1,656 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Active suspension control of electric vehicle with in-wheel motors

    Get PDF
    In-wheel motor (IWM) technology has attracted increasing research interests in recent years due to the numerous advantages it offers. However, the direct attachment of IWMs to the wheels can result in an increase in the vehicle unsprung mass and a significant drop in the suspension ride comfort performance and road holding stability. Other issues such as motor bearing wear motor vibration, air-gap eccentricity and residual unbalanced radial force can adversely influence the motor vibration, passenger comfort and vehicle rollover stability. Active suspension and optimized passive suspension are possible methods deployed to improve the ride comfort and safety of electric vehicles equipped with inwheel motor. The trade-off between ride comfort and handling stability is a major challenge in active suspension design. This thesis investigates the development of novel active suspension systems for successful implementation of IWM technology in electric cars. Towards such aim, several active suspension methods based on robust H∞ control methods are developed to achieve enhanced suspension performance by overcoming the conflicting requirement between ride comfort, suspension deflection and road holding. A novel fault-tolerant H∞ controller based on friction compensation is in the presence of system parameter uncertainties, actuator faults, as well as actuator time delay and system friction is proposed. A friction observer-based Takagi-Sugeno (T-S) fuzzy H∞ controller is developed for active suspension with sprung mass variation and system friction. This method is validated experimentally on a quarter car test rig. The experimental results demonstrate the effectiveness of proposed control methods in improving vehicle ride performance and road holding capability under different road profiles. Quarter car suspension model with suspended shaft-less direct-drive motors has the potential to improve the road holding capability and ride performance. Based on the quarter car suspension with dynamic vibration absorber (DVA) model, a multi-objective parameter optimization for active suspension of IWM mounted electric vehicle based on genetic algorithm (GA) is proposed to suppress the sprung mass vibration, motor vibration, motor bearing wear as well as improving ride comfort, suspension deflection and road holding stability. Then a fault-tolerant fuzzy H∞ control design approach for active suspension of IWM driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The T-S fuzzy suspension model is used to cope with the possible sprung mass variation. The output feedback control problem for active suspension system of IWM driven electric vehicles with actuator faults and time delay is further investigated. The suspended motor parameters and vehicle suspension parameters are optimized based on the particle swarm optimization. A robust output feedback H∞ controller is designed to guarantee the system’s asymptotic stability and simultaneously satisfying the performance constraints. The proposed output feedback controller reveals much better performance than previous work when different actuator thrust losses and time delay occurs. The road surface roughness is coupled with in-wheel switched reluctance motor air-gap eccentricity and the unbalanced residual vertical force. Coupling effects between road excitation and in wheel switched reluctance motor (SRM) on electric vehicle ride comfort are also analysed in this thesis. A hybrid control method including output feedback controller and SRM controller are designed to suppress SRM vibration and to prolong the SRM lifespan, while at the same time improving vehicle ride comfort. Then a state feedback H∞ controller combined with SRM controller is designed for in-wheel SRM driven electric vehicle with DVA structure to enhance vehicle and SRM performance. Simulation results demonstrate the effectiveness of DVA structure based active suspension system with proposed control method its ability to significantly improve the road holding capability and ride performance, as well as motor performance

    Passive fault-tolerant control for vehicle active suspension system based on H2/H∞ approach

    Get PDF
    In this paper, a robust passive fault-tolerant control (RPFTC) strategy based on H2/H∞ approach and an integral sliding mode passive fault tolerant control (ISMPFTC) strategy based on H2/H∞ approach for vehicle active suspension are presented with considering model uncertainties, loss of actuator effectiveness and time-domain hard constraints of the suspension system. H∞ performance index less than γ and H2 performance index is minimized as the design objective, avoid choosing weighting coefficient. The half-car model is taken as an example, the robust passive fault-tolerant controller and the integral sliding mode passive fault tolerant control law is designed respectively. Three different fault modes are selected. And then compare and analyze the control effect of vertical acceleration of the vehicle body and pitch angular acceleration of passive suspension control, robust passive fault tolerant control and integral sliding mode passive fault tolerant control to verify the feasibility and effectiveness of passive fault tolerant control algorithm of active suspension. The studies we have performed indicated that the passive fault tolerant control strategy of the active suspension can improve the ride comfort of the suspension system

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Optimal slip control for tractors with feedback of drive torque

    Get PDF
    Traction efficiency of tractors barely reaches 50 % in field operations. On the other hand, modern trends in agriculture show growth of the global tractor markets and at the same time increased demands for greenhouse gas emission reduction as well as energy efficiency due to increasing fuel costs. Engine power of farm tractors is growing at 1.8 kW per year reaching today about 500 kW for the highest traction class machines. The problem of effective use of energy has become crucial. Existing slip control approaches for tractors do not fulfil this requirement due to fixed reference set-point. The present work suggests an optimal control scheme based on set-point optimization and on assessment of soil conditions, namely, wheel-ground parameter identification using fuzzy-logic-assisted adaptive unscented Kalman filter.:List of figures VIII List of tables IX Keywords XI List of abbreviations XII List of mathematical symbols XIII Indices XV 1 Introduction 1 1.1 Problem description and challenges 1 1.1.1 Development of agricultural industry 1 1.1.2 Power flows and energy efficiency of a farm tractor 2 1.2 Motivation 9 1.3 Purpose and approach 12 1.3.1 Purpose and goals 12 1.3.2 Brief description of methodology 14 1.3.2.1 Drive torque feedback 14 1.3.2.2 Measurement signals 15 1.3.2.3 Identification of traction parameters 15 1.3.2.4 Definition of optimal slip 15 1.4 Outline 16 2 State of the art in traction management and parameter estimation 17 2.1 Slip control for farm tractors 17 2.2 Acquisition of drive torque feedback 23 2.3 Tire-ground parameter estimation 25 2.3.1 Kalman filter 25 2.3.2 Extended Kalman filter 27 2.3.3 Unscented Kalman filter 27 2.3.4 Adaptation algorithms for Kalman filter 29 3 Modelling vehicle dynamics for traction control 31 3.1 Tire-soil interaction 31 3.1.1 Forces in wheel-ground contact 32 3.1.1.1 Vertical force 32 3.1.1.2 Tire-ground surface geometry 34 3.1.2 Longitudinal force 36 3.1.3 Zero-slip condition 37 3.1.3.1 Soil shear stress 38 3.1.3.2 Rolling resistance 39 3.2 Vehicle body and wheels 40 3.2.1 Short description of Multi-Body-Simulation 40 3.2.2 Vehicle body and wheel models 42 3.2.3 Wheel structure 43 3.3 Stochastic input signals 45 3.3.1 Influence of trend and low-frequency components 47 3.3.2 Modelling stochastic signals 49 3.4 Further components and general view of tractor model 53 3.4.1 Generator, intermediate circuit, electrical motors and braking resistor 53 3.4.2 Diesel engine 55 4 Identification of traction parameters 56 4.1 Description of identification approaches 56 4.2 Vehicle model 58 4.2.1 Vehicle longitudinal dynamics 58 4.2.2 Wheel rotational dynamics 59 4.2.3 Tire dynamic rolling radius and inner rolling resistance coefficient 60 4.2.4 Whole model 61 4.3 Static methods of parameter identification 63 4.4 Adaptation mechanism of the unscented Kalman filter 63 4.5 Fuzzy supervisor for the adaptive unscented Kalman filter 66 4.5.1 Structure of the fuzzy supervisor 67 4.5.2 Stability analysis of the adaptive unscented Kalman filter with the fuzzy supervisor 69 5 Optimal slip control 73 5.1 Approaches for slip control by means of traction control system 73 5.1.1 Feedback compensation law 73 5.1.2 Sliding mode control 74 5.1.3 Funnel control 77 5.1.4 Lyapunov-Candidate-Function-based control, other approaches and choice of algorithm 78 5.2 General description of optimal slip control algorithm 79 5.3 Estimation of traction force characteristic curves 82 5.4 Optimal slip set-point computation 85 6 Verification of identification and optimal slip control systems 91 6.1 Simulation results 91 6.1.1 Identification of traction parameters 91 6.1.1.1 Comparison of extended Kalman filter and unscented Kalman filter 92 6.1.1.2 Comparison of ordinary and adaptive unscented Kalman filters 96 6.1.1.3 Comparison of the adaptive unscented Kalman filter with the fuzzy supervisor and static methods 99 6.1.1.4 Description of soil conditions 100 6.1.1.5 Identification of traction parameters under changing soil conditions 101 6.1.2 Approximation of characteristic curves 102 6.1.3 Slip control with reference of 10% 103 6.1.4 Comparison of operating with fixed and optimal slip reference 104 6.2 Experimental verification 108 6.2.1 Setup and description of the experiments 108 6.2.2 Virtual slip control without load machine 109 6.2.3 Virtual slip control with load machine 113 7 Summary, conclusions and future challenges 122 7.1 Summary of results and discussion 122 7.2 Contributions of the dissertation 123 7.3 Future challenges 123 Bibliography 125 A Measurement systems 137 A.1 Measurement of vehicle velocity 137 A.2 Measurement of wheel speed 138 A.3 Measurement or estimation of wheel vertical load 139 A.4 Measurement of draft force 140 A.5 Further possible measurement systems 141 B Basic probability theoretical notions 142 B.1 Brief description of the theory of stochastic processes 142 B.2 Properties of stochastic signals 144 B.3 Bayesian filtering 145 C Modelling stochastic draft force and field microprofile 147 D Approximation of kappa-curves 152 E Simulation parameters 15

    Development of dynamic model and control techniques for microelectromechanical gyroscopes

    Get PDF
    In this thesis we investigate the effects of stiffness, damping and temperature on the performance of a MEMS vibratory gyroscope. The stiffness and damping parameters are chosen because they can be appropriately designed to synchronize the drive and sense mode resonance to enhance the sensitivity and stability of MEMS gyroscope. Our results show that increasing the drive axis stiffness from its tuned value by 50%, reduces the sense mode magnitude by ~27% and augments the resonance frequency by ~21%. The stiffness and damping are mildly sensitive to typical variations in operating temperature. The stiffness decreases by 0.30%, while the damping increases by 3.81% from their initial values, when the temperature is raised from -40 to 60C. Doubling the drive mode damping from its tuned value reduces the oscillation magnitude by 10%, but ~0.20% change in the resonance frequency. The predicted effects of stiffness, damping and temperature can be utilized to design a gyroscope for the desired operating condition

    Aerodynamic Flutter and Buffeting of Long-span Bridges under Wind Load

    Get PDF
    With the continuous increase of span lengths, the aerodynamic characteristics of long-span bridges under external wind excitation have become much more complex and wind-induced vibration has always been a problem of great concern. The present research targets on the aerodynamic performance of long-span bridges under wind load with an emphasis on bridge flutter and buffeting. For the aerodynamic flutter analysis of long-span bridges, the present research investigated the effects of the wind turbulence on flutter stability. The characterizations of the self-excited forces are presented in both the frequency-domain and in the time-domain, and the flutter analysis is conducted under both uniform and turbulent flows. The effect of wind turbulence is directly modeled in time-domain to avoid the complicated random parametric excitation analysis of the equation of motion used in previous studies. It is found that turbulence has a stabilizing effect on bridge aerodynamic flutter. A probabilistic flutter analysis of long-span bridges involving random and uncertain variables is also conducted, which can provide more accurate and adequate information than the critical flutter velocity for wind resistance design of long-span bridges. For the buffeting analysis of long-span bridges, the stress-level buffeting analysis of the bridge under spatial distributed forces is conducted to investigate the effects of wind turbulence on the fatigue damage of long-span bridges. It is found that the increase of the turbulence intensity has a strengthening effect on the buffeting-induced fatigue damage of long-span bridges. For buffeting control, a lever-type TMD system is proposed for suppressing excessive buffeting responses of long-span bridges. The lever-type TMD with an adjustable frequency can overcome the drawback of excessive static stretch of the spring of traditional hanging-type TMD and be adaptive to the change of the environment and the structure itself. To effectively apply the lever-type TMD to future feedback control design, the control performance of the lever-type TMD for excessive buffeting responses of long-span bridges has been studied. The effects of wind velocity and attack angle and the stiffness reduction of bridge girder on the control efficiency have also been investigated to determine the adjustment strategy of the lever-type TMD. It is found that the control efficiency of the lever-type TMD varies greatly with the change of the location of the mass block. The lever-type TMD should be adjusted accordingly based on comprehensive consideration of the environment change and specific control objectives

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    corecore