
found in [J1]. Guidelines and results of the weighting factor design for opti-
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(a) Waveforms for λd = 2.005 and λsw = 1.605 (250 V/-
div).

(b) Waveforms for λd = 0.8 and λsw = 10 (250 V/div).

Fig. 3.4: Capacitor voltage measurements from the experimental set-up for Rload = 60 Ω and
Vre f = 325 V. Source:[J1]

Table 3.1: Performance metrics results from simulation model, experiments and ANN predic-
tions. Source:[J1]

Fitness function fANN,1 fANN,2

Perf. metrics THD fsw THD fsw

Simulations 1.22% 7.64 kHz 2.32% 4.7 kHz

Experiments 1.31% 7.22 kHz 2.31% 5.14 kHz

ANN prediction 1.22% 7.71 kHz 2.3% 4.7 kHz

mum output voltage quality of an UPS system with a 3-level NPC converter
can be found in [C1]. In the presented case the complexity of the optimiza-
tion problem was even higher, as three weighting factors were needed to be
selected (λd, λdc, λsw). A good accuracy of the predicted performance met-
rics by ANN, simulation and experimental results was also observed for this
case.
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3.2. Application of the ANN cost function design approach

3.2.2 Design for improved reliability of an UPS system with
a 3-level NPC converter

In this application the objective of the weighting factor design is to find an
optimal trade-off between the THD of the capacitor filter voltage and the
thermal stress distribution of the devices in a NPC converter shown in Fig.
2.2. For this purpose the cost function (3.6) proposed in Chapter 2 is used:

g = (v∗cα − vP
cα)

2 + (v∗cβ − vP
cβ)

2 + λdcgdc + λtgt (3.6)

The simulations were performed for λdc with the range from 0 to 8 and in
step of 0.5 and for λt with a range from 0 to 0.8 with a step of 0.05 and at the
nominal load current io = 100 A. In total 172 = 289 data sets containing the
THD of the capacitor filter voltage THDv, DC-link capacitor voltage deviation
∆vdc 1,2 and junction temperature difference of the outer and inner IGBT ∆Tj
were collected. The procedure was also repeated for io = 10 A, which can be
experimentally validated in the 3-level NPC set-up that was at disposal for
the project. For this example the fitness function was structured as follows:

fANN = THD2
ANN + α · ∆T2

jANN + β · ∆v2
dc 1,2 ANN (3.7)

The coefficients α and β are selected as follows. First α is set to 1, and β
is increased step-wise until the effects of the DC-link balancing are visible in
the fANN plot i.e. it should be visible in the plot that if λdc is close to zero
the fANN value is high (red surface in Fig. 3.5), in this way the condition of
taking into account the weighting factor combinations with a good balance
is accomplished. In the next step the α value can be tuned. This value is
defining the balance between the THDANN and the Tj ANN . If the value of α
is set to 1, then the fitness function will select the combinations of THD and
Tj whose sum is the lowest. Now, here the following scenario can occur: a
very low THD with a high temperature difference can be selected. However,
that is not in the interest of the optimization. The aim is to find a good trade-
off. Therefore, coefficient α can be used to reduce the temperature difference
to a desired value. For this value the fitness plot will show, which is the
lowest possible THD that we can obtain for this Tj. For further analysis on
influence of the α coefficient, the parameter can be sweeped for a few values
and a Pareto plot can be obtained to show all pairs of the THD and Tj values
that minimize the fANN . In our example, we have set the α = 1 and β = 1.

If the two fitness function plots for io = 10 A and io = 100 A are compared
in Fig. 3.5, it is easy to observe that the range of the weighting factor in the
optimal region for the low current is much wider. The area with very low
λdc = 0.5 has a high fitness function value indicating that the dc-link balance
is not accomplished. From the obtained plots we can conclude that for high
currents the selection of optimum weighting factors has a much higher effect
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(a) Plot of the fitness function fANN (3.7) for io = 10 A. Obtained optimum weight-
ing factors: λdc = 6.7 and λt = 0.43.

(b) Plot of the fitness function fANN (3.7) for io = 100 A. Obtained optimum
weighting factors: λdc = 7.97 and λt = 0.05.

Fig. 3.5: Obtained optimal weighting factors for proposed fitness function of the NPC converter.

on the performance metrics of the converter. On the other hand, higher cur-
rent will also cause a higher life-time consumption of the converter. Using
the weighting factor combinations that minimize the fANN for different cur-
rent amplitudes, a cost function with dynamic weighting factors could also
be used. A dynamic cost function that takes into account the loading of the
converter can be of a great benefit for systems like UPS, where the load is
variable. Those combinations can easily be put into a look-up table and se-
lected according to the current amplitude. It must be noted that compared to
the online optimization of the weighting factors using the ANN in [71], with
this method we can obtain not only the weighting factors adjusted for the
safe operation of the converter but also we can guarantee the performance.

In Table 3.2 the performance metrics predicted by ANN and metrics ob-
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Table 3.2: Comparison of metrics from ANN, simulation model and experimental set-up (io =
10 A, Rload = 30 Ω).

Metrics ANN results Sim. model results Experimental results

THD 1.81% 1.89% 2.1%

fsw 5.9 kHz 6 kHz 6.1 kHz

vdc error < 1.5 V/period < 1.5 V/period < 1.5 V/period

(a) Filter capacitor voltages (150 V/div).
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Fig. 3.6: Experimental measurements for io = 10 A, Rload = 30 Ω and cost function weighting
factors: λdc = 6.7 and λt = 0.43.

tained from the simulation model and the experiments are shown in Fig. 3.6
and compared. In the NPC set-up available for this project it was not possible
to measure the junction temperature. However, due to the fact that the cost
function is affecting the switching frequency, this performance metrics was
used for the comparison of the trained ANN prediction accuracy. It can be
seen that the error for the ANN predicted THD is below 10% and the fsw is
below 5%. It would also be interesting to evaluate the case for NPC converter
topology with a life-time consumption being one of the performance metrics.
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Fig. 3.7: Predictive torque control (PTC) for a three phase VSC drive system. Source: [J2]

3.2.3 Design for optimum control of a motor drive

The presented weighting factor design approach can also be used for opti-
mization of the cost function parameters for predictive torque control (PTC).
Typical implementation includes a PI speed reference controller, flux estima-
tor and a predictive controller as shown in the scheme in Fig. 3.7. This design
optimization has also a complexity N3 as in the cost function we have two
objectives: minimization of the torque error and of the flux error, and we can
also add the switching frequency minimization. Therefore, three parameters
(λΨ, λsw, Ψs) need to be tuned in the cost function:

g =
∣∣∣T∗ − T̂k+2

∣∣∣+ λΨ

∥∥∥‖Ψ∗s‖ − ‖Ψ̂k+2
s ‖

∣∣∣+ λsw′ · gsw + hlim (3.8)

hlim =

{
0, if |īs| ≤ imax

∞, if |īs| > imax
(3.9)

λsw′ =
Tnom

Ψnom
λsw (3.10)

where T∗, Ψ∗s are reference values of the torque and flux and Tnom, Ψs nom are
the nominal values. hlim is limiting the stator current to the maximum per-
mitted value imax. Before starting the data collection for the ANN training,
following performance metrics were defined: mean torque (Tmean), torque
rms error (Terror), RMS stator flux error and current error (ψs error, Is error), time
needed to reach 98% of the reference speed at drive start (trise) and the av-
erage switching frequency ( fsw avg)[J2]. 512 simulation runs were performed
for λΨ = [1.6, 2.8...10], λsw = [0, 0.1, ..., 0.7] and Ψ∗s = [0.65, 0.7, ...1] for Tload
= 5 Nm. The range for weighting factors was adjusted to sweep only com-
binations that can lead to a successful motor drive start and operation under
loading conditions.
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Fig. 3.8: Plot of the fitness function (3.11) for f1 = 2.5 kHz, ωre f = 200 rad/s, Tload = 5 Nm.
Obtained optimum parameter values: λψ = 9.64; λsw = 0.13 and ψ∗ = 0.65. Source: [J2]

Using the performance metrics a fitness function can be defined to find
cost function parameters that will guarantee a low stator flux error, stator
current error and torque error for example for a average switching frequency
of f1 = 2.5 kHz:

fANN = ψ2
s error + I2

s error + T2
s error + ( f1 − fsw avg)

2 (3.11)

In Fig. 3.8 the plot of the fitness function is presented for Tload = 5 Nm and
ωre f = 200 rad/s. Plots for Tload = 2 Nm and ωre f = 150 rad/s can be found in
[J2.]. For lower load values, the region of optimal cost function parameters is
larger. Both load values cover a wide range of λΨ but the range of optimum
Ψs is very narrow. For a lower reference speed the range of optimum Ψs is
much wider. If this procedure is repeated, full torque-speed characteristic of
the drive can be obtained.

Similar to the previous design cases, the predicted ANN performance
metrics were compared to the metrics from the simulation model and the
experiments in Table 3.3 and a very good accuracy was observed with the
simulation model metrics. A difference between the experiments and the
ANN metrics is due to simulation model simplifications. Better accuracy can
be obtained by using a detailed simulation model or using the experimental
data. A more detailed model will also prolong the duration of the first step
in Fig. 3.1. Using the obtained optimum cost function parameter values,
experiments were performed for a test profile that includes start of the drive,
reversing and loading. The results of the experiments can be observed in Fig.
3.9. Average switching frequency measured in the steady state was 2.3 kHz,
which is only 8% lower than the set reference frequency.
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Table 3.3: Comparison of performance metrics in steady state operation from ANN and simula-
tion model. Source: [J2]

Metrics ANN Simulation model (Error) Experiments

fsw avg 2.56 kHz 2.54 kHz (20 Hz) 2.32 kHz

ψs error < 0.004 Wb < 0.004 Wb (0 Wb) < 0.06 Wb

Terror 0.35 Nm 0.32 Nm (-0.03 Nm) 0.5 Nm

Is error 0.39 A 0.4 A (-0.01 A) 0.37 A

3.3 Summary

In this chapter a new method is proposed for weighting factor design in the
FS-MPC applied to power electronics systems. The method is using a sur-
rogate model, which is a result of ANN training on datasets obtained from
the simulation models of the systems. The surrogate model can very fast re-
produce the optimum weighting factor combination for a user-defined fitness
function. A high accuracy was observed with respect to the simulation model
(< 5% error) and a very good match with the experimental results (< 10% er-
ror) for the presented applications. If desired, the experimentally obtained
data sets can be used to achieve an even better accuracy of the performance
metrics predicted by the ANN and the experiments. The proposed method
is applicable for solving optimization problems of much higher complexity
than it was presented for weighting factor design methods based on heuristic
methods, genetic algorithms or other ANN based approaches.

Based on publications

J1. T. Dragicevic, M. Novak, "Weighting Factor Design in Model Predictive
Control of Power Electronic Converters: An Artificial Neural Network
Approach," IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8870–8880,
Nov. 2019.

J2. M. Novak, H. Xie, F. Wang, T. Dragicevic, J. Rodriguez, and F. Blaabjerg,
"Optimal Cost Function Parameter Design in Predictive Torque Control
(PTC) Using Artificial Neural Networks (ANN)," IEEE Trans. Ind. Elec-
tron., Status: Under Review.

C3. M. Novak, T. Dragicevic, and F. Blaabjerg, "Weighting factor design
based on Artificial Neural Network for Finite Set MPC operated 3L-
NPC converter," Proc. of. APEC, Anaheim, CA, USA, 2019, pp. 77–82.
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3.3. Summary

(a) Drive speed (200 rad/s /div) and torque waveforms (5
Nm/div).

(b) Stator current waveforms (1 Wb/div).

(c) Stator flux waveforms (10 A/div).

Fig. 3.9: Drive start, reversing and loading profile measurements (Tload = 5 Nm, f1 = 2.5 kHz,
λψ = 9.64; λsw = 0.13 and ψ∗ = 0.65). Source:[J2]
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Chapter 4
Performance verification of
the FS-MPC algorithms using
the SMC approach

4.1 Background

While conventional linear controllers can rely on matured methods and tools
for optimization of the design, performance validation and stability veri-
fication, for the FS-MPC algorithm the methods and tools to perform the
aforementioned tasks still need to be fully developed. In this chapter, a new
approach for verifying the performance of the FS-MPC algorithms is pre-
sented. The performance verification of a power electronics controller has to
verify that the control algorithm can handle the disturbances in the system
and at the same time keep minimum deviations of the controlled variables
from the set references. As the performance verification method that could
be easy applicable to different FS-MPC algorithm applications was not yet
established, the performance shown in publications was typically validated
by running multiple simulations doing some parameter sweeps or by doing
experiments [80–82]. Performing multiple experiments can be rather time
consuming compared to running multiple simulations, which can be paral-
lelized using multiple processor cores of the computer. Nevertheless, both
approaches lack the reliability of the procedure as there is no guarantee that
a finite number of performed experiments can ensure that no errors have
been left undetected or even instabilities.

Assessment of the FS-MPC algorithm stability has also been attempted
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with most progress shown by the authors in [83, 84] where the Lyapunov sta-
bility criteria is used to asses the stability. However, only asymptotic stability
is assessed under specific conditions and only for linear systems. Moreover,
the method still require further development to be applicable for different
converter classes and applications. It needs to be mentioned, that the pro-
posed approach for the performance verification can not be used also to
verify the stability of the FS-MPC algorithms. Further development of the
proposed approach is needed in order also to incorporate this ability.

4.2 Statistical Model Checking Approach

Model checking methods are formal methods, typically used to analyse soft-
ware systems in computer science. They are suitable for application on
systems that have states and defined transitions between them. Using this
method, a guarantee that a system has a certain property can be obtained.
A control algorithm can be checked for dead-locks using this method and
also that unwanted scenarios are prevented by the algorithm, which is e.g.
demonstrated in [85] for the supervisory energy management systems.

However, if the system size is large or/and has stochastic components,
this method will suffer from state space explosion i.e. the size of the sys-
tem state space will grow exponentially. In other words, the time, which is
needed to check the system, is exponentially increasing with the size of the
system. This will of course impose problems for application on large indus-
trial systems. Therefore, instead of trying to apply an exact analysis method
i.e. explore the whole state space of the system, statistical analysis has been
proposed. Statistical model checking (SMC) uses Monte Carlo algorithms
and it is well suited for modelling deterministic and stochastic components
of systems [86–90] and thus suitable for power electronic converter systems,
which are a mix of both components e.g. the controller is a deterministic
component, while the load is typically a stochastic component.

SMC is able to predict the behaviour of the system using the statistical
result, which is a result of performing enough independent simulations of
the system. The number of necessary simulations is adjusted according to
the predefined confidence of the results. It is straightforward that, the higher
confidence level is set, the more samples are needed to a have a valid statis-
tical evidence that the evaluated system has certain properties. Hence, SMC
can not provide a 100% guarantee for the system properties. Nevertheless,
the fact that the confidence level can be arbitrary set by the user, makes it
easy and fast to check new system models by setting the initial confidence
level to low values.

Several commercial SMC tools are available for use in academia and in-
dustry [91]. A short overview of the available tools is provided in [J5]. For
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Fig. 4.1: Simple Timed Automaton model in Uppaal SMC. Source: [J5]

the application in this Ph.D. project the Uppaal SMC toolbox was selected
because the modelling language of the toolbox is sufficient for modelling the
system presented in this dissertation. A close collaboration with the research
group that is standing behind development of this toolbox was also estab-
lished in order to understand the use of this tool and optimize it for potential
future applications.

4.3 Modelling and verification process

UPPAAL tools, used both for model checking and statistical model checking,
are based on different versions of Timed Automata (TA) structures. A TA
is used to define a timed behaviour and analyse real-time systems. SMC is
using networks of Stochastic Timed Automata to model both the stochastic
and deterministic system behaviour. In Fig. 4.1 a stochastic TA is presented.
Following components of the automaton can be identified: three locations,
three transitions and a clock variable x. A clock variable is a special type
of variable, whose domain consist of non-negative real numbers. The value
of the clock variable is increasing when the automaton is waiting in one
location. In this example one time unit of the clock represents 1 µs in the
physical world. To each of the locations, the variable Output is assigned. The
Init is the initial location of the automaton and it is a committed location,
which means that the transition from location Init to State_1 is immediate i.e.
no time is passing. The transmission from State_1 to State_2 and vice-versa
are guarded by the guards x >= 5. The maximum time the automaton can
stay in one location is defined by the invariants x <= 10.

The exact time of the transitions is not defined, therefore the transitions
will happen stochastically in the interval 5 <= x <= 10. In this example
all clock values in the interval 5 <= x <= 10 have the same probability
to trigger the transmission of the automata from from State_1 to State_2 and
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vice-versa. By default Uppaal SMC will set a uniform distribution to all clock
x values. Due to this random location changes, in each new simulation a dif-
ferent value of the clock x will trigger the transmissions in the system. This
offers many possibilities for modelling stochastic components like converter
loads, wind power plants or photovoltaics. For example, a photovoltaic sys-
tem can be modelled as an automaton with different solar irradiation values.
In a similar way, different wind speeds can be used for a wind power plant
automaton.

One TA is of course not sufficient to model the whole system, therefore
networks of TA are used. The communication between the automata is es-
tablished through broadcast channels that are used for synchronization of
the processes. The concept is the following. If the guard on the transition
edge with label Start! is satisfied, the transition will emit the broadcast on
this channel Start. At the same time all the edges that have been labelled by
the receiving synchronization label Start? will synchronize with the emitting
process. For more information on the modelling and Uppaal SMC the reader
is referred to [92].

4.3.1 FS-MPC controlled converter system as a network of
timed automata

The first step in the modelling the FS-MPC controlled converter system using
the TA is to identify the components of the system, their locations and transi-
tions. In Fig.1.2, which shows the system configuration used for stand-alone
application like UPS or AC microgrid, we can identify the following compo-
nents: voltage source converter, output filter, load, measurement system and
control algorithm.

Visualization of a converter with a control algorithm as a TA is straightfor-
ward, each switching combination will be one location of the automaton and
the transitions are selected by the control algorithm. The control algorithm
is a FS-MPC algorithm, which is defined using the discretized system model
as explained in Chapter 1. The load model TA will have two locations, high
and low load and the transitions will be stochastic as explained for the TA in
Fig. 4.1. The measurement system needs to be a simple automata that will
forward the measurements to the controller automaton. Using the broadcast
channels the operation of the automata will be synchronized with the sam-
pling frequency. Thus, if the components from Fig. 4.2 are transferred to a
UPPAAL model, the block scheme presented in Fig. 4.3 can be structured.

In the example TA in Fig. 4.1, the clock variable was used to trigger the
transitions of the automata, however the clock variable is not limited only for
use as a time representative in the physical world. In Uppaal SMC toolbox, it
is possible to define the clock variables through differential equations. There-
fore, using differential equations we can make the system currents and volt-
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Fig. 4.2: FS-MPC controlled converter system transferred to Uppaal SMC system model.
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Fig. 4.3: Uppaal SMC model block scheme of FS-MPC controlled converter system.

ages to take the roles of the global clock variables as shown in the Physical
system automaton. This means that transitions in the Controller automa-
ton, which will represent the converter and the control algorithm in physical
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world, will be triggered by the system voltages and currents.
Simplified, in each sample time Ts, the Sampler automaton will read the

current values of the global clock variables defined in the Physical system (vc,
i f ), the Tick automaton (used a simple trigger) will broadcast through chan-
nel Tick to the Controller automaton that new measurements are obtained.
Using these measurements, the Controller automaton will call the FS-MPC
algorithm function and calculate the predictions of the system currents and
voltages as well as the cost function values for all possible converter switch-
ing combinations. After minimization of the cost function values, the inverter
output voltage value vi is updated in the differential equations of the global
clocks in the Physical system. This value is then used for calculation of the
global clock values until the next sampling instance.

The Simulation output automaton can be used to calculate certain perfor-
mance metrics of the system that later can be used for performance valida-
tion. In the presented example, the automaton is calculating the difference
between the measured capacitor voltage and the reference voltage, and also
the rolling average of this value. All automata structures are shown in Fig.
4.4 and Fig. 4.5. More detailed descriptions of single automata components
can be found in [J5].

4.3.2 Performance verification

All variables and clocks in the simulation runs can be visualized in Up-
paal SMC toolbox, this makes it very easy to compare the waveforms with
simulation programs like Simulink and check if the modelling procedure was
correct. For performance verification the Verifier tool in Uppaal SMC is used.
This is done by formulating a query using a defined performance metrics.
Three types of questions can be structured in the Verifier and for the applica-
tion presented in this dissertation the probability estimation question is out
of most interest. For the property in question, the Verifier will provide the
confidence interval in which the question is true. If the probability question
if formulated as follows:

Pr[<= 60000]([]di f f < 0.05 ∗ 325), (4.1)

the Verifier will run multiple time simulations of the model with 60 ms dura-
tion of a single simulation and it will monitor if the value of di f f is smaller
than the set threshold. If the expression is true, it will be encoded as true, if
it is not then as false. These results are continuously monitored by a statisti-
cal algorithm that resembles Monte Carlo simulation. The user doesn’t need
to set the number of simulations, the Verifier will determine on its own if
enough samples have been provided for statistical evidence that the expres-
sion holds. What the user can set before starting the Verifier is the probability
uncertainty ε.
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(a) PhysicalSystem.

(b) Load.

(c) Sampler.

Fig. 4.4: Uppaal SMC system model components of the FS-MPC controlled converter system.
Source:[J5]

4.3.3 Application on a 2-level VSC converter

In this subsection the application of SMC approach will be shown on the 2-
level VSC converter with a resistive load. The presented results are based on
the publication J4.. The cost function used in the FS-MPC algorithm is given
in (3.1). Before starting the verification, a benchmark Simulink model was
created to confirm that the model behaviour in Uppaal SMC corresponds to
the Simulink model. In Fig. 4.6 the capacitor voltage waveforms are pre-
sented for the Simulink and the UPPAAL model in the αβ reference frame
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(a) Controller.

(b) Simulation output. (c) Tick.

Fig. 4.5: Uppaal SMC system model components of the FS-MPC controlled converter system.
Source:[J5]

and they both show a good reference tracking performance. The same al-
gorithm was also implemented on an experimental set-up and the measure-
ments have been presented in Fig. 4.6(c). With the performance of both the
simulation model and the experiments matching, the model was now ready
for the performance verification by using the SMC approach.
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Table 4.1: Query probability results obtained from Uppaal SMC toolbox verifier for a 2-level
VSC converter. Source:[J4]

Query
Parameter

uncertainty
Probability

(C1)
Probability

(C2)
Probability

(C3)

diff < 8% 0 0.45− 0.55 0− 0.1 0.9− 1

diff < 10% 0 0.89− 0.99 0.19− 0.29 0.9− 1

diff < 12% 0 0.9− 1 0.79− 0.89 0.9− 1

diff < 15% 0 0.9− 1 0.9− 0.99 0.9− 1

diff < 10% -30% 0− 0.1 0− 0.1 0.78− 0.88

diff < 12% -30% 0.17− 0.27 0− 0.1 0.9− 1

diff < 15% -30% 0.81− 0.91 0.47− 0.57 0.9− 1

diff < 10% 30% 0.9− 1 0.8− 0.9 0.9− 1

The algorithm’s performance was assessed using the following expres-
sion:

diff = (v∗cα − vm
cα)

2 + (v∗cβ − vm
cβ)

2 (4.2)

where v∗cα and v∗cβ are the real and imaginary parts of reference filter ca-
pacitor voltage, vm

cα and vm
cβ are measurements of the filter capacitor voltage.

The resistance in the load automaton is set to change the value stochastically
from 48 Ω → 100 Ω. The probability uncertainty ε was set to 0.05. As the
performance of the FS-MPC algorithm is highly dependent on the quality
of the model, parameter variations were also included in the performance
verifications. Therefore, queries were tested for 30% overestimation and un-
derestimation of the filter inductance in the system model. Moreover, three
weighting factor designs were also compared for these cases:

• Case 1 (C1) - λsw = 0, λd = 0

• Case 2 (C2) - λsw = 0.2, λd = 0

• Case 3 (C3) - λsw = 0.5, λd = 0.4

The obtained results are presented in the Table 4.1. The analysis of the
results shows that the weighting factors have a big influence on the refer-
ence tracking performance. In the C3 example, the weighting factors were
obtained using parameter sweep with the goal to find a combination that
would provide a THD of 1.1% and low average switching frequency [J4].
For this case even under the parameter uncertainties and load variations the
probability of minimal reference tracking error was close to 100%, which is a
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(b) UPPAAL model.

(c) Experiments (250 V/div).

Fig. 4.6: Filter capacitor voltage for 2-level stand-alone VSC system. Source: [J4]

very good performance. The C2, as expected due to the priority of switching
frequency minimization, showed a significant drop in the reference tracking
performance compared to the other two cases. Thus, by properly tuning the
weighting factors of the FS-MPC algorithm it is possible to obtain a robust
control algorithm that can handle both the parameter uncertainties and load
variations. Performance verifications for inductive loads can be found in [J4]
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4.3.4 Application on a 3-level NPC converter

In this subsection the application of SMC approach will be shown on a 3-
level NPC converter with resistive load. The presented results are based on
the publication [C3]. Following modifications are necessary to convert the
2-level VSC system to a 3-level NPC converter system:

• Define one more global clock in the Physical system that will represent
one of the DC-link capacitor voltages

• Increase the number of locations in the Controller automaton to 27

• In the FS-MPC algorithm add predictions for DC-link voltages and DC-
link balancing in the cost function

• Add DC-link voltage measurements to the Sampler automaton

It is assumed that the DC-link source provides a constant voltage, thus it
was necessary to model the dynamics of only one DC-link capacitor. The
cost function used in the FS-MPC algorithm is given in (1.1) and (3.3). The
weighting factors λd, λdc and λsw were selected using parameter sweep in
Simulink as shown in [C3]. Before using the Verifier tool, the model be-
haviour in UPPAAL was compared to a Simulink model in the same way as
for the 2-level VSC system. In Fig. 4.7 the output filter capacitor waveforms
are shown for both models and the experimental set-up. A good performance
match is observed in the waveforms, thus it was possible to proceed to the
performance verification. The reliability of the probability estimation was
set as in the previous case to 95% (ε = 0.05). To evaluate the robustness of
the algorithm, parameter uncertainties were introduced in the system as 30%
overestimated or underestimated values of filter inductance and capacitance.

Obtained results in Table 4.2 show that the probability of the diff staying
below 6% of the reference value is very high. With the introduced parameter
uncertainty, in case of the overestimated filter values (prediction model is
using 30% smaller values then defined in the Physical system) the probability
of the diff staying below 6% of the reference value was very low, however
the diff could still stay below 10% of the reference value with a very high
probability. Underestimation of the filter parameters did not degrade the
performance of the algorithm. The last column of Table 4.2 also shows the
number of runs that were necessary in order to provide the results. Like in
previous section, the approach can also be used to verify the performance of
different cost functions and weighting factor parameters.
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(b) UPPAAL model.

(c) Experiments (150 V/div).

Fig. 4.7: Filter capacitor voltage for 3-level stand-alone NPC converter system. Source: [C3]

4.4 Summary

In this chapter it was presented how a statistical model checking approach
can be applied for performance verification of a 2-level VSC system and 3-
level NPC converter system. The modifications from one converter topology
to another can be performed very easily. Comparison of the behaviour of
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Table 4.2: Query probability results from Uppaal SMC toolbox verifier for 3-level stand-alone
NPC converter system. Source:[C3]

Query Parameter uncertainty Probability No. of sim. runs

di f f < 3% 0 0 - 0.097 36

di f f < 6% 0 0.874 - 0.974 111

di f f < 3% 30% 0 - 0.097 36

di f f < 6% 30% 0.901 - 0.999 54

di f f < 6% -30% 0 - 0.097 36

di f f < 8% -30% 0.415 - 0.515 400

di f f < 10% -30% 0.774 - 0.874 238

created models in Uppaal SMC showed a very good match with the models
created in Simulink. Using the approach it is possible to compare the per-
formance of tuned weighting factors in the cost function and also how much
the parameter uncertainties in the system model affect the controller perfor-
mance. It was shown that for very good tuned weighting factors, variations
of load and parameter uncertainties will not significantly decrease controller
performance.

Based on publications
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Design and Performance Validation of Finite Set MPC Regulated Power
Converters," IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2004-2014,
March. 2019.

J5. M. Novak, U. M. Nyman, T. Dragicevic, and F. Blaabjerg, "Application
of Statistical Model Checking Methods to Finite Set Controlled Convert-
ers," IEEE Ind. Electron. Magazine, vol. 13, no. 3, pp. 6–15, September
2019.

C3. M. Novak, U. M. Nyman, T. Dragicevic, and F. Blaabjerg, "Statistical
Performance Verification of FCS-MPC Applied to Three Level Neu-
tral Point Clamped Converter," Proc. of EPE 2018 - ECCE Europe, Riga,
Latvia, 2018, pp. 1–10.
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Chapter 5
Supervised imitation learning
of FS-MPC control systems

5.1 Background

In the application of the FS-MPC algorithm for multilevel converters with
many different switching states and/or algorithms with longer prediction
horizons, the high computational burden presents to be a problem. Many
simplifications like heuristic sorting algorithms [93], cost function modifica-
tions [94] or the use of extrapolations [16, 95] were proposed to reduce the
number of switching combination candidates. However, the proposed solu-
tions sacrifice the control performance in order to reduce the computational
burden of the algorithm.

In this chapter a solution based on a computational light signal-processing
structure, whose performance is comparable to the original FS-MPC con-
troller, is proposed. So, instead of using a conventional FS-MPC controller,
an ANN will be trained off-line to serve as its imitator with one very im-
portant benefit: lower computational burden. The execution time of the im-
itator controller depends on the number of neurons in the network, while
the execution of a FS-MPC depends on the prediction horizon length. A fast
training data generation process will also be explained. Compared to the NN
approach presented in [39], only one hidden layer is needed for controlling
all the switched in the converter topology. Moreover, a higher accuracy of the
imitator is also observed. The application presented in this chapter is based
on publication [J6].
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Fig. 5.1: ANN controller synthesis scheme. Source: [J6]

5.2 Input data generation

Before the imitator controller can be created, training data needs to be gener-
ated. This is a very important process, as the quality of the data will have a
big impact on the imitator controller performance. To generate the data, it is
not necessary to use a simulation model of the system, using just the FS-MPC
algorithm function is sufficient and much faster. Therefore, by using parallel
processor cores it is possible to generate 140 million data vectors in less than
3 minutes.

The data generation part is the first stage of the controller synthesis scheme
as illustrated in Fig. 5.1. The FS-MPC algorithm accepts seven system vari-
ables: time (t), filter currents (i f αβ), deviation of the capacitor voltages (∆vcαβ),
applied voltage vector from the previous sampling period (x(k-1)) and the
load resistance (Rload). For these inputs, three output variables are calculated:
future optimum switching combination (x(k+1)) and the reference voltage
variables (vre f αβ). In the following example, the application given in a 2L-
VSC converter for a UPS system configuration with the cost function (3.1) is
considered.

For obtaining the imitator of the FS-MPC controller, a pattern recognition
method was used. Thus, the ANN output vector x(k + 1) is the desired
Target with the following structure [x1, x2, x3, x4, x5, x6, x7]. If the selected
optimum vector by the algorithm is for example V1, then x1 will be 1, and
the values of x2 to x7 will be 0. The structure of the used network is the
following: 8 input neurons, 15 hidden neurons and 7 output neurons. To
calculate the weights and biases in the ANN, the scaled conjugate gradient
back-propagation algorithm proposed in [96] is used. For training of the
network, 70% of randomly selected input data is used. The performance of
the training is shown in the confusion matrix plot in Fig. 5.2. Each row of
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Fig. 5.2: Confusion matrix of the performed ANN training showing the number of correctly
(green) and incorrectly(red) classified observations for the FS-MPC imitator controller. Source:
[J6]

the matrix represents the predicted class and the columns represent the true
class i.e. the Target. In the diagonal cells it is shown how many observations
were correctly classified by the ANN. The performance summary is given in
the bottom right cell. For the presented training a very good performance
can be observed, with only 2% of incorrectly classified observations. In case
this number was much higher (close to 10%) it would be necessary to repeat
the training with an ANN structure that has a higher number of neurons in
the hidden layer.

5.3 Verification and performance

In the second stage, the trained ANN was exported to Simulink where the
performance of the imitator controller on the system presented in Fig. 5.3
was compared to the original FS-MPC controller. Two performance metrics
were compared as shown in Table 5.1: THD of the output voltage and the av-
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Fig. 5.3: Simplified scheme of the system using the imitator controller. Source: [J6]

Table 5.1: Performance metrics results from the simulations and experiments. Source: [J6]

Imitator controller Original controller

Perf. metrics THD fsw THD fsw

Simulations 1.42% 8 kHz 1.33% 8.6 kHz

Experiments 1.76% 7.6 kHz 1.69% 8.2 kHz

erage switching frequency. The obtained performance metrics show that the
imitator can very well match the performance of the original controller. This
was also confirmed in the experimental implementations of the controllers.
The THD obtained in the experiments is higher due to the dead time that was
not implemented in the simulations. In the experimental set-up load-step
change experiments were performed to check if the imitator has also inher-
ited the fast transient response characteristic from the original controller. The
measurements presented in Fig. 5.4 have confirmed this. In the introduction
it was mentioned that the biggest impact of the proposed controller synthesis
would be on multi-step horizon predictions. For this purpose the training
of ANN was repeated for a two step prediction horizon and for a three step
prediction horizon. The confusion matrix showed that with the same struc-
ture of the ANN i.e same number of neurons, the classifications were done
with the a constant success rate. Therefore, when the two controllers were
implemented in the experimental DSP platform the execution time of a two
step horizon and three step horizon imitator was equal to the execution time
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(a) for imitator controller (1-step prediction horizon)

(b) for original FS-MPC controller (1-step prediction
horizon)

Fig. 5.4: Filter capacitor voltage (250 V/div) and load current (10 A/div) under load step tran-
sient Rload = 60→ 30Ω. Source: [J6]

of the one step horizon imitator. On the other hand, the execution time of the
original is increasing exponentially with the horizon length. For the predic-
tion horizon three, the execution without overruns was not possible with the
sampling time of 20 µs, which was used in the simulation implementations.

5.3.1 Summary

In this chapter, synthesis of a computationally light power electronics con-
troller, which can imitate the performance of a FS-MPC algorithm, is pre-
sented. The proposed approach offers a new opportunity in developing FS-
MPC algorithms for applications that are limited by heavy computational
burden like multilevel or multi-cell converters and multi-horizon prediction
algorithms. It was experimentally validated that the execution time of the
imitator controller will not increase if the prediction horizon is extended to 3
steps. Moreover, it was also shown that collecting the data for training a high
performance imitator doesn’t require a lot of time.
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5.4 Based on publications

J6. M. Novak, T. Dragicevic, "Supervised Imitation Learning of Finite Set
Model Predictive Control Systems for Power Electronics," IEEE Trans.
Ind. Electron., 2019, Status: Under Review.
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Chapter 6
Conclusions

6.1 Summary

The aim in this PhD project was to propose solutions to the limitations in the
application of FS-MPC algorithm for the multilevel converters and present
the advantages this method could bring in to the multilevel converter ap-
plications. Some of the proposed solutions are not limited for use only on
FS-MPC algorithms. With some modifications they can be used to solve prob-
lems in power electronics applications that go beyond the capabilities of the
traditional methods.

The biggest advantage of FS-MPC comes from the multi-objective cost
function in which it is very straightforward to include new objectives like
thermal stress redistribution for the NPC topology. It is well known that
unequal stress distribution limits the output power of the converter. The pro-
posed FS-MPC algorithm is trying to mitigate the switching actions in the
converter phases during high current periods. This is possible by using the
redundant switching states of the multilevel converters. The results have con-
firmed that if this objective is included in the cost function, the thermal stress
distribution is improved and the temperatures of the devices are reduced.
Moreover, the effects of the new objective on DC-link voltage balancing and
the quality of the output voltage are not overcoming the benefits of the im-
proved stress distribution. It was also shown that it is very simple to adapt
the FS-MPC algorithm to hybrid multilevel topologies and obtain the same
and in some cases even improved redistribution of the thermal stress com-
pared to conventional carrier based control algorithms. Another advantage
of the proposed algorithm is the simple implementation that does not re-
quire additional measurements or data-sheet information about the devices
and the complexity of the algorithm is not increased either.
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The multi-objective cost function needs an approach for tuning the weights
of the included objectives. An approach based on artificial neural networks
was proposed and validated. The trained ANN acts as a surrogate model
of the converter and it is used to rapidly obtain the performance metrics of
the system for multiple weighting factor combinations. Using a user-defined
fitness function the desired performance of the converter is defined and the
minimization of the cost function provides a weighting factor combination
with analytical performance guarantee. Very high accuracy of the predic-
tions from ANN with the simulation and experimental results were observed
for three different application examples with high complexity optimization
problems, which confirms the versatility of the proposed method.

Every control algorithm has to undergo a performance verification be-
fore application in the industry and FS-MPC is currently lacking a tool for
performing this requirement. Therefore, an approach for performance ver-
ification based on Statistical Model Checking was proposed. The proposed
approach requires modelling of the power electronics converter system us-
ing the stochastic time automata structures. These structures can accurately
present both the deterministic components and stochastic components in the
power electronics system. To evaluate the FS-MPC algorithm performance
in the created model, the user defines a question, which represents the per-
formance criteria. Using the Monte-Carlo algorithms the software will de-
termine the number of simulations it needs to run to provide the probability
interval for the defined question. The approach offers the possibility to com-
pare different weighting factor combinations and effects of the parameter
uncertainty on the control algorithm performance.

The limitation in the shape of a high computational burden for multilevel
converters with many switching combinations or multi-step prediction hori-
zon algorithms could also be removed using the imitation learning. It has
been shown that it possible to create an accurate imitator controller of the
original FS-MPC controller, whose computational burden will not increase
with the extension of the prediction horizon. This opens up many possibili-
ties for implementations of high complexity algorithms.

Overall, it can be noticed that this PhD project united problems, ap-
proaches and tools from three different engineering areas: electrical engi-
neering, computer science and mathematics. Moreover, it opened up an in-
teresting collaboration between the power electronics research group and the
distributed, embedded and intelligent systems research group. The main ob-
jective of this collaboration is to bring a new perspective to control algorithm
design for power electronics and develop tools that overcome the limitations
of the traditional methods.
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6.2 Main Contributions

The main contributions of this PhD project are summarized as follows:

• FS-MPC algorithm for improved thermal stress distribution in mul-
tilevel converters
No additional measurements or information about the semiconductor
devices are required for the implementation of the proposed algorithm.
The complexity of the algorithm is not higher than the complexity of
the conventional FS-MPC algorithm. Improvements in the stress dis-
tribution are visible in both high and low modulation index operating
points. Highest impact of the algorithm is seen under high current and
low voltage reference operation.

• ANN based approach for optimizing the weighting factors in the FS-
MPC cost function
The proposed approach offers a fast optimization process with analyt-
ical guarantee of the desired performance. The approach is applicable
to different converter topologies, applications and multi-objective cost
functions. With the optimization done offline, no additional computa-
tional burden is added to the execution of the FS-MPC algorithm. Pre-
dicted performance metrics by the trained ANN have a high correlation
with the simulation and the experimental results.

• Performance validation of FS-MPC algorithm using the statistical
model checking approach
Using the stochastic timed automata structures it is possible to model
both deterministic and stochastic behaviour of a power electronic con-
verter system components. SMC can be used to compare the perfor-
mance of weighting factors tuning and analyse the effects of the uncer-
tainties in the system on the controller performance. The approach is
not exclusive to one topology or application, thus the converter model
can easily be adapted to a different converter topology or application.

• Supervised imitation learning of MPC systems
The proposed approach offers an opportunity for implementation of FS-
MPC algorithms, without simplifications that sacrifice the performance,
for converter topologies that have many possible switching combina-
tions and/or applications that use multi-step horizon predictions. The
imitator of the original FS-MPC controller has an ANN structure, which
is computationally light and its complexity does not increase for multi-
step horizon implementations. Both simulations and experiments con-
firm the high accuracy and performance of the imitator controller.
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6.3 Future Research Perspectives

Presented outcomes of the PhD project have opened up many possibilities
for future development of the proposed approaches in power electronics sys-
tems:

• The effects of the proposed FS-MPC algorithm for thermal stress redis-
tribution were investigated only for unidirectional power applications.
It would be interesting to see if the proposed approach could also be
applied for motor drive applications.

• The NPC topology is a popular solution for motor drives applications
and especially for industrial applications like rolling-mill machines the
stress on the devices is very high. Therefore, it would be of interest to
compare the performance of the proposed algorithm on NPC topology
and the hybrid ANPC topology solutions. Moreover, impact on the
converter life-time should also be investigated and could be included
in the cost function.

• The use of dynamic weighting factors for the proposed cost function
can also be considered for applications in the further development of
the proposed algorithm.

• Statistical model checking approach could be used to compare the per-
formance of different non-linear controllers like ANN controllers in a
stochastic environment.

• The UPPAAL software, where the power electronics system was mod-
elled using the stochastic timed automata, was used to validate the per-
formance of the FS-MPC algorithm. By using a software from the same
family of tools, there is an opportunity to synthesise a new controller
that will also have an analytical guarantee of the stability.

• The application of the supervised imitation learning was presented
with an offline ANN training, however an on-line tuning using the new
measurements could improve the performance of the control algorithm
even more. Moreover, implementation of the imitator on a FPGA plat-
form brings an opportunity to reduce the computation time even more
and also expand the time horizon[97, 98].
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