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Abstract 

Millions of people lose their limbs due to accidents, infections and/or wars. While 

prosthetics are the best solution for amputees, designing autonomous prosthetic hand that 

can perform major operations is a complicated task and thus the prosthetic hands that are 

designed are very expensive and also a bit heavy.  

The biggest challenge in designing a prosthetic hand is the classification of EMG signals 

generated by neurons in the arm to distinguish finger movements. These EMG signals vary 

in strength from person to person and from movement to movement. 

This thesis proposes a computationally efficient way that uses Machine Learning to classify 

5 and 12 finger movements from EMG signals captured by a device called “Myo Gesture 

Control Armband”. Further, an ergonomic design of robotic hand is also presented that is 

small, lightweight and cheap, designed using a 3D printer. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

According to the information provided by “Amputee-coalition.org” for Limb Loss 

Statistics, which cites the article, “Estimating the Prevalence of Limb Loss in the United 

States: 2005 to 2050” [1], there are nearly 2 million people living with limb loss in the 

United States of America. Approximately 185,000 amputations occur each year in USA. 

The reasons for amputations include accidents, infections, diseases such as diabetes, 

trauma and cancer [1]. The wars in Iraq and Afghanistan substantially increased the number 

of amputees. About 80% of amputees use prosthetic devices [2] and around 30-50% of 

amputees are using Myoelectric controlled devices [3].  

While prosthetic legs for amputees are common, building a prosthetic autonomous hand is 

a lot more complicated particularly because of the tasks we do using our fingers and hand 

are more complicated than the foot. For this purpose, classification of Electromyography 

(EMG) signals generated by neurons in arm is extremely important so that the prosthetic 

hand can do the desired task. 

EMG measures response of a muscle or electrical activity in response to a nerve’s 

stimulation of the muscle. There are a lot of ways to acquire EMG signals, such as by 

inserting a needle electrode directly into a muscle or by using surface EMG (sEMG) 

sensors. An example is shown in Figure 1.1 below: 

 

Figure 1.1: Surface EMG sensor. Picture by Paul Anthony Stewart published under Creative 

Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons
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These EMG values are very random, vary from person-to-person and need application of 

efficient algorithms for extraction of meaningful information from them. Hence, these 

signals must be processed correctly and then features are extracted from them. 

1.2 Previous Work 

EMG Classification has been a hot topic, many research groups have worked on it and are 

still doing research on it. Different approaches have been used in the past including 

different sensors, classification techniques to do EMG classification. 

In [4], frequency domain analysis of EMG signals is discussed. The authors applied Fast 

Fourier Transform on signals coming from 3 sEMG sensors and fed into multi-layer neural 

network for identification of 4 movements namely, thumb and index finger’s flexion and 

extension giving above 57% accuracy. In [5], 16 time-domain features were extracted from 

sEMG sensors and Adaptive Neuro-Fuzzy Inference System (ANFIS) was implemented 

for classification of 5 finger (thumb, index, middle, ring and pinky) extension and 5 flexion 

movements were classified with average 72% accuracy. A combination of time and 

frequency domain features was extracted in [6] to develop a wearing independent hand 

movement classification algorithm. The authors implemented a light-weight random forest 

for classifying 15 hand and finger movements with 91.47% accuracy. The authors in [7] 

used a state-of-the-art Bagnoli Desktop EMG system for EMG data acquisition and used 

time-domain features like mean, standard deviation and skewness. They applied Linear 

Discriminant Analysis (LDA) and K-Nearest Neighbors on EMG features to get a fast and 

high accuracy classification on 10 finger movements using LDA. Deep Learning involving 

a ConvNet has been also employed for this task achieving 98.31% accuracy for 6 gestures 

while 69.89% accuracy for 18 gestures over 10 participants [8]. Other machine learning 

algorithms have also been used by researchers for EMG classification such as KNN [9], 

SVM [10] and decision trees and Hidden Markov Models (HMM) [11]. 

All above mentioned methods have their distinct features but some disadvantages of them 

include expensive hardware as in [7], extensive training methods, over-expensive  
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computations using deep convolutional neural networks or lesser number of recognized 

movements. 

In the last decade, the EMG data acquisition technology has also seen some advancements. 

In the past, there used to be a needle electrode based EMG acquisition method, that required 

a needle to be inserted in the hand of the subject. However, with advancements in this 

technology, we now have surface EMG (sEMG) sensors that do not require the subject to 

go through the pain of needle insertion. Instead, the EMG signals are measured with the 

help of sEMG sensors. One such product is the “Myo Gesture Control Armband”, designed 

by a Canadian company “Thalmic Labs”. This study used the “Myo Gesture Control 

Armband”, more details of this armband are provided in the chapter 3. 

It is also worthy to mention that this idea of real-time gesture classification using surface 

EMG Myo armband to control robotics hand has been an active research area. In [12], three 

hand movements were classified and performed custom designed robotic hand. Six hand 

movements were classified using the same armband and imitated by robotic hand in [13]. 

In [14], Reinforcement Learning was used to teach a prosthetic robotic arm. However, 

Johns Hopkins Applied Physics Laboratory made a breakthrough in their $120-million 

research project [15], in which they designed a modular prosthetic arm for amputees using 

2 Myo armbands for signal processing. This prosthetic allowed an amputee to do most of 

the movements that a human arm can perform and required a surgical procedure to fit the 

arm. 

1.3 Objectives 

There are two main objectives of this study. First objective is to design a machine learning 

based algorithm that can process EMG signals and classify finger movements from it. The 

second objective is to design a realistic 3D printed robotic hand that can imitate those finger 

movements. 
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1.4 Proposed Methodology 

In this study, a single hidden layer neural network based approach for EMG classification 

is proposed that is computationally efficient. EMG signals are acquired from Myo EMG 

Control Armband shown in Figure 1.2. We classify 12 vital finger movements via EMG 

signals and a signal is sent to Arduino via Bluetooth that actuates motors on a 3D printed 

robotic hand to imitate the classified finger movement. 

 

Figure 1.2: Myo Gesture Control Armband 

The robotic hand designed, takes inspiration from InMoov’s open source design [16] of 3D 

printed robotic hand but instead of a large robotic hand with motors above the wrist, the 

proposed design uses micro servo motors that easily fit in the palm of robotic hand, making 

it a compact, realistic and light-weight robotic hand.
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CHAPTER 2 

Introduction to Machine Learning and Neural Networks 

In this chapter, a brief introduction of Machine Learning and Neural networks is provided. 

Machine Learning and Deep Learning (based on neural networks) fall under the umbrella 

of Artificial Intelligence as depicted in Figure 2.1. 

 

Figure 2.1 : Advent of Artificial Intelligence 

2.1 Machine Learning 

Arthur Samuel was the pioneer of Artificial Intelligence (AI) and coined the term machine 

learning. In the words of Tom M. Mitchell, an American computer scientist known for his 

contributions to the field of AI: 

“A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E”.[17]

Artificial  
Intelligence

Machine 
Learning

Deep Learning
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Simply put, in machine learning, machine/software is made to learn by making mistakes. 

There are 4 categories of machine learning tasks: 

1) Supervised learning. 

2) Unsupervised learning. 

3) Self-supervised learning. 

4) Reinforcement learning. 

2.1.1 Supervised Learning 

In supervised learning, the machine learning model learns from a set of data that contains 

inputs as well as the desired output. Supervised learning tasks usually consists of 

classification or regression [18]. For example, a machine learning model can be made to 

predict stock prices or train image classification model with images of dog, then the model 

classifies if it is a picture of “dog” or not. Hence input data is “labeled” in supervised 

learning.  

Popular algorithms used for supervised learning are Support Vector Machines, Linear 

regression, Logistic regression, Naive Bayes, Linear Discriminant Analysis, Decision 

Trees, k-Nearest Neighbor and Neural Networks. Figure 2.2 shows a simple decision tree. 

 

Figure 2.2 : Decision Tree. Photograph by Eviatar Bach under license Creative Commons CC0 1.0 on 

Wikipedia 

2.1.2 Unsupervised Learning 

In unsupervised learning, the model learns from “unlabeled” data i.e. the model does not 

know the output of the input it is being trained with. Unsupervised Learning is mostly used 
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for clustering data although it is not restricted to it. Unsupervised learning is also used for 

anomaly detection. 

Commonly used unsupervised learning algorithms are k-means clustering, DBSCAN, 

Hierarchical clustering etc. Figure 2.3 shows an example of clustering. 

 

Figure 2.3: An example of data clustered via K-means Clustering. Photograph by Chire, distributed 

under a GNU Free Documentation License on Wikipedia 

2.1.3 Self-supervised Learning 

Self-supervised learning is a special type of supervised learning that learns without labels. 

Labels are still involved but they are learnt from the input data using a heuristic algorithm. 

Autoencoders are a type of self-supervised learning, in which the generated targets are the 

inputs, unmodified [19]. 

2.1.4 Reinforcement Learning 

In reinforcement learning, a software agent is made to take actions in an environment with 

the target to maximize the cumulative reward [20]. Google DeepMind’s designed 

algorithm AlphaGo beat the champion of Chinese game Go and is based on reinforcement 

learning. Google DeepMind’s Go has also mastered Chess and Shogi [21]. 

2.2 Artificial Neural Networks 

Artificial neural networks take their inspiration from biological neural networks in which 

the dendrites take input and send to cell body where its processed and output signal is sent 

via axon terminal [22]. A biological neuron is shown in Figure 2.4 on next page.
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Figure 2.4 : A biological neuron. Picture by Prof. Loc Vu-Quoc distributed under Creative 

Commons Attribution-Share Alike 3.0 Unported on Wikipedia Commons 

Similarly, a neuron in artificial neural network also takes inputs, processes them by 

applying an activation function and finally we get an output. A neuron is shown in Figure 

2.5. 

 

Figure 2.5 : A neuron in Artificial Neural Network (ANN) 

In Figure 2.5 above X1, X2 and X3 are the inputs, W1, W2 and W3 are weights, b is bias and 

Y being the output of neuron. In a single neuron, first all weights are multiplied to their 

respective inputs and then added in Equation 2.1 as,  

𝑍 = 𝑊 ∗ 𝑋 + 𝑏                                                                      (2.1) 

where equation 3.1 shows a vectorized representation of a neuron with ‘W’ being weight 

vector, ‘X’ being input vector, ‘b’ is bias vector and ‘Z’ is the output [23]. 

After computing ‘Z’, an activation function also called non-linearity is applied to it, which 

is discussed next. 

2.2.1 Activation Function 

A neuron, as shown in equation 2.1 computes a linear function, but our inputs might not be 

linear. It means that in order to capture the non-linearity of input, we need to do something.  

https://en.wikipedia.org/wiki/en:Creative_Commons
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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That is what an activation function / non-linearity does. There are several types of 

activation functions, four of them are discussed next. 

A. Sigmoid or Logistic Activation Function 

A sigmoid or logistic activation function [24] takes input and suppresses it to value between 

0 and 1. It is mathematically shown in equation 2.2 as follows,  

𝐴 =  
1

1+𝑒−𝑍      (2.2) 

where ‘A’ is the output of activation function and ‘Z’ is given in Equation 3.1 above. 

Sigmoid activation function is used to find probability of events as if the output of sigmoid 

is greater than 0.5 then event is likely to happen otherwise not. Figure 2.6 shows the output 

of a sigmoid function. 

 

Figure 2.6: Output of sigmoid activation function. Picture taken by Qef made public on Wikipedia 

Commons 

B. Tanh Activation Function 

A tanh activation function [24] suppresses the input between -1 and 1. Compared with 

sigmoid, tanh also gives negative output. It was used extensively for a long time by 

researchers. Mathematically given in Equation 2.3 as, 

𝐴 =  
𝑒𝑍−𝑒−𝑍

𝑒𝑍+𝑒−𝑍
     (2.3) 

where ‘A’ is the output of activation function and ‘Z’ is given in Equation 3.1 above. 

Its output is graphically shown in Figure 2.7 on next page. 
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Figure 2.7: Tanh activation function output. Picture taken by Geek3 under Creative Commons 

Attribution-Share Alike 3.0 Unported license on Wikipedia Commons 

C. ReLU Activation Function 

ReLU is Rectified Linear Unit activation function [24]. It is the most commonly used 

activation function for deep learning applications as it has a constant slope from input 

(0,∞). One disadvantage of ReLU is that it suppresses the negative inputs to 0 output but 

gives positive input as it is. Mathematically shown in Equation 2.4 as, 

𝐹(𝑥) =  {
𝑥 𝑓𝑜𝑟 𝑥 > 0    
0 𝑓𝑜𝑟 𝑥 ≤ 0    

    (2.4) 

where ‘x’ is the input value and F(x) is output of relu function. 

The output of ReLU activation function is graphically shown in Figure 2.8 below: 

 

Figure 2.8: ReLU activation function output 

The biggest reason of using ReLU for deep learning applications is that unlike sigmoid and 

tanh activation functions, ReLU does not have saturation region, hence ReLU always has 

a constant derivative which tanh and sigmoid don’t, as their derivative is very small in 

saturation region. 

D. Softmax Activation Function 

A softmax activation function [24] is used in the output layer of neural network. It turns 

numbers into probabilities that sum to 1. It is mathematically given in Equation 2.5 as, 
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𝑆(𝑦𝑖) =  
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗

𝑗
      (2.5) 

where yi is the probability of an event and S(yi) is the output of softmax function. 

There are other activation functions too like leakyReLU, sReLU, pReLU etc which are not 

that common but are used based on need. 

A full neural network can be seen in Figure 2.9. 

 

Figure 2.9: A single hidden layer neural network 

As seen in Figure 2.9, a neural network has an input layer, and atleast one hidden layer 

with neurons and an output layer with one or more neurons. 

2.3 Types of Neural Networks 

There are different types of neural networks. Three are discussed below with applications 

as follows: 

2.3.1 Convolutional Neural Networks (CNN) 

In Convolutional Neural networks, we convolute our input with filter(s) to extract features 

from them. Depending upon application, we can have multiple hidden layers for 

convoluting our input with the filter. An illustration is shown in Figure 2.10 on next page.
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Figure 2.10: A Convolutional Neural Network (CNN). Picture taken by Aphex34 distributed under 

Creative Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons 

The applications of CNN include image [25] and video processing. With the help of CNNs, 

96% classification accuracy was achieved over 1.2 million images comprising of 1000 

classes. A popular object detection algorithm used for autonomous vehicles and other 

applications, also uses CNN. 

2.3.2 Recurrent Neural Network (RNN) 

In Recurrent Neural Networks, connections between nodes form a directed graph along the 

temporal sequence [26]. It is Illustrated in Figure 2.11 below: 

 

Figure 2.11: Recurrent Neural Network (RNN). Picture by François Deloche distributed under 

Creative Commons Attribution-Share Alike 4.0 International license on Wikipedia Commons 

Recurrent neural networks are used for time-series, natural language processing and speech 

related tasks because they are good at capturing context of sentence. 
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2.3.3 AutoEncoders 

AutoEncoders are an unsupervised machine learning algorithm. The input and output 

layers are the same. Autoencoder, tries to make the hidden layers learn the input to 

successfully recreate it [27]. An autoencoder is shown in Figure 2.12. 

 

Figure 2.12: An Autoencoder. Picture by Chervinskii released under Creative Commons Attribution-

Share Alike 4.0 International license on Wikipedia Commons 

AutoEncoders are used for anomaly detection as well as compression purposes. 

Besides the above mentioned types of neural networks, there are others such as Generative 

Adversarial Networks, Long Short Term Models etc.

2.4 Deep Learning 

Deep Learning falls under a broad family of machine learning based on Artificial Neural 

Networks. It can be used for supervised as well as unsupervised learning. Deep Learning 

is famous for its high performance on image classification, speech processing and natural 

language processing tasks. The word ‘deep’ comes from depth of layers. 

As deep learning is based on neural networks, there is no set formula on how many hidden 

layers should the neural network have, but if a network has atleast 3 hidden layers then it 

is considered deep neural network. 
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2.5 Example of Working of Neural Network 

To further explain the mathematics behind a neural network, the example of a single neuron 

with binary output is explained below using Figure 2.13. 

 

Figure 2.13: A single neuron of neural network 

First, the product of weights and their respective inputs is accumulated with the bias as 

shown in Equation 2.6, 

𝑍 = 𝑊 ∗ 𝑋 + 𝑏    (2.6) 

where ‘Z’ is the accumulated output of weight vector ’W’ (containing W1,W2) and input 

vector ‘X’ (containing X1,X2) and bias ‘b’. After calculating ‘Z’ we feed it into activation 

function. For this example, it is sigmoid activation function. It is mathematically given in 

Equation 2.7 as, 

𝑌𝑝𝑟𝑒𝑑 = 𝐴 =  
1

1+𝑒−𝑍     (2.7) 

where ‘A’ is sigmoid activation function’s output. In this case, ‘A’ is also the prediction 

‘Ypred’ of our network, since it is a single neuron network. After getting prediction ‘Ypred’, 

we calculate the loss value as shown in binary cross-entropy formula in Equation 2.8, 

𝐿 =  −[𝑌 ∗ log 𝑌𝑝𝑟𝑒𝑑 + (1 − 𝑌) ∗ log(1 − 𝑌𝑝𝑟𝑒𝑑)  (2.8) 

where ‘Y’ is the expected output, since we know output in supervised learning and ‘L’ is 

the loss value. Our target is to minimize this loss value so that we can get good predictions 

for our network. To minimize loss value, we tweak the weights and biases. Specifically, 
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we find out how the change in weight affects the loss value by using chain rule of 

derivative. It is shown in Equation 2.9 below, 

𝜕𝐿

𝜕𝑊
=  

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
∗

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
∗

𝜕𝑍

𝜕𝑊
       (2.9) 

where ‘
𝜕𝐿

𝜕𝑊
’ is rate of change of loss value with respect to weights, ‘

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
’ is the rate of 

change of loss value with respect to predicted value, ‘
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
’ is the rate of change of 

predicted value ‘Ypred’ with respect to ‘Z’ and finally ‘
𝜕𝑍

𝜕𝑊
’ is the rate of change of ‘Z’ with 

respect to weights. Hence, we find the derivative of the terms as follows, 

𝜕𝐿

𝜕𝑌𝑝𝑟𝑒𝑑
=  

𝑌𝑝𝑟𝑒𝑑−𝑌

𝑌𝑝𝑟𝑒𝑑(1−𝑌𝑝𝑟𝑒𝑑)
      (2.10) 

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍
=  𝑌𝑝𝑟𝑒𝑑(1 − 𝑌𝑝𝑟𝑒𝑑)    (2.11) 

𝜕𝑍

𝜕𝑊
= 𝑋      (2.12) 

substituting the above 3 equations in Equation 2.9 gives, 

𝜕𝐿

𝜕𝑊
= 𝑋 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌)     (2.13) 

where Equation 2.13 shows the rate of change of Loss function with respect to weights 

‘
𝜕𝐿

𝜕𝑊
’. After finding it, we use the formula for gradient descent to update the weights and 

biases as shown in Equation 2.14 and Equation 2.15 below, 

𝑊(𝑡) = 𝑊(𝑡 − 1) −  𝛼
𝜕𝐿

𝜕𝑊
    (2.14) 

𝑏(𝑡) = 𝑏(𝑡 − 1) −  𝛼
𝜕𝐿

𝜕𝑏
    (2.15) 

where ‘W(t)’, ‘b(t)’ are updated weights and biases, W(t-1), b(t-1) are previous weights 

and biases, 
𝜕𝐿

𝜕𝑊
, 

𝜕𝐿

𝜕𝑏
 are partial derivatives of Loss with respect to weight and bias and ‘α’ is 

the learning rate which is kept small to reach convergence. This whole process of updating 

weights and biases using chain rule of derivative is called backpropagation.



16 

2.6 Common Issues Dealing with Machine Learning Algorithms 

When training our model with data using machine learning algorithms, the following two 

issues are most common: 

1) Underfitting 

2) Overfitting

2.6.1 Underfitting 

Underfitting means our model is failing to capture the trend of the input data. It shows 

that the model is not doing well in terms of training accuracy [29]. Mathematically 

speaking, it means that our model is exhibiting high bias. Figure 2.14(a) shows 

underfitting. 

2.6.2 Overfitting 

Overfitting means our model is trying to memorize the data. Mathematically speaking, it 

means that our data has high variance which our model is trying to capture by memorizing 

it. It also means that the model is doing great on training data but does not do well on 

unseen (test) data [29]. Figure 2.14(b) shows overfitting. 

Our target in training machine learning models is to get the best fit, as shown in Figure 

2.14(c) we can such that our model does not underfit or overfit. It is also called bias-

variance tradeoff. 

 

Figure 2.14: Underfitting, overfitting and good fit 
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2.7 Tackling Underfitting and Overfitting in Neural Networks 

Underfitting is usually tackled in neural networks by increasing the hidden layers and/or 

neurons whereas overfitting is tackled using regularization, adding more data or dropout. 

Regularization and dropout are briefly explained below: 

1. Regularization: 

Regularization is a technique to help machine learning model do well on unseen data 

(test set) [30]. Following are the 2 types of regularizations commonly used: 

a) L2 Regularization: 

In L2 regularization, weights of neural network are penalized using L2-norm [30] 

shown mathematically in Equation 2.16 as, 

𝐽(𝑤; 𝑋, 𝑦) =  
𝜆

𝑚
𝑤𝑇𝑤 + 𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦)   (2.16) 

where J(w;X,y) is the loss function, ‘w’ is weight vector, ‘𝜆′ is the regularization 

parameter typically kept small, ‘m’ is the number of training examples 

′𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦)’ is the previous value of loss function. 

L2 regularization penalizes larger weights more. 

b) L1 Regularization: 

In L1 regularization, simply L1 norm of weight is taken [30]. Mathematically, given 

in Equation 2.17 as, 

𝐽(𝑤; 𝑋, 𝑦) =  𝜆 ∗ ||𝑤|| +  𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦)   (2.17) 

where ‘J(w;X,y)’ is the loss function, ‘𝜆′ the regularization parameter, 

𝐽𝑝𝑟𝑒𝑣(𝑤; 𝑋, 𝑦) is the previous value of loss function and ‘w’ being the weight 

vector. 

2) Dropout: 

In this technique, neurons are randomly disappeared in hidden layers during epochs to 

make sure that our model does not memorize the training data. This is a very effective 

technique to tackle overfitting [31]. It is shown in Figure 2.15 on next page, 
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Figure 2.15: Dropout in neural network 
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CHAPTER 3 

Feature Extraction and Data Processing 

In this section EMG data processing and feature extraction is discussed. The data for EMG 

is collected from the Myo Gesture Control Armband shown in Figure 3.1. 

 

Figure 3.1: Myo Gesture Control Armband 

In the proposed scheme, 1000 samples of EMG data are collected for each finger 

movement. Since armband sends EMG data of 8 sensors at 200Hz, hence the training 

period of each finger lasts 5 seconds. Our dataset has 12 finger movements which are 

opening of thumb, index, middle, ring and pinky finger then two, three, four, five fingers 

open, then fist, grab and pick movement as shown in Figure 3.2 below. 

 

Figure 3.2: 12 finger movements used for data classification
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3.1 Data Extraction via Myo Gesture Control Armband 

The EMG data for classification is collected from “Myo Gesture Control Armband”. The 

device is provided with 8 EMG electrodes along with 3-axes accelerometer, 3-axes 

gyroscope and 3-axes magnetometer. This armband is equipped with ARM Cortex M4 

processor. It transmits data via Bluetooth at 200Hz frequency. This device requires user to 

wear it and synchronize with the hand movements before it can be used. This process can 

take a few minutes. By default, it can detect 5 signature movements as shown in Figure 3.3 

taken from Myo armband’s website. 

 

Figure 3.3: Myo Armband’s signature movements 

3.2 Feature Extraction 

The EMG data gathered from the armband is very random in nature and must be processed 

to extract important features from it which can be used to classify EMG data. These features 

are of 2 types:  

a) Time-domain features. 

b) Frequency-domain features. 

The time-domain features include averaging, zero detection, root mean square, standard 

deviation etc. whereas frequency-domain features include taking power-spectral density, 

fast fourier transform and other techniques. 
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In this study, we analyzed time-domain based feature extraction in which we extract the 

absolute value of EMG data and take windowed average of the collected 1000 EMG data 

points from the 8 sensors. The window size used here is 50. It is discussed in detail below. 

3.2.1 Absolute Value of EMG 

EMG values coming from armband by default are positive as well as negative making it 

more difficult to recognize gesture. To illustrate this, EMG data for one sensor for index 

finger opening is shown in Figure 3.4. 

 

Figure 3.4: EMG value of one sensor for index finger open movement 

Hence we take the absolute value of EMG values of each sensor, mathematically shown 

in (1). 

𝐸𝑀𝐺𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =  |EMG|     (4.1) 

3.2.2 Windowed Batch Average of EMG 

Using the absolute value of EMG data, we use a different approach than original moving 

average of whole data which is given in (2), 

𝐸𝑀𝐴 =  
1

𝑊
∑ 𝐸𝑀𝐺𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

𝑛−1+𝑗∗𝑛
𝑖=𝑗∗𝑛     (4.2) 

where ‘W’ is sample window size. Instead, we computed average of batch of EMG values 

for each of the 8 sensors. 
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Hence, for 1000 EMG samples collected for each of the 8 sensors, we take average of n=50 

EMG samples per batch and j=0,1,..,19 i.e. average of 0 to 49, 50 to 99…. 950 to 999, 

giving us 20 data points per sensor, per finger movement, which are then fed into neural 

network for classification. So, for each finger movement that we want to classify, there will 

be 20*8 = 160 samples for 8 sensors. 

By using the absolute value of EMG and taking its windowed average, the data is fed into 

neural network to get classification of input.   
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CHAPTER 4 

Experiments and Proposed Method 

In this chapter, data collection via EMG armband, and the various experiments done using 

that data are explained in detail. Basically, two approaches were used for data processing 

and classification: 

a) Offline data processing 

b) Real-time data processing 

4.1 Offline Data Processing 

In offline data processing, experiments were done on EMG data from a subject that was 

stored on computer from the EMG armband for different finger movements and then the 

stored data was sent to the neural network algorithm for classification. This approach was 

used primarily to get comfortable with neural networks and to verify if the desired results 

can be achieved or not. The details of an experiment that gave adequate results is discussed 

here. 

Experiment: 

Following are the features of the experiment: 

1. Rstudio was used for writing the code with Keras being the library for neural 

network algorithm. 

2. 10 second data for each of the 8 sensors for index, middle, ring and pinky 

finger’s open and close position was taken at 200Hz and stored in a .txt file 

giving 2000 EMG values for each sensor. 

3. 101 such files were created for each finger movement. 

4. Absolute values for all the EMG values were taken. 

5. Mean of each of the 101 files with 2000 EMG values for each of the 8 sensors 

were taken for each finger movement
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6. Thus 101 data points are created and fed to a neural network with 2 hidden 

layers with 32 and 16 neurons of ReLU activation function respectively. Output 

layer had softmax activation function with 8 outputs, one for each finger 

movement. 

7. Dataset was divided into 80:20 split to get training and validation set. 

Observations:  

The 2 hidden-layer neural network used adam optimizer with 0.01 learning rate and ran for 

500 EPOCHS yielding 96.8% training accuracy and 93.5% validation accuracy as shown 

in Figure 4.1. 

 
Figure 4.1: Training and test loss (above) and accuracy (below) for offline processing 

Inference: 

The main purpose of this experiment was just to get familiar with neural networks. It was 

seen that while the neural network trained well on the data, test accuracy was below 80% 

when tested on the EMG data of 2 different subjects. There are 2 obvious flaws in this 

approach: 

1. The obvious flaw in this approach is that the EMG data needs to be classified in 

real-time and is to be sent to robotic hand, not in offline mode.
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2. This approach required 101 samples of 10 second EMG data to train a network and 

we took absolute value of average of each of those samples, which is very time 

consuming and not good for implementing as there are temporal features in each 

sample, that need to be looked at, rather than to be processed as a whole by taking 

average. 

3. It was also seen that RStudio did not provide real-time data acquisition support that 

was required for this project. 

In spite of the above mentioned flaws, this experiment gave confidence to implement 

neural networks on EMG data which was important. 

4.2 Real-Time Data Processing 

EMG Data classification from armband requires quick real-time classification for tasks to 

be performed after classification. These tasks can be of wide variety such as light on/off, 

robot movement or in our case, sending classified finger movement to a robotic hand so 

that it can imitate that movement. 

For this task, Python was chosen to be the programming language for developing the whole 

software for data acquisition via Bluetooth from the Myo Gesture Control Armband and 

Keras Deep Learning library was used for neural network algorithm development. The 

software utilizes an API called “Myo-Python” designed by Niklas Rosenstein [32] 

published on Github as open-source code. This API receives data from the EMG armband 

which we then utilize for feature extraction. 

Figure 4.2 on next page explains the real-time data processing communication flow of the 

EMG data.
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Figure 4.2: Communication flow between hardware components of project 

After setting up the hardware and code in the computer, experiments were performed for 

real-time data processing of EMG data in 2 parts. First, we started with 5 finger open 

movements and then we worked on 12 finger open movement recognition. 

4.2.1 Five Finger Movements Classification Experiments 

In this series of experiments, 5 finger movement recognition was performed which were, 

thumb open, index finger open, middle finger open, ring finger open and pinky finger open. 

The EMG data for these finger movements is very random as shown in Figure 5.3(a) to 

5.3(e) on the following pages:  
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Figure 4.3(a): Thumb open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband 

 

Figure 4.3(b): Index finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband
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Figure 4.3(c): Middle finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband 

 

Figure 4.3(d): Ring finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband 
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Figure 4.3(e): Pinky finger open EMG data (y-axis) vs Time (x-axis) for 8 sensors of EMG armband 

In all parts of Figure 4.3, a spike in EMG is observed when the respective finger is opened 

and then EMG values get stable. For all the experiments performed, Following are the 

details of the experiments done to classify these movements. 

Experiment 1 – Taking data without preprocessing 

Initially, we started with feeding the raw EMG data as shown in Figure 5.3, without any 

preprocessing to the neural network. Following were the features of the neural network: 

1) 1500 EMG samples for each finger movement were collected and split 80:20 for 

training and validation set. 

2) 2 hidden layers each with 8 neurons of ReLU activation function were used. 

3) Output layer had 5 neurons with softmax activation function. 

4) Adam optimizer with 0.01 learning rate was used. 

5) Model was trained for 500 EPOCHS (iterations). 

Observations: 

The training and validation accuracy and loss observed are shown in Figure 4.4 on next 

page.
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Figure 4.4: Training accuracy (left) and loss (right) curves for the model 

The model achieved 66.5% training accuracy and 60.2% test accuracy. All movements 

were misclassified. Table I shows the results of further experiments with raw EMG data. 

Table I: Experimental observations on raw EMG data 

Experiment 

No. 

Hidden 

layers 

Hidden 

layer 

neurons 

EPOCHS Training 

accuracy 

(%) 

Training 

loss 

Validation 

accuracy 

(%) 

Validation 

loss 

Inference  

1 2 16 

(each) 

500 78.1 0.5962 71.3 0.8613 Underfit, so we 

increase neurons in 

next experiment 

2 2 50 

(each) 

500 97.17 0.1 74.2 2.33 Overfitting, so we 

add regularization 

in next experiment 

3 2 50 

(each) 

500 76.9 0.75 69.6 0.82 Underfit 

Inference: 

It seemed obvious that the model is underfitting so for next experiments, the number of 

neurons in hidden layers was increased. It can also be seen in Figure 5.3 that EMG data 

had very high variance, so in order to train model for it, the model will be prone to 

overfitting.  
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Experiment 2 – Taking Absolute EMG Value 

For this series of experiments, we took the absolute value of EMG data coming from 

armband because the raw EMG data had positive as well as negative values.  

Observations: 

Table II shows the observations of above experiment. 

TABLE II: Experimental observations on absolute values of EMG data 

Experiment 

No. 

Hidden 

layers 

Hidden 

layer 

neurons 

EPOCHS Training 

accuracy 

(%) 

Training 

loss 

Validation 

accuracy 

(%) 

Validation 

loss 

Inference  

1 1 24 300 69.92 0.7553 66.3 0.84 Underfit, so we 

increase neurons in 

next experiment 

2 1 50 300 72.3 0.7 68.3 0.83 Underfitting, so we 

add neurons in next 

experiment 

3 1 300 300 85.9 0.65 69.6 0.82 Overfitting 

4 2 50 

(each) 

300 84.3 0.34 63 2.19 Overfitting 

5 2 100 

(each) 

300 90 0.2 72.2 1.72 Overfitting, we add 

L2 regularization 

6 2 200 300 83.3 0.45 73.35 1.67 Underfitting 

Inference:  

Using absolute values of EMG data did not give good results. 
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Experiment 3 – Preprocessing using standardized absolute value of EMG data 

Standardization is the process of making input data to have mean 0 and variance 1. It is a 

common approach to preprocess data and standardization is a widely used approach as it 

centers the data around 0 and neural networks are seen to optimize quickly on preprocessed 

data.  

Observations: 

Table III shows the experiments done using standardized EMG data. 

Table III: Experimental observations on standardized absolute value of EMG data 

Experiment 

No. 

Hidden 

layers 

Hidden 

layer 

neurons 

EPOCHS Training 

accuracy 

(%) 

Training 

loss 

Validation 

accuracy 

(%) 

Validation 

loss 

Inference  

1 2 8 (each) 300 19.5 1.6 19.4 1.6 Underfit, so we 

increase neurons in 

next experiment 

2 2 50 

(each) 

300 78.17 0.6 37.7 2.5 Overfitting, so we 

add regularization 

in next experiment 

Inference: 

It was quite surprising that the standardized EMG value gave poor results than the raw 

EMG data. 
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Experiment 4 – Using absolute EMG value with windowed average 

In this method, EMG data for each of the 5 finger movements was collected for 7.5 seconds 

giving 1500 EMG data points for each movement. Then average of batches of 50 EMG 

samples were taken, leaving us with 30 data points per finger movement. Data was split 

into 80:20 for training and validation set.  

Observations: 

Following were the results of using this approach: 

Table IV: Experiments using absolute EMG values with windowed average 

Experiment 

No. 

Hidden 

layers 

Hidden 

layer 

neurons 

EPOCHS Training 

accuracy 

(%) 

Training 

loss 

Validation 

accuracy 

(%) 

Validation 

loss 

Inference  

1 1 8 500 96 0.5274 88.67 0.68 Overfitting, so we 

add L2 

regularization and 

batch normalization 

2 1 8 500 98.33 0.3274 96.67 0.28 All finger 

movements were 

perfectly 

recognized in real-

time 

 

Figure 4.5: Training and validation accuracy (left) and loss (right) curves for 5 movements 

Inference: 

Figure 4.5 shows the results of 2nd experiment done using this approach. It can be seen that 

this approach gave the best results and gave confidence to work on 12 finger movements.
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4.2.2 Twelve Finger Movements Classification Experiments 

After getting desired results on 5 finger movement classification, experiments were 

performed for 12 finger movement classification. 

Experiment: 

For this task, 12 finger movements were chosen for classification. Those movements are:  

1) Thumb open 2) Index open  3) Middle open 4) Ring open  

5) Pinky open  6) Two fingers open 7) Three fingers open 8) Four fingers open 

9) Five fingers open 10) All fingers closed 11) Grasp movement 12) Pick movement 

A series of experiments were performed for these finger movements using absolute value 

of windowed average of EMG values with window size 50, starting from collecting EMG 

samples per finger movement for 7.5 seconds, to decreasing it to 5 seconds. Same single 

hidden layer 8 neuron network was used, learning rate and Epochs were varied.  

Observations: 

Figure 4.6 below shows the training and validation accuracy and loss curves for the Table 

V on next page shows the results of experiments done. 

 

Figure 4.6: Training and validation accuracy (left) and loss (right) curves for 12 movements 
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Table V: Experiments for 12 finger movements classification 

No. Hidden 

layers 

Hidden 

layer 

neurons 

Learning 

Rate 

EPOCHS Training 

accuracy 

(%) 

Training 

loss 

Validation 

accuracy 

(%) 

Validation 

loss 

Inference 

1 1 8 0.0001 500 78.82 0.8631 90.28 0.65 Underfitting, 5 out 

of 12 movements 

not recognized 

2 1 8 0.0001 700 85.76 0.5585 88.89 0.4280 All finger 

movements except 

5 finger open were 

perfectly 

recognized in real-

time 

3 1 8 0.001 300 92.01 0.2445 94.44 0.212 All movements 

recognized 

4 1 4 0.001 300 0.81 0.79 75 0.9 Few movements not 

recognized 

5 1 2 0.001 300 53.65 1.074 43.75 1.32 Underfitting, poor 

recognition 

Inference: 

It was observed that learning rate of 0.001 gave the best results as shown in Table V on 

previous page, experiment # 3, with its training and validation accuracy and loss 

graphically represented in Figure 5.6 above. All finger movements were correctly 

recognized. For finger movement recognition, 200 EMG samples were collected which 

takes 1 second as the armband works at 200Hz frequency. It was also observed that 

decreasing the neurons in hidden layer deteriorated the results. 
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4.3 Testing Algorithm on Subjects 

The configuration of experiment # 3 in Table V was used for testing finger movement 

classification on other 3 subjects other than the one trained to use it. For these experiments, 

subjects were asked to do different finger movements in random order.  

Observations: 

Figure 4.7 on next page shows the observations for different experiments on 3 subjects. 

Figure 4.7(A) shows the results of the subjects on 5 finger movement recognition 

algorithm, it can be seen in the confusion matrix that no problems were seen for 5 finger 

recognition. Figure 4.7(B) shows the confusion matrix for 12 finger movement recognition 

algorithm. Figure 4.7(C) and Figure 4.7(D) shows the training and validation accuracy and 

loss for 5 finger recognition algorithm whereas Figure 4.7(E) and Figure 4.7(F) shows the 

training and validation accuracy and loss for 12 finger movement recognition algorithm. 

Both algorithms were different only in that the output layer for 5 finger movement 

recognition algorithm had 5 neurons whereas 12 neurons for 12 finger movement 

recognition. It was seen in different experiments that some finger movements had problems 

in recognition and the main reason for it was that subjects would sometimes do different 

movements for recognition than they used for training, either in different position or 

different intensity such as hold movement tighter or looser than they used for training. To 

prevent that, subjects were asked to put hand on an arm chair for finger movements, which 

improved recognition accuracy. 
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Figure 4.7: Performance of neural network.  A & B show the confusion matrix of 5 and 12 finger 
movements results on human subjects, C & E show the training (blue line) and test accuracy (orange 
line) of model on 5 and 12 finger movements respectively and D & F show the training (blue line) and 

test loss (orange line) for 5 and 12 finger movements respectively 

Inference: 

1) From experiments with 3 subjects, It was seen that the finger recognition algorithm 

worked great taking 5 seconds for training each finger movement and 1 second for 

recognition. 

2) Putting hand on armchair for training and verification helped achieve good recognition 

accuracy. 
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3) Even though we can train the finger recognition for a user, if the position of wearing 

armband changes or if the armband is removed and worn again, then finger movements 

will have to be re-trained. 
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CHAPTER 5 

Design of Robotic Hand 

For the scope of this project, it was also desired to design a robotic hand that is smaller, 

lighter and more realistic than the robotic hand designs found online so that recognized 

finger movement from machine learning algorithm can be imitated by the designed robotic 

hand. For this purpose a 3D design of robotic hand was designed from scratch, with 

motivation for design taken from the popular InMoov Robotic hand [16] which is an open 

source robotic hand design. 

The software used for 3D design of robotic hand was RS Component’s DesignSpark 

Mechanical which is an open source 3D design software and quite easy to use. For the 

robotic hand to be realistic, the dimensions of palm and fingers were based on a human 

hand.  

The biggest advantage that this robotic hand has, compared to the robotic hand designs 

online is that it uses micro servo motors which are small enough to fit in the palm of robotic 

hand, thus greatly reducing the size of the robotic hand whereas common robotic hand 

designs fit regular servo motors which are large, heavy and cannot fit in the palm of robotic 

hand, thus fitting above the wrist, making the hand large and heavy. 

5.1 Materials Used 

Following materials were used for designing the robotic hand: 

1. For pulling the fingers, 1mm braided fishing line was used. 

2. ABS material was used for 3D printing the robotic hand and fingers. 

3. FUTABA S3114 Micro Servo motors were used as actuators. 

4. Arduino Uno is used for controlling motors. 

5. HC-05 Bluetooth module is used for sending signals for finger recognition from 

computer to Arduino. 

6. Servo motor driver for controlling the servo motors. 
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5.2 Design 

For robotic hand design, the fingers were 3D printed first. Figure 6.1 shows the design of 

fingers and Figure 6.2 shows different views of the palm of robotic hand. 

 

Figure 5.1: 3D designs of fingers of robotic hand 

 

Figure 5.2: Different views of 3D design of robotic hand’s palm
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5.3    Hardware 

The palm of robotic hand was 3D printed with assistance from Natural Resources Research 

Institute (NRRI), Duluth, whereas the fingers of robotic hand were printed in University of 

Minnesota Duluth’s 3D printers. Figure 5.3 shows the complete 3D printed design of the 

robotic hand. 

 

Figure 5.3: 3D printed robotic hand 

It can be seen that the finger pulling mechanism of servo motors is based on micro servo 

motors and 1mm braided fishing line. Figure 5.4 on next page shows the complete 

hardware used for controlling the robotic hand.



42 

 

Figure 5.4: Complete hardware of robotic hand 
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CHAPTER 6 

Conclusion and Future Work 

6.1 Conclusion 

In this study, a machine learning based approach to classify EMG signals using an 

inexpensive EMG armband is presented. This approach uses a single hidden layer neural 

network to train and recognize the finger movements using EMG data and has not been 

used in previous research works. The training for each finger movement takes just 5 

seconds, while verification takes just a second. For feature extraction, a lot of approaches 

were tried and tested, but windowed averages of absolute values of EMG gave best results 

to feed into neural network for training and verification. 

This approach when tested on 4 subjects gave perfect results for 5 finger movement 

recognition and above 80% accuracy on 12 finger movement recognition. The main reason 

for classification error was seen to be different gestures used for training and verification. 

Using an armchair for gesture recognition and verification helped. 

In the second part of this study, a novel design for robotic hand is presented. The robotic 

hand is designed from scratch using 3D printing, is a very light, small and realistic version 

of a middle-aged human hand. Using micro-servo motors greatly decreases the size of 

robotic hand mechanism enabling us to fit the whole control mechanism inside the palm of 

robotic hand. 

The single hidden layer neural network approach is easy to implement even on embedded 

systems such as microcontroller, in which we can hardcode the trained weights of neural 

network. Thus, without needing expensive computer always at disposal, the whole finger 

recognition algorithm can be implemented on inexpensive hardware keeping robotic hand 

small.
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This machine learning based approach is good if a quick and easy task is to be achieved 

using finger movement recognition such as gesture based robot control, games or other 

applications. However, using it for amputees, will require a lot of tests to be done with the 

help of amputees. On the other hand, the 3D printed robotic hand design presented in this 

study can act as a novel robotic hand prototype for amputees if built with strong materials 

and sturdy finger pulling mechanism because it is small, realistic and lightweight.

6.2 Future Work 

In this research, a single hidden layer neural network is used for training EMG data and 

absolute values of EMG and their windowed averages are used to capture the trend of the 

EMG data for finger movement classification. It is obvious that time is of essence for finger 

movement classification via EMG. There is a special type of neural network called 

Recurrent Neural Networks which is used specially for time-series based data. Using 

Recurrent Neural Networks for EMG Classification might provide better results in 

capturing the trends of varying EMG, based on different finger movements than the single 

hidden layer neural network approach provided in this study. 

For this study, a laptop computer was used for training and verification of EMG signals for 

finger movements. However, taking advantage of simplicity of a single hidden layer neural 

network, this algorithm can be implemented on a microcontroller or a Raspberry PI which 

is a small, inexpensive credit card sized computer and also provides the support for deep 

learning frameworks like Keras and Tensorflow, thus getting rid of large computer 

dependence. 
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Appendices 

A.1: Code for Training and verification of EMG data for 5 finger movements 

Python Code: 

from __future__ import print_function 

from collections import deque 

from threading import Lock, Thread 

import matplotlib 

matplotlib.use("TkAgg") 

import matplotlib.pyplot as plt 

 

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 

from keras import regularizers 

from keras.models import load_model 

 

from sklearn import preprocessing 

 

import myo 

 

import time 

import sys 

import psutil 

import os 

import serial 

 

# This training set will contain 1000 samples of 8 sensor values 

global training_set 

global number_of_samples 

global index_training_set, middle_training_set,thumb_training_set,verification_set 

global data_array 

number_of_samples = 1000 

data_array=[] 

 

Sensor1 = np.zeros((1,number_of_samples)) 

Sensor2 = np.zeros((1,number_of_samples)) 

Sensor3 = np.zeros((1,number_of_samples)) 

Sensor4 = np.zeros((1,number_of_samples)) 

Sensor5 = np.zeros((1,number_of_samples)) 

Sensor6 = np.zeros((1,number_of_samples)) 

Sensor7 = np.zeros((1,number_of_samples)) 

Sensor8 = np.zeros((1,number_of_samples)) 

 

index_open_training_set = np.zeros((8,number_of_samples)) 

middle_open_training_set = np.zeros((8,number_of_samples)) 

thumb_open_training_set = np.zeros((8,number_of_samples)) 

ring_open_training_set = np.zeros((8,number_of_samples)) 

pinky_open_training_set = np.zeros((8,number_of_samples)) 

 

verification_set = np.zeros((8,number_of_samples)) 

training_set = np.zeros((8,number_of_samples)
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thumb_open_label = 0 

index_open_label = 1 

middle_open_label = 2 

ring_open_label = 3 

pinky_open_label = 4 

 

name = input("Enter name of Subject") 

 

def find_one_hot(labels,classes): 

    # = tf.constant(C) 

    output = tf.one_hot(labels,classes,axis=0) 

    sess = tf.Session() 

    out = sess.run(output) 

    sess.close 

    return out 

 

# This process checks if Myo Connect.exe is running 

def check_if_process_running(): 

 

    try: 

        for proc in psutil.process_iter(): 

            if proc.name()=='Myo Connect.exe': 

                return True 

             

        return False 

             

    except (psutil.NoSuchProcess,psutil.AccessDenied, psutil.ZombieProcess): 

        print (PROCNAME, " not running") 

 

# If the process Myo Connect.exe is not running then we restart that process 

def restart_process(): 

    PROCNAME = "Myo Connect.exe" 

 

    for proc in psutil.process_iter(): 

        # check whether the process name matches 

        if proc.name() == PROCNAME: 

            proc.kill() 

            # Wait a second 

            time.sleep(1) 

 

    while(check_if_process_running()==False): 

        path = 'C:\Program Files (x86)\Thalmic Labs\Myo Connect\Myo Connect.exe' 

        os.startfile(path) 

        time.sleep(1) 

        #while(check_if_process_running()==False): 

        #    pass 

 

    print("Process started") 

    return True 

 

# This is Myo-python SDK’s listener that listens to EMG signal 

class Listener(myo.DeviceListener): 

    global data_array 

     

    def __init__(self, n): 

        self.n = 
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        self.lock = Lock() 

        self.emg_data_queue = deque(maxlen=n) 

 

    def on_connected(self, event): 

        print("Myo Connected") 

        self.started = time.time() 

        event.device.stream_emg(True) 

         

    def get_emg_data(self): 

        with self.lock: 

            print("H") 

 

    def on_emg(self, event): 

        with self.lock: 

            self.emg_data_queue.append((event.emg)) 

             

            if len(list(self.emg_data_queue))>=number_of_samples: 

                data_array.append(list(self.emg_data_queue)) 

                self.emg_data_queue.clear() 

                return False 

 

# This method is responsible for training EMG data 

def Train(conc_array): 

    global training_set 

    global index_open_training_set, middle_open_training_set, thumb_open_training_set, 

ring_open_training_set, pinky_open_training_set, verification_set 

    global number_of_samples 

    verification_set = np.zeros((8,number_of_samples)) 

    print (number_of_samples)     

    labels = [] 

    print(conc_array,conc_array.shape) 

 

# This division is to make the iterator for making labels run 30 times in inner loop and 10 times in outer 

loop running total 300 times for 5 finger movements 

    samples = conc_array.shape[0]/5 

    # Now we append all data in training label 

    # We iterate to make 5 finger movement labels. 

    for i in range(0,5): 

        for j in range(0,int(samples)): 

            labels.append(i) 

    labels = np.asarray(labels) 

    print(labels, len(labels),type(labels)) 

    print(conc_array.shape[0]) 

    permutation_function = np.random.permutation(conc_array.shape[0]) 

 

    total_samples = conc_array.shape[0] 

    all_shuffled_data,all_shuffled_labels = np.zeros((total_samples,8)),np.zeros((total_samples,8)) 

         

    all_shuffled_data,all_shuffled_labels = conc_array[permutation_function],labels[permutation_function] 

    print(all_shuffled_data.shape) 

    print(all_shuffled_labels.shape)     

    number_of_training_samples = np.int(np.floor(0.8*total_samples))         

    train_data = np.zeros((number_of_training_samples,8)) 

    train_labels = np.zeros((number_of_training_samples,8)) 

    print("TS ", number_of_training_samples, " S " , number_of_samples) 

    number_of_validation_samples = np.int(total_samples-number_of_training_samples)
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    train_data = all_shuffled_data[0:number_of_training_samples,:] 

    train_labels = all_shuffled_labels[0:number_of_training_samples,] 

    print("Length of train data is ", train_data.shape) 

    validation_data = all_shuffled_data[number_of_training_samples:total_samples,:] 

    validation_labels = all_shuffled_labels[number_of_training_samples:total_samples,] 

    print("Length of validation data is ", validation_data.shape , " validation labels is " , 

validation_labels.shape) 

    print(train_data,train_labels)         

         

    model = keras.Sequential([ 

    # Input dimensions means input columns. Here we have 8 columns, one for each sensor 

    keras.layers.Dense(8, activation=tf.nn.relu,input_dim=8,kernel_regularizer=regularizers.l2(0.1)), 

    keras.layers.BatchNormalization(), 

    keras.layers.Dense(5, activation=tf.nn.softmax)]) 

 

    adam_optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, 

decay=0.0, amsgrad=False) 

    model.compile(optimizer=adam_optimizer, 

        loss='sparse_categorical_crossentropy', 

        metrics=['accuracy']) 

         

    history = model.fit(train_data, train_labels, 

epochs=300,validation_data=(validation_data,validation_labels),batch_size=16) 

    model.save('C:/Users/shaya/Desktop/'+name+'_five_finger_model.h5') 

    plt.plot(history.history['acc']) 

    plt.plot(history.history['val_acc']) 

    plt.title('model accuracy') 

    plt.ylabel('accuracy') 

    plt.xlabel('epoch') 

    plt.legend(['train', 'test'], loc='upper left') 

    plt.show() 

    # summarize history for loss 

    plt.plot(history.history['loss']) 

    plt.plot(history.history['val_loss']) 

    plt.title('model loss') 

    plt.ylabel('loss') 

    plt.xlabel('epoch') 

    plt.legend(['train', 'test'], loc='upper left') 

    plt.show() 

 

    averages = number_of_samples/50 

    # Initializing array for verification_averages 

    verification_averages = np.zeros((int(averages),8)) 

     

     

    while True: 

        while True: 

            try: 

                input("Hold a finger movement and press enter to get its classification") 

                hub = myo.Hub()         

                number_of_samples=200 

                listener = Listener(number_of_samples) 

                hub.run(listener.on_event,20000) 

 

            # Here we send the received number of samples making them a list of 1000 rows 8 columns 

                verification_set = np.array((data_array[0]))
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                data_array.clear() 

                break 

            except: 

                while(restart_process()!=True): 

                    pass 

                # Wait for 3 seconds until Myo Connect.exe starts 

                time.sleep(3) 

                 

        verification_set = np.absolute(verification_set) 

 

        div = 50 

        # We add one because iterator below starts from 1 

        batches = int(number_of_samples/div) + 1 

        for i in range(1,batches): 

            verification_averages[i-1,:] = np.mean(verification_set[(i-1)*div:i*div,:],axis=0) 

 

        verification_data = verification_averages 

        print("Verification matrix shape is " , verification_data.shape) 

         

        predictions = model.predict(verification_data,batch_size=16) 

        predicted_value = np.argmax(predictions[0]) 

        print(predictions[0]) 

        print(predicted_value) 

        if predicted_value == 0: 

            print("Thumb open") 

        elif predicted_value == 1: 

            print("Index finger open") 

        elif predicted_value == 2: 

            print("Middle finger open") 

        elif predicted_value == 3: 

            print("Ring finger open") 

        elif predicted_value == 4: 

            print("Pinky finger open") 

        else: 

            pass 

 

        ## Here i send the predicted value to Arduino via Bluetooth so that it can open appropriate fingers ## 

 

        # While 1 is used because sometimes bluetooth port throws exception in opening the COM Port 

        # So i keep trying until the data is sent and confirmation received. 

        while(1): 

            try: 

                # Bluetooth at COM6 

                serialPort = 

serial.Serial(port="COM6",baudrate=9600,bytesize=8,timeout=2,stopbits=serial.STOPBITS_ONE)                 

                value_to_bluetooth = str(predicted_value).encode() 

                serialPort.write(value_to_bluetooth) 

                time.sleep(1) 

                if serialPort.in_waiting>0: 

                    serialString = serialPort.readline() 

                    print(serialString) 

                    # If we receive what we sent from Arduino bluetooth then all OK else bad value 

                    if serialString == value_to_bluetooth: 

                        print("Received") 

                    else: 

                        print("Bad value")
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                serialPort.close() 

                break 

            except serial.SerialException as e: 

                #There is no new data from serial port 

                print (str(e)) 

            except TypeError as e: 

                print (str(e)) 

                ser.port.close() 

             

def main(): 

    global data_array 

    index_open_training_set = np.zeros((8,number_of_samples)) 

    middle_open_training_set = np.zeros((8,number_of_samples)) 

    thumb_open_training_set = np.zeros((8,number_of_samples)) 

    ring_open_training_set = np.zeros((8,number_of_samples)) 

    pinky_open_training_set = np.zeros((8,number_of_samples)) 

     

    verification_set = np.zeros((8,number_of_samples)) 

     

    training_set = np.zeros((8,number_of_samples)) 

 

    # This function kills Myo Connect.exe and restarts it to make sure it is running 

    # Because sometimes the application does not run and crash even when Myo Connect process is running 

    # So i think its a good idea to just kill if its not running and restart it 

 

    while(restart_process()!=True): 

        pass 

    # Wait for 3 seconds until Myo Connect.exe starts 

    time.sleep(3) 

     

    # Initialize the SDK of Myo Armband 

    myo.init('C:\\Users\\shaya\\AppData\\Local\\Programs\\Python\\Python36\\myo64.dll') 

    hub = myo.Hub() 

    listener = Listener(number_of_samples) 

 

    legend = ['Sensor 1','Sensor 2','Sensor 3','Sensor 4','Sensor 5','Sensor 6','Sensor 7','Sensor 8'] 

 

    ######### HERE WE GET TRAINING DATA FOR THUMB FINGER OPEN ######## 

    while True: 

        try: 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            input("Open THUMB ")     

            start_time = time.time() 

            hub.run(listener.on_event,20000) 

            thumb_open_training_set = np.array((data_array[0])) 

            print(thumb_open_training_set.shape) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 
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    # Here we send the received number of samples making them a list of 1000 rows 8 columns just how we 

need to feed to tensorflow 

     

    ######### HERE WE GET TRAINING DATA FOR INDEX FINGER OPEN ######## 

    while True: 

        try: 

            input("Open index finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

 

            hub.run(listener.on_event,20000) 

            # Here we send the received number of samples making them a list of 1000 rows 8 columns  

            index_open_training_set = np.array((data_array[0])) 

             

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ###### HERE WE GET TRAINING DATA FOR MIDDLE FINGER OPEN ####### 

    while True: 

        try: 

            input("Open MIDDLE finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            middle_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    # Here we send the received number of samples making them a list of 1000 rows 8 columns 

         

    ######## HERE WE GET TRAINING DATA FOR RING FINGER OPEN ######## 

    while True: 

        try: 

            input("Open Ring finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            ring_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass
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            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR PINKY FINGER OPEN ######### 

    while True: 

        try: 

            input("Open Pinky finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            pinky_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    # Absolute of finger open data 

    thumb_open_training_set = np.absolute(thumb_open_training_set) 

    index_open_training_set = np.absolute(index_open_training_set) 

    middle_open_training_set = np.absolute(middle_open_training_set) 

    ring_open_training_set = np.absolute(ring_open_training_set) 

    pinky_open_training_set = np.absolute(pinky_open_training_set) 

 

    div = 50 

    averages = int(number_of_samples/div) 

    thumb_open_averages = np.zeros((int(averages),8)) 

    index_open_averages = np.zeros((int(averages),8)) 

    middle_open_averages = np.zeros((int(averages),8)) 

    ring_open_averages = np.zeros((int(averages),8)) 

    pinky_open_averages = np.zeros((int(averages),8)) 

 

    # Here we are calculating the mean values of all finger open data set and storing them as n/50 samples       

because 50 batches of n samples is equal to n/50 averages 

    for i in range(1,averages+1): 

        thumb_open_averages[i-1,:] = np.mean(thumb_open_training_set[(i-1)*div:i*div,:],axis=0) 

        index_open_averages[i-1,:] = np.mean(index_open_training_set[(i-1)*div:i*div,:],axis=0) 

        middle_open_averages[i-1,:] = np.mean(middle_open_training_set[(i-1)*div:i*div,:],axis=0) 

        ring_open_averages[i-1,:] = np.mean(ring_open_training_set[(i-1)*div:i*div,:],axis=0) 

        pinky_open_averages[i-1,:] = np.mean(pinky_open_training_set[(i-1)*div:i*div,:],axis=0) 

              

    # Here we stack all the data row wise 

    conc_array = np.concatenate([thumb_open_averages,index_open_averages,middle_open_averages, 

ring_open_averages, pinky_open_averages],axis=0) 

    print(conc_array.shape) 

    np.savetxt('C:/Users/shaya/Desktop/'+name+'_five_movements.txt', conc_array, fmt='%i') 

    # In this method the EMG data gets trained and verified 

    Train(conc_array) 

 

if __name__ == '__main__': 

    main() 
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A.2: Code for Training and verification of EMG data for 12 finger movements 

Python Code: 

from __future__ import print_function 

from collections import deque 

from threading import Lock, Thread 

import matplotlib 

matplotlib.use("TkAgg") 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 

from keras import regularizers 

from keras.models import load_model 

from sklearn import preprocessing 

import myo 

import time 

import sys 

import psutil 

import os 

 

# Used for bluetooth signal sending and receiving 

import serial 

 

# This training set will contain 1000 samples of 8 sensor values 

global training_set 

global number_of_samples 

global index_training_set, middle_training_set,thumb_training_set,verification_set 

global data_array 

number_of_samples = 1000 

data_array=[] 

 

Sensor1 = np.zeros((1,number_of_samples)) 

Sensor2 = np.zeros((1,number_of_samples)) 

Sensor3 = np.zeros((1,number_of_samples)) 

Sensor4 = np.zeros((1,number_of_samples)) 

Sensor5 = np.zeros((1,number_of_samples)) 

Sensor6 = np.zeros((1,number_of_samples)) 

Sensor7 = np.zeros((1,number_of_samples)) 

Sensor8 = np.zeros((1,number_of_samples)) 

 

unrecognized_training_set = np.zeros((8,number_of_samples)) 

index_open_training_set = np.zeros((8,number_of_samples)) 

middle_open_training_set = np.zeros((8,number_of_samples)) 

thumb_open_training_set = np.zeros((8,number_of_samples)) 

ring_open_training_set = np.zeros((8,number_of_samples)) 

pinky_open_training_set = np.zeros((8,number_of_samples)) 

two_open_training_set = np.zeros((8,number_of_samples)) 

three_open_training_set = np.zeros((8,number_of_samples)) 

four_open_training_set = np.zeros((8,number_of_samples)) 

five_open_training_set = np.zeros((8,number_of_samples)) 

all_fingers_closed_training_set = np.zeros((8,number_of_samples)) 

grasp_training_set = np.zeros((8,number_of_samples))
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pick_training_set = np.zeros((8,number_of_samples)) 

verification_set = np.zeros((8,number_of_samples)) 

training_set = np.zeros((8,number_of_samples)) 

 

thumb_open_label = 0 

index_open_label = 1 

middle_open_label = 2 

ring_open_label = 3 

pinky_open_label = 4 

two_open_label = 5 

three_open_label = 6 

four_open_label = 7 

five_open_label = 8 

all_fingers_closed_label = 9 

grasp_label = 10 

pick_label = 11 

 

name = input("Enter name of Subject") 

 

def find_one_hot(labels,classes): 

    output = tf.one_hot(labels,classes,axis=0) 

    sess = tf.Session() 

    out = sess.run(output) 

    sess.close 

    return out 

 

# Check if Myo Connect.exe process is running 

def check_if_process_running(): 

    try: 

        for proc in psutil.process_iter(): 

            if proc.name()=='Myo Connect.exe': 

                return True             

        return False             

    except (psutil.NoSuchProcess,psutil.AccessDenied, psutil.ZombieProcess): 

        print (PROCNAME, " not running") 

 

# Restart myo connect.exe process 

def restart_process(): 

    PROCNAME = "Myo Connect.exe" 

    for proc in psutil.process_iter(): 

        # check whether the process name matches 

        if proc.name() == PROCNAME: 

            proc.kill() 

            # Wait a second 

            time.sleep(1) 

 

    while(check_if_process_running()==False): 

        path = 'C:\Program Files (x86)\Thalmic Labs\Myo Connect\Myo Connect.exe' 

        os.startfile(path) 

        time.sleep(1) 

 

    print("Process started") 

    return True 

 

# This class from Myo-python SDK listens to EMG signals from armband 

class Listener(myo.DeviceListener):
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global data_array 

     

    def __init__(self, n): 

        self.n = n 

        self.lock = Lock() 

        self.emg_data_queue = deque(maxlen=n) 

 

    def on_connected(self, event): 

        print("Myo Connected") 

        self.started = time.time() 

        event.device.stream_emg(True) 

         

    def get_emg_data(self): 

        with self.lock: 

            print("H") 

 

    def on_emg(self, event): 

        with self.lock: 

            self.emg_data_queue.append((event.emg)) 

             

            if len(list(self.emg_data_queue))>=number_of_samples: 

                data_array.append(list(self.emg_data_queue)) 

                self.emg_data_queue.clear() 

                return False 

 

# This method is responsible for training EMG data 

def Train(conc_array): 

    global training_set 

    global index_open_training_set, middle_open_training_set, thumb_open_training_set, 

ring_open_training_set, pinky_open_training_set, verification_set 

    global two_open_training_set, three_open_training_set, 

four_open_training_set,five_open_training_set,all_fingers_closed_training_set,grasp_training_set,pick_trai

ning_set 

    global number_of_samples 

    verification_set = np.zeros((8,number_of_samples)) 

    print (number_of_samples)     

    labels = [] 

    print(conc_array,conc_array.shape) 

 

    # This division is to make the iterator for making labels run 30 times in inner loop and 10 times in outer 

loop running total 300 times for 10 finger movements 

    samples = conc_array.shape[0]/12 

    # Now we append all data in training label 

    # We iterate to make 12 finger movement labels. 

    for i in range(0,12): 

        for j in range(0,int(samples)): 

            labels.append(i) 

    labels = np.asarray(labels) 

    print(labels, len(labels),type(labels)) 

    print(conc_array.shape[0]) 

    permutation_function = np.random.permutation(conc_array.shape[0]) 

 

    total_samples = conc_array.shape[0] 

    all_shuffled_data,all_shuffled_labels = np.zeros((total_samples,8)),np.zeros((total_samples,8)) 

         

    all_shuffled_data,all_shuffled_labels = conc_array[permutation_function],labels[permutation_function]
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print(all_shuffled_data.shape) 

    print(all_shuffled_labels.shape)     

 

    number_of_training_samples = np.int(np.floor(0.8*total_samples))         

    train_data = np.zeros((number_of_training_samples,8)) 

    train_labels = np.zeros((number_of_training_samples,8)) 

    print("TS ", number_of_training_samples, " S " , number_of_samples) 

    number_of_validation_samples = np.int(total_samples-number_of_training_samples) 

    train_data = all_shuffled_data[0:number_of_training_samples,:] 

    train_labels = all_shuffled_labels[0:number_of_training_samples,] 

    print("Length of train data is ", train_data.shape) 

    validation_data = all_shuffled_data[number_of_training_samples:total_samples,:] 

    validation_labels = all_shuffled_labels[number_of_training_samples:total_samples,] 

    print("Length of validation data is ", validation_data.shape , " validation labels is " , 

validation_labels.shape) 

    print(train_data,train_labels)         

         

    model = keras.Sequential([ 

    # Input dimensions means input columns. Here we have 8 columns, one for each sensor 

    keras.layers.Dense(8, activation=tf.nn.relu,input_dim=8,      kernel_regularizer=regularizers.l2(0.1)),  

keras.layers.BatchNormalization(),  

    keras.layers.Dense(12, activation=tf.nn.softmax)]) 

 

    adam_optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, 

decay=0.0, amsgrad=False) 

    model.compile(optimizer=adam_optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

         

    history = model.fit(train_data, train_labels, epochs=300, 

validation_data=(validation_data,validation_labels), batch_size=16) 

    model.save('C:/Users/shaya/Desktop/'+name+'_realistic_model.h5') 

    # Here we display the training and test loss for model 

    plt.plot(history.history['acc']) 

    plt.plot(history.history['val_acc']) 

    plt.title('model accuracy') 

    plt.ylabel('accuracy') 

    plt.xlabel('epoch') 

    plt.legend(['train', 'test'], loc='upper left') 

    plt.show()  

    # summarize history for loss 

    plt.plot(history.history['loss']) 

    plt.plot(history.history['val_loss']) 

    plt.title('model loss') 

    plt.ylabel('loss') 

    plt.xlabel('epoch') 

    plt.legend(['train', 'test'], loc='upper left') 

    plt.show() 

 

    averages = number_of_samples/50 

    # Initializing array for verification_averages 

    verification_averages = np.zeros((int(averages),8)) 

     

     

    while True: 

        while True: 

            try: 

                input("Hold a finger movement and press enter to get its classification")
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  hub = myo.Hub()         

                number_of_samples=200 

                listener = Listener(number_of_samples) 

                hub.run(listener.on_event,20000) 

 

         # Here we send the received number of samples making them a list of 1000 rows 8 columns 

                verification_set = np.array((data_array[0])) 

                data_array.clear() 

                break 

            except: 

                while(restart_process()!=True): 

                    pass 

        # Wait for 3 seconds until Myo Connect.exe starts 

                time.sleep(3)         

        verification_set = np.absolute(verification_set) 

 

        div = 50 

        # We add one because iterator below starts from 1 

        batches = int(number_of_samples/div) + 1 

        for i in range(1,batches): 

            verification_averages[i-1,:] = np.mean(verification_set[(i-1)*div:i*div,:],axis=0) 

 

        verification_data = verification_averages 

        print("Verification matrix shape is " , verification_data.shape)         

        predictions = model.predict(verification_data,batch_size=16) 

        predicted_value = np.argmax(predictions[0]) 

        print(predictions[0]) 

        print(predicted_value) 

        if predicted_value == 0: 

            print("Thumb open") 

        elif predicted_value == 1: 

            print("Index finger open") 

        elif predicted_value == 2: 

            print("Middle finger open") 

        elif predicted_value == 3: 

            print("Ring finger open") 

        elif predicted_value == 4: 

            print("Pinky finger open") 

        elif predicted_value == 5: 

            print("Two fingers open") 

        elif predicted_value == 6: 

            print("Three fingers open") 

        elif predicted_value == 7: 

            print("Four fingers open") 

        elif predicted_value == 8: 

            print("Five fingers open") 

        elif predicted_value == 9: 

            print("All fingers closed") 

        elif predicted_value == 10: 

            print("Grasp movement") 

        elif predicted_value == 11: 

            print("Pick movement") 

        else: 

            pass 

        #### Here i send the predicted value to Arduino via Bluetooth so that it can open appropriate fingers 

####
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        # While 1 is used because sometimes bluetooth port throws exception in opening the COM Port 

        # So i keep trying until the data is sent and confirmation received. 

        while(1): 

            try: 

                # Bluetooth at COM6 

                serialPort = 

serial.Serial(port="COM6",baudrate=9600,bytesize=8,timeout=2,stopbits=serial.STOPBITS_ONE) 

                value_to_bluetooth = str(predicted_value).encode() 

                if predicted_value == 10: 

                    value_to_bluetooth = 'a'.encode() 

                if predicted_value == 11: 

                    value_to_bluetooth = 'b'.encode() 

                serialPort.write(value_to_bluetooth) 

                time.sleep(1) 

                if serialPort.in_waiting>0: 

                    serialString = serialPort.readline() 

                    print(serialString) 

                    # If we receive what we sent from Arduino bluetooth then all OK else bad value 

                    if serialString == value_to_bluetooth: 

                        print("Received") 

                    else: 

                        print("Bad value") 

                serialPort.close() 

                break 

            except serial.SerialException as e: 

                #There is no new data from serial port 

                print (str(e)) 

            except TypeError as e: 

                print (str(e)) 

                ser.port.close() 

 

def main(): 

    global data_array 

    unrecognized_training_set = np.zeros((8,number_of_samples)) 

    index_open_training_set = np.zeros((8,number_of_samples)) 

    middle_open_training_set = np.zeros((8,number_of_samples)) 

    thumb_open_training_set = np.zeros((8,number_of_samples)) 

    ring_open_training_set = np.zeros((8,number_of_samples)) 

    pinky_open_training_set = np.zeros((8,number_of_samples)) 

    two_open_training_set = np.zeros((8,number_of_samples)) 

    three_open_training_set = np.zeros((8,number_of_samples)) 

    four_open_training_set = np.zeros((8,number_of_samples)) 

    five_open_training_set = np.zeros((8,number_of_samples)) 

    all_fingers_closed_training_set = np.zeros((8,number_of_samples)) 

    grasp_training_set = np.zeros((8,number_of_samples)) 

    pick_training_set = np.zeros((8,number_of_samples)) 

     

    verification_set = np.zeros((8,number_of_samples)) 

         

    training_set = np.zeros((8,number_of_samples)) 

    # This function kills Myo Connect.exe and restarts it to make sure it is running 

    # Because sometimes the application does not run even when Myo Connect process is running 

    # So i think its a good idea to just kill if its not running and restart it 
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    while(restart_process()!=True): 

        pass 

    # Wait for 3 seconds until Myo Connect.exe starts 

    time.sleep(3) 

     

    # Initialize the SDK of Myo Armband 

    myo.init('C:\\Users\\shaya\\AppData\\Local\\Programs\\Python\\Python36\\myo64.dll') 

    hub = myo.Hub() 

    listener = Listener(number_of_samples) 

 

    legend = ['Sensor 1','Sensor 2','Sensor 3','Sensor 4','Sensor 5','Sensor 6','Sensor 7','Sensor 8'] 

 

    ########## HERE WE GET TRAINING DATA FOR THUMB FINGER OPEN ######## 

    while True: 

        try: 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            input("Open THUMB ")     

            start_time = time.time() 

            hub.run(listener.on_event,20000) 

            thumb_open_training_set = np.array((data_array[0])) 

            print(thumb_open_training_set.shape) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

         

    # Here we send the received number of samples making them a list of 1000 rows 8 columns just how we 

need to feed to tensorflow 

     

    ################## HERE WE GET TRAINING DATA FOR INDEX FINGER OPEN ######## 

    while True: 

        try: 

            input("Open index finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

 

            hub.run(listener.on_event,20000) 

            # Here we send the received number of samples making them a list of 1000 rows 8 columns  

            index_open_training_set = np.array((data_array[0])) 

             

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR MIDDLE FINGER OPEN ############ 

    while True: 

        try:
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            input("Open MIDDLE finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            middle_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

         

    ################## HERE WE GET TRAINING DATA FOR RING FINGER OPEN ########## 

    while True: 

        try: 

            input("Open Ring finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            ring_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ############ HERE WE GET TRAINING DATA FOR PINKY FINGER OPEN ############ 

    while True: 

        try: 

            input("Open Pinky finger") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            pinky_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ############ HERE WE GET TRAINING DATA FOR TWO FINGER OPEN ############# 

    while True: 

        try:             

            input("Open Two fingers") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000)
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            two_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR THREE FINGER OPEN ########## 

    while True: 

        try: 

            input("Open Three fingers") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            three_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ########## HERE WE GET TRAINING DATA FOR THREE FINGER OPEN ########## 

    while True: 

        try:             

            input("Open Four fingers") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            four_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ########## HERE WE GET TRAINING DATA FOR FIVE FINGER OPEN ########### 

    while True: 

        try: 

            input("Open Five fingers") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            five_open_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True):
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                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR ALL FINGERS CLOSED ########### 

    while True: 

        try: 

            input("Make all fingers closed") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            all_fingers_closed_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR GRASP MOVEMENT ########### 

    while True: 

        try: 

            input("Make Grasp movement") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            grasp_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

 

    ######### HERE WE GET TRAINING DATA FOR PICK MOVEMENT ########## 

    while True: 

        try: 

            input("Make Pick movement") 

            start_time = time.time() 

            hub = myo.Hub() 

            listener = Listener(number_of_samples) 

            hub.run(listener.on_event,20000) 

            pick_training_set = np.array((data_array[0])) 

            data_array.clear() 

            break 

        except: 

            while(restart_process()!=True): 

                pass 

            # Wait for 3 seconds until Myo Connect.exe starts 

            time.sleep(3) 

     

    # Absolute of finger open data
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    thumb_open_training_set = np.absolute(thumb_open_training_set) 

    index_open_training_set = np.absolute(index_open_training_set) 

    middle_open_training_set = np.absolute(middle_open_training_set) 

    ring_open_training_set = np.absolute(ring_open_training_set) 

    pinky_open_training_set = np.absolute(pinky_open_training_set) 

    two_open_training_set = np.absolute(two_open_training_set) 

    three_open_training_set = np.absolute(three_open_training_set) 

    four_open_training_set = np.absolute(four_open_training_set) 

    five_open_training_set = np.absolute(five_open_training_set) 

    all_fingers_closed_training_set = np.absolute(all_fingers_closed_training_set) 

    grasp_training_set = np.absolute(grasp_training_set) 

    pick_training_set = np.absolute(pick_training_set) 

 

    div = 50 

    averages = int(number_of_samples/div) 

    thumb_open_averages = np.zeros((int(averages),8)) 

    index_open_averages = np.zeros((int(averages),8)) 

    middle_open_averages = np.zeros((int(averages),8)) 

    ring_open_averages = np.zeros((int(averages),8)) 

    pinky_open_averages = np.zeros((int(averages),8)) 

    two_open_averages = np.zeros((int(averages),8)) 

    three_open_averages = np.zeros((int(averages),8)) 

    four_open_averages = np.zeros((int(averages),8)) 

    five_open_averages = np.zeros((int(averages),8)) 

    all_fingers_closed_averages = np.zeros((int(averages),8)) 

    grasp_averages = np.zeros((int(averages),8)) 

    pick_averages = np.zeros((int(averages),8)) 

 

    # Here we are calculating the mean values of all finger open data set and storing them as n/50 samples 

because 50 batches of n samples is equal to n/50 averages 

    for i in range(1,averages+1): 

        thumb_open_averages[i-1,:] = np.mean(thumb_open_training_set[(i-1)*div:i*div,:],axis=0) 

        index_open_averages[i-1,:] = np.mean(index_open_training_set[(i-1)*div:i*div,:],axis=0) 

        middle_open_averages[i-1,:] = np.mean(middle_open_training_set[(i-1)*div:i*div,:],axis=0) 

        ring_open_averages[i-1,:] = np.mean(ring_open_training_set[(i-1)*div:i*div,:],axis=0) 

        pinky_open_averages[i-1,:] = np.mean(pinky_open_training_set[(i-1)*div:i*div,:],axis=0) 

        two_open_averages[i-1,:] = np.mean(two_open_training_set[(i-1)*div:i*div,:],axis=0) 

        three_open_averages[i-1,:] = np.mean(three_open_training_set[(i-1)*div:i*div,:],axis=0) 

        four_open_averages[i-1,:] = np.mean(four_open_training_set[(i-1)*div:i*div,:],axis=0) 

        five_open_averages[i-1,:] = np.mean(five_open_training_set[(i-1)*div:i*div,:],axis=0) 

        all_fingers_closed_averages[i-1,:] = np.mean(all_fingers_closed_training_set[(i-

1)*div:i*div,:],axis=0) 

        grasp_averages[i-1,:] = np.mean(grasp_training_set[(i-1)*div:i*div,:],axis=0) 

        pick_averages[i-1,:] = np.mean(pick_training_set[(i-1)*div:i*div,:],axis=0)                 

              

    # Here we stack all the data row wise 

    conc_array = np.concatenate([thumb_open_averages,index_open_averages,middle_open_averages, 

ring_open_averages,pinky_open_averages,two_open_averages,three_open_averages,four_open_averages, 

five_open_averages,all_fingers_closed_averages,grasp_averages,pick_averages],axis=0) 

    print(conc_array.shape) 

    np.savetxt('C:/Users/shaya/Desktop/'+name+'.txt', conc_array, fmt='%i') 

    # In this method the EMG data gets trained and verified 

    Train(conc_array) 

 

if __name__ == '__main__': 

    main()
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A.3: Code for receiving data from bluetooth to Robotic hand and sending 

acknowledgment to PC 

Arduino Code: 

#include <SoftwareSerial.h> 

#include <Wire.h> 

#include <Adafruit_PWMServoDriver.h> 

 

SoftwareSerial mySerial(4, 2); // RX, TX 

int ledpin=13; // led on D13 will show blink on / off 

int BluetoothData; // the data given from Computer 

 

// called this way, it uses the default address 0x40 

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(); 

 

// Depending on your servo make, the pulse width min and max may vary, you  

// want these to be as small/large as possible without hitting the hard stop 

// for max range. You'll have to tweak them as necessary to match the servos you 

// have! 

#define SERVOMIN  400 // this is the 'minimum' pulse length count (out of 4096) 

#define SERVOMAX  750 // this is the 'maximum' pulse length count (out of 4096) 

 

// our servo # counter 

uint8_t servonum = 0; 

// Here we store previous finger's number, initially an unrealistic number is assigned 

uint8_t previous_finger_servo_number = 50; 

 

void close_all_fingers() 

{ 

  // Initially we begin by closing all fingers one by one 

  for (int i=0;i<5;i++) 

  { 

    for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++)  

    { 

      pwm.setPWM(i, 0, pulselen); 

    } 

 

    // Stop all motors after they are closed so they dont vibrate. 

    pwm.setPWM(i, 0, 4096); 

 

    delay(500); 

  } 

} 

// First we initialize UART and close all fingers of robotic hand 

void setup()  

{ 

  // put your setup code here, to run once: 

  mySerial.begin(9600); 

  pinMode(ledpin,OUTPUT);   

  pwm.begin();   

  pwm.setPWMFreq(60);  // Analog servos run at ~60 Hz updates 

  delay(10); 

  close_all_fingers();
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} 

 

// you can use this function if you'd like to set the pulse length in seconds 

// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. its not precise! 

void setServoPulse(uint8_t n, double pulse)  

{ 

  double pulselength; 

   

  pulselength = 1000000;   // 1,000,000 us per second 

  pulselength /= 60;   // 60 Hz 

//  Serial.print(pulselength); Serial.println(" us per period");  

  pulselength /= 4096;  // 12 bits of resolution 

//  Serial.print(pulselength); Serial.println(" us per bit");  

  pulse *= 1000000;  // convert to us 

  pulse /= pulselength; 

//  Serial.println(pulse); 

  pwm.setPWM(n, 0, pulse); 

} 

 

// This function opens the designated servo motor 

void finger_open(uint8_t servonum) 

{ 

  // Open the classified finger 

  for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen--)  

  { 

    pwm.setPWM(servonum, 0, pulselen); 

  } 

  // This line stops the motor so that it doesnt keep "buzzing" 

  pwm.setPWM(servonum,0,4096);       

  delay(200); 

} 

 

// This function closes the designated servo motor 

void finger_close(uint8_t servonum) 

{ 

  // Close the previous finger 

  for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++)  

  { 

    pwm.setPWM(servonum, 0, pulselen); 

  } 

  // This line stops the motor so that it doesnt keep "buzzing" 

  pwm.setPWM(servonum,0,4096);       

  delay(200); 

} 

// Runs forever 

void loop()  

{ 

// Only run if something is received from serial port 

  if (mySerial.available()>0)  

  {     

    // We read the bluetooth data. In this case the finger to be moved by servo motor 

    BluetoothData=mySerial.read(); 

    if (BluetoothData == '0') 

    { 

      servonum = 0; 

    }
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    else if (BluetoothData == '1') 

    { 

      servonum = 1; 

    } 

    else if (BluetoothData == '2') 

    { 

      servonum = 2; 

    } 

    else if (BluetoothData == '3') 

    { 

      servonum = 3; 

    } 

    else if (BluetoothData == '4') 

    { 

      servonum = 4; 

    } 

    else if (BluetoothData == '5') 

    { 

      servonum = 5; 

    } 

    else if (BluetoothData == '6') 

    { 

      servonum = 6; 

    } 

    else if (BluetoothData == '7') 

    { 

      servonum = 7; 

    } 

    else if (BluetoothData == '8') 

    { 

      servonum = 8; 

    } 

    else if (BluetoothData == '9') 

    { 

      servonum = 9; 

    } 

    else if (BluetoothData == 'a') 

    { 

      servonum = 10; 

    } 

    else if (BluetoothData == 'b') 

    { 

      servonum = 11; 

    } 

    else 

    {     

    } 

    mySerial.write(BluetoothData); 

    digitalWrite(ledpin,!digitalRead(ledpin)); 

    // If previous finger was different than the received finger servo number then open received servo 

number otherwise leave as it is 

    if (previous_finger_servo_number != servonum) 

    { 

      // Open thumb finger, close others  

      if (servonum==0) 

      {        
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        finger_open(0); 

        finger_close(1); 

        finger_close(2); 

        finger_close(3); 

        finger_close(4);         

      } 

      // Open index finger, close others 

      else if (servonum==1) 

      {         

        finger_open(1); 

        finger_close(0); 

        finger_close(2); 

        finger_close(3); 

        finger_close(4);         

      } 

      // Open middle finger, close others 

      else if (servonum==2) 

      {         

        finger_open(2); 

        finger_close(0); 

        finger_close(1); 

        finger_close(3); 

        finger_close(4);         

      } 

      // Open ring finger, close others 

      else if (servonum==3) 

      {         

        finger_open(3);         

        finger_close(0); 

        finger_close(1); 

        finger_close(2); 

        finger_close(4);         

      } 

      // Open pinky finger, close others 

      else if (servonum==4) 

      {         

        finger_open(4);         

        finger_close(0); 

        finger_close(1); 

        finger_close(2); 

        finger_close(3);         

      } 

      // Two fingers open i.e. index and middle 

      else if (servonum == 5) 

      { 

        finger_close(0); 

        finger_close(3); 

        finger_close(4); 

        finger_open(1); 

        finger_open(2); 

      } 

 

      // Three fingers open i.e. index, middle and ring 

      else if (servonum == 6) 

      { 

        finger_close(0);
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        finger_close(4); 

        finger_open(1); 

        finger_open(2); 

        finger_open(3); 

      } 

      // Four fingers open i.e. index, middle, ring and pinky 

      else if (servonum == 7) 

      { 

        finger_close(0); 

        finger_open(1); 

        finger_open(2); 

        finger_open(3); 

        finger_open(4);           

      } 

      // Five fingers open i.e. index, middle and ring 

      else if (servonum == 8) 

      { 

        finger_open(0); 

        finger_open(1); 

        finger_open(2); 

        finger_open(3); 

        finger_open(4);           

      } 

      // All fingers closed (fist) 

      else if (servonum == 9 || servonum == 10) 

      { 

        finger_close(0); 

        finger_close(1); 

        finger_close(2); 

        finger_close(3); 

        finger_close(4);           

      } 

      // Pick movement. Thumb, index middle close rest open 

      else if (servonum == 11) 

      { 

        finger_close(0); 

        finger_close(1); 

        finger_close(2); 

        finger_open(3); 

        finger_open(4);           

      }       

      previous_finger_servo_number = servonum; 

    } 

    delay(100); 

  } 

} 

 


