11,499 research outputs found

    Stochastic Porous Media Equation and Self-Organized Criticality

    Full text link
    The existence and uniqueness of nonnegative strong solutions for stochastic porous media equations with noncoercive monotone diffusivity function and Wiener forcing term is proven. The finite time extinction of solutions with high probability is also proven in 1-D. The results are relevant for self-organized critical behaviour of stochastic nonlinear diffusion equations with critical states.Comment: 29 pages, BiBoS-Preprint No. 07-11-26

    Circular Stochastic Fluctuations in SIS Epidemics with Heterogeneous Contacts Among Sub-populations

    Full text link
    The conceptual difference between equilibrium and non-equilibrium steady state (NESS) is well established in physics and chemistry. This distinction, however, is not widely appreciated in dynamical descriptions of biological populations in terms of differential equations in which fixed point, steady state, and equilibrium are all synonymous. We study NESS in a stochastic SIS (susceptible-infectious-susceptible) system with heterogeneous individuals in their contact behavior represented in terms of subgroups. In the infinite population limit, the stochastic dynamics yields a system of deterministic evolution equations for population densities; and for very large but finite system a diffusion process is obtained. We report the emergence of a circular dynamics in the diffusion process, with an intrinsic frequency, near the endemic steady state. The endemic steady state is represented by a stable node in the deterministic dynamics; As a NESS phenomenon, the circular motion is caused by the intrinsic heterogeneity within the subgroups, leading to a broken symmetry and time irreversibility.Comment: 29 pages, 5 figure

    A primer on noise-induced transitions in applied dynamical systems

    Full text link
    Noise plays a fundamental role in a wide variety of physical and biological dynamical systems. It can arise from an external forcing or due to random dynamics internal to the system. It is well established that even weak noise can result in large behavioral changes such as transitions between or escapes from quasi-stable states. These transitions can correspond to critical events such as failures or extinctions that make them essential phenomena to understand and quantify, despite the fact that their occurrence is rare. This article will provide an overview of the theory underlying the dynamics of rare events for stochastic models along with some example applications

    Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model

    Get PDF
    Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, see e.g. B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan [Nature {\bf 418}, 171 (2002)] and B. Kirkup and M. A. Riley [Nature {\bf 428}, 412 (2004)]. Through analytical methods supported by numerical simulations, we address this issue by studying the properties of a paradigmatic non-spatial three-species stochastic system, namely the `rock-paper-scissors' or cyclic Lotka-Volterra model. While the deterministic approach (rate equations) predicts the coexistence of the species resulting in regular (yet neutrally stable) oscillations of the population densities, we demonstrate that fluctuations arising in the system with a \emph{finite number of agents} drastically alter this picture and are responsible for extinction: After long enough time, two of the three species die out. As main findings we provide analytic estimates and numerical computation of the extinction probability at a given time. We also discuss the implications of our results for a broad class of competing population systems.Comment: 12 pages, 9 figures, minor correction
    corecore