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Abstract 

The deployment of electromyography (EMG) signals can be used in decoding finger movements for exoskeleton robotics, 
prosthetic hands, and powered wheelchairs and thus has attracted the attention of many researchers. However, decoding 
any movement is a challenging task. The success of using EMG signals depends on the appropriate choice of feature 
extraction and classification model, especially in the feature extraction process. Therefore, this study conducted an eight-
feature extraction evaluation on various machine learning methods, i.e., Support Vector Machine (SVM), k-Nearest Neighbor 
(k-NN), Decision Tree (DT), Naïve Bayes (NB), and Quadratic Discriminant Analysis (QDA). Datasets from four intact subjects 
were used to classify twelve finger movements. Through five cross-validations, the result showed that almost all feature 
extractions combined with SVM outperformed the other combinations of features and classifiers. Mean absolute value 
(MAV) as a feature and SVM as a classifier were the best combination, with an accuracy of 94.01%. 
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Introduction 

Machine learning has been applied in various fields, ranging from education [1], health [2], agriculture [3], and 
so on. One of its applications is the development of human-machine interfaces (HMI). The interest in developing 
HMI is gaining momentum [4]. One of the biggest barriers to the widespread acceptance of hand prostheses by 
amputees is their restricted usefulness. Prosthetic hand utility is greatly constrained by their lack of dexterity. 
Thus, research into electromyographic (EMG) signal-based robotic hand control techniques has been carried out 
[5]. This signal’s acquisition can be conducted invasively or noninvasively [6,7]. When a desired muscular 
contraction occurs, the central nervous system sends EMG signals, which indicate the electrical activity of the 
muscles. Both invasive and non-invasive electrodes can be used to obtain myoelectric signals; the latter are 
frequently employed in rehabilitation. Surface electrodes (sEMG) on both forearm muscles, for instance, can be 
used to partially record the intention to flex and extend the fingers [8]. EMG signals have been used extensively 
for many purposes, including exoskeleton robotics for stroke patients [9–11], prosthetics for lower limb and 
hand amputees [12,13], and powered wheelchairs for physically impaired walking people [14]. Many studies 
focused on using EMG signals for hand movements [15,16]. Nonetheless, in real-life applications, any movement 
of the hand requires finger movements. 
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Studies focusing on finger movement classification based on EMG signals explored several methods. 
Classification of finger movements was conducted by using Artificial Neural Network (ANN), Support Vector 
Machine (SVM), and k-Nearest Neighbor (k-NN) in [17]. Another study used ANN to decode different finger 
motions [18]. The above works only investigated limited finger movements, while in real life, a higher degree of 
freedom (DoF) of the fingers is necessary to perform tasks flexibly. 

A large part of the relevant literature investigated feature evaluation for EMG signals. The goal of the study by 
Toledo-Pérez [19] was to give a summary of the numerous studies that have been done on the categorization of 
electromyography (EMG) signals using Support Vector Machines (SVM). The accuracy attained, the quantity of 
signals or channels used, how the feature vectors were produced by the authors, and the kind of kernel 
employed were included in the study. The bands utilized to filter the signals, the suggested signal quantity, the 
most popular sampling frequencies, and certain characteristics that can produce the characteristic vectors are 
all listed. Another study evaluated the use of features in the EMG signals [20]. The research used a CNN algorithm 
for classification and wavelet transformation for feature extraction. Feature extraction investigation has been 
done too by Samuel [21], who investigated several feature extraction methods, i.e., mean absolute value (MAV), 
waveform length (WL), zero crossings (ZC), and slope sign changes (SSC). In the present, these studies were 
compared with our newly proposed time-domain features using different performance metrics. In addition, we 
used the auto-regressive coefficients (AR), root mean square (RMS), and Willison Amplitude (WAMP). 

Accordingly, the present study focused on evaluating eight different feature extraction methods for twelve 
finger movements with sixteen channels from a double Myo armband using SVM. SVM was chosen because it 
showed the best results in the classification task [19], and it has been widely used for the EMG signal 
classification [19]. In addition, three temporal moment features (TM3, TM4, TM5) were investigated. 
Additionally, the experiment not only employed SVM as classifier but also four other models, i.e., k-Nearest 
Neighbor (k-NN), Decision Tree (DT), Naïve Bayes (NB), and Quadratic Discriminant Analysis (QDA) as 
comparative models. Hence, we were able to achieve the purposes of getting the right features for SVM, the 
right temporal moment feature, and the other combination of features and models to be applied. 

Method 

Proposed Model System 

The proposed model system presented in this paper can be seen in Figure 1. The dataset from NinaPro DB5 in 
Exercise 1 (E1) was first used with feature selection and the sliding window technique. Feature selection was 
done to take valuable information from the data and remove unwanted information. As a result, there remained 
two kinds of signals, i.e., EMG signals and target signals, or labeled data. A windowing process was then 
conducted to the length of signals with an overlap of 75%. After this stage, the EMG signals were ready to be 
extracted using eight evaluated features. The resulting data of the feature extraction process were then fed to 
five different classification models to get the accuracy rates of the output for the twelve finger movements. The 
accuracy of each model was validated using a k-Fold with five cross-validations. This means that the data was 
randomly divided into 20% testing data and 80% training data. 

 

Figure 1 Model system. 
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Dataset 

The dataset was acquired from publicly available data in the NinaPro Database, which consists of nine databases, 
from DB1 to DB9. This study only used DB5. In DB5, ten healthy subjects were tested to collect data, with three 
exercises representing three kinds of paradigms. The present study only used four subjects: two males (S1, S2) 
and two females (S4, S5), and only Exercise 1 (E1) was chosen, as it represents twelve individual finger 
movements, which were used as labeled data in the classification models. These movements, as shown in Table 
1, included index flexion, index extension, middle flexion, middle extension, ring flexion, ring extension, little 
finger flexion, little finger extension, thumb flexion, thumb extension, thumb adduction, and thumb abduction, 
collected from a double Myo armband placed on the forearm of the subjects, as described in [22]. Each Myo 
armband has eight channels, so in total there were sixteen channels. The data collection protocol can be seen 
in Figure 2. 

 

Figure 2 Data collection protocol [23]. 

Table 1 Twelve finger movements. 

Name Finger  Name Finger 

Index flexion 

 

 
Little finger 

flexion 

 

Index 
extension 

 

 
Little finger 
extension 

 

Middle 
flexion 

 

 
Thumb 

adduction 

 

Middle 
extension 

 

 
Thumb 

abduction 

 

Ring flexion 

 

 Thumb flexion 

 

Ring 
extension 

 

 
Thumb 

extension 
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Pre-processing and Windowing 

To guarantee that the signal used was an EMG signal, the EMG signal was filtered with a bandpass filter at a 
frequency of around 10 to 400 Hz prior to any additional processing.  In addition to the bandpass filter, a notch 
filter with a cut-off frequency of 50Hz was employed to mitigate the impact of interference signals originating 
from electrical networks. Following the filtering step, there was a 200-ms windowing process with a 75% overlap. 

Feature Extraction 

Eight feature extractions were evaluated in this work. In detail, the following were the feature extractions used. 

Root Mean Square (RMS) 

The first feature is the root mean square (RMS). RMS is the square root of the average square error [19], which 
is mathematically expressed as follows: 

RMS = �
1

�
� ��

�
�

���
 (1) 

Integrated Absolute Value (IAV) 

The integrated absolute value is when N is equal to how many sEMG data points there are in the time frames, 
and xi denotes the amplitude that corresponds to the i-th sEMG data point [24], as expressed in Eq. (2): 

��� =  � |��|
�

���
 (2) 

Mean Absolute Value (MAV) 

This feature is the average absolute value in the EMG signals [25], as shown in Eq. (3): 

MAV =
1

�
 �|��|

�

���

 (3) 

Simple Square Integral (SSI) 

The summation of square values yields the value of SSI in EMG signals. The mathematical expression can be seen 
in Eq. (4) [26]: 

��� =  � ��
�

�

���

 (4) 

Temporal Moment 3, 4, 5 (TM3, TM4, TM5) 

The temporal moment feature is a statistical analysis method that was proposed by Saradis in 1982 [19]. The 
mathematical equations for TM3, TM4, and TM5 can be seen in Eqs. (5), (6), and (7), respectively: 
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Mean Absolute Deviation (MAD) 

Mean absolute deviation calculates the values that are possible to discriminate from their average. N is the 
number of values observed, xi is the individual value, and x ̄is the mean value observed. In detail, it can be seen 
in Eq. (8): 

��� =  
1

�
 �|�� −  x̄|

�

���

 (8) 

Classification Models 

This proposed study used five classification models, which were used to evaluate all feature extractions. In detail, 
the following were the classifier models used. 

Support Vector Machine (SVM) 

SVM is a popular machine learning tool that works by separating a dataset into different classes. It works using 
a hyperplane to discriminate data into two or more classes [19], as shown in Figure 3. Since the invention of 
Support Vector Machines, this method has been widely used for image, hypertext, and text categorization and 
segregation issues. These algorithms are highly sophisticated and can be used for things as diverse as both 
protein sorting in biological laboratories and handwriting recognition. Thus, they are utilized in a variety of 
different fields, including self-driving automobiles, chatbots, face recognition, etc. [27]. The way the hyperplane 
separates the data into classes is based on the maximum margin or space between dataset classes, taking 
advantage of each class’s support-vector. In the SVM model used this study, the kernel function was set to be 
the radial basis function (RBF) and the value of gamma (C) was set to 100.  

 

Figure 3 An example of an SVM decision boundary [27]. 

k-Nearest Neighbor (k-NN) 

A k-NN model works by measuring the value of the distance from a dataset. Alternatively, this model classifies 
data based on the majority vote of its k-Neighbors [28]. The ‘k’ in k-NN is the number of neighbors of a new data 
point. In this algorithm, the process of determining the value of k is the main one. The accuracy of the k value 
selection will affect the accuracy, a process that is called parameter tuning. A very low k value may lead to noisy 
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results, whereas a very high value may lead to confusion at times, depending on the data set [27]. This study 
used k = 3. The calculation of the k value can be done with this formula:  

K =  √n (9) 

where n is the total number of data points. 

After that, the distance in units of Euclidean geometry between the old and new data points in the data set is 
determined. We have to determine the category to which the majority of the nearest neighbors belong (let us 
say the value at k = 5) after computing the Euclidean distance values from all points to the new data point. Then, 
after careful calculation, we must assign that category to the data point that is designated for classification. As 
can be seen in Figure 4, it may be deduced that the point belongs to class A because it has three of that category’s 
nearest neighbors [27]. 

 

Figure 4 New data points based on k-NN neighbours [27]. 

Decision Tree (DT) 

Decision Tree (DT) algorithms, which are supervised learning algorithms, are typically employed to solve 
classification problems, though they can also be used to solve regression problems [27]. In the Decision Tree 
method several terms are used, which can be seen in Figure 5. 

 

Figure 5 Decision tree architecture [27]. 
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1. Root Node: The decision tree’s first node, where the process of further dividing the entire data set into 
multiple homogenous potential sets begins. 

2. Leaf Node: The last result node, at which the tree cannot be further divided. 
3. Splitting: This is the process of further subdividing the main node into sub nodes in accordance with the 

given limitations. 
4. Sub Tree: Creating sub trees or branches out of the resulting hierarchy. 
5. Pruning: To achieve the best outcome, superfluous branches from the decision tree must be removed. This 

reduces the tree’s size without compromising its accuracy. Cost complexity pruning and error reduction 
pruning are the two types of pruning used. 

6. Child and Parent Nodes: The base node, which is also known as the parent node, is the only node that is 
not referred to as a child node. 

Naïve Bayes (NB) 

Naïve Bayes classification is a classification-based algorithm used for feature classification. This algorithm is 
based on Bayes’ theorem. This classification is commonly used in the medical field to support decision making 
[29]. This value is obtained using the probability data found and the total data. 

Quadratic Discriminant Analysis (QDA) 

The statistical technique known as quadratic discriminant analysis (QDA) is frequently used to categorize 
observations from various multivariate normal populations [30]. Using a p-dimensional feature vector and 
discriminant analysis, individuals can be classified into one of k (≥ 2) populations. The feature vector’s underlying 
distribution is typically thought to be multivariate normal. The Minimum Mahalanobis Distance (MMD) 
classification rule is another name for this rule. Quadratic Discriminant Analysis (QDA) is employed when the 
equality of the dispersion matrices of the underlying populations cannot be maintained. Despite being designed 
for data with a normal distribution, QDA can also be used for data without a normal distribution, because it is a 
relatively reliable algorithm in this situation [30]. 

Results and Discussion  

This study evaluated eight different feature extractions on a support vector machine (SVM) to be used as 
classifier, using four subjects. For further investigation, four comparative classifiers were also tested and 
evaluated to know the effects of other models on the accuracy level. All feature extractions and models were 
employed to classify twelve finger movements, i.e., index flexion, index extension, middle flexion, middle 
extension, ring flexion, ring extension, little finger flexion, little finger extension, thumb flexion, thumb 
extension, thumb adduction, and thumb abduction. 

EMG signals from the NinaPro DB 5 dataset in Exercise 1 (E1) were used to classify these twelve finger motions. 
Feature selection was first applied, since the data comprised not only EMG signals and re-stimulus as labeled 
data, but also other data, such as a glove, acc, repetition, circumference, and others. Therefore, these unwanted 
data were removed. Then, the remaining EMG signals and labeled data were investigated to get the best 
accuracy for finger movement classification. 

Experimental Results Using SVM 

Figure 6 shows the classification results using SVM. From all eight different feature extractions tested and 
evaluation using Support Vector Machine (SVM), MAV showed the highest accuracy (94.01%), followed by the 
other features (IAV, RMS, MAD, SSI, TM4, TM3, and TM5), respectively. The temporal moment (TM) features 
yielded lower results compared to the other features, with an accuracy of 77.79%, 81.33%, and 84.74% for TM5, 
TM3, and TM 4, respectively. 
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Figure 6 Feature extraction performance using SVM. 

Experimental Results Using kNN 

In the second evaluation, the performance of feature extraction was tested with k-Nearest Neighbor (k-NN). 
Figure 7 indicates how these eight features performed in terms of accuracy for the four subjects. With this 
method, RMS showed the best accuracy (91.65%), followed by MAD (90.72%), MAV (90.54%), IAV (90.46%), SSI 
(88.03%), TM4 (83.12%), TM5 (75.62%), and TM3 (75.90%). All feature extractions got a score of over 80%, 
except for the temporal moment features. 

 

Figure 7 Feature extraction performance using k-NN. 

Experimental Result Using DT 

The third experiment, as shown in Figure 8, provided the result for the features evaluated in the Decision Tree 
(DT) classifier model. The highest accuracy rate went to TM4 (86.35%). The lowest accuracy rate was achieved 
by TM3 (77.74%). RMS, MAV, IAV, SSI, and MAD yielded an accuracy rate of above 85%, while TM5 resulted in 
an accuracy rate of only 80.44%. Although the temporal moment feature TM4 showed the highest percentage, 
the nontemporal moment features (RMS, MAV, IAV, SSI, and MAD) still had good results. 
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Figure 8 Feature extraction performance using DT. 

Experimental Result Using NB 

The fourth experiment used a Naive Bayes (NB) model, which resulted in the performance that can be seen in 
Figure 9. RMS outperformed the other features with an accuracy rate of 80.92%. All temporal moment features 
had lower results (65.08% for TM3, 60.81% for TM4, and 31.53% for TM5). Meanwhile, the remaining scores 
were 80.55% for SSI, 80.23% for MAD, 80.13% for IAV, and 79.98% for MAV. This model highlighted that RMS is 
the best feature to be applied, while temporal moment features are less recommended to use. 

 

Figure 9 Feature extraction performance using NB. 

Experimental Result Using QDA 

The last experiment applied Quadratic Discriminant Analysis (QDA). Figure 7 illustrates the eight-feature 
performance of the QDA model. MAD showed the most promising result, with an accuracy rate of 92.20%. It 
was followed by MAV, IAV, and RMS, resulting in an accuracy rate of 92.07%, 92.06%, and 91.89%, respectively. 
SSI, TM3, TM4, and TM5 yielded lower rates. In this model, all temporal moment features (TM3, TM4, and TM5) 
yielded lower results than with the other models. 

60

65

70

75

80

85

90

RMS IAV MAV SSI TM3 TM4 TM5 MAD

A
cc

u
ra

cy
 (

%
)

Feature Extraction Performance Using DT

S1 S2 s4 s5

15

25

35

45

55

65

75

85

RMS IAV MAV SSI TM3 TM4 TM5 MAD

A
cc

u
ra

cy
 (

%
)

Feature Extraction Performance Using NB

S1 S2 S4 S5



596  Khairul Anam et al.
   

 

 

Figure 10 Feature extraction performance using QDA. 

Discussion 

We observed the performance outcomes of each classifier, as well as the factors that impact them. It is 
interesting to analyze the relative performance of the different classifiers. To evaluate the efficacy of Support 
Vector Machines (SVM) and other machine learning algorithms, we present a brief overview of their 
performance in Figure 11. 

 

Figure 11 Classifier performance on different feature extractions 

It is evident that SVM demonstrated the highest level of accuracy across most extraction features, except for 
TM4 and TM5. The findings of this work align with the results of prior studies that recommended the use of 
Support Vector Machines (SVM) as an effective and resilient machine learning technique for analyzing 
myoelectric signals [19]. The subsequent superior classifiers were kNN and QDA, exhibiting comparable 
performance. The problem with QDA lies in its extremely low accuracy for all TM characteristics, particularly 
TM5. Examining the reasons for the underperformance of QDA on TM features is an interesting endeavor. With 
an average of 80% or lower when using TM features, nearly all machine learning models were unable to generate 
satisfactory results. One possible explanation for this is that EMG signals exhibit significant variability because 
of several factors, such as electrode placement, muscle position changes, and other variables. The presence of 
variability is a challenge to conducting temporal analysis since it hinders the identification of consistent patterns. 
This observation may explain the tendency for SVM and most other machine learning algorithms to exhibit low 
accuracy when applied to TM. 
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Table 2 provides a more comprehensive assessment of the performance of each machine-learning algorithm.   
The numbers in bold are the best results. The maximum accuracy of 94.01% was achieved by employing SVM 
machine learning and MAV feature extraction. Nevertheless, MAV may not be the optimal characteristic for 
every classifier. The most notable attribute for all classifiers is the root mean square (RMS), which yielded an 
average performance of 88.71% across the five machine learning models. It may be necessary to consider this 
in the future. When implementing the extraction functionality, we have the option to pick between MAV or 
RMS. 

When considering the merits and drawbacks of each approach, one notable advantage of SVM is its exceptional 
performance across a wide range of features. It performs well when combined with any feature. An obvious 
drawback is its low performance when used with the temporal moment (TM) function. As for kNN, it possesses 
the advantage of exhibiting commendable accuracy, but it falls short of SVM. Like SVM, the shortcoming of this 
method is its lack of effectiveness when used in conjunction with TM characteristics. As for QDA, its performance 
is comparable to that of kNN. However, while utilizing TM characteristics, the accuracy is very low. QDA is highly 
effective when used with time domain features such as RMS, IAV (integrated absolute value), and MAV (mean 
absolute value). As for DT, this classifier exhibited the maximum accuracy in matching the TM features displayed 
in TM4 and TM5. A limitation is its inability to rival the accuracy of SVM. As for Naïve Bayes, it did not 
demonstrate satisfactory performance in the analysis of EMG signals. 

Table 2 Feature extraction performance towards five classifier models. 

Classifier 
Feature Extraction 

RMS IAV MAV SSI TM3 TM4 TM5 MAD 

SVM 93.51 93.97 94.01 91.58 81.33 84.74 77.79 93.59 
k-NN 91.65 90.46 90.54 88.03 75.90 83.12 75.62 90.72 

DT 85.62 85.54 85.26 85.76 77.74 86.35 80.44 85.91 
NB 80.92 80.13 79.98 80.55 65.08 60.91 31.53 80.23 

QDA 91.89 92.06 92.07 87.84 69.44 50.37 32.12 92.20 

Avg±std 88.71±4.73 88.43±5.00 88.37±5.10 86.75±3.62 73.89±5.85 73.09±14.67 59.5±22.64 88.53±4.89 

Based on the above discussion, it is evident that SVM with mean absolute value (MAV) yielded the most accurate 
predictions for the twelve hand movement patterns. However, this study exclusively utilized data from 
individuals who were in good health. The performance of SVM with RMS and the MAV features on amputees 
will be interesting to observe. It is important to mention that the analysis conducted in this research was 
performed offline rather than online or in real-time. To enhance practicality, it is important to carry out the 
experiment in real-time. Furthermore, it is imperative to execute the use of the derived technique to control 
prosthetic robots for individuals with limb loss. 

Conclusions 

This study evaluated several feature extraction methods applied to five classifier models to predict twelve user 
hand movement patterns based on electromyography signals. The implemented technique was utilized on four 
individuals who were in good health. The research findings indicate that Support Vector Machine utilizing the 
mean absolute value (MAV) feature achieved the highest level of performance, with an accuracy rate of 94.01%.   
Nevertheless, the most notable feature that functioned effectively across all machine learning models was RMS, 
showing an average accuracy of 88.71%. In the future, this research will further contribute to assisting amputees 
in controlling prosthetic robots based on their desired movement patterns. 
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