39 research outputs found

    Surveillance of sensitive fenced areas using duty-cycled wireless sensor networks with asymmetrical links

    Get PDF
    © 2018 Elsevier Ltd. This paper presents a cross-layer communication protocol for Wireless Sensor Network (WSN) enabled surveillance system for sensitive fenced areas, e.g., nuclear/oil site. Initially, the proposed protocol identifies the boundary nodes of the deployed WSN to be used as sentinel nodes, i.e., nodes that are always in active state. The remaining nodes are used as duty-cycled relay nodes during the data communication phase. The boundary nodes identification process and data routing are both performed using an enhanced version of the Greedy Perimeter Stateless Routing (GPSR) protocol, which relies on a Non Unit Disk Graph (N-UDG) and referred to as GPSR over Symmetrical Links (GPSR-SL). Both greedy and perimeter modes of GPSR-SL forward data through symmetrical links only. Moreover, we apply the Mutual Witness (MW) fix to the Gabriel Graph (GG) planarization, to enable a correct perimeter routing on a N-UDG. Simulation results show that the proposed protocol achieves higher packet delive ry ratio by up to 3.63%, energy efficiency and satisfactory latency when compared to the same protocol based on the original GPSR

    Optimized acquisition of spatially distributed phenomena in public sensing systems

    Get PDF
    Nowadays, an increasing number of popular consumer electronics is shipped with a variety of sensors. The usage of these as a wireless sensing platform, where users are the key architectural component, and ubiquitous access to communication infrastructure has established a new application area called public sensing. We present an opportunistic public sensing system that allows for a flexible and efficient acquisition of sensor readings. This work considers the usage of smartphones as a sensor network in a model-driven sensor data acquisition. We focus on efficiency of query dissemination to mobile nodes, while retaining high effectiveness regarding defined sensing quality of collected data. We adopted and extended an existing geographic routing protocol to design an efficient com- munication system that executes model-driven data acquisition and is robust to changing sensors availability. We use in-network processing paradigm to efficiently distribute queries to mobile nodes and to collect results afterwards. The developed approach was simulated using OMNeT++ network simulator. To verify implemented algorithms and test the overall system performance, we run simulations in different scenarios and evaluate them using adequate cov- erage metrics. Moreover, we verify our intuitive extension to adopted routing protocol and show that it can have a strong impact on the efficiency of protocol in question

    Dealing with Non-Uniformity in Wireless Sensor Networks

    Get PDF
    In this thesis, we step inside an unexplored region of Wireless Sensor Networks (WSNs) research. Nowadays, almost all WSNs research relies upon a hidden uniformity assumption. This assumption involves deployment, distribution and radio transmissions. Unfortunately, the real world is not uniform. In the thesis, we break the uniformity assumption and study the non-uniformity influence in WSNs. In particular, we show that addressing common WSN problems taking non-uniformity into account can provide results that are sensibly different from the ones achieved in a uniform world. In our work, we focus on the influence of non-uniformity on a particular aspect of WSNs: data management. First of all, we point out that even widely accepted solutions based on the uniformity assumption are not able to survive inside an non-uniform world. Then, we propose our approach to data management and detail a solution able to deal successfully with non-uniformity. This allows us to catch out the fundamental aspects of non-uniformity influence in WSNs and to cope with non-uniformity. Results, discussed in the thesis, show that models and solutions we propose are competitive in a uniform scenario and continue to work properly in a non-uniform world

    New techniques for geographic routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 141-148).As wireless sensor networks continue to grow in size, we are faced with the prospect of emerging wireless networks with hundreds or thousands of nodes. Geographic routing algorithms are a promising alternative to tradition ad hoc routing algorithms in this new domain for point-to-point routing, but deployments of such algorithms are currently uncommon because of some practical difficulties. This dissertation explores techniques that address two major issues in the deployment of geographic routing algorithms: (i) the costs associated with distributed planarization and (ii) the unavailability of location information. We present and evaluate two new algorithms for geographic routing: Greedy Distributed Spanning Tree Routing (GDSTR) and Greedy Embedding Spring Coordinates (GSpring). Unlike previous geographic routing algorithms which require the planarization of the network connectivity graph, GDSTR switches to routing on a spanning tree instead of a planar graph when packets end up at dead ends during greedy forwarding. To choose a direction on the tree that is most likely to make progress towards the destination, each GDSTR node maintains a summary of the area covered by the subtree below each of its tree neighbors using convex hulls.(cont.) This distributed data structure is called a hull tree. GDSTR not only requires an order of magnitude less bandwidth to maintain these hull trees than CLDP, the only distributed planarization algorithm that is known to work with practical radio networks, it often achieves better routing performance than previous planarization-based geographic routing algorithms. GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for geographic routing when location information is not available. Starting from a set of initial coordinates for a set of elected perimeter nodes, GSpring uses a modified spring relaxation algorithm to incrementally adjust virtual coordinates to increase the convexity of voids in the virtual routing topology. This reduces the probability that packets will end up in dead ends during greedy forwarding, and improves the routing performance of existing geographic routing algorithms. The coordinates derived by GSpring yield comparable routing performance to that for actual physical coordinates and significantly better performance than that for NoGeo, the best existing algorithm for deriving virtual coordinates for geographic routing. Furthermore, GSpring is the first known algorithm that is able to derive coordinates that achieve better geographic routing performance than actual physical coordinates for networks with obstacles.by Ben Wing Lup Leong.Ph.D

    Location cloaking for location privacy protection and location safety protection

    Get PDF
    Many applications today rely on location information, yet disclosing such information can present heightened privacy and safety risks. A person\u27s whereabouts, for example, may reveal sensitive private information such as health condition and lifestyle. Location information also has the potential to allow an adversary to physically locate and destroy a subject, which is particularly concerned in digital battlefields. This research investigates two problems. The first one is location privacy protection in location-based services. Our goal is to provide a desired level of guarantee that the location data collected by the service providers cannot be correlated with restricted spaces such as home and office to derive who\u27s where at what time. We propose 1) leveraging historical location samples for location depersonalization and 2) allowing a user to express her location privacy requirement by identifying a spatial region. With these two ideas in place, we develop a suite of techniques for location-privacy aware uses of location-based services, which can be either sporadic or continuous. An experimental system has been implemented with these techniques. The second problem investigated in this research is location safety protection in ad hoc networks. Unlike location privacy intrusion, the adversary here is not interested in finding the individual identities of the nodes in a spatial region, but simply wants to locate and destroy them. We define the safety level of a spatial region as the inverse of its node density and develop a suite of techniques for location safety-aware cloaking and routing. These schemes allow nodes to disclose their location as accurately as possible, while preventing such information from being used to identify any region with a safety level lower than a required threshold. The performance of the proposed techniques is evaluated through analysis and simulation

    Geographic Routing for Point to Point Data Delivery in Wireless Sensor Network

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    VAPR: Void Aware Pressure Routing for Underwater Sensor Networks

    Get PDF
    Abstract-Underwater mobile sensor networks have recently been proposed as a way to explore and observe the ocean, providing 4D (space and time) monitoring of underwater environments. We consider a specialized geographic routing problem called pressure routing that directs a packet to any sonobuoy on the surface based on depth information available from on-board pressure gauges. The main challenge of pressure routing in sparse underwater networks has been the efficient handling of 3D voids. In this respect, it was recently proven that the greedy stateless perimeter routing method, very popular in 2D networks, cannot be extended to void recovery in 3D networks. Available heuristics for 3D void recovery require expensive flooding. In this paper, we propose a Void Aware Pressure Routing (VAPR) protocol that uses sequence number, hop count and depth information embedded in periodic beacons to set up next-hop direction and to build a directional trail to the closest sonobuoy. Using this trail, opportunistic directional forwarding can be efficiently performed even in the presence of voids. The contribution of this paper is two-fold: (1) a robust soft-state routing protocol that supports opportunistic directional forwarding; and (2) a new framework to attain loop freedom in static and mobile underwater networks to guarantee packet delivery. Extensive simulation results show that VAPR outperforms existing solutions

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Position-Based Multicast for Mobile Ad-hoc Networks

    Get PDF
    In general, routing protocols for mobile ad-hoc networks (MANETs) can be classified into topology-based protocols and position-based protocols. While for unicast routing many proposals for both classes exist, the existing approaches to multicast routing basically implement topology-based algorithms and only a few of them make use of the geographic positions of the network nodes. These have in common that the sending node has to precalculate the multicast tree over which the packets are distributed and store it in each packet header. This involves two main issues: (a) These approaches are not very flexible with regard to topological changes which abandons the advantages that position-based routing has against topology-based routing, and (b) they do not scale with the number of receivers, since every one of them has to be named in the packet header. This thesis solves these issues and further advances position-based multicast routing. Position-Based Multicast (PBM) enhances the flexibility of position-based multicast routing by following the forwarding principle of position-based unicast routing. It transfers the choice of the next hops in the tree from the sender to the forwarding nodes. Based on the positions of their neighboring nodes, these are able to determine the most suitable next hop(s) at the moment when the packet is being forwarded. The scalability with respect to the number of receiving nodes in a group is solved by Scalable Position-Based Multicast (SPBM). It includes a membership management fulfilling different tasks at once. First, it administers group memberships in order to provide multicast sources with information on whether nodes are subscribed to a specific group. Second, it implements a location service providing the multicast sources with the positions of the subscribed receiver nodes. And third, it geographically aggregates membership data in order to achieve the desired scalability. The group management features two modes of operation: The proactive variant produces a bounded overhead scaling well with the size of the network. The reactive alternative, in contrast, reaches low worst-case join delays but does not limit the overhead. Contention-Based Multicast Forwarding (CBMF) addresses the problems that appear in highly mobile networks induced by outdated position information. Instead of basing forwarding decisions on a perception that may no longer be up to date, the packets are addressed only to the final destination; no explicit next hops are specified. The receiving nodes, which are candidate next hops, then decide by means of contention which of them are the most suitable next hop(s) for a packet. Not only is the decision made based on the most currently available data, but this procedure also saves the regular sending of beacon messages, thus reducing the overhead. The lack of multicast congestion control is another unsolved problem obstructing high-bandwidth data transmission. Sending out more and more packets to a multicast group lets the performance decrease. Backpressure Multicast Congestion Control (BMCC) takes care that the network does not need to handle more packets than it is able to. It achieves this by limiting the packet queues on the intermediate hops. A forwarder may not forward the next packet of a stream before it has noticed---by overhearing the transmission of the next hop---that the previous packet has succeeded. If there is congestion in an area, backpressure is implicitly built up towards the source, which then stops sending out packets until the congestion is released. BMCC takes care that every receiving node will receive packets at the same rate. An alternative mode of operation, BMCC with Backpressure Pruning (BMCC-BP) allows the cutting of congested branches for single packets, permitting a higher rate for uncongested receivers. Besides presenting protocols for multicast communication in MANETs, this thesis also describes implementations of two of the above-mentioned protocols. The first one is an implementation of SPBM for the Linux kernel that allows IP applications to send data via UDP to a group of receivers in an ad-hoc network. The implementation resides between the MAC layer and the network/IP layer of the network stack. It is compatible with unmodified standard kernels of versions 2.4 and 2.6, and may be compiled for x86 or ARM processor architectures. The second implementation is an implementation of CBMF for the ScatterWeb MSB430 sensor nodes. Due to their low-level programmability they allow an integration of the routing protocol with the medium access control. The absence of periodic beacon messages makes the protocol especially suitable for energy-constrained sensor networks. Furthermore, other constraints like limited memory and computational power demand special consideration as well
    corecore