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Abstract  
An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine 

interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements 

based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely 

a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data 

representations are investigated: different window segmentation lengths and reduction of the measured channels. The 

overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains 

more than 90% by reducing channels from four to three. 
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Introduction 

The Human-Computer Interface (HCI) can be defined 

as a communication medium between a human and 

a computer system or terminal device. The HCI is 

considered a significant part of current research in 

medicine, industry, education, and entertainment, and 

thanks to rapidly evolving computed technology 

permeates people's daily lives. One of the most 

challenging approaches in this area of research is 

connecting bioelectric signals from the human body to 

a computer system. Bioelectric signals in the human 

body directly correlate with its state. For example, when 

performing movements, changes occur in the measured 

electromyographic (EMG) signals from the corre-

sponded area, the electrooculographic (EOG) signals are 

linked with eye movement, and the electroencephalo-

graphic (EEG) signals correspond to mental state and 

external stimuli. These signals can be processed 

quantitatively or qualitatively to be related to human 

intent, making them applicable to the HCI systems. 

The human movement or gesture can be considered 

the most natural, intuitive, and non-verbal interaction 

medium. One way to detect it is surface electromyo-

graphy (sEMG). The EMG signal is a bioelectric signal 

generated during skeletal muscle contraction controlled 

by the nervous system. The EMG signals are acquired 

from many active motor units of examined muscle. The 

active motor unit's action potentials are electrically 

superposed and detected by surface electrodes placed on 

the skin above the investigated muscle. The typical 

value of the non-stationary sEMG signal ranges between 

1 mV and 10 mV. A significant tissue volume between 

electrodes and muscle fibers and the electrode-skin 

interface limits the upper limit usable frequency band at 

500 Hz. The dominant signal energy power interval 

corresponds to 50–150 Hz [1, 2]. 

As muscle moves, an EMG signal is generated that 

contains unique patterns. Recognition of these patterns 

can be used in a wide range of HCl systems. The output 

of the classification process then represents a control 

command to perform specific activities of the respective 

terminal device. 

The EMG signals have considerable potential in HCI 

applications such as a bionic limb or robotic arm control. 

Shi et al. in [3] designed a prototype system for the 

recognition of five hand gestures to control the 

bionic hand based on real-time analysis of two bipolar 

EMG channels. The classification accuracy using the 

k-Nearest Neighbor (k-NN) algorithm achieved 94% for 

online classification. 

Other studies deal with electric wheelchair control. 

Kumar et al. in [4] designed an electric wheelchair 

assistive device for patients with lower cervical spinal 

cord disorders. The wheelchair can move left, right, 
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straight, and stop. The rest command, is related to 

muscle relaxation, based on a set threshold corre-

sponding to muscle activation. The recognition accuracy 

rate using the Support Vector Machine (SVM) was 

93.50% for an online case. 

Several studies have also been conducted on the 

conversion of EMG signals into sign language. Tateno 

et al. in [5] proposed a high-precision, real-time hand 

motion recognition system based on American Sign 

Language that helps hearing-impaired people communi-

cate with healthy people. The achieved accuracy was 

97.7% using the Long Short-Term Memory (LSTM) 

algorithm for the recognition of 20 different word 

expressions. 

Surface EMG signals can also be used to control 

a virtual keyboard, computer mouse, or virtual reality. 

Rahim et al. in [6] proposed a procurement system 

character using a virtual keyboard based on EMG signal 

analysis while performing hand movements. They used 

five hand movements to enter 20 characters of the 

alphabet from A to Z on the virtual keyboard. Achieved 

accuracy was 96.75% by the SVM algorithm. David et 

al. in [7] presented the computer mouse system 

controlled by real-time surface EMG signals, which 

correspond to four hand movements, including a relaxed 

hand condition with an accuracy of 87.13% by the 

Multilayer Perceptron (MLP). Li et al. in [8] dealt with 

the design of a real-time virtual reality management 

system based on wireless sensing of EMG signals with 

a classification accuracy of 83.33%. The virtual reality 

scene is the kitchen, in which the entity can perform four 

actions. The system can be used for muscle training 

rehabilitation, with the virtual kitchen scene having 

a positive psychological impact on patients. 

This research investigates 13 finger movement 

recognition based on EMG signals represented by 

spectrograms in the time-frequency domain. Features 

are extracted from the obtained spectrograms and 

classified using a deep learning algorithm. 

Materials and Methods  

Hardwar e for  Data Acquis it ion  

A biopotential amplifier (Fig. 1) was used to obtain 

EMG signals whose dominant component is the 

integrated circuit ADS1298 (Texas Instruments, USA). 

This integrated circuit allows simultaneous measure-

ment of analog signals via eight differential inputs in 24-

bit resolution. The ADS1298 circuit allows setting the 

sampling frequency from 250 Hz to 32 kHz, setting 

programmable gain, lead-off detection, or configuring 

the driven right leg (DRL) circuit for individual inputs. 

The Atmega328PB (Microchip Technology, USA) 

MCU is the primary control unit for the entire device 

through SPI. A USB-UART converter is used for 

communication between the device and the computer, 

specifically the FT232RL circuit (FTDI chip, GB). 

 
Fig. 1: Biopotential amplifier. 

Software for  Data Acquisi t ion  

The whole acquisition chain is configurable via 

application software with a graphical user interface 

developed in MATLAB R2021b (MathWorks, USA). 

After starting the application, the user will see a clear 

separate window (Fig. 2) containing the main menu bar 

at the top; below it is a bar with tools, and in the central 

part located space for simultaneous rendering of 

received data. 

 
Fig. 2: Full window - simultaneous EMG measurement 

from eight channels in a unipolar configuration. 

The main menu allows setting the conditions of data 

recording, i.e., selection of the acquisition mode (test 

signal or biosignal), change of the sampling frequency, 

setting of the programmable gain, and enabling DRL for 

required inputs. Another attribute is digital filtering, 

which provides the ability to extract the proper 

frequency range of the EMG signal using a bandpass 

filter with cut-off frequencies of 10 Hz and 350 Hz, and 

power line-specific frequency suppression using a notch 

bandstop filter set to 50 Hz. 

The toolbar contains six icons that perform specific 

functions: 

• the serial port selection, 

• changing the range of the x-axis and y-axis, 

• starting and stopping EMG signal recording, 

• saving the recorded data, 

• isoelectric line offset regulation. 
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In the central part of the window the space for 

displaying EMG waveforms is situated. There are eight 

separate graphs for plotting the data read from the 

device, which is used to visually check the measure-

ment's accuracy. Rendering is performed for newly 

loaded samples in sections bounded by the updated  

x-axis limit. 

Dataset  o f  EMG Data  

The EMG signals were acquired simultaneously using 

four channels of the biopotential amplifier in a bipolar 

configuration for subsequent classification. Measure-

ments were made on five healthy volunteers aged 21 to 

53 years, separately for three days. The electrodes were 

placed on the forearm muscles of the right hand in the 

arrangement shown in Fig. 3. The goal was to create an 

EMG data set for the 13 finger movements illustrated in 

Fig. 4. The subject performed the individual movements 

for approximately five seconds, followed by a relaxation 

period of approximately five seconds. Each movement 

was repeated five times. 

 
Fig. 3: Electrode placement with channel labels. 

 
Fig. 4: 13 Investigated Movements; Ex. = Extension, 

Fl. = Flexion. 

EMG Data Pre -processing  

The application described in the previous section was 

used to record the data. Both types of digital filters 

provided by the application were applied to the initial 

preprocessing of the measured EMG data. 

Each respective EMG record was segmented using 

a sliding window with a fixed length of 100 ms, 200 ms, 

250 ms, and 300 ms in a step of 50 ms to form a dataset 

inserting the following classification process. 

Subsequently, the transformation of EMG signals 

from the time domain to the time-frequency domain was 

performed using the Short-Term Fourier Transform 

(STFT), which can be defined as follows [9]: 

 𝑋(𝑚, 𝑘) = ∑ 𝑥(𝑛)𝑤(𝑛 −𝑚)𝑒−𝑗
2𝜋
𝑁
𝑘𝑛

∞

𝑛=−∞

, (1) 

where X(m,k) is the signal representation in the time-

frequency domain, x(n) represents the sequence of input 

samples, w is a window function, n is sample order, k is 

the order of the spectral component, m is the window 

interval centered around zero, and N is the number of 

discrete frequencies. 

This transformation made it possible to obtain signal 

power information for individual frequencies in the form 

of spectrograms, which can be defined as [10]: 

 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 = |𝑋(𝑚, 𝑘)|2. (2) 

The spectrograms were received from individual 

signal segments of four investigated lengths using 

a Hamming window with a length of 50 samples and an 

overlap of 34 samples. 

Finger  movement recognit ion  

A convolutional neural network (CNN) was designed 

to classify spectrograms representing 13 finger move-

ments. Therefore, the spectrograms represented input 

samples, measuring 64×L×CH, where L = 4, 10, 14, 16 

for 100 ms, 200 ms, 250 ms, and 300 ms segment 

lengths, respectively, and CH denotes the number of 

channels. The z-score method was used to normalize 

data based on training samples, where the standardized 

value x' is defined as follows: 

 𝒙' =
𝒙 − 𝝁

𝝈
, (3) 

where x denotes the value of the original sample, µ is the 

mean value and σ is the standard deviation. 

The utilized CNN architecture (Fig. 5) for the feature 

extraction stage consists of four convolution layers 

along with an equal number of max-pooling layers. For 

convolutional layers, the number of filters is 32, 64, 128, 

and 384, with a kernel size of 3×3. The rectified linear 

unit (ReLU) activation function is applied next. The 

dimensions of the feature map produced by convolution 

operations are reduced through pooling operations based 

on maximum value with a pooling size of 2×2 and 

stride 2. After the second and fourth max-pooling layer, 

a dropout layer with a probability of 0.1 is included. The 

classification stage consists of the first fully connected 

layer with 32 neurons and the second fully connected 

layer with a softmax activation function. Therefore, the 

output was created as a vector describing the probability 

distribution of the input spectrograms corresponding to 

each of the 13 defined classes. 

The Adam optimizer was used as an optimization 

method. The training hyperparameters are set as fol-

lows; mini-batch size to 512, a number of epochs to 50, 

and learning rate to 0.001. Training and validation 

samples were shuffled in every epoch. Output model 
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corresponding to the training iteration with the lowest 

validation cross-entropy loss. 

A 5-fold cross-validation (CV) method was applied to 

evaluate the predictive performance of the classification 

models in terms of different properties of the input data. 

The original dataset was divided into 80% training data, 

20% test data (for an overall evaluation of the most 

accurate model), and 20% of the training data, 

hereinafter referred to as validation data, were used for 

cross-validation assessment. The training and validation 

processes were performed via Deep Learning Toolbox 

in MATLAB R2021b using the GPU NVIDIA GeForce 

GTX 1660 (Nvidia Corporation, USA). 

 

Fig. 5: Architecture of utilized CNN. 

Results and Discussion  

The classification results corresponding to the 

validation subtest of the spectrograms representing the 

13 finger movements for the different segment lengths 

are depicted in Fig. 6. The Average accuracies across the 

5-fold CV with standard deviation in the form of 

boxplots are reproduced. It can be observed that with 

increasing segment length, the average accuracy 

rate increases, from (81.1 ± 0.5)% for 100 ms to 

(95.4 ± 0.3)% for 300 ms. Thus, it can be stated that the 

more extended segment contains more representative 

information about the movement of the individual finger 

movement. 

 
Fig. 6: Comparison of average accuracy (5-fold CV) 

comparison for different segment lengths. 

Subsequently, the influence of individual channels 

and groups of these channels was investigated for the 

information corresponding to the most successful 

segment length of 300 ms. The box plots describe the 

results of this experiment in Fig. 7. A total of 

15 combinations of channels were used, which can be 

divided into the following groups: one channel, two 

channels, three channels, and all channels. When using 

only one and two channels, satisfactory results were not 

achieved. The average accuracy is less than 55% for 

single-channel and using two channels is lower than 

85% for all cases. The classification accuracy for the 

three-channel configuration ranges from (90.4 ± 0.6)% 

(channels CH2, CH3, and CH4) to (91.6 ± 0.6)% 

(channels CH1, CH2, and CH3). The case for all four 

electrodes has been evaluated previously. 

 

Fig. 7: Comparison of average accuracy (5-fold CV) 

for different channel combinations. 

Finally, the CNN model was trained for the input 

conditions achieving the highest results, i.e., 300 ms 

segment length and all channels. This model was tested 

using a test subset (20% of original data). Fig. 8 depicts 

the graphical representation of these results in the form 

of a confusion matrix. The rows reflect the output 

(predicted) classes, while the columns provide 

information about the target (true) classes based on the 

labeling of the input data. The diagonal cells represent 

the number of correctly classified input data for 

individual finger movements. Cells outside the diagonal 

reflect the observations that have been improperly 

allocated to the given class. The last column denotes 

classification precision for individual classes, and the 

last row represents classification recall (sensitivity). The 

cell in the lower right corner contains acquaintance 

about the overall classification accuracy. 

The overall classification accuracy reaches 95.5% on 

the test subset. It can be stated that the classification of 

the little finger flexion movements reached the highest 

precision of 98.1%. Contrariwise, the lowest precision 

value is achieved for the extension of this finger, namely 

92.1%. The highest recall value of 99.9% belongs to the 

relaxed hand class, and the lowest recall of 92.7% is 

achieved for the ring finger flexion. Most samples of 

little finger extension were incorrectly classified as ring 

finger flexion. This fact may find a correlation in the 

difficulty of performing given movements across 

participants. 

Table 1 reflects certain selected previous studies 

dealing exclusively with the classification of gestures 

based on the measurement of EMG signals using 

machine learning algorithms. Direct comparison of the 

results of different research is demanding as a conse-

quence of methodological reasons. Therefore, studies 

examining only finger movements with a comparable 

number of subjects are mentioned. 
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The number of finger movements investigated and 

classified in this research is more compared to previous 

studies. Another fact is that compared to others, only 

four channels were used to classify up to 13 comparable 

classification accuracy results were still achieved. The 

utilization of a low number of measured movements. 

Even the reduction of channels to three channels has 

a significant effect on the complexity reduction of the  

 

measuring system, increasing the comfort and also 

decreasing the intrusiveness of the measured subject. 

Another advantage is the reduction of computing power 

requirements. The presented approach can be applied in 

a wide range of real applications, such as rehabilitation, 

solving conditions after spinal cord injury, prosthetic 

limbs control, robotic arm control, work in dangerous 

conditions, computer mouse control, keyboard control, 

etc. 

 
Fig. 8: Confusion matrix for the test subset. 1—Closed Hand, 2—Opened Hand, 3—Relaxed Hand, 4—Thumb Extension, 

5—Index Finger Extension, 6—Middle Finger Extension, 7—Ring Finger Extension, 8—Little Finger Extension,  

9—Thumb Flexion, 10—Index Finger Flexion, 11—Middle Finger Flexion, 12—Ring Finger Flexion, 13—Little Finger 

Flexion. 

Table 1: Comparison of different studies that investigated finger movement classification based on EMG signals. 
Reference Subjects Channels Movements Window Length Sampling rate Classifier Result  

[11] 5 7 11 200 ms  1500 Hz ANN 90.52% 

[12] 10 8 6 N/A 200 Hz DNN 
95% OFF 
92% ON 

[13] 4 8 12 250 ms 200 Hz CNN 94.9 % 

[14] 5 6 8 132 ms 2000 Hz CNN 97.5% 

[15] 5 6 8 125 ms 2000 Hz PNN 92.2% 

[16] 11 1 4 300 ms 1024 Hz TSVM 
93% H (11) 
81% A (1) 

Proposed 5 4 13 300 ms 1000 Hz CNN 95.5% 

ANN—Artificial Neural Network, DNN—Deep Neural Network, PNN—Probabilistic Neural Network,  

TSVM—Twin Support Vector Machine, OFF—Offline, ON—Online, H—Health, A—Amputee. 
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Conclusion 

This research presents the classification of 13 finger 

movements, including a relaxed hand condition, based 

on EMG signals acquired by four channels. Five 

healthy volunteers participated in the study, wherein 

the EMG data were measured over three different days 

from the upper limb. The obtained EMG records were 

segmented into segments of four lengths, transformed 

into the time-frequency domain by spectrograms, and 

subsequently classified using the CNN algorithm. The 

best validation result was obtained for data 

corresponding to a segment length of 300 ms using the 

5-fold CV method, while the final model achieved 

95.5% accuracy. Therefore, the accuracy of the 

classification of such spectrograms was further 

investigated with combinations of reduced channel 

numbers. Based on the results, it can be concluded that 

the use of one or two channels was not satisfactory 

using the presented procedures. However, input data 

classification accuracy of over 90% was achieved using 

only three channels. 

Nevertheless, there is still oddments space for global 

results improvements by selecting more optimal 

hyperparameters of the classification model and 

including a larger dataset with more exact EMG 

information about finger movements. With some 

adjustments, the presented approach can be used for 

real-time finger movements classification and 

accordingly utilized in a specific application. 
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