87 research outputs found

    Comparison of EEG Pattern Recognition of Motor Imagery for Finger Movement Classification

    Get PDF
    The detection of a hand movement beforehand can be a beneficent tool to control a prosthetic hand for upper extremity rehabilitation. To be able to achieve smooth control, the intention detection is acquired from the human body, especially from brain signal or electroencephalogram (EEG) signal. However, many constraints hamper the development of this brain-computer interface (BCI, especially for finger movement detection). Most of the researchers have focused on the detection of the left and right-hand movement. This article presents the comparison of various pattern recognition method for recognizing five individual finger movements, i.e., the thumb, index, middle, ring, and pinky finger movements. The EEG pattern recognition utilized common spatial pattern (CSP) for feature extraction. As for the classifier, four classifiers, i.e., random forest (RF), support vector machine (SVM), k-nearest neighborhood (kNN), and linear discriminant analysis (LDA) were tested and compared to each other. The experimental results indicated that the EEG pattern recognition with RF achieved the best accuracy of about 54%. Other published publication reported that the classification of the individual finger movement is still challenging and need more efforts to make the best performance

    EMG SIGNALS FOR FINGER MOVEMENT CLASSIFICATION BASED ON SHORT-TERM FOURIER TRANSFORM AND DEEP LEARNING

    Get PDF
    An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data representations are investigated: different window segmentation lengths and reduction of the measured channels. The overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains more than 90% by reducing channels from four to three

    Feature Extraction Evaluation of Various Machine Learning Methods for Finger Movement Classification using Double Myo Armband

    Get PDF
    The deployment of electromyography (EMG) signals attracts many researchers since it can be used in decoding finger movements for exoskeleton robotics, prosthetics hand, and powered wheelchair. However, decoding any movement is a challenging task. The success of EMG signals' use lies in the appropriate choice of feature extraction and classification model, especially in the feature extraction process. Therefore, this study evaluates an eight-feature extraction evaluation on various machine learnings such as the Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Decision Tree (DT), Naïve Bayes (NB), and Quadratic Discriminant Analysis (QDA). The dataset from four intact subjects is used to classify twelve finger movements. Through 5 cross-validations, the result shows that almost all feature extractions combined with SVM outperform other combinations of features and classifiers. Mean Absolute Value (MAV) as a feature and SVM as a classifier highlight the best combination with an accuracy of 94.01%

    Finding the discriminative frequencies of motor electroencephalography signal using genetic algorithm

    Get PDF
    A crucial part of the brain-computer interface is a classification of electroencephalography (EEG) motor tasks. Artifacts such as eye and muscle movements corrupt EEG signal and reduce the classification performance. Many studies try to extract not redundant and discriminative features from EEG signals. Therefore, this study proposed a signal preprocessing and feature extraction method for EEG classification. It consists of removing the artifacts by using discrete fourier transform (DFT) as an ideal filter for specific frequencies. It also cross-correlates the EEG channels with the effective channels to emphases the EEG motor signals. Then the resultant from cross correlation are statistical calculated to extract feature for classifying a left and right finger movements using support vector machine (SVM). The genetic algorithm was applied to find the discriminative frequencies of DFT for the two EEG classes signal. The performance of the proposed method was determined by finger movement classification of 13 subjects and the experiments show that the average accuracy is above 93 percent

    Finger Movement Classification via Machine Learning using EMG Armband for 3D Printed Robotic Hand

    Get PDF
    University of Minnesota M.S.E.E. thesis. September 2019. Major: Electrical Engineering. Advisor: Desineni Subbaram Naidu. 1 computer file (PDF); viii, 72 pages +2 supplementary media files.Millions of people lose their limbs due to accidents, infections and/or wars. While prosthetics are the best solution for amputees, designing autonomous prosthetic hand that can perform major operations is a complicated task and thus the prosthetic hands that are designed are very expensive and also a bit heavy. The biggest challenge in designing a prosthetic hand is the classification of EMG signals generated by neurons in the arm to distinguish finger movements. These EMG signals vary in strength from person to person and from movement to movement. This thesis proposes a computationally efficient way that uses Machine Learning to classify 5 and 12 finger movements from EMG signals captured by a device called “Myo Gesture Control Armband”. Further, an ergonomic design of robotic hand is also presented that is small, lightweight and cheap, designed using a 3D printer

    ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification

    Full text link
    Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4X and the feature extraction cost by 14.6X compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6X and 6.8X, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6X and feature computation cost by 5.1X. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding

    Novel finger movement classification method based on multi-centered binary pattern using surface electromyogram signals

    Get PDF
    The number of individuals who have lost their fingers in our world is quite high and these individuals experience great difficulties in performing their daily work. Finger movements classification and prediction are one of the hot-topic research areas for biomedical engineering, machine learning and computer sciences. This study purposes finger movements classification and prediction. For this purpose, a novel finger movements classification method is presented by using surface electromyogram (sEMG) signals. To accurately classify these movements, a novel binary pattern like textural feature extractor is presented and this textural micro pattern is called as multi-centered binary pattern (MCBP). In the MCBP, five odd-indexed values of a block are utilized as center. The proposed MCBP based multileveled finger movements classification method evaluate by three cases. In the first case, the raw sEMG signals are utilized as input. In the second and third case, sEMG signals are divided into frames and these frames are utilized as input. A two-layered feature selector is used to choose the most valuable features. The purpose of using these two feature selectors together is to choose the optimum number of features. In the classification phase, two fine-tuned classifiers have been used and they are k-nearest neighbor (k-NN) and support vector machine (SVM). The proposed MCBP based method achieved 99.17%, 99.70% and 99.62% classification rates using SVM classifier according to Case 1, Case 2 and Case3 respectively. The results show that the study is a highly accurate method.</p

    Finger motion classification using surface-electromyogram signals

    Get PDF
    金沢大学理工研究域電子情報学系The finger movement has the information about force, speed to bend and the combination of fingers. If these information is estimated, the many degrees of freedom interface can apply it. In this study, we aimed for the many degrees of freedom finger movement classification. We tried each fingers classification and the estimate of the flexural finger force using surface-electromyogram signals. In the technique, amount of characteristic are a cepstral coefficient of EMG signals and an integral calculus EMG signals. A support vector machine performs learning and classtification. Therefore, I propose the classification technique and inspected a classification each finger and the combination of fingers by offline data handling using surface EMG signals. © 2010 IEEE

    Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition

    Get PDF
    Myoelectric pattern recognition (MPR) is used to detect user’s intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (kNN)
    corecore