

Finger Movement Classification via Machine Learning

using EMG Armband for 3D Printed Robotic Hand

THESIS

 SUBMITTED TO THE FACULTY OF THE

UNIVERSITY OF MINNESOTA

BY

SHAYAN ALI BHATTI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

ADVISOR: PROFESSOR DESINENI SUBBARAM NAIDU, PHD

SEPTEMBER 2019

© Shayan Ali Bhatti 2019

ALL RIGHTS RESERVED

i

Dedication

To my parents who offered support, guidance, and encouragement.

ii

Acknowledgements

As an Industrial Electronics undergraduate from Pakistan, it was an honor for me to get

admission at the University of Minnesota Duluth, USA. I am grateful to the Electrical

Engineering Department at the University of Minnesota Duluth (UMD) for providing me

the opportunity and funding for my masters studies. As a graduate student, I had the

opportunity to work as Teaching Assistant for many courses which gave me the valuable

experience of being a teacher and mentor to many students.

I would like to thank my advisor, Dr. Naidu, for his patience and encouragement. Machine

Learning is considered somewhat out of the scope of Electrical Engineering and required

me to study via online courses and books which took a fair amount of time but Dr. Naidu

was extremely encouraging of the idea of incorporating Machine Learning in my thesis to

keep up-to-date with the latest developments in engineering. I consider it an honor to have

a kind person as him as my thesis advisor.

I am also grateful to Dr. Eleazar Leal in Computer Science Department at UMD who was

extremely kind and helpful with his expert advice on issues regarding Machine Learning.

I would like to thank Dr. Imran Hayee in Electrical Engineering Department at UMD who

has been extremely helpful to me throughout my masters studies in USA.

Lastly, I would like to thank Natural Resources Research Institute (NRRI), Duluth, for their

help regarding 3D printing of the robotic hand. Without NRRI’s help with their state-of-

the-art 3D printers, the 3D print of robotic hand would not have been possible.

iii

Abstract

Millions of people lose their limbs due to accidents, infections and/or wars. While

prosthetics are the best solution for amputees, designing autonomous prosthetic hand that

can perform major operations is a complicated task and thus the prosthetic hands that are

designed are very expensive and also a bit heavy.

The biggest challenge in designing a prosthetic hand is the classification of EMG signals

generated by neurons in the arm to distinguish finger movements. These EMG signals vary

in strength from person to person and from movement to movement.

This thesis proposes a computationally efficient way that uses Machine Learning to classify

5 and 12 finger movements from EMG signals captured by a device called “Myo Gesture

Control Armband”. Further, an ergonomic design of robotic hand is also presented that is

small, lightweight and cheap, designed using a 3D printer.

iv

Table of Contents

Dedication .. i

Acknowledgment .. ii

Abstract .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures .. vii

Abbreviations ... viii

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Previous Work ... 2

1.3 Objectives .. 3

1.4 Proposed Methodology .. 4

CHAPTER 2 INTRODUCTION TO MACHINE LEARNING AND NEURAL

NETWORKS ... 5

2.1 Machine Learning .. 5

2.1.1 Supervised Learning ... 6

2.1.2 Unsupervised Learning ... 6

2.1.3 Self-supervised Learning .. 7

2.1.4 Reinforcement Learning ... 7

2.2 Artificial Neural Networks .. 7

2.2.1 Activation Function .. 8

2.3 Types of Neural Networks ... 11

2.3.1 Convolutional Neural Networks (CNN) ... 11

2.3.2 Recurrent Neural Networks (CNN) .. 12

2.3.3 AutoEncoders ... 13

2.4 Deep Learning ... 13

2.5 Example of Working of Neural Network .. 14

2.6 Common Issues Dealing with Machine Learning Algorithms .. 16

2.6.1 Underfitting .. 16

2.6.2 Overfitting .. 16

2.7 Common Issues Dealing with Machine Learning Algorithms .. 17

v

CHAPTER 3 FEATURE EXTRACTION AND DATA PROCESSING ………………… 19

3.1 Data Extraction via Myo Gesture Control Armband .. 20

3.2 Feature Extraction .. 20

3.2.1 Absolute Value of EMG ... 21

3.2.2 Windowed Batch Average of EMG .. 21

CHAPTER 4 EXPERIMENTS AND PROPOSED METHOD .. 23

4.1 Offline Data Processing .. 23

4.2 Real-Time Data Processing .. 25

4.2.1 Five Finger Movements Classification Experiments .. 26

4.2.2 Twelve Finger Movements Classification Experiments ... 34

4.3 Testing Algorithm on Subjects ... 36

CHAPTER 5 DESIGN OF ROBOTIC HAND .. 39

5.1 Materials Used .. 39

5.2 Design ... 40

5.3 Hardware .. 41

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 43

6.1 Conclusion .. 43

6.2 Future Work ... 44

Bibliography .. 49

A.1 Code for Training and verification of EMG data for 5 finger movements 49

A.2 Code for Training and verification of EMG data for 5 finger movements 57

A.3 Code for Training and verification of EMG data for 5 finger movements 68

vi

List of Tables

Table I: Experimental observations on raw EMG data .. 30

Table II: Experimental observations on absolute values of EMG data .. 31

Table III: Experimental observations on standardized absolute value of EMG data 32

Table IV: Experiments using absolute EMG values with windowed average data 33

Table V: Experiments for 12 finger movements classification ………….……………………… 34

vii

List of Figures

Figure 1.1: Surface EMG sensor. ... 1

Figure 1.2: Myo Gesture Control Armband ... 4

Figure 2.1 : Advent of Artificial Intelligence .. 5

Figure 2.2: Decision Tree. ... 6

Figure 2.3: An example of data clustered via kmeans clustering. ... 7

Figure 2.4: A biological neuron ... 8

Figure 2.5: A neuron in Artificial neural network ... 8

Figure 2.6: Output of sigmoid function… ... 9

Figure 2.7: Tanh activation function output... 10

Figure 2.8: ReLU Activation Function output ... 10

Figure 2.9: A single hidden layer neural network .. 11

Figure 2.10: A convolutional neural network .. 12

Figure 2.11: Recurrent Neural Network .. 12

Figure 2.12: An Autoencoder .. 13

Figure 2.13: A single neuron of neural network .. 14

Figure 2.14: Underfitting, overfitting and good fit .. 16

Figure 2.15: Dropout in neural network... 18

Figure 3.1: Myo Gesture Control Armband ... 19

Figure 3.2: 12 finger movements used for data classification ... 19

Figure 3.3: Myo Armband’s signature movements ... 20

Figure 3.4: EMG Value of One Sensor for Index Finger Open Movement 21

Figure 4.1: Training and test loss and accuracy for offline processing ... 24

Figure 4.2: Communication flow between hardware components of project 26

Figure 4.3(a): Thumb open EMG data vs Time for 8 sensors of EMG armband 27

Figure 4.3(b): Index finger open EMG data vs Time for 8 sensors of EMG armband 27

Figure 4.3(c): Middle finger open EMG data vs Time for 8 sensors of EMG armband 28

Figure 4.3(d): Ring finger open EMG data vs Time for 8 sensors of EMG armband 28

Figure 4.3(e): Pinky finger open EMG data vs Time for 8 sensors of EMG armband 29

Figure 4.4: Training accuracy and loss cuves for the model.. 30

Figure 4.5: Training and validation accuracy and loss curves for 5 movements ………………...33

Figure 4.6: Training and validation accuracy and loss curves for 12 movements ..……………...34

Figure 4.7: Performance of neural network ……………………………………………….……..37

Figure 5.1: 3D designs of fingers of robotic hand ……………………………………………….40

Figure 5.2: Different views of 3D design of robotic hand's palm ………………………….……40

Figure 5.3: 3D printed robotic hand ……………………………..………………………………41

Figure 5.4: Complete hardware of robotic hand ………………..………………….……………42

viii

Abbreviations

EMG - ElectroMyoGraphy

LDA - Linear Discriminant Analysis

KNN - K-Nearest Neighbors

HMM - Hidden Markov Models

ANFIS - Adaptive Neuro Fuzzy Inference Systems

SVM - Support Vector Machines

AI - Artificial Intelligence

ReLU - Rectified Linear Unit

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

ABS - Acrylonitrile Butadiene Styrene

1

CHAPTER 1

INTRODUCTION

1.1 Background

According to the information provided by “Amputee-coalition.org” for Limb Loss

Statistics, which cites the article, “Estimating the Prevalence of Limb Loss in the United

States: 2005 to 2050” [1], there are nearly 2 million people living with limb loss in the

United States of America. Approximately 185,000 amputations occur each year in USA.

The reasons for amputations include accidents, infections, diseases such as diabetes,

trauma and cancer [1]. The wars in Iraq and Afghanistan substantially increased the number

of amputees. About 80% of amputees use prosthetic devices [2] and around 30-50% of

amputees are using Myoelectric controlled devices [3].

While prosthetic legs for amputees are common, building a prosthetic autonomous hand is

a lot more complicated particularly because of the tasks we do using our fingers and hand

are more complicated than the foot. For this purpose, classification of Electromyography

(EMG) signals generated by neurons in arm is extremely important so that the prosthetic

hand can do the desired task.

EMG measures response of a muscle or electrical activity in response to a nerve’s

stimulation of the muscle. There are a lot of ways to acquire EMG signals, such as by

inserting a needle electrode directly into a muscle or by using surface EMG (sEMG)

sensors. An example is shown in Figure 1.1 below:

Figure 1.1: Surface EMG sensor. Picture by Paul Anthony Stewart published under Creative

Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons

2

These EMG values are very random, vary from person-to-person and need application of

efficient algorithms for extraction of meaningful information from them. Hence, these

signals must be processed correctly and then features are extracted from them.

1.2 Previous Work

EMG Classification has been a hot topic, many research groups have worked on it and are

still doing research on it. Different approaches have been used in the past including

different sensors, classification techniques to do EMG classification.

In [4], frequency domain analysis of EMG signals is discussed. The authors applied Fast

Fourier Transform on signals coming from 3 sEMG sensors and fed into multi-layer neural

network for identification of 4 movements namely, thumb and index finger’s flexion and

extension giving above 57% accuracy. In [5], 16 time-domain features were extracted from

sEMG sensors and Adaptive Neuro-Fuzzy Inference System (ANFIS) was implemented

for classification of 5 finger (thumb, index, middle, ring and pinky) extension and 5 flexion

movements were classified with average 72% accuracy. A combination of time and

frequency domain features was extracted in [6] to develop a wearing independent hand

movement classification algorithm. The authors implemented a light-weight random forest

for classifying 15 hand and finger movements with 91.47% accuracy. The authors in [7]

used a state-of-the-art Bagnoli Desktop EMG system for EMG data acquisition and used

time-domain features like mean, standard deviation and skewness. They applied Linear

Discriminant Analysis (LDA) and K-Nearest Neighbors on EMG features to get a fast and

high accuracy classification on 10 finger movements using LDA. Deep Learning involving

a ConvNet has been also employed for this task achieving 98.31% accuracy for 6 gestures

while 69.89% accuracy for 18 gestures over 10 participants [8]. Other machine learning

algorithms have also been used by researchers for EMG classification such as KNN [9],

SVM [10] and decision trees and Hidden Markov Models (HMM) [11].

All above mentioned methods have their distinct features but some disadvantages of them

include expensive hardware as in [7], extensive training methods, over-expensive

3

computations using deep convolutional neural networks or lesser number of recognized

movements.

In the last decade, the EMG data acquisition technology has also seen some advancements.

In the past, there used to be a needle electrode based EMG acquisition method, that required

a needle to be inserted in the hand of the subject. However, with advancements in this

technology, we now have surface EMG (sEMG) sensors that do not require the subject to

go through the pain of needle insertion. Instead, the EMG signals are measured with the

help of sEMG sensors. One such product is the “Myo Gesture Control Armband”, designed

by a Canadian company “Thalmic Labs”. This study used the “Myo Gesture Control

Armband”, more details of this armband are provided in the chapter 3.

It is also worthy to mention that this idea of real-time gesture classification using surface

EMG Myo armband to control robotics hand has been an active research area. In [12], three

hand movements were classified and performed custom designed robotic hand. Six hand

movements were classified using the same armband and imitated by robotic hand in [13].

In [14], Reinforcement Learning was used to teach a prosthetic robotic arm. However,

Johns Hopkins Applied Physics Laboratory made a breakthrough in their $120-million

research project [15], in which they designed a modular prosthetic arm for amputees using

2 Myo armbands for signal processing. This prosthetic allowed an amputee to do most of

the movements that a human arm can perform and required a surgical procedure to fit the

arm.

1.3 Objectives

There are two main objectives of this study. First objective is to design a machine learning

based algorithm that can process EMG signals and classify finger movements from it. The

second objective is to design a realistic 3D printed robotic hand that can imitate those finger

movements.

4

1.4 Proposed Methodology

In this study, a single hidden layer neural network based approach for EMG classification

is proposed that is computationally efficient. EMG signals are acquired from Myo EMG

Control Armband shown in Figure 1.2. We classify 12 vital finger movements via EMG

signals and a signal is sent to Arduino via Bluetooth that actuates motors on a 3D printed

robotic hand to imitate the classified finger movement.

Figure 1.2: Myo Gesture Control Armband

The robotic hand designed, takes inspiration from InMoov’s open source design [16] of 3D

printed robotic hand but instead of a large robotic hand with motors above the wrist, the

proposed design uses micro servo motors that easily fit in the palm of robotic hand, making

it a compact, realistic and light-weight robotic hand.

5

CHAPTER 2

Introduction to Machine Learning and Neural Networks

In this chapter, a brief introduction of Machine Learning and Neural networks is provided.

Machine Learning and Deep Learning (based on neural networks) fall under the umbrella

of Artificial Intelligence as depicted in Figure 2.1.

Figure 2.1 : Advent of Artificial Intelligence

2.1 Machine Learning

Arthur Samuel was the pioneer of Artificial Intelligence (AI) and coined the term machine

learning. In the words of Tom M. Mitchell, an American computer scientist known for his

contributions to the field of AI:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E”.[17]

Artificial
Intelligence

Machine
Learning

Deep Learning

6

Simply put, in machine learning, machine/software is made to learn by making mistakes.

There are 4 categories of machine learning tasks:

1) Supervised learning.

2) Unsupervised learning.

3) Self-supervised learning.

4) Reinforcement learning.

2.1.1 Supervised Learning

In supervised learning, the machine learning model learns from a set of data that contains

inputs as well as the desired output. Supervised learning tasks usually consists of

classification or regression [18]. For example, a machine learning model can be made to

predict stock prices or train image classification model with images of dog, then the model

classifies if it is a picture of “dog” or not. Hence input data is “labeled” in supervised

learning.

Popular algorithms used for supervised learning are Support Vector Machines, Linear

regression, Logistic regression, Naive Bayes, Linear Discriminant Analysis, Decision

Trees, k-Nearest Neighbor and Neural Networks. Figure 2.2 shows a simple decision tree.

Figure 2.2 : Decision Tree. Photograph by Eviatar Bach under license Creative Commons CC0 1.0 on

Wikipedia

2.1.2 Unsupervised Learning

In unsupervised learning, the model learns from “unlabeled” data i.e. the model does not

know the output of the input it is being trained with. Unsupervised Learning is mostly used

7

for clustering data although it is not restricted to it. Unsupervised learning is also used for

anomaly detection.

Commonly used unsupervised learning algorithms are k-means clustering, DBSCAN,

Hierarchical clustering etc. Figure 2.3 shows an example of clustering.

Figure 2.3: An example of data clustered via K-means Clustering. Photograph by Chire, distributed

under a GNU Free Documentation License on Wikipedia

2.1.3 Self-supervised Learning

Self-supervised learning is a special type of supervised learning that learns without labels.

Labels are still involved but they are learnt from the input data using a heuristic algorithm.

Autoencoders are a type of self-supervised learning, in which the generated targets are the

inputs, unmodified [19].

2.1.4 Reinforcement Learning

In reinforcement learning, a software agent is made to take actions in an environment with

the target to maximize the cumulative reward [20]. Google DeepMind’s designed

algorithm AlphaGo beat the champion of Chinese game Go and is based on reinforcement

learning. Google DeepMind’s Go has also mastered Chess and Shogi [21].

2.2 Artificial Neural Networks

Artificial neural networks take their inspiration from biological neural networks in which

the dendrites take input and send to cell body where its processed and output signal is sent

via axon terminal [22]. A biological neuron is shown in Figure 2.4 on next page.

8

Figure 2.4 : A biological neuron. Picture by Prof. Loc Vu-Quoc distributed under Creative

Commons Attribution-Share Alike 3.0 Unported on Wikipedia Commons

Similarly, a neuron in artificial neural network also takes inputs, processes them by

applying an activation function and finally we get an output. A neuron is shown in Figure

2.5.

Figure 2.5 : A neuron in Artificial Neural Network (ANN)

In Figure 2.5 above X1, X2 and X3 are the inputs, W1, W2 and W3 are weights, b is bias and

Y being the output of neuron. In a single neuron, first all weights are multiplied to their

respective inputs and then added in Equation 2.1 as,

𝑍 = 𝑊 ∗ 𝑋 + 𝑏 (2.1)

where equation 3.1 shows a vectorized representation of a neuron with ‘W’ being weight

vector, ‘X’ being input vector, ‘b’ is bias vector and ‘Z’ is the output [23].

After computing ‘Z’, an activation function also called non-linearity is applied to it, which

is discussed next.

2.2.1 Activation Function

A neuron, as shown in equation 2.1 computes a linear function, but our inputs might not be

linear. It means that in order to capture the non-linearity of input, we need to do something.

https://en.wikipedia.org/wiki/en:Creative_Commons
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en

9

That is what an activation function / non-linearity does. There are several types of

activation functions, four of them are discussed next.

A. Sigmoid or Logistic Activation Function

A sigmoid or logistic activation function [24] takes input and suppresses it to value between

0 and 1. It is mathematically shown in equation 2.2 as follows,

𝐴 =
1

1+𝑒−𝑍 (2.2)

where ‘A’ is the output of activation function and ‘Z’ is given in Equation 3.1 above.

Sigmoid activation function is used to find probability of events as if the output of sigmoid

is greater than 0.5 then event is likely to happen otherwise not. Figure 2.6 shows the output

of a sigmoid function.

Figure 2.6: Output of sigmoid activation function. Picture taken by Qef made public on Wikipedia

Commons

B. Tanh Activation Function

A tanh activation function [24] suppresses the input between -1 and 1. Compared with

sigmoid, tanh also gives negative output. It was used extensively for a long time by

researchers. Mathematically given in Equation 2.3 as,

𝐴 =
𝑒𝑍−𝑒−𝑍

𝑒𝑍+𝑒−𝑍
 (2.3)

where ‘A’ is the output of activation function and ‘Z’ is given in Equation 3.1 above.

Its output is graphically shown in Figure 2.7 on next page.

10

Figure 2.7: Tanh activation function output. Picture taken by Geek3 under Creative Commons

Attribution-Share Alike 3.0 Unported license on Wikipedia Commons

C. ReLU Activation Function

ReLU is Rectified Linear Unit activation function [24]. It is the most commonly used

activation function for deep learning applications as it has a constant slope from input

(0,∞). One disadvantage of ReLU is that it suppresses the negative inputs to 0 output but

gives positive input as it is. Mathematically shown in Equation 2.4 as,

𝐹(𝑥) = {
𝑥 𝑓𝑜𝑟 𝑥 > 0
0 𝑓𝑜𝑟 𝑥 ≤ 0

 (2.4)

where ‘x’ is the input value and F(x) is output of relu function.

The output of ReLU activation function is graphically shown in Figure 2.8 below:

Figure 2.8: ReLU activation function output

The biggest reason of using ReLU for deep learning applications is that unlike sigmoid and

tanh activation functions, ReLU does not have saturation region, hence ReLU always has

a constant derivative which tanh and sigmoid don’t, as their derivative is very small in

saturation region.

D. Softmax Activation Function

A softmax activation function [24] is used in the output layer of neural network. It turns

numbers into probabilities that sum to 1. It is mathematically given in Equation 2.5 as,

11

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗

𝑗
 (2.5)

where yi is the probability of an event and S(yi) is the output of softmax function.

There are other activation functions too like leakyReLU, sReLU, pReLU etc which are not

that common but are used based on need.

A full neural network can be seen in Figure 2.9.

Figure 2.9: A single hidden layer neural network

As seen in Figure 2.9, a neural network has an input layer, and atleast one hidden layer

with neurons and an output layer with one or more neurons.

2.3 Types of Neural Networks

There are different types of neural networks. Three are discussed below with applications

as follows:

2.3.1 Convolutional Neural Networks (CNN)

In Convolutional Neural networks, we convolute our input with filter(s) to extract features

from them. Depending upon application, we can have multiple hidden layers for

convoluting our input with the filter. An illustration is shown in Figure 2.10 on next page.

12

Figure 2.10: A Convolutional Neural Network (CNN). Picture taken by Aphex34 distributed under

Creative Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons

The applications of CNN include image [25] and video processing. With the help of CNNs,

96% classification accuracy was achieved over 1.2 million images comprising of 1000

classes. A popular object detection algorithm used for autonomous vehicles and other

applications, also uses CNN.

2.3.2 Recurrent Neural Network (RNN)

In Recurrent Neural Networks, connections between nodes form a directed graph along the

temporal sequence [26]. It is Illustrated in Figure 2.11 below:

Figure 2.11: Recurrent Neural Network (RNN). Picture by François Deloche distributed under

Creative Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons

Recurrent neural networks are used for time-series, natural language processing and speech

related tasks because they are good at capturing context of sentence.

13

2.3.3 AutoEncoders

AutoEncoders are an unsupervised machine learning algorithm. The input and output

layers are the same. Autoencoder, tries to make the hidden layers learn the input to

successfully recreate it [27]. An autoencoder is shown in Figure 2.12.

Figure 2.12: An Autoencoder. Picture by Chervinskii released under Creative Commons Attribution-

Share Alike 4.0 International license on Wikipedia Commons

AutoEncoders are used for anomaly detection as well as compression purposes.

Besides the above mentioned types of neural networks, there are others such as Generative

Adversarial Networks, Long Short Term Models etc.

2.4 Deep Learning

Deep Learning falls under a broad family of machine learning based on Artificial Neural

Networks. It can be used for supervised as well as unsupervised learning. Deep Learning

is famous for its high performance on image classification, speech processing and natural

language processing tasks. The word ‘deep’ comes from depth of layers.

As deep learning is based on neural networks, there is no set formula on how many hidden

layers should the neural network have, but if a network has atleast 3 hidden layers then it

is considered deep neural network.

14

2.5 Example of Working of Neural Network

To further explain the mathematics behind a neural network, the example of a single neuron

with binary output is explained below using Figure 2.13.

Figure 2.13: A single neuron of neural network

First, the product of weights and their respective inputs is accumulated with the bias as

shown in Equation 2.6,

𝑍 = 𝑊 ∗ 𝑋 + 𝑏 (2.6)

where ‘Z’ is the accumulated output of weight vector ’W’ (containing W1,W2) and input

vector ‘X’ (containing X1,X2) and bias ‘b’. After calculating ‘Z’ we feed it into activation

function. For this example, it is sigmoid activation function. It is mathematically given in

Equation 2.7 as,

𝑌𝑝𝑟𝑒𝑑 = 𝐴 =
1

1+𝑒−𝑍 (2.7)

where ‘A’ is sigmoid activation function’s output. In this case, ‘A’ is also the prediction

‘Ypred’ of our network, since it is a single neuron network. After getting prediction ‘Ypred’,

we calculate the loss value as shown in binary cross-entropy formula in Equation 2.8,

𝐿 = −[𝑌 ∗ log 𝑌𝑝𝑟𝑒𝑑 + (1 − 𝑌) ∗ log(1 − 𝑌𝑝𝑟𝑒𝑑) (2.8)

where ‘Y’ is the expected output, since we know output in supervised learning and ‘L’ is

the loss value. Our target is to minimize this loss value so that we can get good predictions

for our network. To minimize loss value, we tweak the weights and biases. Specifically,

15

we find out how the change in weight affects the loss value by using chain rule of

derivative. It is shown in Equation 2.9 below,

𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
∗

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
∗

𝜕𝑍

𝜕𝑊
 (2.9)

where ‘
𝜕𝐿

𝜕𝑊
’ is rate of change of loss value with respect to weights, ‘

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
’ is the rate of

change of loss value with respect to predicted value, ‘
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
’ is the rate of change of

predicted value ‘Ypred’ with respect to ‘Z’ and finally ‘
𝜕𝑍

𝜕𝑊
’ is the rate of change of ‘Z’ with

respect to weights. Hence, we find the derivative of the terms as follows,

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
=

𝑌𝑝𝑟𝑒𝑑−𝑌

𝑌𝑝𝑟𝑒𝑑(1−𝑌𝑝𝑟𝑒𝑑)
 (2.10)

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
= 𝑌𝑝𝑟𝑒𝑑(1 − 𝑌𝑝𝑟𝑒𝑑) (2.11)

𝜕𝑍

𝜕𝑊
= 𝑋 (2.12)

substituting the above 3 equations in Equation 2.9 gives,

𝜕𝐿

𝜕𝑊
= 𝑋 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌) (2.13)

where Equation 2.13 shows the rate of change of Loss function with respect to weights

‘
𝜕𝐿

𝜕𝑊
’. After finding it, we use the formula for gradient descent to update the weights and

biases as shown in Equation 2.14 and Equation 2.15 below,

𝑊(𝑡) = 𝑊(𝑡 − 1) − 𝛼
𝜕𝐿

𝜕𝑊
 (2.14)

𝑏(𝑡) = 𝑏(𝑡 − 1) − 𝛼
𝜕𝐿

𝜕𝑏
 (2.15)

where ‘W(t)’, ‘b(t)’ are updated weights and biases, W(t-1), b(t-1) are previous weights

and biases,
𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑏
 are partial derivatives of Loss with respect to weight and bias and ‘α’ is

the learning rate which is kept small to reach convergence. This whole process of updating

weights and biases using chain rule of derivative is called backpropagation.

16

2.6 Common Issues Dealing with Machine Learning Algorithms

When training our model with data using machine learning algorithms, the following two

issues are most common:

1) Underfitting

2) Overfitting

2.6.1 Underfitting

Underfitting means our model is failing to capture the trend of the input data. It shows

that the model is not doing well in terms of training accuracy [29]. Mathematically

speaking, it means that our model is exhibiting high bias. Figure 2.14(a) shows

underfitting.

2.6.2 Overfitting

Overfitting means our model is trying to memorize the data. Mathematically speaking, it

means that our data has high variance which our model is trying to capture by memorizing

it. It also means that the model is doing great on training data but does not do well on

unseen (test) data [29]. Figure 2.14(b) shows overfitting.

Our target in training machine learning models is to get the best fit, as shown in Figure

2.14(c) we can such that our model does not underfit or overfit. It is also called bias-

variance tradeoff.

Figure 2.14: Underfitting, overfitting and good fit

17

2.7 Tackling Underfitting and Overfitting in Neural Networks

Underfitting is usually tackled in neural networks by increasing the hidden layers and/or

neurons whereas overfitting is tackled using regularization, adding more data or dropout.

Regularization and dropout are briefly explained below:

1. Regularization:

Regularization is a technique to help machine learning model do well on unseen data

(test set) [30]. Following are the 2 types of regularizations commonly used:

a) L2 Regularization:

In L2 regularization, weights of neural network are penalized using L2-norm [30]

shown mathematically in Equation 2.16 as,

𝐽(𝑤; 𝑋, 𝑦) =
𝜆

𝑚
𝑤𝑇𝑤 + 𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦) (2.16)

where J(w;X,y) is the loss function, ‘w’ is weight vector, ‘𝜆′ is the regularization

parameter typically kept small, ‘m’ is the number of training examples

′𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦)’ is the previous value of loss function.

L2 regularization penalizes larger weights more.

b) L1 Regularization:

In L1 regularization, simply L1 norm of weight is taken [30]. Mathematically, given

in Equation 2.17 as,

𝐽(𝑤; 𝑋, 𝑦) = 𝜆 ∗ ||𝑤|| + 𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦) (2.17)

where ‘J(w;X,y)’ is the loss function, ‘𝜆′ the regularization parameter,

𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦) is the previous value of loss function and ‘w’ being the weight

vector.

2) Dropout:

In this technique, neurons are randomly disappeared in hidden layers during epochs to

make sure that our model does not memorize the training data. This is a very effective

technique to tackle overfitting [31]. It is shown in Figure 2.15 on next page,

18

Figure 2.15: Dropout in neural network

19

CHAPTER 3

Feature Extraction and Data Processing

In this section EMG data processing and feature extraction is discussed. The data for EMG

is collected from the Myo Gesture Control Armband shown in Figure 3.1.

Figure 3.1: Myo Gesture Control Armband

In the proposed scheme, 1000 samples of EMG data are collected for each finger

movement. Since armband sends EMG data of 8 sensors at 200Hz, hence the training

period of each finger lasts 5 seconds. Our dataset has 12 finger movements which are

opening of thumb, index, middle, ring and pinky finger then two, three, four, five fingers

open, then fist, grab and pick movement as shown in Figure 3.2 below.

Figure 3.2: 12 finger movements used for data classification

20

3.1 Data Extraction via Myo Gesture Control Armband

The EMG data for classification is collected from “Myo Gesture Control Armband”. The

device is provided with 8 EMG electrodes along with 3-axes accelerometer, 3-axes

gyroscope and 3-axes magnetometer. This armband is equipped with ARM Cortex M4

processor. It transmits data via Bluetooth at 200Hz frequency. This device requires user to

wear it and synchronize with the hand movements before it can be used. This process can

take a few minutes. By default, it can detect 5 signature movements as shown in Figure 3.3

taken from Myo armband’s website.

Figure 3.3: Myo Armband’s signature movements

3.2 Feature Extraction

The EMG data gathered from the armband is very random in nature and must be processed

to extract important features from it which can be used to classify EMG data. These features

are of 2 types:

a) Time-domain features.

b) Frequency-domain features.

The time-domain features include averaging, zero detection, root mean square, standard

deviation etc. whereas frequency-domain features include taking power-spectral density,

fast fourier transform and other techniques.

21

In this study, we analyzed time-domain based feature extraction in which we extract the

absolute value of EMG data and take windowed average of the collected 1000 EMG data

points from the 8 sensors. The window size used here is 50. It is discussed in detail below.

3.2.1 Absolute Value of EMG

EMG values coming from armband by default are positive as well as negative making it

more difficult to recognize gesture. To illustrate this, EMG data for one sensor for index

finger opening is shown in Figure 3.4.

Figure 3.4: EMG value of one sensor for index finger open movement

Hence we take the absolute value of EMG values of each sensor, mathematically shown

in (1).

𝐸𝑀𝐺𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = |EMG| (4.1)

3.2.2 Windowed Batch Average of EMG

Using the absolute value of EMG data, we use a different approach than original moving

average of whole data which is given in (2),

𝐸𝑀𝐴 =
1

𝑊
∑ 𝐸𝑀𝐺𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

𝑛−1+𝑗∗𝑛
𝑖=𝑗∗𝑛 (4.2)

where ‘W’ is sample window size. Instead, we computed average of batch of EMG values

for each of the 8 sensors.

22

Hence, for 1000 EMG samples collected for each of the 8 sensors, we take average of n=50

EMG samples per batch and j=0,1,..,19 i.e. average of 0 to 49, 50 to 99…. 950 to 999,

giving us 20 data points per sensor, per finger movement, which are then fed into neural

network for classification. So, for each finger movement that we want to classify, there will

be 20*8 = 160 samples for 8 sensors.

By using the absolute value of EMG and taking its windowed average, the data is fed into

neural network to get classification of input.

23

CHAPTER 4

Experiments and Proposed Method

In this chapter, data collection via EMG armband, and the various experiments done using

that data are explained in detail. Basically, two approaches were used for data processing

and classification:

a) Offline data processing

b) Real-time data processing

4.1 Offline Data Processing

In offline data processing, experiments were done on EMG data from a subject that was

stored on computer from the EMG armband for different finger movements and then the

stored data was sent to the neural network algorithm for classification. This approach was

used primarily to get comfortable with neural networks and to verify if the desired results

can be achieved or not. The details of an experiment that gave adequate results is discussed

here.

Experiment:

Following are the features of the experiment:

1. Rstudio was used for writing the code with Keras being the library for neural

network algorithm.

2. 10 second data for each of the 8 sensors for index, middle, ring and pinky

finger’s open and close position was taken at 200Hz and stored in a .txt file

giving 2000 EMG values for each sensor.

3. 101 such files were created for each finger movement.

4. Absolute values for all the EMG values were taken.

5. Mean of each of the 101 files with 2000 EMG values for each of the 8 sensors

were taken for each finger movement

24

6. Thus 101 data points are created and fed to a neural network with 2 hidden

layers with 32 and 16 neurons of ReLU activation function respectively. Output

layer had softmax activation function with 8 outputs, one for each finger

movement.

7. Dataset was divided into 80:20 split to get training and validation set.

Observations:

The 2 hidden-layer neural network used adam optimizer with 0.01 learning rate and ran for

500 EPOCHS yielding 96.8% training accuracy and 93.5% validation accuracy as shown

in Figure 4.1.

Figure 4.1: Training and test loss (above) and accuracy (below) for offline processing

Inference:

The main purpose of this experiment was just to get familiar with neural networks. It was

seen that while the neural network trained well on the data, test accuracy was below 80%

when tested on the EMG data of 2 different subjects. There are 2 obvious flaws in this

approach:

1. The obvious flaw in this approach is that the EMG data needs to be classified in

real-time and is to be sent to robotic hand, not in offline mode.

25

2. This approach required 101 samples of 10 second EMG data to train a network and

we took absolute value of average of each of those samples, which is very time

consuming and not good for implementing as there are temporal features in each

sample, that need to be looked at, rather than to be processed as a whole by taking

average.

3. It was also seen that RStudio did not provide real-time data acquisition support that

was required for this project.

In spite of the above mentioned flaws, this experiment gave confidence to implement

neural networks on EMG data which was important.

4.2 Real-Time Data Processing

EMG Data classification from armband requires quick real-time classification for tasks to

be performed after classification. These tasks can be of wide variety such as light on/off,

robot movement or in our case, sending classified finger movement to a robotic hand so

that it can imitate that movement.

For this task, Python was chosen to be the programming language for developing the whole

software for data acquisition via Bluetooth from the Myo Gesture Control Armband and

Keras Deep Learning library was used for neural network algorithm development. The

software utilizes an API called “Myo-Python” designed by Niklas Rosenstein [32]

published on Github as open-source code. This API receives data from the EMG armband

which we then utilize for feature extraction.

Figure 4.2 on next page explains the real-time data processing communication flow of the

EMG data.

26

Figure 4.2: Communication flow between hardware components of project

After setting up the hardware and code in the computer, experiments were performed for

real-time data processing of EMG data in 2 parts. First, we started with 5 finger open

movements and then we worked on 12 finger open movement recognition.

4.2.1 Five Finger Movements Classification Experiments

In this series of experiments, 5 finger movement recognition was performed which were,

thumb open, index finger open, middle finger open, ring finger open and pinky finger open.

The EMG data for these finger movements is very random as shown in Figure 5.3(a) to

5.3(e) on the following pages:

27

Figure 4.3(a): Thumb open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband

Figure 4.3(b): Index finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband

28

Figure 4.3(c): Middle finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband

Figure 4.3(d): Ring finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband

29

Figure 4.3(e): Pinky finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband

In all parts of Figure 4.3, a spike in EMG is observed when the respective finger is opened

and then EMG values get stable. For all the experiments performed, Following are the

details of the experiments done to classify these movements.

Experiment 1 – Taking data without preprocessing

Initially, we started with feeding the raw EMG data as shown in Figure 5.3, without any

preprocessing to the neural network. Following were the features of the neural network:

1) 1500 EMG samples for each finger movement were collected and split 80:20 for

training and validation set.

2) 2 hidden layers each with 8 neurons of ReLU activation function were used.

3) Output layer had 5 neurons with softmax activation function.

4) Adam optimizer with 0.01 learning rate was used.

5) Model was trained for 500 EPOCHS (iterations).

Observations:

The training and validation accuracy and loss observed are shown in Figure 4.4 on next

page.

30

Figure 4.4: Training accuracy (left) and loss (right) curves for the model

The model achieved 66.5% training accuracy and 60.2% test accuracy. All movements

were misclassified. Table I shows the results of further experiments with raw EMG data.

Table I: Experimental observations on raw EMG data

Experiment

No.

Hidden

layers

Hidden

layer

neurons

EPOCHS Training

accuracy

(%)

Training

loss

Validation

accuracy

(%)

Validation

loss

Inference

1 2 16

(each)

500 78.1 0.5962 71.3 0.8613 Underfit, so we

increase neurons in

next experiment

2 2 50

(each)

500 97.17 0.1 74.2 2.33 Overfitting, so we

add regularization

in next experiment

3 2 50

(each)

500 76.9 0.75 69.6 0.82 Underfit

Inference:

It seemed obvious that the model is underfitting so for next experiments, the number of

neurons in hidden layers was increased. It can also be seen in Figure 5.3 that EMG data

had very high variance, so in order to train model for it, the model will be prone to

overfitting.

31

Experiment 2 – Taking Absolute EMG Value

For this series of experiments, we took the absolute value of EMG data coming from

armband because the raw EMG data had positive as well as negative values.

Observations:

Table II shows the observations of above experiment.

TABLE II: Experimental observations on absolute values of EMG data

Experiment

No.

Hidden

layers

Hidden

layer

neurons

EPOCHS Training

accuracy

(%)

Training

loss

Validation

accuracy

(%)

Validation

loss

Inference

1 1 24 300 69.92 0.7553 66.3 0.84 Underfit, so we

increase neurons in

next experiment

2 1 50 300 72.3 0.7 68.3 0.83 Underfitting, so we

add neurons in next

experiment

3 1 300 300 85.9 0.65 69.6 0.82 Overfitting

4 2 50

(each)

300 84.3 0.34 63 2.19 Overfitting

5 2 100

(each)

300 90 0.2 72.2 1.72 Overfitting, we add

L2 regularization

6 2 200 300 83.3 0.45 73.35 1.67 Underfitting

Inference:

Using absolute values of EMG data did not give good results.

32

Experiment 3 – Preprocessing using standardized absolute value of EMG data

Standardization is the process of making input data to have mean 0 and variance 1. It is a

common approach to preprocess data and standardization is a widely used approach as it

centers the data around 0 and neural networks are seen to optimize quickly on preprocessed

data.

Observations:

Table III shows the experiments done using standardized EMG data.

Table III: Experimental observations on standardized absolute value of EMG data

Experiment

No.

Hidden

layers

Hidden

layer

neurons

EPOCHS Training

accuracy

(%)

Training

loss

Validation

accuracy

(%)

Validation

loss

Inference

1 2 8 (each) 300 19.5 1.6 19.4 1.6 Underfit, so we

increase neurons in

next experiment

2 2 50

(each)

300 78.17 0.6 37.7 2.5 Overfitting, so we

add regularization

in next experiment

Inference:

It was quite surprising that the standardized EMG value gave poor results than the raw

EMG data.

33

Experiment 4 – Using absolute EMG value with windowed average

In this method, EMG data for each of the 5 finger movements was collected for 7.5 seconds

giving 1500 EMG data points for each movement. Then average of batches of 50 EMG

samples were taken, leaving us with 30 data points per finger movement. Data was split

into 80:20 for training and validation set.

Observations:

Following were the results of using this approach:

Table IV: Experiments using absolute EMG values with windowed average

Experiment

No.

Hidden

layers

Hidden

layer

neurons

EPOCHS Training

accuracy

(%)

Training

loss

Validation

accuracy

(%)

Validation

loss

Inference

1 1 8 500 96 0.5274 88.67 0.68 Overfitting, so we

add L2

regularization and

batch normalization

2 1 8 500 98.33 0.3274 96.67 0.28 All finger

movements were

perfectly

recognized in real-

time

Figure 4.5: Training and validation accuracy (left) and loss (right) curves for 5 movements

Inference:

Figure 4.5 shows the results of 2nd experiment done using this approach. It can be seen that

this approach gave the best results and gave confidence to work on 12 finger movements.

34

4.2.2 Twelve Finger Movements Classification Experiments

After getting desired results on 5 finger movement classification, experiments were

performed for 12 finger movement classification.

Experiment:

For this task, 12 finger movements were chosen for classification. Those movements are:

1) Thumb open 2) Index open 3) Middle open 4) Ring open

5) Pinky open 6) Two fingers open 7) Three fingers open 8) Four fingers open

9) Five fingers open 10) All fingers closed 11) Grasp movement 12) Pick movement

A series of experiments were performed for these finger movements using absolute value

of windowed average of EMG values with window size 50, starting from collecting EMG

samples per finger movement for 7.5 seconds, to decreasing it to 5 seconds. Same single

hidden layer 8 neuron network was used, learning rate and Epochs were varied.

Observations:

Figure 4.6 below shows the training and validation accuracy and loss curves for the Table

V on next page shows the results of experiments done.

Figure 4.6: Training and validation accuracy (left) and loss (right) curves for 12 movements

35

Table V: Experiments for 12 finger movements classification

No. Hidden

layers

Hidden

layer

neurons

Learning

Rate

EPOCHS Training

accuracy

(%)

Training

loss

Validation

accuracy

(%)

Validation

loss

Inference

1 1 8 0.0001 500 78.82 0.8631 90.28 0.65 Underfitting, 5 out

of 12 movements

not recognized

2 1 8 0.0001 700 85.76 0.5585 88.89 0.4280 All finger

movements except

5 finger open were

perfectly

recognized in real-

time

3 1 8 0.001 300 92.01 0.2445 94.44 0.212 All movements

recognized

4 1 4 0.001 300 0.81 0.79 75 0.9 Few movements not

recognized

5 1 2 0.001 300 53.65 1.074 43.75 1.32 Underfitting, poor

recognition

Inference:

It was observed that learning rate of 0.001 gave the best results as shown in Table V on

previous page, experiment # 3, with its training and validation accuracy and loss

graphically represented in Figure 5.6 above. All finger movements were correctly

recognized. For finger movement recognition, 200 EMG samples were collected which

takes 1 second as the armband works at 200Hz frequency. It was also observed that

decreasing the neurons in hidden layer deteriorated the results.

36

4.3 Testing Algorithm on Subjects

The configuration of experiment # 3 in Table V was used for testing finger movement

classification on other 3 subjects other than the one trained to use it. For these experiments,

subjects were asked to do different finger movements in random order.

Observations:

Figure 4.7 on next page shows the observations for different experiments on 3 subjects.

Figure 4.7(A) shows the results of the subjects on 5 finger movement recognition

algorithm, it can be seen in the confusion matrix that no problems were seen for 5 finger

recognition. Figure 4.7(B) shows the confusion matrix for 12 finger movement recognition

algorithm. Figure 4.7(C) and Figure 4.7(D) shows the training and validation accuracy and

loss for 5 finger recognition algorithm whereas Figure 4.7(E) and Figure 4.7(F) shows the

training and validation accuracy and loss for 12 finger movement recognition algorithm.

Both algorithms were different only in that the output layer for 5 finger movement

recognition algorithm had 5 neurons whereas 12 neurons for 12 finger movement

recognition. It was seen in different experiments that some finger movements had problems

in recognition and the main reason for it was that subjects would sometimes do different

movements for recognition than they used for training, either in different position or

different intensity such as hold movement tighter or looser than they used for training. To

prevent that, subjects were asked to put hand on an arm chair for finger movements, which

improved recognition accuracy.

37

Figure 4.7: Performance of neural network. A & B show the confusion matrix of 5 and 12 finger
movements results on human subjects, C & E show the training (blue line) and test accuracy (orange
line) of model on 5 and 12 finger movements respectively and D & F show the training (blue line) and

test loss (orange line) for 5 and 12 finger movements respectively

Inference:

1) From experiments with 3 subjects, It was seen that the finger recognition algorithm

worked great taking 5 seconds for training each finger movement and 1 second for

recognition.

2) Putting hand on armchair for training and verification helped achieve good recognition

accuracy.

38

3) Even though we can train the finger recognition for a user, if the position of wearing

armband changes or if the armband is removed and worn again, then finger movements

will have to be re-trained.

39

CHAPTER 5

Design of Robotic Hand

For the scope of this project, it was also desired to design a robotic hand that is smaller,

lighter and more realistic than the robotic hand designs found online so that recognized

finger movement from machine learning algorithm can be imitated by the designed robotic

hand. For this purpose a 3D design of robotic hand was designed from scratch, with

motivation for design taken from the popular InMoov Robotic hand [16] which is an open

source robotic hand design.

The software used for 3D design of robotic hand was RS Component’s DesignSpark

Mechanical which is an open source 3D design software and quite easy to use. For the

robotic hand to be realistic, the dimensions of palm and fingers were based on a human

hand.

The biggest advantage that this robotic hand has, compared to the robotic hand designs

online is that it uses micro servo motors which are small enough to fit in the palm of robotic

hand, thus greatly reducing the size of the robotic hand whereas common robotic hand

designs fit regular servo motors which are large, heavy and cannot fit in the palm of robotic

hand, thus fitting above the wrist, making the hand large and heavy.

5.1 Materials Used

Following materials were used for designing the robotic hand:

1. For pulling the fingers, 1mm braided fishing line was used.

2. ABS material was used for 3D printing the robotic hand and fingers.

3. FUTABA S3114 Micro Servo motors were used as actuators.

4. Arduino Uno is used for controlling motors.

5. HC-05 Bluetooth module is used for sending signals for finger recognition from

computer to Arduino.

6. Servo motor driver for controlling the servo motors.

40

5.2 Design

For robotic hand design, the fingers were 3D printed first. Figure 6.1 shows the design of

fingers and Figure 6.2 shows different views of the palm of robotic hand.

Figure 5.1: 3D designs of fingers of robotic hand

Figure 5.2: Different views of 3D design of robotic hand’s palm

41

5.3 Hardware

The palm of robotic hand was 3D printed with assistance from Natural Resources Research

Institute (NRRI), Duluth, whereas the fingers of robotic hand were printed in University of

Minnesota Duluth’s 3D printers. Figure 5.3 shows the complete 3D printed design of the

robotic hand.

Figure 5.3: 3D printed robotic hand

It can be seen that the finger pulling mechanism of servo motors is based on micro servo

motors and 1mm braided fishing line. Figure 5.4 on next page shows the complete

hardware used for controlling the robotic hand.

42

Figure 5.4: Complete hardware of robotic hand

43

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In this study, a machine learning based approach to classify EMG signals using an

inexpensive EMG armband is presented. This approach uses a single hidden layer neural

network to train and recognize the finger movements using EMG data and has not been

used in previous research works. The training for each finger movement takes just 5

seconds, while verification takes just a second. For feature extraction, a lot of approaches

were tried and tested, but windowed averages of absolute values of EMG gave best results

to feed into neural network for training and verification.

This approach when tested on 4 subjects gave perfect results for 5 finger movement

recognition and above 80% accuracy on 12 finger movement recognition. The main reason

for classification error was seen to be different gestures used for training and verification.

Using an armchair for gesture recognition and verification helped.

In the second part of this study, a novel design for robotic hand is presented. The robotic

hand is designed from scratch using 3D printing, is a very light, small and realistic version

of a middle-aged human hand. Using micro-servo motors greatly decreases the size of

robotic hand mechanism enabling us to fit the whole control mechanism inside the palm of

robotic hand.

The single hidden layer neural network approach is easy to implement even on embedded

systems such as microcontroller, in which we can hardcode the trained weights of neural

network. Thus, without needing expensive computer always at disposal, the whole finger

recognition algorithm can be implemented on inexpensive hardware keeping robotic hand

small.

44

This machine learning based approach is good if a quick and easy task is to be achieved

using finger movement recognition such as gesture based robot control, games or other

applications. However, using it for amputees, will require a lot of tests to be done with the

help of amputees. On the other hand, the 3D printed robotic hand design presented in this

study can act as a novel robotic hand prototype for amputees if built with strong materials

and sturdy finger pulling mechanism because it is small, realistic and lightweight.

6.2 Future Work

In this research, a single hidden layer neural network is used for training EMG data and

absolute values of EMG and their windowed averages are used to capture the trend of the

EMG data for finger movement classification. It is obvious that time is of essence for finger

movement classification via EMG. There is a special type of neural network called

Recurrent Neural Networks which is used specially for time-series based data. Using

Recurrent Neural Networks for EMG Classification might provide better results in

capturing the trends of varying EMG, based on different finger movements than the single

hidden layer neural network approach provided in this study.

For this study, a laptop computer was used for training and verification of EMG signals for

finger movements. However, taking advantage of simplicity of a single hidden layer neural

network, this algorithm can be implemented on a microcontroller or a Raspberry PI which

is a small, inexpensive credit card sized computer and also provides the support for deep

learning frameworks like Keras and Tensorflow, thus getting rid of large computer

dependence.

45

Bibliography

[1] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and R.

Brookmeyer, “Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050,”

Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3, pp. 422–429, Mar. 2008.

[2] Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment:

A survey of the last 25 years. Prosthetics and Orthotics International, 31(3), 236–257.

https://doi.org/10.1080/03093640600994581

[3] A. Fougner, Ø. Stavdahl, P. J. Kyberd, Y. G. Losier and P. A. Parker, "Control of

Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review,"

in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 5,

pp. 663-677, Sept. 2012. doi: 10.1109/TNSRE.2012.2196711.

[4] A. Harada, T. Nakakuki, M. Hikita, and C. Ishii, “Robot finger design for

Myoelectric prosthetic hand and recognition of finger motions via surface EMG,” in 2010

IEEE International Conference on Automation and Logistics, Shatin, Hong Kong, 2010,

pp. 273–278.

[5] W. Caesarendra et al 2018 J. Phys.: Conf. Ser. 1007 012005

[6] Y. Zhang, Y. Chen, H. Yu, X. Yang, W. Lu, and H. Liu, “Wearing-independent

hand gesture recognition method based on EMG armband,” Personal and Ubiquitous

Computing, vol. 22, no. 3, pp. 511–524, Jun. 2018.

[7] S. A. Fandakli and O. Aydemir, “A fast and highly accurate EMG signal

classification approach for multifunctional prosthetic fingers control,” in 2017 40th

International Conference on Telecommunications and Signal Processing (TSP), Barcelona,

Spain, 2017, pp. 395–398.

[8] U. Côté-Allard et al., “Deep Learning for ElectroMyographic Hand Gesture Signal

Classification Using Transfer Learning,” arXiv:1801.07756 [cs, stat], Jan. 2018.

46

[9] M. E. Benalcazar, A. G. Jaramillo, Jonathan, A. Zea, A. Paez, and V. H. Andaluz,

“Hand gesture recognition using machine learning and the Myo armband,” in 2017 25th

European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017, pp. 1040–1044.

[10] F. Kerber, M. Puhl, and A. Krüger, “User-independent real-time hand gesture

recognition based on surface electroMyography,” in Proceedings of the 19th International

Conference on Human-Computer Interaction with Mobile Devices and Services -

MobileHCI ’17, Vienna, Austria, 2017, pp. 1–7.

[11] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A Framework for

Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41,

no. 6, pp. 1064–1076, Nov. 2011.

[12] M. Cognolato et al., “Multifunction control and evaluation of a 3D printed hand

prosthesis with the Myo armband by hand amputees,” Bioengineering, preprint, Oct. 2018.

[13] K. Akhmadeev, E. Rampone, T. Yu, Y. Aoustin, and É. Le Carpentier, “A real-time

gesture classification using surface EMG to control a robotics hand,” in ENOC 2017,

Budapest, Hungary, 2017, vol. 2017.

[14] G. Vasan, “Teaching a Powered Prosthetic Arm with an Intact Arm Using

Reinforcement Learning,” p. 112.

[15] “Press Release.” [Online]. Available:

https://www.jhuapl.edu/PressRelease/160112. [Accessed: 19-Aug-2019].

[16] “Hand and Forarm – InMoov.” Accessed August 18, 2019. http://inmoov.fr/hand-

and-forarm/.

[17] Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-

042807-2.

[18] A. Müller and S. Guido, “Introduction to Machine Learning with Python: A Guide

for Data Scientists,” 2016.

http://inmoov.fr/hand-and-forarm/
http://inmoov.fr/hand-and-forarm/

47

[19] F. Chollet and J. J. Allaire, Deep Learning with R. Manning Publications Company,

2018.

[20] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An

Introduction to Deep Reinforcement Learning,” FNT in Machine Learning, vol. 11, no. 3–

4, pp. 219–354, 2018.

[21] “Google DeepMind’s Go AI Has Mastered Chess And Shogi.” [Online]. Available:

https://www.forbes.com/sites/samshead/2018/12/07/google-deepminds-go-ai-has-

mastered-chess-and-shogi/#25a4cc1b4ca3. [Accessed: 18-Aug-2019].

[22] O. S. Eluyode and D. T. Akomolafe, “Comparative study of biological and artificial

neural networks,” 2013.

[23] “The matrix calculus you need for deep learning.” [Online]. Available:

https://explained.ai/matrix-calculus/index.html. [Accessed: 18-Aug-2019].

[24] B. Karlik and A. V. Olgac, “Performance Analysis of Various Activation Functions

in Generalized MLP Architectures o,” Journal of Artificial Intelligence and Expert

Systems, pp. 111–122, 2010.

[25] S. Hijazi, R. Kumar, and C. Rowen, “Using Convolutional Neural Networks for

Image Recognition,” p. 12.

[26] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long

Short-Term Memory (LSTM) Network,” arXiv:1808.03314 [cs, stat], Aug. 2018.

[27] R. Goroshin and Y. LeCun, “Saturating Auto-Encoders,” arXiv:1301.3577 [cs],

Jan. 2013.

[28] Y. Lecun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient BackProp. 1998.

[29] Allamy, Haider. (2014). Methods To Avoid Over-Fitting And Under-Fitting In

Supervised Machine Learning (comparative study).

[30] S. Demyanov, “Regularization methods for neural networks and related models,”

2015.

48

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” p. 30.

[32] Niklas Rosenstein 2018, Myo-python v1.0.3, available from

https://github.com/NiklasRosenstein/Myo-python

https://github.com/NiklasRosenstein/Myo-python

49

Appendices

A.1: Code for Training and verification of EMG data for 5 finger movements

Python Code:

from __future__ import print_function

from collections import deque

from threading import Lock, Thread

import matplotlib

matplotlib.use("TkAgg")

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow import keras

from keras import regularizers

from keras.models import load_model

from sklearn import preprocessing

import myo

import time

import sys

import psutil

import os

import serial

This training set will contain 1000 samples of 8 sensor values

global training_set

global number_of_samples

global index_training_set, middle_training_set,thumb_training_set,verification_set

global data_array

number_of_samples = 1000

data_array=[]

Sensor1 = np.zeros((1,number_of_samples))

Sensor2 = np.zeros((1,number_of_samples))

Sensor3 = np.zeros((1,number_of_samples))

Sensor4 = np.zeros((1,number_of_samples))

Sensor5 = np.zeros((1,number_of_samples))

Sensor6 = np.zeros((1,number_of_samples))

Sensor7 = np.zeros((1,number_of_samples))

Sensor8 = np.zeros((1,number_of_samples))

index_open_training_set = np.zeros((8,number_of_samples))

middle_open_training_set = np.zeros((8,number_of_samples))

thumb_open_training_set = np.zeros((8,number_of_samples))

ring_open_training_set = np.zeros((8,number_of_samples))

pinky_open_training_set = np.zeros((8,number_of_samples))

verification_set = np.zeros((8,number_of_samples))

training_set = np.zeros((8,number_of_samples)

50

thumb_open_label = 0

index_open_label = 1

middle_open_label = 2

ring_open_label = 3

pinky_open_label = 4

name = input("Enter name of Subject")

def find_one_hot(labels,classes):

 # = tf.constant(C)

 output = tf.one_hot(labels,classes,axis=0)

 sess = tf.Session()

 out = sess.run(output)

 sess.close

 return out

This process checks if Myo Connect.exe is running

def check_if_process_running():

 try:

 for proc in psutil.process_iter():

 if proc.name()=='Myo Connect.exe':

 return True

 return False

 except (psutil.NoSuchProcess,psutil.AccessDenied, psutil.ZombieProcess):

 print (PROCNAME, " not running")

If the process Myo Connect.exe is not running then we restart that process

def restart_process():

 PROCNAME = "Myo Connect.exe"

 for proc in psutil.process_iter():

 # check whether the process name matches

 if proc.name() == PROCNAME:

 proc.kill()

 # Wait a second

 time.sleep(1)

 while(check_if_process_running()==False):

 path = 'C:\Program Files (x86)\Thalmic Labs\Myo Connect\Myo Connect.exe'

 os.startfile(path)

 time.sleep(1)

 #while(check_if_process_running()==False):

 # pass

 print("Process started")

 return True

This is Myo-python SDK’s listener that listens to EMG signal

class Listener(myo.DeviceListener):

 global data_array

 def __init__(self, n):

 self.n =

51

 self.lock = Lock()

 self.emg_data_queue = deque(maxlen=n)

 def on_connected(self, event):

 print("Myo Connected")

 self.started = time.time()

 event.device.stream_emg(True)

 def get_emg_data(self):

 with self.lock:

 print("H")

 def on_emg(self, event):

 with self.lock:

 self.emg_data_queue.append((event.emg))

 if len(list(self.emg_data_queue))>=number_of_samples:

 data_array.append(list(self.emg_data_queue))

 self.emg_data_queue.clear()

 return False

This method is responsible for training EMG data

def Train(conc_array):

 global training_set

 global index_open_training_set, middle_open_training_set, thumb_open_training_set,

ring_open_training_set, pinky_open_training_set, verification_set

 global number_of_samples

 verification_set = np.zeros((8,number_of_samples))

 print (number_of_samples)

 labels = []

 print(conc_array,conc_array.shape)

This division is to make the iterator for making labels run 30 times in inner loop and 10 times in outer

loop running total 300 times for 5 finger movements

 samples = conc_array.shape[0]/5

 # Now we append all data in training label

 # We iterate to make 5 finger movement labels.

 for i in range(0,5):

 for j in range(0,int(samples)):

 labels.append(i)

 labels = np.asarray(labels)

 print(labels, len(labels),type(labels))

 print(conc_array.shape[0])

 permutation_function = np.random.permutation(conc_array.shape[0])

 total_samples = conc_array.shape[0]

 all_shuffled_data,all_shuffled_labels = np.zeros((total_samples,8)),np.zeros((total_samples,8))

 all_shuffled_data,all_shuffled_labels = conc_array[permutation_function],labels[permutation_function]

 print(all_shuffled_data.shape)

 print(all_shuffled_labels.shape)

 number_of_training_samples = np.int(np.floor(0.8*total_samples))

 train_data = np.zeros((number_of_training_samples,8))

 train_labels = np.zeros((number_of_training_samples,8))

 print("TS ", number_of_training_samples, " S " , number_of_samples)

 number_of_validation_samples = np.int(total_samples-number_of_training_samples)

52

 train_data = all_shuffled_data[0:number_of_training_samples,:]

 train_labels = all_shuffled_labels[0:number_of_training_samples,]

 print("Length of train data is ", train_data.shape)

 validation_data = all_shuffled_data[number_of_training_samples:total_samples,:]

 validation_labels = all_shuffled_labels[number_of_training_samples:total_samples,]

 print("Length of validation data is ", validation_data.shape , " validation labels is " ,

validation_labels.shape)

 print(train_data,train_labels)

 model = keras.Sequential([

 # Input dimensions means input columns. Here we have 8 columns, one for each sensor

 keras.layers.Dense(8, activation=tf.nn.relu,input_dim=8,kernel_regularizer=regularizers.l2(0.1)),

 keras.layers.BatchNormalization(),

 keras.layers.Dense(5, activation=tf.nn.softmax)])

 adam_optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None,

decay=0.0, amsgrad=False)

 model.compile(optimizer=adam_optimizer,

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

 history = model.fit(train_data, train_labels,

epochs=300,validation_data=(validation_data,validation_labels),batch_size=16)

 model.save('C:/Users/shaya/Desktop/'+name+'_five_finger_model.h5')

 plt.plot(history.history['acc'])

 plt.plot(history.history['val_acc'])

 plt.title('model accuracy')

 plt.ylabel('accuracy')

 plt.xlabel('epoch')

 plt.legend(['train', 'test'], loc='upper left')

 plt.show()

 # summarize history for loss

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title('model loss')

 plt.ylabel('loss')

 plt.xlabel('epoch')

 plt.legend(['train', 'test'], loc='upper left')

 plt.show()

 averages = number_of_samples/50

 # Initializing array for verification_averages

 verification_averages = np.zeros((int(averages),8))

 while True:

 while True:

 try:

 input("Hold a finger movement and press enter to get its classification")

 hub = myo.Hub()

 number_of_samples=200

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns

 verification_set = np.array((data_array[0]))

53

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 verification_set = np.absolute(verification_set)

 div = 50

 # We add one because iterator below starts from 1

 batches = int(number_of_samples/div) + 1

 for i in range(1,batches):

 verification_averages[i-1,:] = np.mean(verification_set[(i-1)*div:i*div,:],axis=0)

 verification_data = verification_averages

 print("Verification matrix shape is " , verification_data.shape)

 predictions = model.predict(verification_data,batch_size=16)

 predicted_value = np.argmax(predictions[0])

 print(predictions[0])

 print(predicted_value)

 if predicted_value == 0:

 print("Thumb open")

 elif predicted_value == 1:

 print("Index finger open")

 elif predicted_value == 2:

 print("Middle finger open")

 elif predicted_value == 3:

 print("Ring finger open")

 elif predicted_value == 4:

 print("Pinky finger open")

 else:

 pass

 ## Here i send the predicted value to Arduino via Bluetooth so that it can open appropriate fingers ##

 # While 1 is used because sometimes bluetooth port throws exception in opening the COM Port

 # So i keep trying until the data is sent and confirmation received.

 while(1):

 try:

 # Bluetooth at COM6

 serialPort =

serial.Serial(port="COM6",baudrate=9600,bytesize=8,timeout=2,stopbits=serial.STOPBITS_ONE)

 value_to_bluetooth = str(predicted_value).encode()

 serialPort.write(value_to_bluetooth)

 time.sleep(1)

 if serialPort.in_waiting>0:

 serialString = serialPort.readline()

 print(serialString)

 # If we receive what we sent from Arduino bluetooth then all OK else bad value

 if serialString == value_to_bluetooth:

 print("Received")

 else:

 print("Bad value")

54

 serialPort.close()

 break

 except serial.SerialException as e:

 #There is no new data from serial port

 print (str(e))

 except TypeError as e:

 print (str(e))

 ser.port.close()

def main():

 global data_array

 index_open_training_set = np.zeros((8,number_of_samples))

 middle_open_training_set = np.zeros((8,number_of_samples))

 thumb_open_training_set = np.zeros((8,number_of_samples))

 ring_open_training_set = np.zeros((8,number_of_samples))

 pinky_open_training_set = np.zeros((8,number_of_samples))

 verification_set = np.zeros((8,number_of_samples))

 training_set = np.zeros((8,number_of_samples))

 # This function kills Myo Connect.exe and restarts it to make sure it is running

 # Because sometimes the application does not run and crash even when Myo Connect process is running

 # So i think its a good idea to just kill if its not running and restart it

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Initialize the SDK of Myo Armband

 myo.init('C:\\Users\\shaya\\AppData\\Local\\Programs\\Python\\Python36\\myo64.dll')

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 legend = ['Sensor 1','Sensor 2','Sensor 3','Sensor 4','Sensor 5','Sensor 6','Sensor 7','Sensor 8']

 ######### HERE WE GET TRAINING DATA FOR THUMB FINGER OPEN ########

 while True:

 try:

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 input("Open THUMB ")

 start_time = time.time()

 hub.run(listener.on_event,20000)

 thumb_open_training_set = np.array((data_array[0]))

 print(thumb_open_training_set.shape)

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

55

 # Here we send the received number of samples making them a list of 1000 rows 8 columns just how we

need to feed to tensorflow

 ######### HERE WE GET TRAINING DATA FOR INDEX FINGER OPEN ########

 while True:

 try:

 input("Open index finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns

 index_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ###### HERE WE GET TRAINING DATA FOR MIDDLE FINGER OPEN #######

 while True:

 try:

 input("Open MIDDLE finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 middle_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns

 ######## HERE WE GET TRAINING DATA FOR RING FINGER OPEN ########

 while True:

 try:

 input("Open Ring finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 ring_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

57

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR PINKY FINGER OPEN #########

 while True:

 try:

 input("Open Pinky finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 pinky_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Absolute of finger open data

 thumb_open_training_set = np.absolute(thumb_open_training_set)

 index_open_training_set = np.absolute(index_open_training_set)

 middle_open_training_set = np.absolute(middle_open_training_set)

 ring_open_training_set = np.absolute(ring_open_training_set)

 pinky_open_training_set = np.absolute(pinky_open_training_set)

 div = 50

 averages = int(number_of_samples/div)

 thumb_open_averages = np.zeros((int(averages),8))

 index_open_averages = np.zeros((int(averages),8))

 middle_open_averages = np.zeros((int(averages),8))

 ring_open_averages = np.zeros((int(averages),8))

 pinky_open_averages = np.zeros((int(averages),8))

 # Here we are calculating the mean values of all finger open data set and storing them as n/50 samples

because 50 batches of n samples is equal to n/50 averages

 for i in range(1,averages+1):

 thumb_open_averages[i-1,:] = np.mean(thumb_open_training_set[(i-1)*div:i*div,:],axis=0)

 index_open_averages[i-1,:] = np.mean(index_open_training_set[(i-1)*div:i*div,:],axis=0)

 middle_open_averages[i-1,:] = np.mean(middle_open_training_set[(i-1)*div:i*div,:],axis=0)

 ring_open_averages[i-1,:] = np.mean(ring_open_training_set[(i-1)*div:i*div,:],axis=0)

 pinky_open_averages[i-1,:] = np.mean(pinky_open_training_set[(i-1)*div:i*div,:],axis=0)

 # Here we stack all the data row wise

 conc_array = np.concatenate([thumb_open_averages,index_open_averages,middle_open_averages,

ring_open_averages, pinky_open_averages],axis=0)

 print(conc_array.shape)

 np.savetxt('C:/Users/shaya/Desktop/'+name+'_five_movements.txt', conc_array, fmt='%i')

 # In this method the EMG data gets trained and verified

 Train(conc_array)

if __name__ == '__main__':

 main()

57

A.2: Code for Training and verification of EMG data for 12 finger movements

Python Code:

from __future__ import print_function

from collections import deque

from threading import Lock, Thread

import matplotlib

matplotlib.use("TkAgg")

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow import keras

from keras import regularizers

from keras.models import load_model

from sklearn import preprocessing

import myo

import time

import sys

import psutil

import os

Used for bluetooth signal sending and receiving

import serial

This training set will contain 1000 samples of 8 sensor values

global training_set

global number_of_samples

global index_training_set, middle_training_set,thumb_training_set,verification_set

global data_array

number_of_samples = 1000

data_array=[]

Sensor1 = np.zeros((1,number_of_samples))

Sensor2 = np.zeros((1,number_of_samples))

Sensor3 = np.zeros((1,number_of_samples))

Sensor4 = np.zeros((1,number_of_samples))

Sensor5 = np.zeros((1,number_of_samples))

Sensor6 = np.zeros((1,number_of_samples))

Sensor7 = np.zeros((1,number_of_samples))

Sensor8 = np.zeros((1,number_of_samples))

unrecognized_training_set = np.zeros((8,number_of_samples))

index_open_training_set = np.zeros((8,number_of_samples))

middle_open_training_set = np.zeros((8,number_of_samples))

thumb_open_training_set = np.zeros((8,number_of_samples))

ring_open_training_set = np.zeros((8,number_of_samples))

pinky_open_training_set = np.zeros((8,number_of_samples))

two_open_training_set = np.zeros((8,number_of_samples))

three_open_training_set = np.zeros((8,number_of_samples))

four_open_training_set = np.zeros((8,number_of_samples))

five_open_training_set = np.zeros((8,number_of_samples))

all_fingers_closed_training_set = np.zeros((8,number_of_samples))

grasp_training_set = np.zeros((8,number_of_samples))

58

pick_training_set = np.zeros((8,number_of_samples))

verification_set = np.zeros((8,number_of_samples))

training_set = np.zeros((8,number_of_samples))

thumb_open_label = 0

index_open_label = 1

middle_open_label = 2

ring_open_label = 3

pinky_open_label = 4

two_open_label = 5

three_open_label = 6

four_open_label = 7

five_open_label = 8

all_fingers_closed_label = 9

grasp_label = 10

pick_label = 11

name = input("Enter name of Subject")

def find_one_hot(labels,classes):

 output = tf.one_hot(labels,classes,axis=0)

 sess = tf.Session()

 out = sess.run(output)

 sess.close

 return out

Check if Myo Connect.exe process is running

def check_if_process_running():

 try:

 for proc in psutil.process_iter():

 if proc.name()=='Myo Connect.exe':

 return True

 return False

 except (psutil.NoSuchProcess,psutil.AccessDenied, psutil.ZombieProcess):

 print (PROCNAME, " not running")

Restart myo connect.exe process

def restart_process():

 PROCNAME = "Myo Connect.exe"

 for proc in psutil.process_iter():

 # check whether the process name matches

 if proc.name() == PROCNAME:

 proc.kill()

 # Wait a second

 time.sleep(1)

 while(check_if_process_running()==False):

 path = 'C:\Program Files (x86)\Thalmic Labs\Myo Connect\Myo Connect.exe'

 os.startfile(path)

 time.sleep(1)

 print("Process started")

 return True

This class from Myo-python SDK listens to EMG signals from armband

class Listener(myo.DeviceListener):

59

global data_array

 def __init__(self, n):

 self.n = n

 self.lock = Lock()

 self.emg_data_queue = deque(maxlen=n)

 def on_connected(self, event):

 print("Myo Connected")

 self.started = time.time()

 event.device.stream_emg(True)

 def get_emg_data(self):

 with self.lock:

 print("H")

 def on_emg(self, event):

 with self.lock:

 self.emg_data_queue.append((event.emg))

 if len(list(self.emg_data_queue))>=number_of_samples:

 data_array.append(list(self.emg_data_queue))

 self.emg_data_queue.clear()

 return False

This method is responsible for training EMG data

def Train(conc_array):

 global training_set

 global index_open_training_set, middle_open_training_set, thumb_open_training_set,

ring_open_training_set, pinky_open_training_set, verification_set

 global two_open_training_set, three_open_training_set,

four_open_training_set,five_open_training_set,all_fingers_closed_training_set,grasp_training_set,pick_trai

ning_set

 global number_of_samples

 verification_set = np.zeros((8,number_of_samples))

 print (number_of_samples)

 labels = []

 print(conc_array,conc_array.shape)

 # This division is to make the iterator for making labels run 30 times in inner loop and 10 times in outer

loop running total 300 times for 10 finger movements

 samples = conc_array.shape[0]/12

 # Now we append all data in training label

 # We iterate to make 12 finger movement labels.

 for i in range(0,12):

 for j in range(0,int(samples)):

 labels.append(i)

 labels = np.asarray(labels)

 print(labels, len(labels),type(labels))

 print(conc_array.shape[0])

 permutation_function = np.random.permutation(conc_array.shape[0])

 total_samples = conc_array.shape[0]

 all_shuffled_data,all_shuffled_labels = np.zeros((total_samples,8)),np.zeros((total_samples,8))

 all_shuffled_data,all_shuffled_labels = conc_array[permutation_function],labels[permutation_function]

60

print(all_shuffled_data.shape)

 print(all_shuffled_labels.shape)

 number_of_training_samples = np.int(np.floor(0.8*total_samples))

 train_data = np.zeros((number_of_training_samples,8))

 train_labels = np.zeros((number_of_training_samples,8))

 print("TS ", number_of_training_samples, " S " , number_of_samples)

 number_of_validation_samples = np.int(total_samples-number_of_training_samples)

 train_data = all_shuffled_data[0:number_of_training_samples,:]

 train_labels = all_shuffled_labels[0:number_of_training_samples,]

 print("Length of train data is ", train_data.shape)

 validation_data = all_shuffled_data[number_of_training_samples:total_samples,:]

 validation_labels = all_shuffled_labels[number_of_training_samples:total_samples,]

 print("Length of validation data is ", validation_data.shape , " validation labels is " ,

validation_labels.shape)

 print(train_data,train_labels)

 model = keras.Sequential([

 # Input dimensions means input columns. Here we have 8 columns, one for each sensor

 keras.layers.Dense(8, activation=tf.nn.relu,input_dim=8, kernel_regularizer=regularizers.l2(0.1)),

keras.layers.BatchNormalization(),

 keras.layers.Dense(12, activation=tf.nn.softmax)])

 adam_optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None,

decay=0.0, amsgrad=False)

 model.compile(optimizer=adam_optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])

 history = model.fit(train_data, train_labels, epochs=300,

validation_data=(validation_data,validation_labels), batch_size=16)

 model.save('C:/Users/shaya/Desktop/'+name+'_realistic_model.h5')

 # Here we display the training and test loss for model

 plt.plot(history.history['acc'])

 plt.plot(history.history['val_acc'])

 plt.title('model accuracy')

 plt.ylabel('accuracy')

 plt.xlabel('epoch')

 plt.legend(['train', 'test'], loc='upper left')

 plt.show()

 # summarize history for loss

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title('model loss')

 plt.ylabel('loss')

 plt.xlabel('epoch')

 plt.legend(['train', 'test'], loc='upper left')

 plt.show()

 averages = number_of_samples/50

 # Initializing array for verification_averages

 verification_averages = np.zeros((int(averages),8))

 while True:

 while True:

 try:

 input("Hold a finger movement and press enter to get its classification")

61

 hub = myo.Hub()

 number_of_samples=200

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns

 verification_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 verification_set = np.absolute(verification_set)

 div = 50

 # We add one because iterator below starts from 1

 batches = int(number_of_samples/div) + 1

 for i in range(1,batches):

 verification_averages[i-1,:] = np.mean(verification_set[(i-1)*div:i*div,:],axis=0)

 verification_data = verification_averages

 print("Verification matrix shape is " , verification_data.shape)

 predictions = model.predict(verification_data,batch_size=16)

 predicted_value = np.argmax(predictions[0])

 print(predictions[0])

 print(predicted_value)

 if predicted_value == 0:

 print("Thumb open")

 elif predicted_value == 1:

 print("Index finger open")

 elif predicted_value == 2:

 print("Middle finger open")

 elif predicted_value == 3:

 print("Ring finger open")

 elif predicted_value == 4:

 print("Pinky finger open")

 elif predicted_value == 5:

 print("Two fingers open")

 elif predicted_value == 6:

 print("Three fingers open")

 elif predicted_value == 7:

 print("Four fingers open")

 elif predicted_value == 8:

 print("Five fingers open")

 elif predicted_value == 9:

 print("All fingers closed")

 elif predicted_value == 10:

 print("Grasp movement")

 elif predicted_value == 11:

 print("Pick movement")

 else:

 pass

 #### Here i send the predicted value to Arduino via Bluetooth so that it can open appropriate fingers

####

62

 # While 1 is used because sometimes bluetooth port throws exception in opening the COM Port

 # So i keep trying until the data is sent and confirmation received.

 while(1):

 try:

 # Bluetooth at COM6

 serialPort =

serial.Serial(port="COM6",baudrate=9600,bytesize=8,timeout=2,stopbits=serial.STOPBITS_ONE)

 value_to_bluetooth = str(predicted_value).encode()

 if predicted_value == 10:

 value_to_bluetooth = 'a'.encode()

 if predicted_value == 11:

 value_to_bluetooth = 'b'.encode()

 serialPort.write(value_to_bluetooth)

 time.sleep(1)

 if serialPort.in_waiting>0:

 serialString = serialPort.readline()

 print(serialString)

 # If we receive what we sent from Arduino bluetooth then all OK else bad value

 if serialString == value_to_bluetooth:

 print("Received")

 else:

 print("Bad value")

 serialPort.close()

 break

 except serial.SerialException as e:

 #There is no new data from serial port

 print (str(e))

 except TypeError as e:

 print (str(e))

 ser.port.close()

def main():

 global data_array

 unrecognized_training_set = np.zeros((8,number_of_samples))

 index_open_training_set = np.zeros((8,number_of_samples))

 middle_open_training_set = np.zeros((8,number_of_samples))

 thumb_open_training_set = np.zeros((8,number_of_samples))

 ring_open_training_set = np.zeros((8,number_of_samples))

 pinky_open_training_set = np.zeros((8,number_of_samples))

 two_open_training_set = np.zeros((8,number_of_samples))

 three_open_training_set = np.zeros((8,number_of_samples))

 four_open_training_set = np.zeros((8,number_of_samples))

 five_open_training_set = np.zeros((8,number_of_samples))

 all_fingers_closed_training_set = np.zeros((8,number_of_samples))

 grasp_training_set = np.zeros((8,number_of_samples))

 pick_training_set = np.zeros((8,number_of_samples))

 verification_set = np.zeros((8,number_of_samples))

 training_set = np.zeros((8,number_of_samples))

 # This function kills Myo Connect.exe and restarts it to make sure it is running

 # Because sometimes the application does not run even when Myo Connect process is running

 # So i think its a good idea to just kill if its not running and restart it

63

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Initialize the SDK of Myo Armband

 myo.init('C:\\Users\\shaya\\AppData\\Local\\Programs\\Python\\Python36\\myo64.dll')

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 legend = ['Sensor 1','Sensor 2','Sensor 3','Sensor 4','Sensor 5','Sensor 6','Sensor 7','Sensor 8']

 ########## HERE WE GET TRAINING DATA FOR THUMB FINGER OPEN ########

 while True:

 try:

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 input("Open THUMB ")

 start_time = time.time()

 hub.run(listener.on_event,20000)

 thumb_open_training_set = np.array((data_array[0]))

 print(thumb_open_training_set.shape)

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns just how we

need to feed to tensorflow

 ################## HERE WE GET TRAINING DATA FOR INDEX FINGER OPEN ########

 while True:

 try:

 input("Open index finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 # Here we send the received number of samples making them a list of 1000 rows 8 columns

 index_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR MIDDLE FINGER OPEN ############

 while True:

 try:

64

 input("Open MIDDLE finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 middle_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ################## HERE WE GET TRAINING DATA FOR RING FINGER OPEN ##########

 while True:

 try:

 input("Open Ring finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 ring_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ############ HERE WE GET TRAINING DATA FOR PINKY FINGER OPEN ############

 while True:

 try:

 input("Open Pinky finger")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 pinky_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ############ HERE WE GET TRAINING DATA FOR TWO FINGER OPEN #############

 while True:

 try:

 input("Open Two fingers")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

65

 two_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR THREE FINGER OPEN ##########

 while True:

 try:

 input("Open Three fingers")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 three_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ########## HERE WE GET TRAINING DATA FOR THREE FINGER OPEN ##########

 while True:

 try:

 input("Open Four fingers")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 four_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ########## HERE WE GET TRAINING DATA FOR FIVE FINGER OPEN ###########

 while True:

 try:

 input("Open Five fingers")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 five_open_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

66

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR ALL FINGERS CLOSED ###########

 while True:

 try:

 input("Make all fingers closed")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 all_fingers_closed_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR GRASP MOVEMENT ###########

 while True:

 try:

 input("Make Grasp movement")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 grasp_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 ######### HERE WE GET TRAINING DATA FOR PICK MOVEMENT ##########

 while True:

 try:

 input("Make Pick movement")

 start_time = time.time()

 hub = myo.Hub()

 listener = Listener(number_of_samples)

 hub.run(listener.on_event,20000)

 pick_training_set = np.array((data_array[0]))

 data_array.clear()

 break

 except:

 while(restart_process()!=True):

 pass

 # Wait for 3 seconds until Myo Connect.exe starts

 time.sleep(3)

 # Absolute of finger open data

67

 thumb_open_training_set = np.absolute(thumb_open_training_set)

 index_open_training_set = np.absolute(index_open_training_set)

 middle_open_training_set = np.absolute(middle_open_training_set)

 ring_open_training_set = np.absolute(ring_open_training_set)

 pinky_open_training_set = np.absolute(pinky_open_training_set)

 two_open_training_set = np.absolute(two_open_training_set)

 three_open_training_set = np.absolute(three_open_training_set)

 four_open_training_set = np.absolute(four_open_training_set)

 five_open_training_set = np.absolute(five_open_training_set)

 all_fingers_closed_training_set = np.absolute(all_fingers_closed_training_set)

 grasp_training_set = np.absolute(grasp_training_set)

 pick_training_set = np.absolute(pick_training_set)

 div = 50

 averages = int(number_of_samples/div)

 thumb_open_averages = np.zeros((int(averages),8))

 index_open_averages = np.zeros((int(averages),8))

 middle_open_averages = np.zeros((int(averages),8))

 ring_open_averages = np.zeros((int(averages),8))

 pinky_open_averages = np.zeros((int(averages),8))

 two_open_averages = np.zeros((int(averages),8))

 three_open_averages = np.zeros((int(averages),8))

 four_open_averages = np.zeros((int(averages),8))

 five_open_averages = np.zeros((int(averages),8))

 all_fingers_closed_averages = np.zeros((int(averages),8))

 grasp_averages = np.zeros((int(averages),8))

 pick_averages = np.zeros((int(averages),8))

 # Here we are calculating the mean values of all finger open data set and storing them as n/50 samples

because 50 batches of n samples is equal to n/50 averages

 for i in range(1,averages+1):

 thumb_open_averages[i-1,:] = np.mean(thumb_open_training_set[(i-1)*div:i*div,:],axis=0)

 index_open_averages[i-1,:] = np.mean(index_open_training_set[(i-1)*div:i*div,:],axis=0)

 middle_open_averages[i-1,:] = np.mean(middle_open_training_set[(i-1)*div:i*div,:],axis=0)

 ring_open_averages[i-1,:] = np.mean(ring_open_training_set[(i-1)*div:i*div,:],axis=0)

 pinky_open_averages[i-1,:] = np.mean(pinky_open_training_set[(i-1)*div:i*div,:],axis=0)

 two_open_averages[i-1,:] = np.mean(two_open_training_set[(i-1)*div:i*div,:],axis=0)

 three_open_averages[i-1,:] = np.mean(three_open_training_set[(i-1)*div:i*div,:],axis=0)

 four_open_averages[i-1,:] = np.mean(four_open_training_set[(i-1)*div:i*div,:],axis=0)

 five_open_averages[i-1,:] = np.mean(five_open_training_set[(i-1)*div:i*div,:],axis=0)

 all_fingers_closed_averages[i-1,:] = np.mean(all_fingers_closed_training_set[(i-

1)*div:i*div,:],axis=0)

 grasp_averages[i-1,:] = np.mean(grasp_training_set[(i-1)*div:i*div,:],axis=0)

 pick_averages[i-1,:] = np.mean(pick_training_set[(i-1)*div:i*div,:],axis=0)

 # Here we stack all the data row wise

 conc_array = np.concatenate([thumb_open_averages,index_open_averages,middle_open_averages,

ring_open_averages,pinky_open_averages,two_open_averages,three_open_averages,four_open_averages,

five_open_averages,all_fingers_closed_averages,grasp_averages,pick_averages],axis=0)

 print(conc_array.shape)

 np.savetxt('C:/Users/shaya/Desktop/'+name+'.txt', conc_array, fmt='%i')

 # In this method the EMG data gets trained and verified

 Train(conc_array)

if __name__ == '__main__':

 main()

68

A.3: Code for receiving data from bluetooth to Robotic hand and sending

acknowledgment to PC

Arduino Code:

#include <SoftwareSerial.h>

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

SoftwareSerial mySerial(4, 2); // RX, TX

int ledpin=13; // led on D13 will show blink on / off

int BluetoothData; // the data given from Computer

// called this way, it uses the default address 0x40

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

// Depending on your servo make, the pulse width min and max may vary, you

// want these to be as small/large as possible without hitting the hard stop

// for max range. You'll have to tweak them as necessary to match the servos you

// have!

#define SERVOMIN 400 // this is the 'minimum' pulse length count (out of 4096)

#define SERVOMAX 750 // this is the 'maximum' pulse length count (out of 4096)

// our servo # counter

uint8_t servonum = 0;

// Here we store previous finger's number, initially an unrealistic number is assigned

uint8_t previous_finger_servo_number = 50;

void close_all_fingers()

{

 // Initially we begin by closing all fingers one by one

 for (int i=0;i<5;i++)

 {

 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++)

 {

 pwm.setPWM(i, 0, pulselen);

 }

 // Stop all motors after they are closed so they dont vibrate.

 pwm.setPWM(i, 0, 4096);

 delay(500);

 }

}

// First we initialize UART and close all fingers of robotic hand

void setup()

{

 // put your setup code here, to run once:

 mySerial.begin(9600);

 pinMode(ledpin,OUTPUT);

 pwm.begin();

 pwm.setPWMFreq(60); // Analog servos run at ~60 Hz updates

 delay(10);

 close_all_fingers();

69

}

// you can use this function if you'd like to set the pulse length in seconds

// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. its not precise!

void setServoPulse(uint8_t n, double pulse)

{

 double pulselength;

 pulselength = 1000000; // 1,000,000 us per second

 pulselength /= 60; // 60 Hz

// Serial.print(pulselength); Serial.println(" us per period");

 pulselength /= 4096; // 12 bits of resolution

// Serial.print(pulselength); Serial.println(" us per bit");

 pulse *= 1000000; // convert to us

 pulse /= pulselength;

// Serial.println(pulse);

 pwm.setPWM(n, 0, pulse);

}

// This function opens the designated servo motor

void finger_open(uint8_t servonum)

{

 // Open the classified finger

 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen--)

 {

 pwm.setPWM(servonum, 0, pulselen);

 }

 // This line stops the motor so that it doesnt keep "buzzing"

 pwm.setPWM(servonum,0,4096);

 delay(200);

}

// This function closes the designated servo motor

void finger_close(uint8_t servonum)

{

 // Close the previous finger

 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++)

 {

 pwm.setPWM(servonum, 0, pulselen);

 }

 // This line stops the motor so that it doesnt keep "buzzing"

 pwm.setPWM(servonum,0,4096);

 delay(200);

}

// Runs forever

void loop()

{

// Only run if something is received from serial port

 if (mySerial.available()>0)

 {

 // We read the bluetooth data. In this case the finger to be moved by servo motor

 BluetoothData=mySerial.read();

 if (BluetoothData == '0')

 {

 servonum = 0;

 }

70

 else if (BluetoothData == '1')

 {

 servonum = 1;

 }

 else if (BluetoothData == '2')

 {

 servonum = 2;

 }

 else if (BluetoothData == '3')

 {

 servonum = 3;

 }

 else if (BluetoothData == '4')

 {

 servonum = 4;

 }

 else if (BluetoothData == '5')

 {

 servonum = 5;

 }

 else if (BluetoothData == '6')

 {

 servonum = 6;

 }

 else if (BluetoothData == '7')

 {

 servonum = 7;

 }

 else if (BluetoothData == '8')

 {

 servonum = 8;

 }

 else if (BluetoothData == '9')

 {

 servonum = 9;

 }

 else if (BluetoothData == 'a')

 {

 servonum = 10;

 }

 else if (BluetoothData == 'b')

 {

 servonum = 11;

 }

 else

 {

 }

 mySerial.write(BluetoothData);

 digitalWrite(ledpin,!digitalRead(ledpin));

 // If previous finger was different than the received finger servo number then open received servo

number otherwise leave as it is

 if (previous_finger_servo_number != servonum)

 {

 // Open thumb finger, close others

 if (servonum==0)

 {

71

 finger_open(0);

 finger_close(1);

 finger_close(2);

 finger_close(3);

 finger_close(4);

 }

 // Open index finger, close others

 else if (servonum==1)

 {

 finger_open(1);

 finger_close(0);

 finger_close(2);

 finger_close(3);

 finger_close(4);

 }

 // Open middle finger, close others

 else if (servonum==2)

 {

 finger_open(2);

 finger_close(0);

 finger_close(1);

 finger_close(3);

 finger_close(4);

 }

 // Open ring finger, close others

 else if (servonum==3)

 {

 finger_open(3);

 finger_close(0);

 finger_close(1);

 finger_close(2);

 finger_close(4);

 }

 // Open pinky finger, close others

 else if (servonum==4)

 {

 finger_open(4);

 finger_close(0);

 finger_close(1);

 finger_close(2);

 finger_close(3);

 }

 // Two fingers open i.e. index and middle

 else if (servonum == 5)

 {

 finger_close(0);

 finger_close(3);

 finger_close(4);

 finger_open(1);

 finger_open(2);

 }

 // Three fingers open i.e. index, middle and ring

 else if (servonum == 6)

 {

 finger_close(0);

72

 finger_close(4);

 finger_open(1);

 finger_open(2);

 finger_open(3);

 }

 // Four fingers open i.e. index, middle, ring and pinky

 else if (servonum == 7)

 {

 finger_close(0);

 finger_open(1);

 finger_open(2);

 finger_open(3);

 finger_open(4);

 }

 // Five fingers open i.e. index, middle and ring

 else if (servonum == 8)

 {

 finger_open(0);

 finger_open(1);

 finger_open(2);

 finger_open(3);

 finger_open(4);

 }

 // All fingers closed (fist)

 else if (servonum == 9 || servonum == 10)

 {

 finger_close(0);

 finger_close(1);

 finger_close(2);

 finger_close(3);

 finger_close(4);

 }

 // Pick movement. Thumb, index middle close rest open

 else if (servonum == 11)

 {

 finger_close(0);

 finger_close(1);

 finger_close(2);

 finger_open(3);

 finger_open(4);

 }

 previous_finger_servo_number = servonum;

 }

 delay(100);

 }

}

