
Geographic Routing for Point-to-Point Data Delivery in Wireless
Sensor Networks

SHAO TAO

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2010

ii

G
eo

g
ra

p
h
ic

R
o
u
ti

n
g

fo
r

P
o
in

t-
to

-P
o
in

t
D

at
a

D
el

iv
er

y
in

W
ir

el
es

s
S

en
so

r
N

et
w

o
rk

s
S

H
A

O
T

A
O

2
0
1
0

ii

GEOGRAPHIC ROUTING FOR POINT-TO-POINT DATA
DELIVERY IN WIRELESS SENSOR NETWORKS

SHAO TAO

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHYLOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2010

ii

Acknowledgements

First of all, I would like to thank my supervisors Prof. A. L. Ananda and Prof. Chan Mun Choon for their

guidance and patience in the past 5 years. Prof. Ananda is always patient and kind enough to guide me

through any issues that I have encountered. I would like to thank him for offering me the opportunity

to follow him and giving me the freedom to choose the research topics that I work on. I especially

want to thank Prof. Ananda for trusting me to assist him in the courses of CS2105 and CS3103 that he

teaches. It has been the most invaluable experience in my entire school life, from which I get to know

what I am capable of, have gained my confidence and have made quite a few good friends with the

students in the classes. I would like to thank Prof. Chan for providing enormous amount of suggestions

on my work and correcting me on the critical issues that I failed to realize all the time. Prof. Chan has a

descent personality of being super friendly to all the students and highly tolerant to the errors we made

occasionally. His talent of pointing out the flaws without making one feel bad is what I really appreciate

every time.

I would also like to thank my parents for respecting the decisions that I made along the way. I have

their full support under all circumstances.

Finally, I enjoyed the time to work with my colleagues in the Communication and Internet Research

Lab. It has been a great pleasure.

iv

Contents

Acknowledgements iii

Abstract ix

List of Tables xi

List of Figures xv

List of Abbreviations xvii

List of Publications xix

1 Introduction 1

1.1 Necessity of Point-to-Point Communication . 1

1.2 Options and Challenges . 2

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

2 Background and Related Work 7

2.1 Definition of Geographic Routing . 7

2.1.1 Performance Metrics . 8

2.1.2 Evaluation Tools . 8

2.2 Geographic Routing Protocols . 8

2.2.1 Greedy Forwarding . 8

2.2.2 Face Routing . 9

2.2.3 Tree-based Routing . 13

2.2.4 Hop Count Vector-based Routing . 14

2.2.5 Randomized Algorithm . 16

2.3 Other Related Areas . 16

2.3.1 Network Embedding . 16

2.3.2 Link Quality Estimation . 17

2.3.3 Location Service . 18

3 Spherical Coordinate Routing for 3D Networks 21

3.1 Introduction . 21

3.2 Protocol Design . 22

3.2.1 Localization Algorithm in 3D Networks . 22

3.2.2 Spherical Coordinates Assignment . 23

3.2.3 Routing Algorithm . 25

3.2.4 Tree Reparation for Network Dynamics . 27

vi CONTENTS

3.3 SCR Overhead and Routing Metrics . 29

3.3.1 Control Overhead of SCR . 29

3.3.2 Storage Cost of the Key Components . 30

3.3.3 Selection of Routing Metrics . 30

3.4 Performance Evaluation . 32

3.4.1 Packet Delivery Ratio . 32

3.4.2 Hop Stretch Factor . 33

3.4.3 Overhead per Packet Delivery . 34

3.4.4 Performance with Topology Changes and Recovery 34

3.5 Summary . 37

4 Practical Connectivity-based Routing using Dimension Reduction 41

4.1 Introduction . 41

4.2 PCA-based Routing Algorithm . 42

4.2.1 Embedding with Dimension Reduction . 42

4.2.2 Critical Dimension . 44

4.2.3 Routing with Fallback . 45

4.2.4 Implementation Issues . 46

4.3 Simulation Results . 50

4.3.1 Packet Delivery Ratio . 51

4.3.2 Hop Stretch Factor . 51

4.3.3 Scoped Flooding Range . 52

4.3.4 Storage and Transmission Cost . 53

4.3.5 Effects of Dimensionality . 54

4.4 Testbed Results . 55

4.4.1 Distance Metric Comparison . 57

4.4.2 Routing Performance . 58

4.4.3 Packet Overhead . 60

4.5 Summary . 60

5 Implementation and Experiments on the Indriya Testbed 61

5.1 Implementation of the PCA-based Routing Algorithm 61

5.1.1 Link Quality Estimation . 62

5.1.2 Local Hop count Vector . 63

5.1.3 Anchor Hop count Matrix . 64

5.1.4 Spanning Tree with Polar Coordinates . 65

5.1.5 Centralized Location Service . 67

5.2 Simulation Results . 68

5.2.1 Routing Performance of Data Packets . 69

5.2.2 Performance of Location Service . 71

5.3 Experimental Results . 75

5.3.1 Routing Performance of Data Packets . 75

5.3.2 Performance of Location Service . 77

5.4 Summary . 80

6 Conclusion 83

6.1 Summary of Contributions . 84

6.2 Future Work . 85

A Sensor Network Applications 87

CONTENTS vii

B Challenges and Research Areas 91

C Connectivity and Link Quality Measurements 95

C.1 Configuration of Link Measurements . 96

C.2 Network Density . 96

C.3 Link Quality . 97

C.4 RSSI and LQI . 100

viii CONTENTS

Abstract

As the design of sensor network applications diversifies, besides flooding and converge-cast, the point-to-

point delivery is often required to support more complex communication schemes. Due to the constraints

in the current sensor platforms, the traditional ad hoc routing protocols are not scalable. Geographic rout-

ing is an attractive option, because its localized packet forwarding procedure obviates the requirement of

routing tables.

While wireless networks are generally deployed in three-dimensional environments, most geographic

routing protocols are designed and evaluated in a two-dimensional space. Existing face routing protocols

rely on a graph planarization procedure, which is not applicable to 3D networks. The greedy forwarding

methods are vulnerable to local minimum cases, leading to frequent delivery failures in sparse networks.

We present a tree-based routing protocol for 3D wireless networks named Spherical Coordinate Routing

(SCR), that uses connectivity-based greedy forwarding to obtain efficient routing paths and a spherical

coordinate tree to guarantee packet delivery. SCR can deploy multiple recovery trees simultaneously for

better routing efficiency and resilience against network dynamics.

Hop count vector-based routing protocols can also be integrated with tree-based routing to improve

routing efficiency. However, when the entire hop count vector is used to address each node, the commu-

nication and storage overhead in the packets is often too high to be employed in a large scale. We apply a

dimension reduction technique, Principal Component Analysis (PCA), to reduce the control overhead in

data packets. Compared to the original hop count vector, the embedding coordinates generated from the

PCA algorithm preserve the network geometry with much lower overhead, making their use more prac-

tical on the current sensor platforms. Simulation results show that the coordinates computed by PCA can

achieve higher packet delivery ratio, lower hop stretch and shorter flooding range with the same packet

overhead.

x

List of Tables

2.1 Comparison of Point-to-Point Geographic Routing Protocols 7

3.1 Input of Simulation Parameters . 32

4.1 Memory Cost (bytes): 20 neighbors and 9 beacons . 48

4.2 Simulation Parameters . 50

4.3 Performance of PCA at Critical Density of 5 . 54

4.4 Parameter Settings of the Testbed . 55

4.5 Routing Performance Evaluation of dhv and dpca . 58

5.1 Configuration of Simulation Parameters . 69

5.2 Delivery Ratios of LCR with Various Number of Anchors 70

5.3 Ranking of Address Resolution Workload. Total: 9169 queries 75

5.4 Configuration of Parameters used in Experiments . 76

5.5 Ranking of Address Resolution Workload, total: 3779 queries 80

B.1 Hardware Specifications of Sensor Nodes . 91

B.2 Sensor Network Testbeds . 92

C.1 Specifications of the TelosB Mote . 96

C.2 Configuration of Link Measurements . 97

xii LIST OF TABLES

List of Figures

2.1 Face Switch Rules in GFRIS . 11

2.2 Face f intersects SD at ≥ 2 locations . 11

2.3 Two cases if line segment SD intersects face Fi only once 12

2.4 Face switch along the sequence of F1, F2, . . ., Fk . 12

2.5 Face Switch Difference: GFG2 and GFRIS . 12

3.1 3D localization of 3000 nodes with 100 iterations . 22

3.2 Spherical Coordinate Angles: θ and ϕ . 24

3.3 Example of Angle Range Assignment . 25

3.4 Routing State Transition Diagram . 26

3.5 Connectivity-based Greedy Forwarding . 28

3.6 Tree Recovery for Node Insertion and Node Failure . 28

3.7 Link Connectivity of 48 MICAz Sensor Nodes Deployed at COM-1 31

3.8 Link Quality and Asymmetry Measurement Results (including cross-floor links) 31

3.9 Packet Delivery Ratio . 33

3.10 Average Hop Stretch Factor . 34

3.11 Traffic overhead per Packet Delivery . 35

3.12 Modeling Network Topology Dynamics . 35

3.13 Recovery Performance after Two Grids Fail . 36

3.14 Distribution of Subtree Size after Recovery at Various Densities 37

3.15 Packet Delivery Before and After Collapse . 38

3.16 Average Hop Stretch Before and After Collapse . 38

3.17 Hop Stretch Performance with Multiple Recovery Trees 38

3.18 Traffic Load per Packet Delivery Before and After Collapse 39

4.1 An Embedding Example with 4 Beacons: A, B, C and D 42

4.2 An Embedding Example with and without Scaling . 44

4.3 A 2D Embedding of 800 Nodes with 70 Beacons . 45

4.4 Distribution of Principal Components in 2D and 3D Networks 46

4.5 Packet Forwarding with Fallback . 47

4.6 Data structures in the nodes: nbrlist, local hv and hv matrix 48

4.7 Packet Delivery Ratio . 51

xiv LIST OF FIGURES

4.8 Hop Stretch Factor . 52

4.9 Average Flooding Range . 52

4.10 Storage Cost of the Routing States . 53

4.11 Transmission Cost of the Routing States . 54

4.12 Deployment Floorplan of the Testbed . 55

4.13 Images of Nodes deployed in the Testbed . 56

4.14 Node Degree and 3D Embedding Graph of 48 Nodes 56

4.15 Comparison between Distances: dhv and dpca . 57

4.16 Spearman’s Rank Correlation between dhv and dpca . 58

4.17 Distribution of paths discovered by dhv and dpca . 59

5.1 Procedures to Compute Coordinates and Update Address Cache 62

5.2 Link Quality Estimation and ETX Computation . 63

5.3 Format the Hop count Vector Entries . 64

5.4 Build Hop count Vectors based on Link ETX . 64

5.5 Format of the Neighbor Entry and Address Entry . 66

5.6 Upload Node Address Message . 67

5.7 Management of Address Cache and Node Address Query 68

5.8 Packet Reception Ratio vs. RSSI in TOSSIM, 100 pkts/RSSI, 10 times 69

5.9 Packet Delivery Ratio for Address Queries and Data Packets 70

5.10 Path Hop Count of the Data Packets . 71

5.11 The Spanning Tree Topology built from ETX in Simulation 72

5.12 Delay of the Data Packets . 73

5.13 Path Hop count of the Address Query Packets . 73

5.14 Delay of the Address Query Packets . 74

5.15 Load of Node Address Queries at Each Node . 74

5.16 Packet Delivery Ratio in the Testbed . 76

5.17 Path Hop count of Data Packets . 77

5.18 Delay of Data Packets . 77

5.19 The Spanning Tree Topology for Location Service and VPCR in the Indriya Testbed . . . 78

5.20 Hop count of Address Query Packets . 79

5.21 Delay of Node Address Query Packets . 79

5.22 Workload of Node Address Query at Each Node . 80

C.1 Snapshots of the Indriya Testbed at COM-1 Building 95

C.2 Neighbor Count of 127 Nodes in the Indriya Testbed. 97

C.3 CDF of Link Packet Reception Ratio, number of links = 2445 98

C.4 Packet Reception Ratio on Bi-directional Links . 98

C.5 Link Asymmetry on the Bi-directional Links . 99

C.6 Packet Reception Ratio of Unicast and Broadcast Probes 99

C.7 PRR Difference for Broadcast and Unicast Probes . 100

LIST OF FIGURES xv

C.8 Packet Reception Ratio vs. RSSI and LQI . 101

xvi LIST OF FIGURES

List of Abbreviations

ACK Acknowledgement

AODV Ad hoc On-Demand Distance Vector Routing

BVR Beacon Vector Routing

CCW Counter Clock Wise

CLDP Cross Link Detection Protocol

CTP Collection Tree Protocol

CW Clock Wise

DSDV Destination-Sequenced Distance Vector Routing

DSR Dynamic Source Routing

ETX Expected Transmission Count

GFG Greedy Face Greedy

GFRIS Greedy Face Routing with Idenfitication Support

GG Gabriel Graph

GOAFR+ Greedy Other Adaptive Face Routing plus

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GPVFR Greedy Path Vector Face Routing

LCR Logical Coordinate Routing

LDT Localized Delaunay Triangulation Graph

LQI Link Quality Indicator

MAC Medium Access Control

NoGeo Geographic Routing without Location Information

PCA Principal Component Analysis

PRR Packet Reception Ratio

RFID Radio-Frequency IDentification

RNG Relative Neighbour Graph

RSSI Received Signal Strength Indicator

RTX Re-transmission

SCR Spherical Coordinate Routing

SVD Singular Value Decomposition

UDG Unit Disk Graph

VPCR Virtual Polar Coordinate Routing

xviii

List of Publications

1. “Greedy Face Routing with Identification Support for Wireless Networks”, Shao Tao, A. L. Ananda

and Mun Choon Chan, Proceedings of the 16 International Conference on Computer Communica-

tions and Networks (ICCCN 2007), Honolulu, Hawaii, USA, 2007.

2. “Greedy Hop Distance Routing Using Tree Recovery on Wireless Ad Hoc and Sensor Networks”,

Shao Tao, A. L. Ananda and Mun Choon Chan, Proceedings of the IEEE International Conference

on Communications (ICC 2008), Bei Jing, P.R.China, 2008.

3. “Spherical Coordinate Routing for 3D Wireless Ad-hoc and Sensor Networks”, Shao Tao, A. L.

Ananda and Mun Choon Chan, The 33rd IEEE Conference on Local Computer Networks (LCN

2008), Montreal, Quebec, Canada, 2008.

4. “Practical Connectivity-based Routing in Wireless Sensor Networks with Dimension Reduction”,

Shao Tao, A. L. Ananda and Mun Choon Chan, Proceedings of the 6th Annual IEEE Communi-

cations Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON

2009), Rome, Italy, 2009.

5. “Greedy Face Routing with Face Identification Support in Wireless Networks”, Shao Tao, A. L.

Ananda and Mun Choon Chan, accepted for publication in Computer Networks, 2010.

Chapter 1

Introduction

In the past decade, applications of wireless sensor networks have expanded from ecosystem monitor-

ing [1], intrusion detection [2] to more diverse areas, such as precision agriculture [3], personal health

care [4] and road traffic planning [5]. The ubiquitous deployment of wireless sensor networks can be

attributed to its unique characteristics compared to the conventional specialized sensor equipment and

wired networks. The radio transceivers [6] and sensor modules are compact in size, which allows them

to be deployed efficiently without imposing significant impact on the environment or alternating the be-

havior of target objects. Sensor nodes are equipped with low power radios and processors to operate with

low voltage [7]. The energy-efficient design of sensor nodes prolongs the network lifetime, which is crit-

ical for applications running in remote or hazardous areas, where it might be difficult or even prohibitive

to replenish the power supply. The wireless communication nature in sensor networks obviate the re-

quirement of wired connections for data feedback. The development tool kit provides flexible control

of the hardware components through low-level interfaces, such that the embedded programs are highly

customizable to fulfill the application requirements.

To collect information from the target area, sensor networks rely on not only the function of the

sensors, but also the cooperation of the communication layers. The work presented in this thesis belongs

to the category of routing protocols, particularly geographic routing protocols. We target on the problem

of providing point-to-point delivery service in 3D wireless sensor networks. We also investigate the

techniques to reduce the packet overhead of hop count vector-based routing, in order to improve routing

efficiency in 3D networks in terms of delivery ratio, routing latency and path length.

1.1 Necessity of Point-to-Point Communication

Many wireless sensor networks exhibit many-to-one, uni-directional traffic patterns during data collec-

tion, where a simple spanning tree-based method will suffice. As a more generic form of communication,

we believe that an point-to-point delivery service provides a foundation to diversify the design of sensor

applications. Some typical instances that require the point-to-point delivery service include the follow-

ing.

• For Geographic Hash Table-based data-centric storage [8], each data item is mapped to a location

2 Introduction

in the network. The nodes closest to the hashed location will become the storage nodes and the

data will be forwarded to the storage nodes through geographic routing methods. The point-to-

point communication service allows distributed storage to be implemented across the network in

order to avoid hot spots and the single point of failure problem.

• Transmission control algorithms [9] proposed in sensor networks enforce adaptive transmission

rates to avoid congestion, which requires feedback messages to be relayed back to the source.

For reliable delivery of these feedback messages, point-to-point communication is preferred over

flooding, in order to reduce communication overhead at intermediate hops.

• In wireless sensor and actuator networks used for smart farming [10], reactions will be triggered

upon the detection of target events. For example, if the soil moisture level is too low, the base

station node should inform the pump to deliver more water to the area. The instructions must

be sent back to nodes at various locations for the system response to take place, in which case a

collection tree will not suffice.

• In sensor networks offering in-network query processing [11], regular nodes are allowed to handle

the queries, besides obtaining results from the sink. In such scenarios, the point-to-point commu-

nication service allows information to be pulled directly from specific network areas, which is a

useful feature especially for network diagnosis during the deployment.

Therefore, the point-to-point routing protocols will allow more sophisticated features to be intro-

duced to the sensor networks and greatly improve its applicability in many aspects.

1.2 Options and Challenges

Despite the similarities between the wireless sensor networks and the traditional 802.11 networks in de-

ployment and radio communication, the constraints from the sensor hardware components and software

stack render the conventional ad hoc routing protocols infeasible for sensor networks.

The proactive ad hoc routing protocols, such as DSDV [12], maintain a routing entry for each node in

the network to avoid the path discovery process. On sensor networks where data reporting is infrequent,

constantly maintaining the routing table will incur redundant control traffic. The on-demand ad hoc

routing protocols [13] employ a flooding method for route discovery, which will introduce longer delay

and increase the energy consumption at all intermediate hops. The source routing protocols [14] store

the entire routing path in the packet header, which is acceptable for the 802.11 networks, where a packet

size can reach 1 KBytes. Given that the maximum packet size is significantly smaller (e.g. 128 bytes in

TinyOS-2) in sensor networks, the source routing approach will significantly reduce the payload length

in each packet and impose a control overhead prohibitive for deployments with a large network diameter.

Geographic routing protocols can be adopted to address the above issues. In geographic routing, each

node is identified by its coordinates. The path discovery process is replaced by the node address lookup

procedure and packet forwarding is performed by comparing the coordinates at each hop in a localized

manner, obviating the requirement for routing tables. As the nodes are addressed by the coordinates, the

1.2 Options and Challenges 3

packet header will remain constant, regardless of the scale of the deployment or the network diameter.

The geometric properties of the underlying topology are utilized to ensure the success of delivery.

Many early sensor network deployments are designed for outdoor monitoring tasks [15], where the

nodes were placed on a plane. As indoor sensor networks become popular [16, 17], the deployments

often spread over multiple floors of a building, forming a 3D topology. In this thesis, we focus on geo-

graphic routing protocols that can provide reliable packet delivery efficiently in both 2D and 3D network

topologies. The greedy forwarding algorithms can be applied regardless of the dimensionality of the

space; however, greedy forwarding requires accurate coordinates and local minimum cases commonly

found in sparse networks will lead to delivery failures.

The face routing protocols [18, 19] complement greedy forwarding with a perimeter mode to route the

packets out of the local minimum area using planar graphs. Due to the irregularities of the radio range and

the influences from the environmental factors (e.g. obstacles and interference), the correct planarization

procedure [20] will require more than local information and often incur high communication overhead.

Since the concept of planar graph is not applicable to 3D space, planarization algorithms and face routing

protocols cannot be used to provide guaranteed packet delivery in 3D networks.

The tree-based routing protocols [21, 22] create a hierarchical structure over the network, in which

the parent nodes contain the aggregated location information for the subtree nodes. By traversing the

subtrees, tree-based routing protocols can provide reliable point-to-point delivery in 3D networks.

The existing tree-based routing protocols are often designed for 2D networks and the performance of

these protocols has not been studied in 3D networks extensively. The construction of the tree topology

requires the coordinate information, that may not be available on some deployments. Localization algo-

rithms can be incorporated to provide virtual coordinates; however, the localization errors may affect the

routing performance, which should be carefully evaluated.

Some tree-based protocols (e.g. VPCR) assume that the tree can be built in a balanced manner and

the short cut links connecting the sibling nodes can be exploited frequently to reduce the path length

and alleviate the hot spot problem. This efficiency is hard to achieve, because a balanced tree is difficult

to build for at least two reasons. Firstly, the network connectivity information must be used to deter-

mine the placement of the root; however, this information is often not known a priori. Secondly, each

node selects the parent independently, which makes it difficult to evenly distribute the nodes among the

branches without some form of coordination. Therefore, an alternate greedy forwarding method should

be integrated into tree-based routing, since the tree structure alone will fail to provide efficient routing

paths.

Greedy forwarding can be applied directly on the node coordinates when the location information

of each node is already known. However, due to the cost of GPS devices and limitations in the deploy-

ment environment (e.g. indoor space), the location information may not be immediately available. The

hop count vector-based routing protocols [23, 24] designate some nodes as beacons and use the vector

containing the hop distances to all beacons as high-dimensional coordinates to address the nodes. Even

without the actual location information, greedy forwarding algorithms can still be used for point-to-point

routing under this configuration.

By using greedy methods, hop count vector-based routing protocols naturally suffer from deliv-

ery failures caused by local minimum cases. To improve the delivery ratio, it is a common approach

4 Introduction

to increase the number of beacons [25], such that higher resolutions can be obtained from the high-

dimensional coordinates. While the delivery performance can be improved, the large set of beacons also

impose higher cost in terms of storage space, control traffic and packet overhead.

The intrinsic dimensionality of the sensor network is only two or three; thus, the high-dimensional

coordinates contain large amount of redundancies due to correlated hop count values. As sensor network

applications run on resource-constrained platforms, such redundancies should be reduced; however, the

existing hop count vector-based routing protocols do not have any effective methods to perform this

action.

1.3 Thesis Contributions

In this thesis, we present the Spherical Coordinate Routing protocol (SCR), that is designed and evalu-

ated specifically in 3D networks for point-to-point communication. We also introduce a Principal Com-

ponent Analysis-based dimension reduction algorithm (PCA) to convert the hop count vectors into low-

dimensional coordinates, such that greedy forwarding can be applied at lower cost. The contributions of

our work are summarized below.

• We provide a 3D routing protocol, named Spherical Coordinate Routing (SCR), that performs

point-to-point routing in 3D networks without location information. As a 3D variant of VPCR,

SCR employs a 3D localization algorithm derived from NoGeo, which assigns Euclidean coordi-

nates to nodes based on the network connectivity. A spherical coordinate tree is constructed in the

network that assign the coordinates based on a node’s projection order on the XY and YZ planes

and the parent’s coordinates. To improve the routing efficiency and overcome the imbalance in the

tree structure, SCR applies greedy forwarding based on the hop-count vectors available from the

localization step, instead of relying on the scarce and unordered sibling links. Multiple trees can

be utilized simultaneously during packet forwarding in SCR to enhance the resilience to clustered

node failures. The delivery ratio of SCR is 22% ∼ 63% higher than that of BVR, LCR and No-

Geo and the hop stretch of SCR is 13% to 58% lower than that of VPCR at medium to high node

densities.

• To reduce the packet overhead in hop count vector-based routing, we apply a network embedding

scheme based on Principal Component Analysis (PCA). The PCA algorithm performs dimension

reduction on the hop count vectors, such that each node can estimate the most effective coordinates

in a distributed manner. The embedding coordinates can preserve the network geometry with

much lower overhead, making their use more practical on the current sensor platform. We have

implemented the PCA-based dimension reduction algorithm on MICAz and TelosB motes and

performed both simulation and experiments on a large-scale sensor network testbed containing

127 nodes. For the experiments, we also developed a hierarchical location service with address

caching to examine the reliability and workload distribution of the address queries, which is a

fundamental requirement for all geographic routing algorithms.

1.4 Thesis Organization 5

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we present some background knowledge about geographic routing and give an

overview of the existing point-to-point geographic routing protocols.

• In Chapter 3, we introduce Spherical Coordinate Routing (SCR). We give details on the 3D local-

ization method, the procedure to allocate the spherical coordinates and the tree recovery algorithm

in SCR. We evaluate the performance of SCR in 3D network topologies with clustered node fail-

ures.

• Chapter 4 introduces the network embedding scheme based on Principal Component Analysis

(PCA). We evaluate the efficiency of PCA through both simulations and analysis using the network

topology measured from a medium-scale testbed with 48 MICAz nodes.

• Chapter 5 presents the implementation details of the PCA protocol and the performance results of

PCA collected from the Indriya testbed with 127 TelosB motes.

• The conclusion and future works are presented in Chapter 6.

• A survey of sensor applications is given in Appendix A. The challenges in sensor networks and

active research areas are discussed in Appendix B. The link measurement results of the Indriya

testbed are presented in Appendix C for reference.

6 Introduction

Chapter 2

Background and Related Work

In this chapter, we introduce the definition of geographic routing, the metrics and tools commonly used

for performance evaluation, followed by the related work.

2.1 Definition of Geographic Routing

Geographic routing protocols perform packet forwarding through node coordinates obtained from GPS

devices or localization methods. The mapping between the nodes and the coordinates is provided by

the location service. Unlike the conventional ad hoc routing protocols in 802.11 networks, the source

node does not need to determine the entire path through a path discovery procedure. It will obtain the

destination’s address from the location server and allow routing decisions to be made at each hop based

on local information. Instead of having a routing table to store all possible destinations, in geographic

routing, each node has a neighbor table containing the coordinates of the neighboring nodes. The next

hop is selected from the neighbors to minimize the distance to the destination.

Due to the network structure or the anomalies in the coordinates [26], a local minimum case will

occur when none of the neighbors is closer to the destination than the current hop. Some geographic

routing protocols route the packets out of the dead ends through recovery methods, such as scoped flood-

ing, face routing or tree traversal. Therefore, geographic routing protocols can be categorized according

to the coordinate system, the distance function and the recovery measure. Table 2.1 summarizes five

types of geographic routing protocols commonly referenced in the literature.

Table 2.1: Comparison of Point-to-Point Geographic Routing Protocols
Type Coordinate System Distance Function Recovery Measure

Greedy Forwarding physical coordinates Euclidean, projected (none)

e.g.: MFR [27], DREAM [28], Compass [29] distance, angular distance

Face Routing physical, virtual Euclidean distance face traversal

e.g.: GFG [30], GPSR [18], GOAFR+ [19] coordinates

Tree-based Routing physical, virtual, Euclidean, angular tree traversal

e.g.: VPCR [21], GDSTR [22] polar coordinates distance

Hopcount Vector-based Routing hop count vectors Euclidean, Manhattan scoped flooding,

e.g.: LCR [31], HopID [32], BVR [24] distance fall back towards beacon

Randomized Algorithms physical coordinates Euclidean distance random selection

e.g.: RGR [33]

8 Background and Related Work

2.1.1 Performance Metrics

The performance of geographic routing can be evaluated by various metrics, such as the packet delivery

ratio, the hop stretch, the flooding range, the number of transmissions per delivery, the delivery latency

and the maximum storage cost. The packet delivery ratio is computed as the number of packets received

by the destinations divided by the number of packets sent by the sources. For protocols that apply

greedy forwarding as the primary routing procedure, the packet delivery ratio reflects the efficiency of

the coordinate system and the distance function at the given node densities. The hop stretch is the ratio

between the length of the path discovered by the protocol and the length of the shortest path. In an ideal

network with perfect links, a lower hop stretch means that the routing protocol provides more efficient

routing paths with lower delay and lower energy consumption. The number of transmissions per delivery

represents the total number of times a packet is forwarded before it reaches the destination. When scoped

flooding is utilized in the recovery step, the flooding range will indicate the amount of redundancy caused

by the duplicate packets. The delivery latency is the delay between the moment when a packet is sent by

the source and the moment when it is received by the destination. The maximum storage cost represents

the amount of short-term and long-term routing states that need be maintained at each node during the

routing process, which is critical for memory-constrained sensor platforms. A routing protocol with high

storage demand may sacrifice the performance or function of other software stacks running concurrently.

2.1.2 Evaluation Tools

Some commonly used tools for evaluating geographic routing protocols include MATLAB, OMNet++

[34], ns-2 [35], TinyOS [36] and TOSSIM. MATLAB is normally used for simulations where the link

quality variations and MAC layer operations can be ignored. OMNet++ and ns-2 provide various phys-

ical layer models and MAC layer protocols to simulate the effects of network bandwidth, network con-

tention and environmental noise. TinyOS is the de facto standard development tool kit for implementing

sensor network protocols and applications on the Mica and Telos series motes. The TinyOS Simula-

tor (TOSSIM) simulates the TinyOS network stack at the bit/packet level and the simulation code can

be directly compiled to the binary executable with minimum modifications. Due to the level of details

involved, simulations using TOSSIM may take much longer to complete for complex algorithms (e.g.

prioritized packet transmission) running on large-scale networks (e.g. 1000 nodes), compared to MAT-

LAB or customized simulators.

2.2 Geographic Routing Protocols

We discuss five types of point-to-point geographic routing protocols in this section.

2.2.1 Greedy Forwarding

Takagi et al. [27] used the Most Forwarding within R (MFR) routing algorithm to analyze the optimal

transmission radius in a wireless network. In MFR routing, the next hop is chosen as the neighbor that

2.2 Geographic Routing Protocols 9

can make the most progress towards the destination when projected on the source and destination line

segment.

Finn [37] proposed the Cartesian routing algorithm for the Internet, which associates each gateway

with a Cartesian location represented by the longitude and latitude. The routing decision is made at the

intermediate gateways to minimize the geographical distance between the next hop and the destination,

in order to reduce path length and facilitate node mobility across the network boundary.

The DREAM protocol [28] was designed to perform geographic routing in mobile networks. Each

mobile node periodically broadcasts its current location and speed to the entire network. The source node

will determine a forwarding region based on the last reported position and velocity of the target. A copy

of the packet will be forwarded to all neighbors in the forwarding region to improve the delivery ratio.

Simulation results show that the DREAM protocol can deliver 80% of the packets without any recovery

methods.

A primitive version of Compass Routing [29] selects the neighbor that forms the smallest angle along

the source-destination line as the next hop. Geometric analysis shows that this method will not fail on

Delaunay graphs; however, it may create routing loops on other planar graphs.

Due to the simplicity and near-optimal hop stretch performance, geographic routing protocols will

often adopt greedy forwarding as part of the routing procedure. However, despite their effectiveness

in dense networks, the distance metrics used by the greedy algorithms may be prone to local minimum

cases in sparse networks, leading to frequent delivery failures. To route packets out of the local minimum

nodes, various types of recovery algorithms have been proposed, such as scoped flooding, face routing

and tree-based routing.

2.2.2 Face Routing

Face routing is performed on a planar graph generated by removing the cross links on the network

connectivity graph. On the planar topology, a face refers to a void area bounded by a series of links. The

line drawn from the local minimum node to the destination intersects a group of adjacent faces, which

can be traversed by using the left/right hand rule. With the right hand rule, the packet will sequentially

visit the connecting links on a face in the counterclockwise direction. The clockwise direction is applied

for the left hand rule similarly. When a link crossing the local minimum-destination line is detected

during face traversal, a face switch will be triggered if the intersection is closer to the destination than

the current local minimum node. With the face switch procedure, the packet will move to the adjacent

face and gradually approach the destination by applying face traversal and face switch in an alternating

manner. If the packet traverses the entire face without resuming greedy forwarding or triggering a face

switch, it means the destination is disconnected and the packet will be dropped.

The GFG [30] protocol is one of the earliest geographic routing protocols that combine greedy for-

warding with face routing to achieve guaranteed packet delivery. The similar idea was also used by

GPSR [18], which applied the face routing method in mobile ad hoc networks and obtained a significant

performance improvement over DSR in simulations. As both GFG and GPSR use the simple right/left

hand rule to traverse the faces, packets may be diverted to the longer side of a face before the next face

switch, even if a more efficient path exists in the opposite direction.

10 Background and Related Work

The GOAFR+ [19] protocol was proposed to improve the worst case performance by doing a bounded

search on each face. The bounded search procedure explores a face in both directions to find a node

closer to the destination within an adaptively increasing bounded area, providing the optimal worst case

performance of O(c2), where c is the cost of the shortest path in terms of hop count or distance.

The GPVFR [38] protocol enables each node to store information for multi-hop neighbors residing

on the same face, which allows better guessing of correct forwarding directions. The face routing method

can be further improved by performing face traversal on a connected dominating set of the topology and

exploiting the shortcut paths [39] in high node density regions. A detailed survey on the geographic face

routing protocols is presented in [40].

Kim et al. [20] showed that certain static face switch and face traversal rules may actually fail to de-

liver packets on a connected planar graph. Frey et al. [41] conducted a further examination on this prob-

lem and proposed a more proactive face switch algorithm that performs a face switch at every progressive

intersection point. It forwards the packet to the side closer to the destination across the intersecting link,

and guarantees packet delivery on all planar graphs with both left and right hand rules for face traversal.

We conducted preliminary research on face switch algorithms to provide guaranteed packet delivery

on general planar graphs. We found that the correct face switch is possible if each face can be uniquely

identified by a face ID. The resulted face routing protocol is named Greedy Face Routing with Face

Identification Support (GFRIS) and the summary of the algorithm is given as follows.

According to the face routing classification method described in [41], GFRIS is a continuative strat-

egy which uses both left and right hand rules for face traversal. We use S to denote the source node or the

current local minimum node where face routing is initiated and use D to represent the destination node.

Face switch occurs only if a link intersects the SD line at a location closer to destination D than S and

the face IDs of both regions on two sides of the crossing link are different. The after crossing variant is

used during face switch, where the packet will step through the crossing link to enter the next face and

the face traversal direction will be switched from the left hand rule to the right hand rule or vice versa.

GFRIS switches to greedy forwarding when there is a neighbor closer to the destination than the current

local minimum node. A GFRIS face switch example is provided in Fig. 2.1. Assume a packet p arrives

at node N from the previous node P . Node N has a link intersecting line SD at location x closer to

destination D than S. The packet traverses the links by dir rule, where dir is either the left or right hand

rule. The face switch procedure at node N is summarized in Algorithm 1.

Node N has four neighboring nodes A, B, C and P , which constitute four angles: ∠BNA, ∠ANP,

∠PNC and ∠CNB. We assume the face IDs for these angles are F1, F2, F3 and F4 respectively. Node N

receives a packet p from node P . If the face traversal direction for packet p is dir = left, the incoming

angle for packet p is ∠PNC, whose face ID is F3. Otherwise, the incoming angle is ∠ANP with face ID

F2. Once the incoming face ID for the packet p is determined, the outgoing face ID can be retrieved by

computing the outgoing angle for p according to the coordinates of destination D and the neighboring

nodes of N . Assuming that the destination D is located within the area bounded by ∠CNB, the outgoing

angle for packet p is ∠CNB with face ID F4. Since GFRIS follows the after crossing variant, the outgoing

link will be the intersecting link. The face traversal direction in the new face depends on the intersecting

link. In Fig. 2.1, if line SD intersects the ccw start link NC of outgoing angle ∠CNB, the next hop will

be C and the face traversal direction will follow the right hand rule. If line SD intersects the ccw end

2.2 Geographic Routing Protocols 11

Algorithm 1 Face Switch Algorithm of GFRIS

1: Let α(β) be the incoming(outgoing) angle of packet p
2: if p.dir = left, then α.ccw start = P
3: else α.ccw end = P ⊲ α is determined

4: Compute β by location of N , D and neighbors of N .

5: Let face ID of incoming angle α be Fα = α.faceid
6: Let face ID of outgoing angle β be Fβ = β.faceid
7: if Fα 6= Fβ then

8: if K = β.ccw start, then set dir = right
9: else set dir = left

10: Send packet p to next hop K. 2

11: else ⊲ skip face switch on equal face IDs

12: Forward packet p based on original dir. 2

13: end if

link NB of angle ∠CNB, the next hop will be B and the face traversal direction will follow the left hand

rule.

To angle CNB, nexthop = C,

dir = Right hand

To angle CNB, nexthop = B,

dir = Left hand

S D

N

A B

D’S’
F1

F2

F3

F4

P C

Left hand, from angle PNCRight hand, from angle ANP

x

x’

Figure 2.1: Face Switch Rules in GFRIS

S D

X1 X2

N1

N4

face f

N3

N2

Figure 2.2: Face f intersects SD at ≥ 2 locations

The purpose for performing selective face switch is to avoid oscillating face traversal while ensuring

that the packet is passed to a face closer to the destination. To show that the face switch procedure in

GFRIS guarantees packet delivery on planar graphs, we need to prove the following Lemma 1.

Lemma 1. Assume S and D are two connected vertices on a planar graph. If a link N1N2 on face f

intersects line SD for the first time at location X1, where X1 6= N1 or N2, face f will have at least one

more intersection X2 with X1D, where dist(X2, D) < dist(X1, D)(as shown in Fig. 2.2). If destination

D resides on face f , the second intersection X2 will be D.

Proof: We prove the lemma by contradiction. If face f intersects line SD at X1, and line segment

X1D is partially contained in face f but does not intersect f at a second location, destination D will

be located inside face f . There can be two possible scenarios: D is isolated within f as shown in

Fig. 2.3(a) or D is connected through a link or a series of links crossing the boundary of face f as

shown in Fig. 2.3(b). Since the graph is planarized before face routing is applied and the source S and

destination D should remain connected on the planarized topology, neither case will happen. From this

contradiction, we can see that Lemma 1 is correct. 2

12 Background and Related Work

S X1

Face Fi

D

D is isolated, disconnected from S

(a) D is isolated in face Fi

D

crossing edge, non−planar

S

V

Face Fi

X1

U

N

(b) the graph is not planar

Figure 2.3: Two cases if line segment SD intersects face Fi only once

In general, for a pair of connected nodes S and D on a planar graph, if the boundary of a face f

intersects line segment SD, there will be multiple intersections X1, X2, . . . , Xn(n ≥ 2). We sort the

intersection points based on their positions such that |X1D| > |X2D| > . . . > |XnD|. By traversing

along the links on face f , the packet can travel from X1 to Xn, approaching the destination D. Next, we

briefly prove that the GFRIS face switch procedure will guarantee the delivery based on Lemma 1.

Theorem 1. GFRIS guarantees delivery for two connected vertices S and D on a planar graph.

Proof: Assume the line segment SD crosses a sequence of regions f1, f2, . . ., fk separated by the

intersecting links L1, L2, . . ., Lj as shown in Fig. 2.4. If two consecutive regions fi and fi+1 belong

to the same face, they will have the same face ID and GFRIS will not initiate face switch, the packet

will follow the same traversal direction and ultimately reach fi+1 from fi. Without losing generality,

we assume fi and fj belong to different faces if i 6= j, which means a face switch will occur at each

intersection Xi along the SD line. After each face switch, the packet will traverse a face closer to the

destination. On a planar graph with a limited number of nodes, there are only a limited number of faces

to traverse [42]; therefore, the packet will arrive at the last face fk, which is the closest face to D. From

Lemma 1, the second intersection Xk+1 of fk and SD is closer than the first intersection Xk. As there is

no more face after the intersecting link at Xk+1, the last intersection between face fk and line segment

SD is the destination D, i.e. Xk+1 = D, implying that the destination node D is located on face fk. By

traversing the links on the last face fk, the packet will reach destination D. 2

S DFkFj

LjLiL3

Fi

L2L1

F1 F2 F3

Xk+1/D

Xj+1/Xk
Xi+1/XjX4/XiX3X2S/X1

Figure 2.4: Face switch along the sequence of F1,

F2, . . ., Fk

GFG2
GFRIS

S

N3

X

N4

N5
N6

D

N2N1

(b) no oscillation in a single faceGFRIS: (a) less greedy on face switch

F0

F0

S D

N1 N2 N4

N5 N6

N3

Figure 2.5: Face Switch Difference: GFG2 and

GFRIS

The differences between the face switch procedures in GFG2 and GFRIS are illustrated in Fig. 2.5.

The GFG2 protocol initiates face switch whenever a link intersects line SD at a closer location towards

D. GFRIS further requires that the face IDs of the regions on two sides of the crossing link must be

different. While GFRIS is less greedy at the face switch step compared to GFG2, GFRIS can reduce face

2.2 Geographic Routing Protocols 13

traversal oscillation within a single face, since the face switch will not be activated and the packet will

not traverse the same face in alternating directions during normal face traversal.

The face routing algorithms work on a planar graph created from the full connectivity graph, such that

no two links intersect each other and the reachability among the nodes remain intact. The commonly used

planar graphs include the Relative Neighbor Graph (RNG) [43] and the Gabriel Graph (GG) [44], both of

which can be efficiently constructed in a decentralized manner. The Localized Delaunay Triangulation

Graph (LDT) [45] is a t-spanner of the original connectivity graph. The shortest path that can be found

in a LDT graph for a node pair is no more than a constant t times longer than the shortest path in the

original graph. The RNG, GG and LDT planarization techniques assume that the node communication

range is constant, which is invalid in a real network deployment due to link asymmetries, interference

and obstacles [46]. The Cross Link Detection Protocol (CLDP) [20, 47] probes the crossing links before

removal, which can avoid the network partition problem and facilitate face routing on any 2D topologies.

However, this planarization method sends probes to traverse each face and potentially even the entire

network, which is not a localized operation. Even with a planarized topology, it may not be easy to choose

a good face traversal direction and doing face change correctly is either expensive or hard. Combined

with temporal variations in the network links, these difficulties will render face routing a less practical

option for a real deployment.

2.2.3 Tree-based Routing

To support indoor sensor network applications, many network deployments naturally grow from two-

dimensional to three-dimensional [16, 17], as the nodes are placed at multiple levels of a building. It is

crucial to ensure the correctness and efficiency of routing protocols in such 3D environments. Due to the

requirement for planar graphs, face routing algorithms generally cannot be applied to 3D networks. The

tree-based routing protocols provide a more promising alternative, as the correctness of the forwarding

operation is not affected by the dimensionality of the network space.

The tree-based routing protocols build a spanning tree in the network and store the aggregated loca-

tion information for the subtrees at the parent nodes in each level. A packet is forwarded towards the

subtree containing the destination address. When none of the child nodes contains a subtree covering the

destination location, the packet will be forwarded towards the root. If the destination node is not found

after traversing all the possible subtrees, it means the destination node is disconnected and the packet

will be dropped.

Newsome et al. proposed the Virtual Polar Coordinate Routing protocol (VPCR) [21] that assigns

polar coordinates to the nodes. VPCR assumes that all nodes can obtain their geographic coordinates

from GPS devices or localization methods and the spanning tree is built in a balanced way such that

nodes close to one another will become siblings. The parent nodes will collect the subtree size from each

child and report this information towards the root. The polar coordinates of a node N are represented

by an angle range, proportional to the size of the subtree rooted at N . The packet forwarding direction

is determined by the relation between the polar coordinates of the neighbors and the destination. The

routing efficiency of VPCR is provided by the shortcut links across the sibling nodes. However, due to

localization errors and the link selection procedure, the spanning tree can be highly skewed with few

14 Background and Related Work

shortcut links to exploit, leading to routes 50% ∼ 80% longer than optimal.

Instead of using polar coordinates, the GDSTR protocol [22] works on the geographic coordinate

system. Each parent node will construct a convex hull covering all nodes in the subtree. According to

the destination’s position, greedy forwarding is applied to minimize the Euclidean distance along the

intermediate hops. When a local minimum node is encountered, GDSTR will resort to tree forwarding

mode. As the convex hull is represented by polygons, two convex hulls may overlap with each other.

All subtrees with convex hulls that may potentially contain the destination node will be traversed using

a depth-first search algorithm.

Tree-based routing protocols are applicable to both 2D and 3D networks; however, the routing per-

formance of tree-based protocols in 3D topologies has not be studied extensively. Zhou et al. proposed

a 3D version of GDSTR (GDSTR-3D) [48] that uses two 2D convex hulls to approximate a 3D convex

hull and applies greedy forwarding based on two-hop neighborhood information for better hop stretch

performance in 3D networks.

Unlike GDSTR-3D, the Spherical Coordinate Routing protocol (SCR) presented in this thesis is

a 3D variant of VPCR, which builds a spherical coordinate system based on the nodes’ coordinates.

The original VPCR protocol assumes the availability of the nodes’ positions, while SCR applies a 3D

version of NoGeo to derive the position information. In the greedy forwarding step, VPCR relies on the

shortcut links between the sibling nodes to avoid routing packets through the root. We evaluated two

alternatives for greedy forwarding in SCR. The first method is to use 3D virtual coordinates computed

by the localization algorithm. Due to the localization errors, the greedy forwarding step fails constantly,

leading to long routing paths. The second alternative directly uses the hop count vectors to the perimeter

nodes for packet forwarding and achieves nearly 40% lower hop stretch than VPCR in both 2D and 3D

network topologies.

2.2.4 Hop Count Vector-based Routing

The coordinate systems used by tree-based point-to-point routing protocols can be expensive to update

in terms of computational overhead during network dynamics. The hop count vector-based routing pro-

tocols use the hop distances to a set of beacons to address the nodes, which are easier to update and incur

lower maintenance cost during fluctuations of network connectivities.

In hop count vector-based routing, some nodes are selected as beacons (also called landmarks or

anchors), while other nodes will measure the hop distance to each beacon and record these distances

in the hop count vectors, which represent high-dimensional node coordinates in the form of singleton

Lipschitz embedding [49]. Greedy forwarding is applied based on the inter-node distance computed

from the hop count vectors. Some hop count vector-based routing protocols apply fall back mechanisms

to complement the greedy forwarding method, in order to improve the delivery ratio. The differences of

various hop count vector based routing protocols lie in the beacon selection method, the distance function

and the fall back mechanism.

The Logical Coordinate Routing protocol (LCR) [23] employs an iterative voting approach to select

candidate beacons based on its distance to the existing beacons. The candidate with the largest distance

is selected at each round. It uses the L2 (L4 for 3D) norm Euclidean distance function to determine the

2.2 Geographic Routing Protocols 15

next hop. The recovery step of LCR requires each node to remember the packet it has forwarded recently

and the list of neighbors selected as the next hop for that packet. When the memory is not constrained,

the packet will be able to reach any connected node by using a depth first search method.

The Hop-ID based Routing protocol (HIR) [32] proposed a centralized landmark selection algo-

rithm. HIR constructs a shortest path tree from the controller node and subtree nodes will report their

node IDs to the controller through the upstream nodes. After all node IDs have been collected, the con-

troller randomly selects the required number of landmarks and informs the candidates through a message

broadcast on the tree. Based on empirical results, HIR uses L10 norm of the Euclidean distance for

greedy forwarding. To resolve the dead-end problem, HIR uses both a landmark-guided routing method

and scoped flooding. Landmark-guided routing forwards the packet towards the landmark with the mini-

mum hop distance to the destination. When a node closer to the destination than the local minimum node

is discovered, HIR will switch back to greedy forwarding. Scoped flooding is used for the remaining

cases that cannot be resolved by landmark-guided routing.

The Beacon Vector Routing protocol (BVR) [24] uses a random beacon selection method. However,

instead of using the Euclidean distance function, it uses a weighted Manhattan distance function for

greedy forwarding. It gives higher preference to the beacons closer to the destination than the current

hop. The packet is forwarded towards the high-priority beacons and away from the low-priority ones.

The recovery procedure of BVR is similar to that of HIR, which allows the packet to fall back to the

beacon closest to the destination and uses scoped flooding as the last resort. Simulation results show that

BVR can achieve a delivery ratio over 95% with 10 routing beacons in large networks (over 800 nodes),

when 2% of the nodes are candidate beacons. In the experiments, it employed 5% ∼ 10% of the nodes

as beacons for medium-sized networks with 40 ∼ 70 nodes.

The packet forwarding procedure of the Small State and Small Stretch routing protocol (S4) [50]

combines a localized version of DSDV with the fall back mechanism used in HIR and BVR. Once the

hop count vector is built, every node will extract the hop distance d to the closest beacon and apply

incremental updates to create a cluster with a diameter of d hops. All neighbors within this cluster,

including the closest beacon, will add a routing entry for the cluster head, such that the shortest path can

be taken to route packets within the cluster. For inter-cluster routing, S4 will send the packet towards

the beacon closest to the destination, until the packet enters the cluster of the destination. To achieve a

balance between performance (in terms of delivery ratio and hop stretch) and memory cost, S4 requires√
N beacons, where N is the total number of nodes.

The placement of beacons is crucial for hop count vector-based routing. Clustered beacons with low

path diversity will generate highly correlated hop count distances and become less effective to differenti-

ate nodes at different locations. The beacon selection problem has been studied in the context of network

distance estimation [51]. Zhang et al. [52] proposed a hierarchical beacon selection approach that groups

the candidates into clusters. Beacon nodes are selected from both nearby and distant clusters, in order

to improve the granularity of the embedding and capture the global network connectivity. Srinivasan et

al. [25] conducted a performance comparison of different beacon selection methods based on random-

ization, clustering, hierarchical structure and min/max inter-beacon distance. The result shows that the

heuristics-based beacon selection algorithms provide nearly identical performance as random selection.

Given a network topology, it is difficult to find the optimal beacon placement and the critical number

16 Background and Related Work

of beacons required for the routing performance. For many algorithms, utilizing more beacons becomes a

common approach to achieve higher delivery ratio and lower hop stretch. As the intrinsic dimensionality

of the network deployment is low (2D or 3D), the high-dimensional hop count vectors caused by a large

number of beacons will contain significant amount of redundancies. The existing hop count vector-

based routing protocols can apply heuristics to avoid some less efficient beacons; however, they cannot

fundamentally eliminate such redundancy. In this thesis, we apply the Principal Component Analysis-

based dimension reduction algorithm (PCA) to tackle this problem. The PCA algorithm can compress

the high-dimensional coordinates into low-dimensional ones, while preserving the routing performance

at lower packet overhead.

2.2.5 Randomized Algorithm

Flury et al. proposed the Random-Greedy-Random (GRG) algorithm [33] for routing packets in 3D

networks [53, 54]. They proved that the path length of any memoryless, localized geographic routing

protocols is bounded by Ω(r3), where r is the shortest path length. The packet forwarding is performed

on a dual graph filled with virtual cubes. Similar to the GOAFR+ protocol, the GRG protocol combines

greedy forwarding with a bounded search algorithm which visits the dual vertices using random walk

within an exponentially increasing area. The authors used simulation to show that GRG can be more

efficient than pure flooding for large-scale networks. However, due to the potentially long path length

and high delivery latency, it is not a practical choice for real network deployments.

2.3 Other Related Areas

To provide reliable point-to-point delivery, geographic routing protocols also require support from other

services, such as network embedding, link quality estimation and location service.

2.3.1 Network Embedding

The network embedding algorithms derive virtual coordinates based on the network connectivity, such

that the distance computed from the coordinates of two nodes can be used to approximate the actual

distance in the network. One popular application of network embedding is delay estimation over the

Internet, where measuring the latency between every pair of nodes is prohibitive due to the network

scale. In [55], the distance between two nodes is estimated by iteratively minimizing a potential energy

function. Mao et al. [56] applied matrix factorization to obtain an incoming and an outgoing vector for

each node, such that the network distance between two nodes is the dot product of the two vectors. The

network can be embedded in a hyperbolic or an Euclidean space and prior studies [57] have shown that

they have nearly identical performance for network latency prediction.

Network embedding can also provide the address information for geographic routing, when the ac-

tual node coordinates are not available. The NoGeo [58] protocol selects the perimeter nodes from the

network boundary and allows each node to compute and refine its coordinates through iterative updates

with its neighbors. Both Vivaldi [59] and GSpring [60] treat the network as a spring system, where each

link has a normalized length. By applying the contraction and expansion rules according to the node

2.3 Other Related Areas 17

distance, the network system converges to a stabilized state, where the node location can be determined

independently.

Principal Component Analysis (PCA) [61] is a common technique used in data analysis [62] and im-

age processing [63], where the PCA-based dimension reduction algorithms can remove the information

redundancies by transforming the high-dimensional data into a low dimensional space. The dimension

reduction procedure can be treated an alternate method for network embedding, apart from the iterative

approach seen in NoGeo and Vivaldi. ICS [64] and Virtual Landmarks [65] are two PCA-based algo-

rithms that embed each node based on the delay to a set of landmarks and estimate the mutual network

latency from the derived coordinates.

While the network latency may violate the triangle inequality property [66] assumed by the Euclidean

embedding methods, the geodesic distance measured in hop counts generally conform to the triangle in-

equality and symmetry properties. Instead of predicting the network latency, in this thesis, we apply the

PCA-based dimension reduction technique to hop count vector-based routing in resource-constrained

sensor networks. The resulted virtual coordinates can retain the network connectivity with lower over-

head, while maintaining the routing efficiency. Our approach is practical in sensor networks and we are

able to implement a distributed version of the PCA algorithm using TinyOS-2. The performance result

collected from a large-scale testbed shows that, using the same amount of packet overhead, the coordi-

nates generated from the PCA algorithm can achieve higher delivery ratio and lower path length than the

unprocessed hop count vectors.

2.3.2 Link Quality Estimation

Empirical studies [46] have shown that the wireless link connectivity is not a binary notion but a likeli-

hood of successful transmission. The communication area around a wireless node contains a transitional

region (also known as grey area [67]), where link asymmetries are more prominent [68] and link quality

fluctuates with high variance. Without considering the varying link qualities, multi-hop packet forward-

ing will experience poor performance. A reliable routing protocol should incorporate a link quality

metric adaptive to changes in the connectivities.

The hop count metric is not suitable for wireless networks. Minimizing the hop count will maximize

the per hop distance, which will cause a reduced signal strength at the receiver and increase the packet

loss ratio. Couto et al. proposed a metric named Expected Transmission Count (ETX) [69] for path

selection. The ETX metric measures bi-directional packet delivery ratios of a link and computes the

average number of transmissions required for each delivery. For network deployments with link quality

variations, ETX can significantly improve the delivery success rate over multi-hop paths than the hop

count metric.

Cerpa et al. studied the temporal properties [70] of the wireless links with MICA-1 and MICA-2

nodes. They found that the packet losses did not always follow random uniform distribution. They

proposed the Required Number of Packets (RNP) metric that takes into account not only the packet

delivery ratio but also the distribution of packet losses. Given two links with equal packet delivery ratios,

the RNP metric will penalize the link with more consecutive packet losses, as the link with continuous

losses will fail more retry attempts when link layer retransmission is enabled.

18 Background and Related Work

The link layer usually allows only limited number of retries, which is often neglected by link quality

metrics in order to simplify the computation of point-to-point cost. Jakllari et al. proposed a routing

metric named ETOP [71] to take this into account. ETOP considers not only the number of links and link

quality along the path, but also the link position. The poor links close to the destination are considered

to be more harmful than the poor links close to the sender, as transmissions at all previous hops must be

redone given a limited number of retries in the link layer. Experiments on a 25 nodes mesh network show

that ETOP can achieve higher the TCP throughput than ETX with a longer average path length. However,

finding a path with the minimum ETOP requires the complete connectivity graph, which makes it more

complex to compute than ETX.

Srinivasan et al. [72] evaluated two link quality estimators provided by the CC2420 radio chip:

RSSI and LQI [6]. RSSI refers to the received signal strength and LQI indicates the bit error rate when

decoding the first 8 symbols of the received packet. The LQI value over a link shows a large variation;

therefore, the average LQI over a window of at least 120 packets is a more accurate estimator for the

packet reception rate. However, due to the requirement for a large number of samples, the average LQI

may be slow to adapt to link quality changes. RSSI has a small variation and the RSSI value obtained

from a single packet can reflect the network condition. Hence, RSSI can serve as a coarse indicator to

tell if the link quality is good (RSSI > −87 dBm) or bad. As the experiments were conducted on the

CC2420 radio, their results cannot be simply generalized to other radio platforms.

Gnawali et al. [73] studied the effects of link layer retransmission, blacklisting and ETX on the

Directed Diffusion routing protocol in a network with MICA-2 motes. The result shows that link layer

retransmission can greatly improve the packet delivery ratio even with a small number (e.g. 3) of retries.

Blacklisting is effective for high node density networks, but it is not stable for low density networks due

to the fact that discarding the low quality links may cause network partition. Combined with link layer

retransmission, ETX is a very reliable metric for multi-hop packet forwarding.

Liu et al. [74] examined the performance of the Collection Tree Protocol with different link quality

metrics, including ETX, RNP and 4B [75]. Compared to RNP and 4B, ETX achieved very good per-

formance in terms of packet delivery ratio, path quality, path length and total number of transmissions.

However, ETX had higher number of route changes compared to 4B and RNP. The route changes trig-

gered more frequent exchange of beacons but also alleviated the hop spot problem. The blacklisting

strategy did not exhibit significant effects on ETX and RNP, while it improved the performance of 4B.

In the design of our routing protocols, we assume the link losses are handled by the link layer pro-

tocols. For our implementation, we used periodic beacons to estimate the packet reception ratio and

employed ETX as the cost metric to construct the routing topology, since ETX is very reliable in various

network settings [73, 74] and can be computed efficiently.

2.3.3 Location Service

The Grid Location Service (GLS) [76] divides the network into grids and covers the network with a

hierarchy of squares containing an increasing number of grids. Each node N forwards its location update

message to the squares at every level. The node with the minimum ID greater than N in a square will

become a location server for N . The location look-up procedure is performed by following a chain of

2.3 Other Related Areas 19

nodes with a ID larger than the target, until the query reaches the target node. The reply is forwarded

directly from the target node back to the source. By allowing the query packets to follow different paths,

GLS can distribute the workload of address look-up across the network and improve resilience to node

failures.

The Geographic Hash Table (GHT) system [8] originally designed for data-centric storage can be

employed for location service as well. GHT hashes keys into geographic coordinates and stores the

key-value pair in the node closest to the hashed position. For location service, the key can be set to the

unique node ID and the value is the node’s location. A source node S uses geographic routing to send

its location to a node (the location server for S) residing on the hashed position. The address query is

forwarded in a similar manner, until it reaches the location server, which will send back the result. GHT

also allows the location information to be replicated at nodes near the server, such that the information

will remain available after the original server fails. With a distributed design, GHT imposes lower storage

requirement on the servers and alleviate the problem of single point of failure.

Ortiz et al. proposed the Beacon Location Service (BLS) [77] that works on top of BVR. Once the

beacon vectors have been selected, each node will use a hash function to choose one of the beacons

as its location server. The node address can be uploaded to the server by following the spanning tree.

The memory cost required to store the ID-address mappings will be shared by the beacons. The node

that initiates a query will apply the same hash function to the target node ID and obtain the location

server’s ID. The query is forwarded on the spanning tree and the reply can be sent back by BVR. BLS

allows intermediate nodes to eavesdrop the address update packets in order to alleviate the congested

path problem caused by the look-up traffic.

As the focus of our work is on routing protocols, the routing algorithms presented in the following

chapters assume that a reliable location service is available. For the experiments performed on the Indriya

testbed, we implemented a centralized location service using the VPCR protocol to route the address

queries and replies.

20 Background and Related Work

Chapter 3

Spherical Coordinate Routing for 3D

Networks

3.1 Introduction

The deployment of wireless nodes is often conducted in a three-dimensional space; however, few routing

protocols have focused on providing efficient data delivery in a 3D environment.

Traditional ad-hoc routing requires each node to perform path discovery and maintain separate rout-

ing entries for different destinations, which is not scalable for a large network. Geographic face routing

protocols [41] are proposed to provide guaranteed delivery by routing the packets around voids; however,

their two-dimensional planarization procedure is expensive and not applicable for three-dimensional net-

works. The connectivity-based routing protocols such as Beacon Vector Routing (BVR) [24] and Logical

Coordinate Routing (LCR) [31] provide alternatives for routing on a network with higher dimensions.

Local minimum failures may occur in these protocols because of localization errors or insufficient res-

olution in the coordinates. A flooding-based recovery procedure can be applied; however, it may also

incur high network overhead.

Inspired by NoGeo [58], Virtual Polar Coordinate Routing (VPCR) [21] and BVR, we introduce the

Spherical Coordinate Routing (SCR) protocol that guarantees packet delivery in the three-dimensional

space without flooding the data packets. SCR adopts the NoGeo’s approach for localization and extends

the method from 2D to 3D. In terms of routing, it integrates connectivity-based greedy forwarding to

achieve routing efficiency and a 3D extension of VPCR’s tree-based routing procedure to ensure the

packet delivery. By complementing greedy forwarding with tree traversal, SCR substantially improves

the packet delivery ratio with low communication overhead.

The rest of the chapter is organized as follows. In Section 3.2, the network localization, spherical

coordinates assignment and the routing procedures of SCR are explained in detail. In Section 3.3, we

analyze the control overhead of SCR and discuss the selection of routing metrics through empirical

measurements. The performance comparison between SCR and other 3D-compatible geographic routing

protocols is provided in Section 3.4. The summary is presented in Section 3.5.

22 Spherical Coordinate Routing for 3D Networks

 0
 50
 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300 350 400

 0
 50

 100
 150
 200
 250
 300
 350
 400

Z

True Coodinates of Nodes

true coordinates

X

Y

Z

(a) True Coordinates

-10

-5

 0

 5

 10

 15

-10-5 0 5 10 15 20 25

-10

-5

 0

 5

 10

 15

Z

Virtual Coordinates of Nodes

virtual coordinates

X

Y

Z

(b) Virtual Coordinates

Figure 3.1: 3D localization of 3000 nodes with 100 iterations. density: 5.3; distance unit: (a) meter, (b)

hop count.

3.2 Protocol Design

The SCR protocol assigns spherical coordinates to each node based on the node position estimated from

the localization step. The spherical coordinates consist of the hop count to the root of the recovery tree,

the projected angle θ on the XY plane and the projected angle ϕ on the YZ plane as shown in Fig. 3.2.

In this section, we present the details of the localization method, the spherical coordinates assignment

procedure and the routing algorithm.

3.2.1 Localization Algorithm in 3D Networks

The SCR protocol applies the trilateration method for network localization with four anchor nodes in

the three-dimensional space. A 3D expansion to NoGeo [58] is employed, which randomly selects a

bootstrap node to broadcast an initial bootstrap message to the whole network. Upon receiving the

bootstrap message, each node checks if it is the furthermost node away from the bootstrap node within

a 2-hop neighborhood. If a node is the 2-hop local maximum, it declares to be a perimeter node by

broadcasting a hello message to the network after a random delay. Each perimeter node will suppress

other candidates within an t-hop (t ∈ [5, 8]) neighborhood. Once all perimeter nodes have declared

their identities, each node in the network will have a hop count vector indicating the distance to the

perimeter group. Following that, all perimeter nodes will exchange their hop count vectors, such that

every perimeter node will know the mutual hop distance between one another. The four anchor nodes

are selected from the perimeter group.

The first three anchor nodes are selected in the way that the triangle formed by the three nodes covers

the maximum area. If node A, B and C are the three initial anchors and the hop count distances are

dist(A,B) = a, dist(B,C) = b and dist(A,C) = c, the triangle area computed by Formula 3.1(Heron’s

Formula) is the maximum among all perimeter nodes.

Area =
√

S(S − a)(S − b)(S − c), S =
a+ b+ c

2
(3.1)

3.2 Protocol Design 23

Once the three anchor nodes are identified, the relative position of other nodes can be calculated

from their hop count distance to these references. The fourth anchor node is selected such that volume

of the tetrahedron (V) formed by the four anchors, Ai(xi, yi, zi), i ∈ [1, 4], has the maximum volume as

computed by Formula 3.2, where det represents the determinant value of a matrix.

V =
1

6
× det

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

(3.2)

After the coordinates of the anchor nodes are determined, the rest of the nodes will extract the dis-

tance vector [h1,h2,h3,h4] to the four anchors. The node location (x, y, z) can be estimated by min-

imizing the potential energy function presented in Formula 3.3 through a simplex method [78], where

dist(Ai, N) denotes the Euclidean distance between anchor Ai and node N .

E =

4
∑

i=1

[dist(Ai, N)− hi]
2 (3.3)

As each node in the network has also received the hop distance vectors of all the perimeter nodes, the

above procedures can be performed independently by each node. We calculate the center of gravity C

for all the perimeter nodes and identify 3 perimeter nodes with the lowest IDs, denoted as P1, P2 and P3.

We let CP1, CP2 and CP3 represent the positive X+, Y + and Z+ axes in the virtual coordinate system

and normalize each node position according to the new axes. We denote the vector of P1 in the 3D space

as
−→
P1 = (P1.x, P1.y, P1.z), where (P1.x, P1.y, P1.z) represents the coordinates of P1. For any normal

node V , we obtain its corresponding 3D vector
−→
V . The projection VPi

of
−→
V on the 3 axes

−→
P1,

−→
P2 and

−→
P3

can be computed from the dot product of
−→
V and

−→
Pi(i ∈ {1, 2, 3}), as given in Formula 3.4, where α is

the angle between
−→
V and

−→
Pi and VPi

is the project of
−→
V on

−→
Pi and i = 1, 2, 3.

−→
V · −→Pi = ‖−→V ‖‖−→Pi‖ cosα

⇒ VPi
= ‖−→V ‖ cosα =

−→
V · −→Pi

‖−→Pi‖
(3.4)

After the normalization step, the coordinates of each node (V.x, V.y, V.z) are transformed into the pro-

jected coordinates (VP1
, VP2

, VP3
). Finally, we compute the average distance r from all perimeter nodes

to C and project all perimeter nodes onto a sphere centered at C with radius r. In the position relaxation

stage, the perimeter nodes remain static, while the normal nodes iteratively take the average neighbor

location as the new location at each interval. The refinement procedure is repeated 100 times based on

empirical results. A localization example of 3000 nodes is shown in Fig. 3.1.

3.2.2 Spherical Coordinates Assignment

In order to assign the spherical coordinates, a spanning tree is constructed from a designated root node.

In a bottom-up manner, the child nodes at each level report the subtree sizes to the parent nodes until the

24 Spherical Coordinate Routing for 3D Networks

θ Pθ Q

O

Y

X
Q’

P’
ϕ

Q
ϕ

P

O

Q’’
P’’

Y

ZZ

X

P’

P’’

O

P (x, y, z)

Y

θ

ϕQ (x, y, z) Q’’

Q’

Figure 3.2: Spherical Coordinate Angles: θ and ϕ

subtree size information propagates back to the root. The spherical coordinates are then assigned to the

child nodes level by level according to their alignment in the tree and their virtual coordinates computed

by the localization method. Assume a node O has k children N1, N2, . . ., and Nk whose subtree sizes

are s1, s2, . . ., and sk. The initial angle ranges for node O are θ range [θ1, θ2] and ϕ range [ϕ1, ϕ2].

From the virtual coordinates of N1, N2, . . . and Nk, we can retrieve the order of their projections on the

XY plane and the YZ plane in the counter-clockwise direction. For example, in Fig. 3.2, the projection

order of child nodes P and Q on the XY plane and YZ plane are [P ′, Q′] and [P ′′, Q′′]. Based on the

projection order on the XY plane, the θ range of the child node Ni (i is the index in the projection order)

can be computed by Formula 3.5. The formula can be applied to calculate the ϕ range similarly.

Ni.θ1 =

∑i−1
j=1 sj

∑k
j=1 sj

× (O.θ2 −O.θ1) +O.θ1

Ni.θ2 = Ni.θ1 +
si

∑k
j=1 sj

× (O.θ2 −O.θ1) (3.5)

Once the spherical coordinates are assigned, each node has a hop count value h and two angle ranges,

denoted as θ range [θ1, θ2] and ϕ range [ϕ1, ϕ2]. Hop count h represents the distance to the root and the

θ and ϕ are subsets of the angle ranges in the parent node. An example is shown in Fig. 3.3, where node

A has a hop count of h = 6. The θ range of A is [100, 240] and its ϕ range is [50, 330]. Node A has two

child nodes B and C, whose subtree sizes are sb = 4 and sc = 3. Assuming the projection orders of B

and C on XY plane and YZ plane are both {B, C}, the θ range of B is calculated as B.θ1 = A.θ1 = 100,

B.θ2 =
sb

sb+sc
× (A.θ2 −A.θ1) +A.θ1 =

4
7 × (240− 100)+ 100 = 180. The ϕ range can be calculated

similarly; thus, the spherical coordinates of B is {7, [100, 180], [50, 210]}.

The relation between the θ(or ϕ) angle range of two nodes A and B can be classified as one of the

following:

1. Contained: if B.θ1 ∈ [A.θ1, A.θ2] and B.θ2 ∈ [A.θ1, A.θ2], or vice versa

2. Disjoint: if A.θ1 > B.θ2 or B.θ1 > A.θ2

3. Overlapped: if A.θ1 ∈ [B.θ1, B.θ2] and A.θ2 > B.θ2, or vice versa

By performing angle range assignment in the tree structure, each child receives a unique segment from

the parent’s angular space; thus, no two nodes should have overlapped angle ranges. The angle range

3.2 Protocol Design 25

A

B C

D E F G

H

[100, 240]
ϕ
θ

[50, 330]

[100, 180]
ϕ
θ

[50, 210]

θ
ϕ

[100, 153]
[50, 156]

θ
ϕ

[211, 240]
[271, 330]

θ
ϕ

[100, 153]
[50, 156]

θ
ϕ

[154, 180]
[157, 210]

[211, 330]
[181, 240]

1

1 1 1

34

H = 6

H = 7

H = 8

H = 9

8

2

θ
ϕ

[181, 210]
[211, 270]

ϕ
θ

Figure 3.3: Example of Angle Range Assignment

relation of two nodes in this spherical coordinate tree is either Contained or Disjoint. We denote the

angle range relation between two nodes N1 and N2 as Rel(N1, N2). If Rel(N1, N2) = Contained, it

means the angle range of one node is contained in the other. Assuming the angle range of N2 is a subset

of N1, node N2 must be a descendant of N1 in the tree. If Rel(N1, N2) = Disjoint, they share some

common ancestors.

The distance between two nodes A and B are calculated differently according to their angle range

relation. Assuming the spherical coordinates of A(B) are {hA(hB), [θ1, θ2], [ϕ1, ϕ2]}, the node distance

dist(A,B) is computed by Formula 3.6, where distθ = max(A.θ1 − B.θ2, B.θ1 − A.θ2) and distϕ =

max(A.ϕ1 −B.ϕ2, B.ϕ1 −A.ϕ2).

dist(A,B) =

|hA − hB|, if A,B Contained

distθ + distϕ, if A,B Disjoint

−1, otherwise

(3.6)

Note that when distance computed is −1, localization error has occurred and the value will be dis-

carded. In general, if the angle range relation of two nodes A and B is Contained, the distance between

A and B is equal to the difference between their hop counts to the root. If the relation is Disjoint, the

distance is equal to the gap enclosed by the angle ranges. For example, in Fig. 3.3, dist(A,D) is 2,

because Rel(A,D) = Contained and dist(A,D) = |hA − hD| = |6 − 8| = 2. For node E and G, since

Rel(E,G) = Disjoint, we have dist(E,G) = (G.θ1 − E.θ2) + (G.ϕ1 − E.ϕ2) = 31 + 61 = 92.

3.2.3 Routing Algorithm

Basic routing using angle-based greedy forwarding

Suppose that a source node S has a packet p to destination T and node S has k neighbors Ni, i ∈ [1, k].

If there is a neighbor Ni, such that the angle range relation Rel(Ni, T) is Contained, we call Ni a CT

neighbor. If Rel(Ni, T) is Disjoint, we call Ni an AR neighbor. Depending on the angle range relation

between the forwarding nodes and the destination, routing can be performed in CT mode, AR mode or

BACK mode.

If a CT neighbor is available, node S will set the routing mode to CT mode. If there is no CT

26 Spherical Coordinate Routing for 3D Networks

Send

CT

Delivered

BACK

Drop

back to
root

no CT,
no AR no CT,

AR

no CT,

no AR

CT

CT
No CT, AR

dest. found

no CT

CT

no CT, AR

dest. found
CT

invalid addr.

AR/CR

Figure 3.4: Routing State Transition Diagram

neighbor, but an AR neighbor with a closer angle range distance to the destination, the routing mode will

be set to AR mode. If neither a CT neighbor or a closer AR neighbor is found, node A will use the BACK

routing mode and select its parent in the tree as the next hop. The routing state transition diagram is

depicted in Fig. 3.4, indicating that a CT neighbor is preferred over an AR neighbor. This is because

a CT neighbor is either an ancestor or descendant of the destination, from where the destination can be

reached by following the tree branches directly. The AR neighbors may provide a shortcut path to route

packets along the sibling connections, while the BACK mode will pass the packet to upper levels of the

tree if both CT and AR modes fail. As the nodes at the top of the tree consist of the ancestors of all subtree

nodes in the lower levels, during the backtracking stage we can ultimately find the ancestor nodes of the

destination, from where the packet can be forwarded down the tree towards the target again.

The data packet header carries the following fields: the hop count h between the destination and the

root, the θ and ϕ angle ranges of the destination, the current routing mode M , the current minimum

AR distance dar and the minimum CT distance dct. The detailed routing algorithm is illustrated in

Algorithm. 2. For example, node E in Fig. 3.3 has a packet for node G, and E has three neighbors B,

D and F . Since the angle ranges of B, D and F are all disjoint from G, no CT neighbor can be found

and the routing mode is set to AR. The angular distance from E to G is dist(E,G) = distθ(E,G) +

distϕ(E,G) = 31 + 61 = 92 and we have dist(B,G) = 92, dist(F,G) = 2, dist(D,G) = 167. From the

angular distance, node F is a closer AR neighbor and will be selected as the next hop in AR mode. If

node F is not a neighbor of E, both CT and AR modes will fail and E will switch to BACK mode and

pass the packet to its parent node B. Node B will remain in the BACK mode and continue to pass the

packet to node A. As the angle range of A is a superset of G’s angle range, the routing mode will switch

to CT at node A and the packet will go directly from A to C and reach G by comparing the hop count

distance.

Routing using connectivity-based greedy forwarding

The angle-based greedy forwarding (also used in VPCR) does not perform well due to the difficulty in

assigning angle ranges consecutively across the adjacent sibling nodes. SCR replaces the basic angle-

3.2 Protocol Design 27

Algorithm 2 Routing Algo. with Spherical Coordinates

1: Let p be the packet and T be the current hop

2: The k neighbors of node T are Ni, i ∈ [1, k].
3: ∀N ∈ Ni, compute the minimum AR distance to p.dst denoted as distar and the minimum CT distance denoted as

distct.
4: The corresponding neighbors are Nct and Nar

5: if p.M = CT then ⊲ routing mode is CT

6: if 0 ≤ distct ≤ p.dct then

7: p.dct = distct, nexthop = Nct

8: else

9: drop the packet p
10: end if

11: else if p.M = AR then ⊲ routing mode is AR

12: if distct ≥ 0 then

13: p.M = CT , p.dct = distct, nexthop = Nct

14: else if 0 ≤ distar ≤ p.dar then

15: p.dar = distar , nexthop = Nar

16: else

17: p.M = BACK, nexthop = parent.

18: end if

19: else ⊲ routing mode is BACK

20: if distct ≥ 0 then

21: p.M = CT , p.dct = distct, nexthop = Nct

22: else if 0 ≤ distar ≤ p.dar then

23: p.M = AR, p.dar = distar , nexthop = Nar

24: else

25: nexthop = parent
26: end if

27: end if

based greedy forwarding (AR) with connectivity-based greedy forwarding(CR) based on the Euclidean

distance computed from the hop count vectors to the perimeter nodes. For a set of p perimeter nodes

A1, A2, . . ., Ap used in the localization step, each node in the network will maintain a hop count vector

indicating the distance to each perimeter node Ai(i ∈ [1, p]). For two nodes M and N , we denote

their hop count vector as [m1,m2, . . . ,mp] and [n1, n2, . . . , np]. The distance Dhop between M and

N can be computed as Dhop(M,N) =
√

∑p
i=1 (mi − ni)2. To send a packet to destination T , node

P will search among all its k neighbors Ni(i ∈ [1, k]), such that the neighbor N ′ with Dhop(N
′, T) =

min{Dhop(Ni, T)} and Dhop(N
′, T) < Dhop(P, T) is chosen as the next hop. The example network

shown in Fig. 3.5 has 3 perimeter nodes P1, P2 and P3. The distance between node S(2, 2, 4) and node

T (4, 2, 1) is dist(S, T) =
√

(4− 2)2 + (2− 2)2 + (1− 4)2 =
√
13. By using the Euclidean distance

metric, the greedy forwarding path from S to T can be determined. If a local minimum is encountered,

the routing procedure will switch to BACK mode and the tree-based recovery method will be applied

until the greedy mode or CT mode can be activated again. We have integrated the connectivity-based

greedy forwarding into SCR and find that it can provide improved routing performance highly resilient

to localization errors. The results in this chapter are obtained from this improved version.

3.2.4 Tree Reparation for Network Dynamics

The tree reparation procedure is designed to cope with network changes, such as the introduction of

new nodes and node failures due to power outage or physical damage. When a new node joins the

28 Spherical Coordinate Routing for 3D Networks

distance to node T:
Hopcount vector and

T

P3

A

B

C

D

F

(4,2,1)

(3,3,0)

P1 (0,3,3)

(2,2,4)
S

P2 (3,0,3) E

A:(2,1,3), dist =
√

9

B:(1,2,3), dist =
√

8

C:(2,1,2), dist =
√

6

D:(1,2,2), dist =
√

10

E:(3,1,2), dist =
√

3

F:(2,2,1), dist =
√

4

dist(S, T) =
√

13, Path: S → B → C → E → T

Figure 3.5: Connectivity-based Greedy Forwarding

�
�
�
�
��
��
��
��
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��

��
��
��

Regular Space

Reserved Space

(new node)

New nodes take the reserved space.

of Angle Range

take

α

β portion

O

P

N

(a) Node Insertion

subtree affected
node A fails

B CS

E F G

T

D

A

P

N

nodes B, C, D, E, F and G
become dangling nodes.

A

G

CB

F

link to root lost

ED

invalidate links

dangling nodes reattach
to new parents

S T

P

N

B C

ED G
F

Subtree Root A fails Invalidate Subtree Links Reattach to New Parents

(b) Node Failure

Figure 3.6: Tree Recovery for Node Insertion and Node Failure

network, it will attach to a parent node whose angular coordinates have already been configured. In

order to accommodate the new child, the parent node will reclaim part of the angle range from its current

children. The angle range reclamation has to be performed recursively down to the leaf level. An

alternate option is that during network initialization, each node reserves part of the assigned angle space

to handle future node insertions as illustrated in Fig. 3.6(a). For a node P with θ angle range [θ1, θ2],

before assigning angle range to the subtree nodes, it will reserve α portion of the angular space (θ2 -

θ1). After the network setup is completed, it has α(θ2 - θ1) angle range available. The ϕ angle range

can be managed accordingly. For each new child node N attaching to P , node P will assign β part of

the remaining reserved angle range to N . The values of α and β control the shape of the recovered tree

branches. For infrequent node insertions, we set the α = β = 0.25.

A node failure will render the subtree rooted from the failed node invalid. If the parent beacons

are not received after a threshold interval, the child nodes will declare that the parent is gone and send

invalidate messages to their descendants. This invalidate messages will be disseminated downwards

through all the subtree links. The descendant nodes receiving the invalidate message will discard the

current spherical coordinates and become dangling nodes. As shown in Fig. 3.6(b), the dangling nodes

will try to re-attach to a new parent by overhearing the beacons, which contain the neighbor’s ID, the

hop count distance to the root and the angle range information. By sending re-attach requests, a dangling

node can be adopted by a neighbor with valid coordinates. Frequent node insertions and node removals

will cause the angle range to be acquired and reclaimed repeatedly, creating a large number of non-

contiguous angle fragments, which are hard to manage. The fragmentation problem can be alleviated by

reconstructing the subtree, triggered once the number of fragments at a node grows above the threshold.

3.3 SCR Overhead and Routing Metrics 29

If the root area of the backbone tree fails, the tree topology will become logically disconnected. In

such a case, nodes detecting the failure must invalidate the obsolete tree structure and initiate a new

root election process. The tree reconstruction procedure will be performed as described in Section 3.2.2.

To alleviate the single point of failure problem and hot spot effects of using a single recovery tree,

multiple trees can be deployed, whose roots are scattered around the whole network. With multiple trees

established, each node will have several routing options available for a single destination. Therefore,

clustered node failures occurring at a single area will not break the entire routing infrastructure. For

large-scale networks, the candidate roots can be selected by a randomization method. For a small-scale

network deployment, the root nodes can be configured manually and placed around the network, such

that the path diversity provided by these recovery trees can be maximized.

3.3 SCR Overhead and Routing Metrics

3.3.1 Control Overhead of SCR

The control overhead of SCR mainly comes from the localization method and the spherical coordinate

assignment procedure. In the localization step, the bootstrap node broadcasts a beacon to the whole

network of n nodes for discovering perimeter nodes. The beacon propagates hop by hop, which takes n

transmissions. The nodes that have the local maximum hop count distance to the bootstrap node within a

suppression range of t = 5 hops will become the perimeter nodes. The total number of perimeter nodes

is bounded to the number of nodes required to cover the surface area of the 3D network deployment

space. For networks with moderate densities, the number of perimeter nodes is bounded by O(n
2

3).

For a high density network of n nodes deployed in a cubic space with side length of d, the estimated

number of perimeter nodes is 6d2

π(5r)2
, where r is the node communication radius. For example, in a dense

network with d = 400 and r = 30, the average number of perimeter nodes is 6×4002

π(5×30)2
≈ 14. The

suppression range allows the selection procedure to scale as the network size increases. Each perimeter

node will broadcast 3 times to the network for building the hop count vectors, exchanging the hop count

vectors with other nodes and announcing the initial virtual coordinates. This step will cost 3n× O(n
2

3)

transmissions. The iterative refinement for the coordinates can be done through regularly exchanged

beacons, which will not generate extra packets. The completion time of the refinement step will depend

on the number of rounds and the beacon interval.

The spherical coordinate assignment takes two rounds to complete, one round to collect the subtree

size from each child and one round to inform the angle range assignment in a localized manner. The

number of packets required is 2kn, where k is the number of trees deployed. The total number of

transmitted packets for the initialization step is equal to n + 3n × O(n
2

3) + 2kn; each node averagely

transmits 1+3×O(n
2

3)+2k packets. For a dense network with 3 recovery trees, assuming d = 400 and

r = 30, the number of control packets for each node during initialization is around 1+3×14+2×3 = 49.

The initialization overhead of SCR is equivalent to the sum of overhead in NoGeo and BVR. However,

this procedure is performed only once and SCR employs mainly local recovery to counter small-scale

network dynamics. The significant performance improvement of SCR in Section 3.4 will prove that this

one-time initialization overhead is highly beneficial.

30 Spherical Coordinate Routing for 3D Networks

3.3.2 Storage Cost of the Key Components

The storage cost of SCR comes from four key components: the neighbor list, the hop count vector to the

perimeter nodes, the matrix containing the inter-node distance among the perimeter nodes and the local

spherical coordinates. Assume that both the node ID and the hop count values are of uint16 t type (2

bytes). The local spherical coordinates include the hopcount to the root, the ϕ angle range on the XY

plane and the θ angle range on the YZ plane. As the hopcount is uint16 t and each angle range has

two float (4 bytes) angle values, the local spherical coordinates requires 18 bytes. The neighbor list

stores the information of the neighboring nodes within a range of one hop, including the node ID and the

neighbors’ spherical coordinates. Assuming that the average number of neighbors is k, the size of the

neighbor list is k × (18 + 2) = 20k bytes. As SCR adopts the NoGeo’s approach for node localization,

for a set of p perimeter nodes, it will maintain a local hop count vector to these p perimeter nodes and

a matrix indicating their mutual distance. The local hop count vector consists of the node ID of each

perimeter node and the corresponding hop distance, consuming 4p bytes. The matrix has p rows, each

of which contains the perimeter node ID and a list of p entries. Each entry consists of the destination

perimeter node ID and the hop distance. Hence, the matrix consumes 2p+ 4p2 bytes. The total amount

of storage space for all the four components is 4p+ 2p+ 4p2 + 20 + 20k bytes. Given a cubic network

space with a side length of 400m and a communication range of 30m, a very dense network will have

approximately p = 14 perimeter nodes and the network density can reach k = 40 [17]. Therefore, the

resulted storage space is around 1688 bytes.

3.3.3 Selection of Routing Metrics

Many geographic routing protocols use hop count as the routing cost metric and shorter paths are con-

sidered to be superior to the longer ones. The hop count metric indicates the number of hops traversed

by the packet. Under uniform transmission power settings, shorter routing paths can reduce energy con-

sumption and delivery latency. However, previous experiments [69, 46] on outdoor wireless networks

found that the shortest paths with long range links often provide worse routing performance, compared to

longer paths with shorter per-hop distance. The long range links may have considerably lower reception

quality due to various reasons, such as signal attenuation or multi-path fading. Some routing metrics

(e.g. the number of transmissions and delivery latency) incorporate the packet delivery ratios of each

link to improve the communication reliability. They mainly target on the outdoor wireless ad hoc net-

works, where long range links are possible with low obstruction in the open space and high-power radios

(e.g. 17 dBm on Linksys WRT150N Router [79]). Meanwhile, for an indoor low power sensor network

environment, the connected nodes usually lie within the line of sight. The radio used in the sensor nodes

has much lower transmission power (e.g. ≤ 0 dBm on MICAz nodes [80]) for energy conservation. The

long range links are blocked by the complex interior structures such as walls or furniture. This implies

that the links in low power indoor sensor networks are more likely to have short ranges and good packet

reception rates as observed in [81] and [82].

To verify this argument, we deployed 48 MICAz sensor nodes in two floors of the COM-1 office

building at the National University of Singapore. The deployment map is given in Fig. 3.7. We measured

the link connectivity and packet delivery ratios of each link in both directions p1 and p2 by using unicast

3.3 SCR Overhead and Routing Metrics 31

(a) COM-1, Basement, 25 nodes: z-001∼z-025 (b) COM-1, Level-1, 23 nodes: z-027∼ z-049

Figure 3.7: Link Connectivity of 48 MICAz Sensor Nodes Deployed at Two Floors of the COM-1

Building (cross-floor links not shown)

probing packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o
 f
ro

m
 n

o
d
e
 B

 t
o
 A

Packet Delivery Ratio from node A to B

Pair Wise Link Quality

(PA-B, PB-A)

(a) Bi-directional Link Quality

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 C

o
u
n
t
o
f
N

o
d
e
 P

a
ir
s

Asymmetry = |lq1 - lq2|/max(lq1, lq2)

Asymmetry Plot for Node Pairs

Node Pair Asymmetry

(b) Node Pair Asymmetry

Figure 3.8: Link Quality and Asymmetry Measurement Results (including cross-floor links)

The quality of the links are plotted in Fig. 3.8(a), which shows that 97 out of the 120 connected node

pairs have delivery ratios from 80% to 100% in both directions. This is consistent with the connectivity

graph in Fig. 3.7, where most links are short with no obstructions in between. Link asymmetry often

occurs at the fading edge of connectivity [81], where the discrepancies in the node transmission power,

reception sensitivity or energy levels may impose a significant impact on the packet reception ratio. We

compute the level of link quality asymmetry as
|p1−p2|

max(p1,p2)
and plot it in Fig. 3.8(b). It can be observed that

over 85% of the links have less than 20% asymmetry, implying that link asymmetry is not a critical issue

for our indoor sensor network. This is because the CC2420 radio in MICAz nodes has low hardware

miscalibration [72] and the maximum range of most links is constrained by the obstacles before it can

expand to the limit. In summary, for scenarios where the majority of the network links exhibit equally

good quality and low asymmetry, we believe hop count can still serve as a simple and efficient metric to

evaluate the routing performance.

32 Spherical Coordinate Routing for 3D Networks

3.4 Performance Evaluation

The performance of SCR is compared to 5 routing protocols, namely: Greedy, NoGeo, BVR, LCR and

VPCR. All algorithms are implemented in the network simulator ns-2 and a Java simulator. We use the

customized simulator because ns-2 is not scalable for large network scenarios with over 1000 nodes.

We used results generated from the network simulator ns-2 to verify the output of the Java simulator

and find that the Java simulator is highly consistent with ns-2. The results presented in this chapter are

obtained from the Java simulator. As the original design of NoGeo cannot be applied directly, we extend

the algorithm in NoGeo to make it compatible for 3D networks. The LCR protocol uses L4 norm in the

distance function and employs 8 landmarks for routing as suggested in [31]. The BVR protocol allows

maximally 5% of the nodes to be the candidate beacons and the top 10 beacons closest to the destination

are used for routing. For NoGeo, the third scenario is assumed where the perimeter node election is

conducted in a 2-hop neighborhood and each perimeter node can suppress other candidates within 8

hops.

Table 3.1: Input of Simulation Parameters

Parameter Value

Field Size 400× 400× 400m3

Node Number 1000∼10000, step = 500

Radio Range 30m, unit disk

Topology 50 topos/density, uniform random

Connection 100 random pairs/topology

Routing Proto. Greedy, NoGeo, BVR, LCR, VPCR, SCR

The configuration of the simulation parameters are listed in Table 3.1. Given n nodes with commu-

nication range r, randomly deployed in a cubic area of volume V , the average node density d can be

computed as d = 4πr3n
3V . The range of node densities thus varies from 1.77 to 17.67. For each node

density, we generate 50 random network topologies. On each network topology, 100 node pairs are ran-

domly selected to be the source and destination. We use the six different routing protocols to route data

packets for each connection and compute the packet delivery ratio, hop stretch and average overhead per

packet delivery for performance comparison. Finally, the performance of the protocols under clustered

node failures are also investigated.

3.4.1 Packet Delivery Ratio

The packet delivery ratio shown in Fig. 3.9 indicates the amount of data packets delivered successfully

by the primary routing methods of the protocols without flooding the network. The LCR protocol relies

on 8 landmark nodes and tries to minimize the Euclidean distance to the destination during the packet

forwarding. The BVR protocol relies on the weighted-Manhattan distance computed from the hop counts

to the 10 routing beacons.

As expected, both VPCR and SCR are able to guarantee delivery through the tree structure once the

network is sufficiently dense. The optimization in SCR allows it to perform slightly better than VPCR for

node densities between 3 to 5. For the density range from 6.18 to 17.67, when the network is nearly fully

3.4 Performance Evaluation 33

connected, the packet delivery ratio of VPCR and SCR converges to 100% as described in Section 3.2.3.

On the other hand, the greedy-based routing methods in NoGeo, BVR and LCR clearly fail to provide

high delivery ratio at all node densities. At the highest node density of 17.67, the packet delivery ratio

of LCR and BVR reaches 57.95% and 80.2%, while NoGeo has the lowest delivery ratio of 18.17%,

because of the accumulated errors in the position relaxation steps. The fall back mechanism in BVR will

try various number of routing beacons before giving up, which provides better packet delivery perfor-

mance. In addition, due to the localization and quantization errors in the hop count-based coordinates,

even with high node densities above 10, the packet delivery ratios for NoGeo, BVR and LCR are actually

lower than Greedy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

P
a
c
k
e
t

D
e
liv

e
ry

 R
a

ti
o

Average Node Density

Packet Delivery Ratio vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR

Figure 3.9: Packet Delivery Ratio

3.4.2 Hop Stretch Factor

Hop stretch refers to the ratio between the length of the path discovered by the routing protocols and

the length of the shortest path in terms of hop count. A routing protocol with lower hop stretch outputs

shorter paths on average and achieves higher routing efficiency.

Fig. 3.10 shows the average hop stretch for the various algorithms, when the number of nodes grows

from 1000 to 10000. When node density increases above 8, the hop stretch factor stabilizes for all

protocols. It is clear that while VPCR guarantees packet delivery, it has the highest hop stretch of 1.92,

because its angle-based greedy forwarding method fails frequently due to the localization errors and the

imbalanced tree structure. Two adjacent nodes with non-continuous angular space will force VPCR to

fall back towards the root, which will significantly increase the path length. On the other hand, with a

single recovery tree, SCR has a stabilized hop stretch value of 1.22, which is much lower than VPCR,

NoGeo and BVR, while higher than LCR (1.18) and Greedy. With 3 recovery trees, SCR can achieve

the lowest hop stretch of 1.16 in high node density scenarios among all the routing protocols. With 10

recovery trees, the hop stretch of SCR will consistently remain below 1.2 and converge to 1.12 over the

entire node density range.

The LCR protocol employs the Euclidean distance-based greedy algorithm as the primary routing

method and in case of local minimum, the flooding-based recovery procedure in LCR will help to find

34 Spherical Coordinate Routing for 3D Networks

the shortest path to the destination. This mechanism generates lower hop stretch but also introduces

exponentially increasing network traffic. The maximum packet delivery ratio of LCR shown in Fig. 3.9

is round 58%; thus, in nearly 42 percent of the test cases, scoped flooding is invoked by LCR to route

packets out of the local minimum locations. Due to the high overhead, we believe that the overall hop

stretch performance of SCR will be better than LCR in practice.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2 4 6 8 10 12 14 16 18

H
o
p
 S

tr
e
c
th

 F
a
c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR-01t
SCR-03t
SCR-10t

Figure 3.10: Average Hop Stretch Factor

3.4.3 Overhead per Packet Delivery

The overhead refers to the average amount of forwarding required to deliver one packet. It is computed

as the ratio between the number of packet forwarding performed by the routing protocol to the number

of packet forwarding required by routing the packet along the shortest path. The protocol with a lower

traffic load involves less intermediate forwarding nodes and generates lower network overhead. Note

that this is different from hop stretch since flooding is taken into account.

The overheads of the protocols are plotted in Fig. 3.11. Note that the y-axis is plotted on log scale.

Recall that the expand-ring flooding is used by NoGeo, BVR and LCR to recover from greedy forwarding

failures. During the flooding-based recovery stage, the number of nodes involved in packet forwarding

increases exponentially and the overhead values for NoGeo, BVR and LCR reach 220.9, 9.4 and 70.3

respectively for the largest network evaluated (10,000 nodes).

In comparison, VPCR and SCR are much more efficient since flooding is not performed. Traffic load

of VPCR is 1.9. The connectivity-based greedy forwarding in SCR manages to find shorter paths than

VPCR and the spherical coordinate tree-based recovery refrains from injecting duplicate packets into the

network, which helps SCR to achieve the lowest traffic load of 1.3.

3.4.4 Performance with Topology Changes and Recovery

We designed two models to investigate the performance of SCR under topology changes, named the

Horseshoe model and the Hollow Brick model, as shown in Fig. 3.12. The Horseshoe model is used

to evaluate the tree reparation procedure and the Hollow Brick model is used to evaluate the routing

3.4 Performance Evaluation 35

 1

 10

 100

 1000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ra

ff
ic

 L
o

a
d

 (
lo

g
 s

c
a

le
d

)

Number of Nodes

Traffic Load per Packet Delivery

Greedy
NoGeo

BVR
LCR

VPCR
SCR

Figure 3.11: Traffic overhead per Packet Delivery

3

2
9

8

7

1
4

(5, 6)

3

6

2

1

5

4

9

8

7

Grid 5 and 6
collapse to 4

(a) Horseshoe

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Hollow−brick Collapse Model

(b) Hollow Brick

Figure 3.12: Modeling Network Topology Dynamics

performance after recovery. In the Horseshoe model, the wireless nodes are placed in 9 aligned cubic

grids, which resembles the three-dimensional wireless sensor network deployed in high rise buildings.

The grids are numbered from 1 to 9, each with a side length of 400
3 and the root node is located at grid

1. We deploy 1000 nodes randomly into the 9 grids and select two grids, grid 5 in the middle and grid 6

on the boundary, to fail completely, which will affect a large portion of the original tree structure. The

scenario imitates the fire damage to certain floors in the building. We count the remaining number of

affected nodes after each iteration(one round of beacon exchange) until the the tree structure is fully

repaired and recovery performance is given in Fig. 3.13. The recovery result shows that removing two

grids from the topology will affect around 670 nodes and the recovery procedure will converge within

36 to 68 iterations, proportional to the relative distance between the recovered nodes and the root grid.

The distributions of subtree size before the grid collapse and after the recovery are shown in Fig. 3.14.

The range of tree size varies from 0 to n, where n is the node number. We divide the tree size range

evenly into 50 slots and count the number of trees allocated into each slot. Fig. 3.14 reveals that the

overall distributions of tree size before the collapse and after the recovery remain similar, which implies

that the local recovery method is stable and robust and the performance of the tree-based routing in SCR

will not be significantly affected. Compared to the local recovery mechanism in SCR, the NoGeo, LCR

and BVR protocols use global recovery - all the anchor nodes must re-broadcast to the whole network to

36 Spherical Coordinate Routing for 3D Networks

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

R
e

m
a

in
in

g
 N

u
m

b
e

r
o

f
D

a
n

g
lin

g
 N

o
d

e
s

Iteration Number

Recovery Performance per Iteration

Grid 5, 2
Grid 5, 3
Grid 5, 4
Grid 5, 6
Grid 5, 7
Grid 5, 8
Grid 5, 9

Figure 3.13: Recovery Performance after Two Grids Fail

refresh the hop distance vector, which is more expensive.

The Hollow Brick model is used to measure the routing performance of SCR under node failures.

Assuming that as a result of the disaster event, 4 grids in the center area collapse as shown in Fig. 3.12(b),

creating 4 voids in the middle of the network. The affected nodes will initiate the recovery procedure

and attach to new parents by using the algorithm described in Section 3.2.4. The source and destination

nodes are randomly selected from the remaining grids. The rest of the simulation parameters remain

unchanged.

The routing performance of the protocols before and after the topology change is given in Fig. 3.15

∼ Fig. 3.17. As depicted in Fig. 3.15, node failures impose major impact on Greedy and LCR, reducing

their delivery ratio by 31.3% and 78.8% respectively. The delivery ratio of BVR is reduced by only

9.4%, as an effect of its fall back scheme. The delivery ratios of VPCR and SCR dropped slightly at the

medium density range of 5.3 ∼ 10.6 and remain the highest for the entire density range.

As shown in Fig. 3.16(a) and Fig. 3.16(b), the hop stretch is not significantly affected by the topology

change for most of the protocols except BVR, whose hop stretch is increased by 43% from 1.58 to 2.26.

Due to the lack of efficient greedy forwarding method, the hop stretch of VPCR remains above 1.8, while

LCR and NoGeo has a hop stretch around 1.25. The hop stretch of SCR can be improved by deploying

more recovery trees in the routing structure. With just one additional recovery tree, SCR can improve the

hop stretch from 1.34 to 1.21 lower than that of LCR, while maintaining a much higher delivery ratio.

The detailed hop stretch improvements of SCR in Fig. 3.17 clearly demonstrate that SCR is able to find

more efficient routes as more recovery trees are deployed.

The traffic load values plotted in Fig. 3.18(a) and Fig. 3.18(b) show that the load of LCR and BVR

are substantially increased by 4.6 and 2.33 times after the topological change, while SCR maintains the

lowest traffic load around 1.3 consistently.

3.5 Summary 37

 1

 10

 100

 1000

 0 200 400 600 800 1000

N
u
m

b
e
r

o
f

T
re

e
s
 (

lo
g
s
c
a
le

d
)

Subtree Size - number of nodes

Subtree Size Distribution with Low Node Density

Before Collapse
After Collapse

(a) Low Node Density of 5.3

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000

N
u
m

b
e
r

o
f

T
re

e
s
 (

lo
g
s
c
a
le

d
)

Subtree Size - number of nodes

Subtree Size Distribution with Medium Node Density

Before Collapse
After Collapse

(b) Medium Node Density of 10.6

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

N
u
m

b
e
r

o
f
T

re
e
s
 (

lo
g
s
c
a
le

d
)

Subtree Size - number of nodes

Subtree Size Distribution with High Node Density

Before Collapse
After Collapse

(c) High Node Density of 17.6

Figure 3.14: Distribution of Subtree Size after Recovery at Various Densities

3.5 Summary

In this chapter, we have presented the Spherical Coordinate Routing protocol that provides guaranteed

packet delivery in a three-dimensional network topology by constructing a spherical coordinate system

over a tree structure. The SCR protocol complements the connectivity-based greedy forwarding with a

recovery procedure that can identify the destination subtree according to the spherical coordinates. Com-

pared to other 3D-compatible routing protocols such as NoGeo, BVR, LCR and VPCR, the Spherical

Coordinate Routing protocol can achieve more efficient routing paths, maintain higher packet delivery

ratio with lower network overhead and remain highly resilient to topology changes due to clustered node

failures.

38 Spherical Coordinate Routing for 3D Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

P
a
c
k
e
t

D
e
liv

e
ry

 R
a
ti
o

Average Node Density

Packet Delivery Ratio vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR

(a) Delivery Ratio before Collapse

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

P
a
c
k
e
t

D
e
liv

e
ry

 R
a
ti
o

Average Node Density

Packet Delivery Ratio vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR

(b) Delivery Ratio after Collapse

Figure 3.15: Packet Delivery Before and After Collapse

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14 16 18

H
o
p
 S

tr
e
c
th

 F
a
c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR-01t
SCR-02t
SCR-05t

(a) Hop Stretch before Collapse

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2 4 6 8 10 12 14 16 18

H
o
p
 S

tr
e
c
th

 F
a
c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

Greedy
NoGeo

BVR
LCR

VPCR
SCR-01t
SCR-02t
SCR-05t

(b) Hop Stretch after Collapse

Figure 3.16: Average Hop Stretch Before and After Collapse

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 2 4 6 8 10 12 14 16 18

H
o

p
 S

tr
e

c
th

 F
a

c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

SCR-01t
SCR-02t
SCR-03t
SCR-04t
SCR-05t
SCR-06t
SCR-07t
SCR-08t
SCR-09t
SCR-10t

(a) Hop Stretch, Multiple Trees, Before Collapse

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 2 4 6 8 10 12 14 16 18

H
o
p
 S

tr
e
c
th

 F
a
c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

SCR-01t
SCR-02t
SCR-03t
SCR-04t
SCR-05t

(b) Hop Stretch, Multiple Trees, After Collapse

Figure 3.17: Hop Stretch Performance with Multiple Recovery Trees

3.5 Summary 39

 1

 10

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e
ra

g
e
 T

ra
ff
ic

 L
o
a
d
 V

a
lu

e

Number of Nodes in the Network

Average Traffic Load per Packet Delivery

Greedy
NoGeo

BVR
LCR

VPCR
SCR

(a) Traffic Load before Collapse

 1

 10

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e
ra

g
e
 T

ra
ff
ic

 L
o
a
d
 V

a
lu

e

Number of Nodes in the Network

Average Traffic Load per Packet Delivery

Greedy
NoGeo

BVR
LCR

VPCR
SCR

(b) Traffic Load after Collapse

Figure 3.18: Traffic Load per Packet Delivery Before and After Collapse

40 Spherical Coordinate Routing for 3D Networks

Chapter 4

Practical Connectivity-based Routing

using Dimension Reduction

4.1 Introduction

We have seen that the performance of tree-based routing can be improved with greedy forwarding. The

conventional greedy algorithms rely on node positions for packet forwarding. However, accurate position

information is hard to obtain and violation of the unit disk assumption in real deployments may result

in persistent routing failures. Therefore, routing can alternatively be performed based on the network

connectivities, such as the hop distance. In hop count vector-based routing, a group of nodes are desig-

nated as the beacons Li (i ∈ [1, k]), broadcasting their identities to the network. Each node measures the

distance to the k beacons to create a hop count vector H = [h1, h2, . . . , hk], where hi is the hop count

to beacon Li. Routing is performed by treating the hop count vector H as the k-dimensional coordinates

which can be accessed through a location service [76].

The number of beacons used during packet forwarding is crucial for the routing performance, creating

a trade-off between control overhead and routing efficiency. The existing hop count vector-based routing

protocols generally require more beacons to attain better performance. The resulted long hop count

vectors are very expensive to manage on resource-constrained sensor nodes, making such an approach

difficult to apply in practice.

In this work, we exploit the observation that as sensor networks are physically deployed in a 2D or 3D

space, the intrinsic dimensionality of the topology is usually much lower than the number of beacons.

Therefore, the dimension reduction techniques [83] can be applied to extract the major axises of the

connectivity graph and project each node to an Euclidean space with lower dimensionality.

Our approach uses a Principal Component Analysis algorithm. Each node constructs a hop count

matrix, describing the pair-wise distance of the beacons. The embedding algorithm apply singular value

decomposition to the matrix to extract the most significant dimensions. The process returns a transfor-

mation matrix to capture the largest variance in the network topology. The inter-node distance is well

preserved through the first few components in the coordinates, which are resilient to degenerate beacons.

Experiment results show that by compressing the hop count vectors into three-dimensional coordinates,

the nodes can maintain 95% of the packet delivery ratio (relative to using full hop count vectors) with a

42 Practical Connectivity-based Routing using Dimension Reduction

A[0,1,2,1]

B[1,0,1,2] C[2,1,0,1]

D[1,2,1,0]

E[1,1,1,1]

2
2
√
2

(a) Connectivity Graph

x

y

PC(−
√
2, 0)

PD(0,−
√
2)

PA(
√
2, 0)

PB(0,
√
2)

PE(0, 0)
2

2
√
2

(b) Embedded Topology in R
2

Figure 4.1: An Embedding Example with 4 Beacons: A, B, C and D

hop stretch of only 1.12.

The rest of the chapter is organized as follows. The details of the embedding procedure are ex-

plained in Section 4.2. The simulation results on large-scale performance comparison are presented in

Section 4.3. The testbed settings and experimental results are detailed in Section 4.4. The summary of

the chapter is given in Section 4.5.

4.2 PCA-based Routing Algorithm

In this section, we will present the details of the dimension reduction procedure with dimensionality

analysis and highlight some implementation issues.

4.2.1 Embedding with Dimension Reduction

In a network with k beacons, each node measures the minimum hop count distance di to each beacon.

The hop count vector (d1, d2, . . . , dk) is utilized to address the nodes. In order to apply PCA, the vec-

tor distances between all pairs of beacon nodes are broadcasted to all nodes. Once a matrix containing

all these vector distance information is obtained, each node independently performs the PCA-based di-

mension reduction process. The result provides nearly isometric embedding coordinates and ensures the

transformed node distance in the embedded graph will approximate the original value. The new virtual

coordinates of each node can be computed from the transformation matrix and the original hop count

vector.

As an illustration, assuming four beacon nodes A, B, C and D are connected consecutively as shown

in Fig. 4.1(a), the hop count vectors of the 4 beacons are [0, 1, 2, 1], [1, 0, 1, 2], [2, 1, 0, 1] and [1, 2, 1, 0].

These vectors form a pair-wise beacon distance matrix M as given in Equation 4.1. We create a matrix

M ′ by normalizing each row of M with a zeroed mean, such that M
′

ij = Mij − (
∑k

x=1Mix)/k.

M =

0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0

, M ′ =

−1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 −1

(4.1)

4.2 PCA-based Routing Algorithm 43

M ′ = U · S · V T , where

U =

−
√
2
2 0

√
2
2 0

0 −
√
2
2 0

√
2
2√

2
2 0

√
2
2 0

0
√
2
2 0

√
2
2

, S =

2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

V T =

√
2
2 0 −

√
2
2 0

0
√
2
2 0 −

√
2
2

−
√
2
2 0 −

√
2
2 0

0 −
√
2
2 0 −

√
2
2

(4.2)

By applying Singular Value Decomposition (SVD) on the normalized distance matrix M ′, [U, S, V T] =

svd(M ′), the result matrixes are computed by Equation 4.2. The diagonal matrix S contains the signif-

icance values σ1, σ2, . . . , σn for all components in a decreasing order. Matrix U is the transformation

matrix for the PCA embedding. The PCA embedding coordinates PA for beacon A can be computed as in

Equation 4.3, where A′ is vector A normalized with a zeroed mean. The PCA embedding coordinates for

B, C and D are PB = [0,
√
2, 0, 0], PC = [−

√
2, 0, 0, 0] and PD = [0,−

√
2, 0, 0]. By taking the first two

components in the result vector as the embedding coordinates (x, y) in R
2 space, the four beacon nodes

can be plotted on a plane, which resembles their original structure as shown in Fig. 4.1(b). It is clear that

the inter-node distance remains unchanged in this isometric embedding, dist(A,B) = dist(PA, PB).

For a normal node E with a hop count vector of E = [1, 1, 1, 1], its embedding coordinates can be com-

puted from the transformation matrix U as PE = E′ · U = [0, 0, 0, 0]. The R
2 coordinates of E is (0, 0),

which is consistent with the relative position of E.

PA = A′ · U = [−1, 0, 1, 0] ·

−
√
2
2 0

√
2
2 0

0 −
√
2
2 0

√
2
2√

2
2 0

√
2
2 0

0
√
2
2 0

√
2
2

= [
√
2, 0, 0, 0] (4.3)

The zeroed-mean normalization is a necessary step, without which the first component in the out-

put will represent the curvature of the data samples [84]. Incidentally, this normalization step is not

performed in ICS. Fig. 4.2 provides an embedding example of 800 nodes. One way to evaluate the

PCA generated virtual coordinates is by looking at the projection on the x-y plane which indicates that

only the coordinates computed with scaling can correctly reflect the relative node position. As shown in

Fig. 4.2(b), the projection without normalization fails to recover the original 2D topology.

An embedding example of a Gabriel graph with 800 nodes is shown in Fig. 4.3. With 70 beacons and

a node density of 14.1, the PCA embedding correctly recovers the overall network structure with only

minor rotation and stretch on the edge. This verifies that PCA-based dimension reduction is capable of

accurately capturing the low-dimensional geometry of the networks by just relying on the connectivity

44 Practical Connectivity-based Routing using Dimension Reduction

-40 -20 0 20 40 60 80 100 120 140-50-40-30-20-10 0
 10 20 30 40 50

-120
-100
-80
-60
-40
-20

 0
 20
 40

Z

Embedding of Nodes, dim = 3

no scaling, 1:2:3
with scaling, 1:2:3

X

Y

Z

(a) 3D Embedding

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60 70 80 90 100 110 120 130

Y
 -

 2
n
d
 C

o
m

p
o
n
e
n
t

X - 1st Component

2D Embedding without Scaling

without scaling

(b) 2D: no scaling

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

-40-30-20-10 0 10 20 30 40 50 60

Y
 -

 2
n

d
 C

o
m

p
o

n
e

n
t

X - 1st Component

2D Embedding with Scaling

with scaling

(c) 2D: with scaling

Figure 4.2: An Embedding Example with and without Scaling

information.

4.2.2 Critical Dimension

A key issue in the dimension reduction procedure is to determine the critical dimensionality required.

The rule of thumb [84] is to draw a scree plot of the principal components and select the 90 percentile

– the first k components that contribute to 90% of the total variance. The variance contribution of the

ith component is computed as σi/
∑n

j=1 σj , where σi is a diagonal entry in matrix S. In the example at

Fig. 4.1(b), the contributions of the first two components are both 0.5.

We use simulation to examine the critical dimensionality required. Nodes are deployed in a 2D and

3D area with a side length of 400m and the communication range is 30m. The number of nodes and

beacons are varied in different scenarios. The distribution of principal components is displayed in the

scree plot at Fig. 4.4. In Fig. 4.4(a), when all nodes are placed on a plane, each of first two components

in the coordinates contributes to 23% ∼ 25% of the total variance, while each non-intrinsic component

contributes less than 7%. In Fig. 4.4(b), when the intrinsic dimensionality becomes three, each of the

first three components contributes to 12% ∼ 15% of the variance, while each of the rest contributes less

than 5%.

The 90-percentile components are illustrated in Fig. 4.4(c) and Fig. 4.4(d). When 10% and 1% of

nodes are randomly selected as the beacons for the 2D and 3D networks, 90% of the total variance comes

from the first 20% of the components. Given that the actual network topology has a limited degree of

4.2 PCA-based Routing Algorithm 45

(a) Original Topology (b) Embedded Topology

Figure 4.3: A 2D Embedding of 800 Nodes with 70 Beacons

freedom, the number of dominant components should remain relatively stable.

Based on the above results, it would seem that the critical dimension needed is fairly large and the

potential for dimension reduction is limited. However, as our application is routing (rather than say

data analysis or image processing), the need to include 90% of the total variance may be unnecessarily

high. In fact, if the deployment is in a 3D space, as little as 4 principal components may suffice in some

deployments.

In practice, we can resort to empirical measurements to assist in the dimension selection. The em-

pirical results show that the critical dimensionality for hop count vector-based routing in 2D and 3D

networks is only between 5 to 7 for uniformly random node placement, which is much smaller than the

20 components required for 90% variance coverage in a network with 1000 nodes.

4.2.3 Routing with Fallback

Assuming a source node S with PCA coordinates [s1, s2, . . . , sk] has a packet for destination T at

[t1, t2, . . . , tk]. Node S will search among all its m neighbors to find the next hop that can minimize

the distance to T . During the greedy forwarding step, upon reaching a local minimum node, a fall-back

mechanism is activated as depicted in Algorithm 3. For each destination T in a k-dimensional Euclidean

space, the packet p contains a distance vector [d1, d2, . . . , dk] to node T , where di(i ∈ [1, k]) represents

the minimum Euclidean distance encountered from any visited node to T , computed from the first i

components of their embedding coordinates. If an intermediate node P has no such a neighbor that can

bring the packet closer to T by dk in the k-dimensional space, P will search in the space of dimension

(k-1) by examining distance dk−1. The fall-back procedure continues until the next hop is found or the

current node P is a local minimum for all di. If the fall-back mechanism fails, the scoped flooding will

be used as the last resort.

An example showing how the fall-back technique can mitigate local minimum problems is illustrated

in Fig. 4.5. For a dimension of k = 2, the Euclidean distance between S and T is dist2(S, T) = 60,

smaller than that of node A – dist2(A, T) = 63.5. Upon the failure of k = 2, the routing algorithm will

fall back to k = 1, where dist1(S, T) = 60 and dist1(A, T) = 56. With dist1(A, T) < dist(S, T),

46 Practical Connectivity-based Routing using Dimension Reduction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20

P
ro

p
o

rt
io

n
 o

f
V

a
ri
a

n
c
e

Principal Component Index

Scree Plot of Principal Components

500 nodes, 10% landmarks
800 nodes, 10% landmarks

1000 nodes, 10% landmarks
2000 nodes, 10% landmarks

Dimension Cut

(a) 2D: Scree Plot

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16 18 20

P
ro

p
o

rt
io

n
 o

f
V

a
ri
a

n
c
e

Principal Component Index

Scree Plot of Principal Components

4000 nodes, 1% landmarks
6000 nodes, 1% landmarks
8000 nodes, 1% landmarks

10000 nodes, 1% landmarks
Dimension Cut

(b) 3D: Scree Plot

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 0.2

 0.4

 0.6

 0.8

 1

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
P

ri
n

c
ip

a
l
C

o
m

p
o
n
e
n
ts

R
a
ti
o
 o

f
9
0
%

 P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
ts

Number of Nodes: 200 to 2000, 10% landmarks

Average Number of 90% Principal Components - 2D

Number of 90% PCs
Number of All PCs
Ratio of 90% PCs

(c) 2D: 90-Percentile

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
P

ri
n

c
ip

a
l
C

o
m

p
o
n
e
n
ts

R
a
ti
o
 o

f
9
0
%

 P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
ts

Number of Nodes: 2000 to 10000, 1% landmarks

Average Number of 90% Principal Components - 3D

Number of 90% PCs
Number of All PCs
Ratio of 90% PCs

(d) 3D: 90-Percentile

Figure 4.4: Distribution of Principal Components in 2D and 3D Networks

node S will use node A as the next hop.

4.2.4 Implementation Issues

Data Structures

As shown in Fig. 4.6, each node maintains three data structures: the hop count vector local hv, the list

of neighbors nbrlist and the matrix containing the inter-beacon distance hv matrix. local hv stores the

hop count entries to all beacons, where parent id refers to the neighbor with the minimum hop count

to that beacon. nbrlist contains the neighbor records, in which the last heard variable records the time

when a neighbor’s beacon is received. The PCA coordinates loc in a neighbor entry stores the 3D

embedding coordinates and the neighbor’s hop count vector is stored in hv. hv matrix keeps a record of

the hop count vectors for all beacon nodes in multiple rows, where each row contains the corresponding

beacon id, parent id and its distance to other beacons. The variable parent id identifies the neighbor

from which this beacon’s hop count vector is received.

4.2 PCA-based Routing Algorithm 47

Algorithm 3 Routing Algorithm with Fall-back

1: Let p be the packet from src S to dst T
2: p arrives at node P with m neighbors Ni(i ∈ [1,m])
3: Dst T ’s coordinates p.t = (t1, t2, . . . , tk) in k-dim space

4: Distance vector to T is p.dv = [d1, d2, . . . , dk]
5: // update the minimum distance to T
6: for i← 1, k do

7: if disti(P, T) < p.dv[i] then

8: p.dv[i] = disti(P, T) ⊲ update di to avoid loop

9: end if

10: end for

11: // search for the next hop

12: for i← k, 1 do ⊲ for each dimension

13: nexthop = null
14: for j ← 1,m do ⊲ for each neighbor

15: if disti(Nj , T) < p.dv[i] then

16: p.dv[i] = disti(Nj , T), nexthop = Nj

17: end if

18: end for

19: if nexthop 6= null then

20: return nexthop ⊲ return the greedy neighbor

21: end if

22: end for

23: flood the packet p for distk(P, T) hops. ⊲ local minimum reached

x

y

S(0,0) T(60,0)

A(4,30)
B(30,35)

C(50,25)

xA=4

dist2(A, T) > dist2(S, T)
dist1(A, T) < dist1(S, T)
nexthop = A

Figure 4.5: Packet Forwarding with Fallback

Memory Requirements

The memory cost for the data structures in Fig. 4.6 is estimated in Table 4.1. The local hop count vector

local hv has maximally 9 entries in the format of [beacon id, hop count, parent id], which consumes

54 bytes. Each neighbor entry uses 2 bytes for id, 4 bytes for last heard timestamp and 12 bytes for

PCA coordinates (x,y,z). The hop count vector hv in the neighbor entry contains maximally 9 hop count

entries, each with a size of 6 bytes. The total number of bytes required for each neighbor is thus 72

bytes. Given a capacity of 20 neighbor entries, the nbrlist consumes 1440 bytes. The matrix of beacon

hop count vector hv matrix has 9 rows, where each row contains a beacon id, a parent id and 9 hop-

count entries of format [beacon id, hop-count]. The size of hv matrix is 360 bytes. The total memory

cost for nbrlist, local hv and hv matrix is thus 1440+54+360 = 1854 bytes.

In a network with less than 255 nodes, it is adequate to use uint8 t type for node id and hop-

count instead of uint16 t, which will reduce the total memory cost from 1854 bytes to 1087 bytes

48 Practical Connectivity-based Routing using Dimension Reduction

nbr_id: 2
last_heard: 4

hv: 54
loc(x,y,z): 12

of entries: 20

Neighbor List (nbrlist)

hopcount: 2
parent_id: 2

landmark_id: 2

Hopcount Vector (hv)

of entries: 9

of rows: 9

parent_id: 2
landmark_id: 2

list of hopcounts(K=9): 36

1:<landmark_id, hopcount>,
2:<landmark_id, hopcount>,

K:<landmark_id, hopcount>

... ...

Landmark Hv Matrix (hv_matrix)

Figure 4.6: Data structures in the nodes: nbrlist, local hv and hv matrix

Table 4.1: Memory Cost (bytes): 20 neighbors and 9 beacons

size of id, hop-count nbrlist local hv hv matrix total

2 Bytes 1440 54 360 1854

1 Byte 880 27 180 1087

and also reduce the control packet size during network initialization. This modification is applied in the

experiments. For generic network scenarios where the average number of neighbors is N and the number

of beacons is B, the memory cost can be computed by Equation 4.4.

cost2b = (18 + 6B)N + 6B + 4B(B + 1), if 2 bytes for node id and hop count.

cost1b = (17 + 3B)N + 3B + 2B(B + 1), if 1 byte for node id and hop count. (4.4)

Timer-based Operation

The operation of the nodes are controlled by three timers: beacon timer, nbrlist refresh timer and the

beacon hv timer. The beacon timer allows each node to periodically broadcast a beacon packet contain-

ing its nodeid (id) and hop count vector (hv). Once a beacon is received from a neighbor nbr, the node

will either insert a nbr entry to nbrlist if it is from a new neighbor or update the nbr.last heard timestamp

for an existing neighbor. For each new beacon learned from that beacon, a new hop count entry will

be created in the local hop count vector local hv. For all entries in local hv whose parent is nbr, if the

corresponding beacon is not found in nbr’s beacon, those invalid entries will be erased. To avoid the

count to infinity problem, a clear entry message will be sent for each removed entry, such that the stale

beacon records in the child nodes will be cleared accordingly. The details are presented in Algorithm 4.

The nbrlist refresh timer is used to detect the missing neighbors due to link quality changes or

hardware failure. A neighbor nbr will be removed if its beacon has not been received for 10 beacon

intervals. For each local hop count entry v ∈ local hv, if v.parent id = nbr.id, v will be removed and

a clear entry messages will be sent. Similarly, for each row r ∈ hv matrix, if r.parent id = nbr.id, r

will be removed from hv matrix.

The beacon nodes use beacon hv timer to broadcast the beacon hv message, which consists of the

beacon id and local hv. All nodes receiving the beacon hv message will insert the beacon hop count

4.2 PCA-based Routing Algorithm 49

Algorithm 4 Actions triggered by beacon timer

1: each node broadcasts beacon every 10s. a beacon from nbr is received.

2: if nbr.id /∈ nbr list then ⊲ nbr is a new neighbor

3: add nbr to nbr list

4: else ⊲ update timestamp of an existing neighbor

5: update nbr.last heard to the current time.

6: end if

7: for each v ∈ nbr.hv do

8: if v.beacon id /∈ local hv then ⊲ nbr has a new beacon

9: insert [v.beacon id, v.hopcount, nbr.id] to local hv

10: else if v.beacon id = w.beacon id and v.hopcount < w.hopcount - 1, where w ∈ local hv then ⊲ nbr has a lower hop

count

11: set w.parent id = nbr.id and w.hopcount = v.hopcount+ 1
12: end if

13: end for

14: for each w ∈ local hv do ⊲ refresh local hv

15: if w.parent id = nbr.id then

16: if w.beacon id /∈ nbr.hv then ⊲ w is a stale entry

17: remove w from local hv, forward clear entry msg.

18: else if w.beacon id = v.beacon id(v ∈ nbr.hv) then

19: w.hopcount = v.hopcount+ 1
20: end if

21: end if

22: end for

Algorithm 5 Actions triggered by nbrlist refresh timer

1: nbrlist is refreshed every 10 beacon intervals.

2: for each n ∈ nbrlist do ⊲ remove stale neighbors

3: if n is a stale neighbor then

4: remove n from nbrlist

5: for each w ∈ local hv do ⊲ refresh local hv

6: if v.parent id = n.id then

7: remove v from nbrlist, send clear entry msg

8: end if

9: end for

10: for each row r ∈ hv matrix do ⊲ refresh hv matrix

11: if r.parent id = n.id then

12: remove r from hv matrix

13: end if

14: end for

15: end if

16: end for

50 Practical Connectivity-based Routing using Dimension Reduction

vector to hv matrix. In order to reduce the network traffic, each node will only forward the beacon hv

messages received from the parent nodes in local hv. Once hv matrix and local hv have obtained com-

patible entries, each node will be able to calculate its embedding coordinates independently.

Algorithm 6 Actions triggered by beacon hv timer

1: beacon nodes broadcast beacon hv every 30s for 5 minutes.

2: the previous hop is denoted as prevhop

3: if beacon hv.id /∈ hv matrix then ⊲ a new beacon hv

4: insert [beacon id, prevhop.id, beacon hv] to hv matrix

5: forward the beacon hv

6: else

7: if ∃ row r ∈ hv matrix, r.beacon id = beacon hv.id then

8: r.parent id = prevhop.id, update r.hv with beacon hv

9: forward beacon hv

10: else ⊲ this beacon hv is not from parent

11: ignore the beacon hv

12: end if

13: end if

4.3 Simulation Results

We first evaluate performance in simulation so results for large network can be obtained. In Section 4.4,

evaluation on a 48 nodes MICAz testbed will be presented. In the rest of this chapter, we use PCA to

denote the routing algorithm leveraging the PCA coordinates. For simulation performance comparison,

we implemented Greedy, BVR, LCR and PCA in ns-2 and the above mentioned protocols with S4 in a

Java-based simulator. The output of the Java simulator is verified with ns-2. Due to the limited scalability

of ns-2, the simulation results presented in this section are obtained from the customized simulator. PCA

employs the Jama [85] library to perform singular value decomposition.

Table 4.2: Simulation Parameters
Name Value

Deployment Space 400m×400m

Number of Nodes 100∼ 2000

Topology 50 topos/density, uniform random

Radio Range 30m, unit disk model

Connections 100 connections/topo

Routing Beacons max = 10

Routing Protocols Greedy, BVR, LCR, PCA, S4

The simulation parameters are listed in Table 4.2. The simulation area is a square plane with a side

length of 400m. The number of nodes deployed varies from 100 to 2000. We assume that we have an area

with a fixed size to monitor; all sensor nodes have a fixed communication range; and the nodes are placed

in a uniformly random manner. We want to examine how the delivery performance will change when

the number of nodes varies. In this case, the network size (the total number of nodes) and the network

density are consistent. With a radio range of 30m, the node density range is [1.77, 35.34]. For each

node density, 50 random topologies are generated and within each topology, 100 node pairs are chosen

4.3 Simulation Results 51

to be the source and destination. For PCA, 10% of the nodes are selected to be candidate beacons. The

maximum number of routing beacons for LCR and BVR is set to 10 as suggested in [23] and [24]. The

number of beacons used by S4 is
√
n by default [50], where n is the number of nodes. We use the five

protocols to route packets for each connection and measure the packet delivery ratio, the hop stretch and

the average flooding range as the performance metrics.

4.3.1 Packet Delivery Ratio

The packet delivery ratio is measured as the proportion of packets that can be successfully delivered with-

out flooding. The packet delivery ratios of all protocols are given in Fig. 4.7. When the network density

grows above 5, S4 can deliver 100% of the packets, as a result of its cluster-based routing scheme. For

PCA to be effective, the number of beacons in the distance matrix should be larger than the dimensional-

ity of the deployment space. In a sparse network with a node density less than 5, the number of beacons

in a connected component is often below the threshold, leading to a performance inferior to BVR. The

PCA coordinates achieve a higher packet delivery ratio, as the node density grows above 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

P
a
c
k
e
t

D
e
liv

e
ry

 R
a
ti
o

Average Node Density

Packet Delivery Ratio vs Node Density

GREEDY
LCR
BVR
PCA

S4

Figure 4.7: Packet Delivery Ratio

At the medium node density range of 5 ∼ 15, the packet delivery ratio of PCA is 73.3% ∼ 97.9%,

significantly higher than that of LCR. BVR employs a backtrack procedure that diverts the packet to the

closest beacon from the local minimum position, obtaining a delivery ratio of 69.1% to 90.4%. At the

highest node density of 35, the delivery ratios for LCR and BVR reach 90.1% and 97.3, while PCA has

a higher delivery ratio of 99.9%, nearly equivalent to the performance of greedy forwarding with perfect

position information.

4.3.2 Hop Stretch Factor

Assuming the routing protocol generates a path of hp hops and the shortest path has hs hops, the hop

stretch λ is computed as λ =
hp

hs
. In an ideal network, the protocol with a lower hop stretch λ achieves

shorter routing paths and lower delay. The hop stretch performance is shown in Fig. 4.8.

The greedy protocol achieves the lowest hop stretch over the entire density range. The hop stretch of

52 Practical Connectivity-based Routing using Dimension Reduction

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 5 10 15 20 25 30 35 40

H
o

p
 S

tr
e

c
th

 F
a

c
to

r

Average Node Density

Hop Stretch Factor vs Node Density

Greedy
LCR
BVR
PCA

S4

Figure 4.8: Hop Stretch Factor

PCA is lower than that of BVR and comparable to that of LCR and S4 at node densities less than 8. As

the node density increases above 8, the hop stretch of BVR, S4 and PCA starts to stabilize, while LCR’s

hop stretch gradually increases. The converged hop stretch values for BVR, LCR, S4 and PCA are 1.12,

1.09, 1.07 and 1.02. Thus, for high density networks, the routing paths discovered by PCA is 5% ∼ 9%

shorter than the rest.

4.3.3 Scoped Flooding Range

For BVR, LCR and PCA, the primary forwarding procedure may fail to deliver a packet due to anomalies

in the coordinates, while scoped flooding can be invoked as a recovery step. As the network traffic grows

exponentially during flooding, the protocol with a shorter flooding range introduces less duplicate packets

to the network.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 F

lo
o
d
in

g
 R

a
n
g
e

Average Node Density

Average Flooding Range vs Node Density

Greedy
LCR
BVR
PCA

S4

Figure 4.9: Average Flooding Range

In Fig. 4.9, S4 has the lowest flooding range because of its high delivery ratio, while PCA and BVR

obtain a lower flooding range than LCR. At the node density around 5.3, the average flooding range for

4.3 Simulation Results 53

all protocols except S4 reaches the peak as scoped flooding is frequently triggered. (We ignore the cases

when density < 5, as the network is barely connected.) The maximum flooding ranges for Greedy, LCR,

BVR and PCA are 9.8, 7.5, 2.1, and 2.4 hops. As the node density increases, all protocols obtain higher

delivery ratio and the flooding range starts to decrease. The converged flooding range values for LCR

and BVR are 0.95, and 0.14, while the flooding range of PCA approaches the minimum value of 0.

4.3.4 Storage and Transmission Cost

In Fig. 4.10 and Fig. 4.11, we plot the storage and transmission cost for all protocols to maintain the

routing states. The storage cost includes the memory space required to keep the local coordinates and all

the one-hop neighbors’ coordinates. The transmission cost represents the amount of data sent by each

node to build the hop count vectors, exchange the coordinates and update the location server.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40

S
to

ra
g
e
 C

o
s
t
(b

y
te

s
)

Average Node Density

Routing State Storage Cost vs Node Density

Greedy
LCR
BVR
PCA

S4

(a) Storage Cost of Routing States

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
to

ra
g
e
 C

o
s
t
(b

y
te

s
)

Number of Nodes

Routing State Storage Cost, node density = 10

PCA
S4

(b) Storage Cost at a Fixed Density

Figure 4.10: Storage Cost of the Routing States

In Fig. 4.10(a), the storage cost of all protocols grows as the network size increases, as more memory

will be used to record the coordinates of the increasing neighborhood. The BVR has the highest storage

cost, as its hop count vectors contain the beacon’s ID, the next hop ID and the hop count distance. The

storage cost of S4 is lower than BVR, but higher than that of LCR and PCA. The memory required in

S4 depends on the network density and the number of beacons used. In a given network, a node will

consume more memory to store the cluster information when fewer beacons are available, because the

radius of the cluster equals the distance to the nearest beacon. LCR and PCA has lower storage cost

than BVR and S4, as they only require ten entries in the coordinates, indicating the distances to the ten

routing beacons or the top ten components of the dimension reduction results. We plot the storage cost

of PCA and S4 for a fixed node density of 10 in Fig. 4.10(b). As the number of nodes increases, the

storage cost of S4 increases accordingly, because the total number of beacons does not grow as fast as

the network size, creating larger clusters in the networks. As the cluster diameter increases, a node will

be covered by more clusters, leading to more entries to be stored in the routing table. The storage cost

of PCA remains relatively constant, because the amount of routing states for PCA is determined by the

number of neighbors, which is static in this case.

Fig. 4.11 shows that the transmission cost of BVR and LCR is much lower than S4 and PCA, as the

54 Practical Connectivity-based Routing using Dimension Reduction

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35 40

T
ra

n
s
m

is
s
io

n
 C

o
s
t
(b

y
te

s
)

Average Node Density

Routing State Transmission Cost vs Node Density

Greedy
LCR
BVR
PCA

S4

Figure 4.11: Transmission Cost of the Routing States

number of beacons used by both protocols is relatively small. The transmission cost of S4 mainly comes

from the exchange of messages to build the clusters, which gradually increases with the network size.

PCA sends more data than the other protocols, because PCA employs 10% of the nodes as candidate

beacons and collects the hop count vectors from all beacons for the dimension reduction procedure.

The number of beacons increases linearly with the network size, leading to a persistent increase in the

transmission cost. The maximum cost for PCA is around 8000 bytes, or approximately 80 packets,

given that the maximum packet size in TinyOS-2 is 128 bytes. We believe this transmission cost is

still acceptable, as the full scale collection of hop count vectors is only invoked once at the network

initialization stage.

4.3.5 Effects of Dimensionality

While utilizing more components in PCA coordinates provides better routing performance, it also brings

higher demands for processing time and memory space in the packet header. Determining the critical

dimensionality is important for obtaining a balance between routing performance and overhead. We use

empirical results to derive the critical dimensionality value.

Table 4.3: Performance of PCA at Critical Density of 5
Metric 2D Networks

Dimensionality 2 3 5∗ 10 20

Delivery Ratio 52.6% 62.4% 70.5% 73.3% 73.5%

Hop Stretch 1.04 1.03 1.03 1.02 1.02

Flooding Range 4.12 3.28 2.60 2.45 2.44

In general, when node density increases, the need for higher dimension reduces. Therefore, the effect

of dimension is more crucial at lower node density. The routing performance of PCA with node density

5.3 under various dimensionalities is summarized in Table 4.3. We choose to highlight node density 5.3

because this is the minimum node density required for any geographical or connectivity-based algorithm

to work well. For higher node density, equal or less components will be needed.

4.4 Testbed Results 55

COM−1−Basement

z−001

z−002 z−003 z−004 z−005

z−006 z−007 z−008 z−009

z−010

z−011

z−012

z−013

z−014

z−015

z−016

z−017

z−018 z−019 z−020 z−021

z−022

z−023z−024

z−025

(a) Node z-001 to z-025 in Basement

COM1−Level−1

z−027

z−028

z−029

z−030

z−031 z−032 z−033 z−034 z−035 z−036

z−037

z−038

z−039

z−040

z−041z−042
z−043

z−044

z−045

z−046
z−047z−048z−049

(b) Node z-027 to z-049 in Level-1

Figure 4.12: Deployment Floorplan of the Testbed(inter-floor links not shown). Beacons: 2, 8, 18, 21,

28, 31, 36, 38, 45

As shown in the table, routing performance gradually improves as more dimensions or components

are utilized. In this 2D deployment, the incremental improvement diminishes rapidly beyond a dimension

of 5. As the components are sorted in their significance order, the subsequent components in the PCA

coordinates will have even lower influence on routing performance.

To summarize, for 2D networks, the performance of PCA stabilizes once the dimensionality reaches

5. For 3D networks, the critical dimensionality is around 7.

4.4 Testbed Results

To explore the practicality of the dimension reduction method for real sensor networks, we implemented

the PCA algorithm on MICAz [80] motes with 4KB RAM running TinyOS-2 [36]. The singular value

decomposition code is adopted from [86]. The experiments were conducted on a testbed deployed on two

floors of an office building, as demonstrated in Fig. 4.12. The parameter settings are listed in Table 4.4.

Table 4.4: Parameter Settings of the Testbed

Parameter Value

Network Size 48 MICAz nodes, 303 directional links

Num of Neighbors avg = 6.31, min = 2, max = 15

Transmission Power 31 (max, 0 dBm)

802.15.4 Channel 26 (default)

Number of Beacons 9 (4 in basement, 5 in level-1)

Intrinsic Dimension 3 (25 in basement, 23 in level-1)

The testbed contains 48 nodes and 303 directional links. All nodes transmit at the maximum power

level of 31. We deploy nodes z-001 to z-025 at the basement floor and nodes z-027 to z-049 at the floor

level-1. Nine nodes were chosen as the beacons, four in the basement and five in level-1. Fig. 4.13 gives

a snapshot of the deployment. The distribution of node degree is displayed in Fig. 4.14(a), where the

average number of neighbors at each node is 6.31.

Network initialization took five minutes for neighbor discovery and hop count propagation. Once the

beacon hop count matrix and the hop count vector are established, each node computes its coordinates

individually as described in Section 4.2.1. Only the first three components are used for the embedding

56 Practical Connectivity-based Routing using Dimension Reduction

(a) z-003 at Basement (b) z-027, z-028 at Level-1

Figure 4.13: Images of Nodes deployed in the Testbed

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

N
o
d
e
 C

o
u
n
t

Node Degree k (Number of Neighors)

Distribution of Node Degree

Number of Nodes with Degree k

(a) Distribution of Node Degree

-8 -6 -4 -2 0 2 4 6
-4

-3
-2

-1
 0

 1
 2

 3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

Z

Virtual Coordinates of Nodes

Basement
Level-1

X

Y

Z

(b) Network Embedding

Figure 4.14: Node Degree and 3D Embedding Graph of 48 Nodes

4.4 Testbed Results 57

in order to reduce the overhead in the packet header. The coordinates plotted in Fig. 4.14(b) show that

nodes on different floors clearly form two clusters, implying that the PCA coordinates can successfully

retain the locality feature.

4.4.1 Distance Metric Comparison

To compare the Euclidean distance computed from the hop count vectors and the PCA coordinates,

we calculate the inter-node distances in both ways. For two nodes A and B with hop count vectors

[a1, a2, . . . , an] and [b1, b2, . . . , bn], the hop count vector distance dhv is computed as dhv =
√
∑n

i=1 (ai − bi)2.

The PCA distance dpca between A and B is the Euclidean distance computed from their PCA coordinates

(xA, yA, zA) and (xB, yB, zB). We plot the difference between these two distances δ = dhv − dpca in

Fig. 4.15, where 50% of the distances computed from the PCA coordinates are within a deviation of 0.25

from the corresponding full hop count vector distances.

-6

-4

-2

 0

 2

 4

 6

 8

 0 200 400 600 800 1000 1200

D
if
fe

re
n
c
e
 i
n
 D

is
ta

n
c
e
:
d

h
v
 -

 d
p

c
a

Index of For Node Pair i and j

Difference between HV and PCA Distances

Difference: dhv - dpca

(a) Difference: dhv − dpca

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

D
is

tr
ib

u
ti
o
n

Ratio = |dhv - dpca|/dhv

CDF of Difference Ratio between dhv and dpca

Difference Ratio

(b) CDF of Difference Ratio

Figure 4.15: Comparison between Distances: dhv and dpca

We use the Spearman’s Rank Correlation metric to quantify the effectiveness of using PCA coordi-

nates to replace hop count vectors. Given two ranking lists X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn],

the Spearman’s Rank Correlation Coefficient ρ between X and Y can be computed by Formula 4.5. The

value of ρ varies in the range of [−1, 1]. A higher coefficient value indicates a higher consistency between

the two lists.

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, where di = xi − yi (4.5)

For each node Ni, we compute its hop count vector distance dij to each node Nj(j ∈ [1, n]) and form

a distance vector D = [di1, di2, . . . , din]. According to the distance dij , we assign a rank rij(rij ∈ [1, n])

to node Nj , such that if dij < dik, rij < rik. We use Ri
hv = [ri1, ri2, . . . , rin] to denote the ranking list

of hop count vectors at node Ni. We compute another ranking list with the PCA coordinates and name it

Ri
pca. For each node Ni, the correlation ρi between Ri

hv and Ri
pca is computed as in Equation 4.5.

The correlation coefficient values at each node are depicted in Fig. 4.16(a). The correlation lies in

a range of [0.39, 0.91], with an average equal to 0.76 and a standard deviation of 0.017. As shown in

58 Practical Connectivity-based Routing using Dimension Reduction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

Index of 48 Nodes in the Testbed

Spearman’s Rank Correlation between dhv and dpca

Correlation

(a) Correlation at 48 Nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.2 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s

Correlation Coefficient Value

CDF of Correlation between dhv and dpca

3D PCA
3 random landmarks

(b) CDF of Correlation

Figure 4.16: Spearman’s Rank Correlation between dhv and dpca

Fig. 4.16(b), 80% of the nodes have a correlation above 0.65, indicating that the node locality character-

istics estimated from the PCA coordinates is highly consistent to that of the full hop count vectors using

all 9 beacons.

For comparison, Fig. 4.16(b) shows the CDF of distance correlation using 3 randomly chosen bea-

cons as is done on LCR (data is averaged of 5 different data sets). It is clear that with the same amount of

overhead, the randomly chosen beacons significantly deviates from the geometry of the original graph.

4.4.2 Routing Performance

To compare the routing performance, we employ greedy forwarding to find a routing path between two

nodes based on dhv and dpca respectively. We measure the number of paths discovered and the path

length Lhv and Lpca. The hop stretch λ =
Lpca

Lhv
will imply the performance degradation by using the

lower-dimensional coordinates instead of the full hop count vector for routing. The results are provided

in Table. 4.5.

Table 4.5: Routing Performance Evaluation of dhv and dpca
No. of Paths Path Length Hop Stretch over dhv

dhv 581+467=1048 [1, 11], avg = 3.85 1

dpca 581+417=998 [1, 11], avg = 3.94 [0.17, 4], avg = 1.12

With 48 nodes in the network, we can form 2256 pairs of source and destination. The dhv distance

metric discovered 1048 paths and the dpca metric discovered 998 paths. Only 581 of the paths are

common to both metrics. In terms of packet delivery ratio, dpca found 95.2% of the paths discovered by

dhv. The path length of applying dhv and dpca varies in the range of [1, 11], where dhv has an average

of 3.85 hops. The average path length of dpca is 3.94, a slight increment of 2%. The hop stretch of dpca

over dhv ranges from 0.17 to 4; thus, either metric has found some paths shorter than the ones discovered

by the other. The overall hop stretch factor of dpca is 1.12, representing an average increment of just 1.3

hops in the worst case.

The path lengths are displayed in Fig. 4.17(a) and the routes discovered by dhv and dpca are marked

4.4 Testbed Results 59

-15

-10

-5

 0

 5

 10

 15

 0 500 1000 1500 2000 2500

P
a
th

 L
e
n
g
th

 i
n
 H

o
p
s

Node Pair Index

Path Length Comparison of dhv and dpca

Top: PCA Coordinates
Bottom: Hopcount Vector

(a) Path Length for Node Pairs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

Y
 -

 D
e
s
ti
n
a
ti
o
n
 N

o
d
e
 I

n
d
e
x

X - Source Node Index

Path Distribution over Node Pairs for dhv

(b) Paths found by dhv

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

Y
 -

 D
e
s
ti
n
a
ti
o
n
 N

o
d
e
 I
n
d
e
x

X - Source Node Index

Path Dsitribution over Node Pairs for dpca

(c) Paths found by dpca

Figure 4.17: Distribution of paths discovered by dhv and dpca. A + at position (x, y) indicates a path is

found from node x to node y.

60 Practical Connectivity-based Routing using Dimension Reduction

in Fig. 4.17(b) and Fig. 4.17(c). The route map of dpca in Fig. 4.17(c) clearly indicates that nodes from

z-013 to z-020 form a cluster inaccessible from the rest part of the network, causing most routing failures.

This is due to the lack of resolution in the input hop count vectors. It is possible to alleviate the problem

by applying pair-wise transmission power control [87] to create a small-scale multi-hop topology in

these nodes or introducing additional beacon nodes in this cluster. Meanwhile, the route map of dhv in

Fig. 4.17(b) is less indicative for network performance diagnosis.

4.4.3 Packet Overhead

The control overhead in the packets mainly comes from the hop count vectors or coordinates used to

address the destination. To use the full hop count vector of the destination, each packet must carry

the hop count entries to 9 beacons. Assuming that both nodeid and hopcount are of uint 16 type,

this constitutes 36 bytes. The dpca metric relies only on the 3D embedded coordinates, which cost 12

bytes – just one third of that in dhv. It can be further reduced to 8 bytes, if all nodes are placed on

a plane. Although the PCA operation has to maintain a hop count matrix of size n2 (n is the number

of beacons), the memory and computational overhead is only required once during the initialization

stage. The memory space can be reclaimed once the procedure completes. Therefore, the computational

overhead of the PCA coordinates is transient, while the storage and communication overhead of applying

full hop count vectors is persistent throughout the entire network lifetime.

In summary, using dimension reduction method, the routing protocol can work with only 3 compo-

nents, while maintaining equivalent packet delivery performance with negligible hop stretch overhead.

4.5 Summary

In this chapter, we evaluated the technique of applying dimension reduction method for hop count vector-

based routing. By extracting the underlying dimension information from the sampled connectivity graph,

the resulted coordinates can significantly improve routing efficiency. We implemented the PCA algo-

rithm on MICAz nodes and conducted experiments on a medium-scale testbed. With a 3D embedding

of 9 beacons, the distance computed from the virtual coordinates can closely approximate the distance

computed by the full hop count vector. The experiment results show that the dimension reduction al-

gorithm can effectively reduce the packet overhead to make connectivity-based greedy forwarding more

applicable for real sensor network deployments, without compromising the routing performance signifi-

cantly.

Chapter 5

Implementation and Experiments on the

Indriya Testbed

Many proposed algorithms are impractical because they cannot fit on practical motes like TelosB. In

TOSSIM, the same memory limitations are not present, hence we deploy and evaluate our algorithms on

a real testbed. We have implemented PCA, LCR and VPCR in TinyOS 2.1 and perform point-to-point

transmission on the Indriya testbed.

The key components of the algorithms incorporate some changes to the variable types and the data

structures in order to cope with the software and hardware constraints in the sensor nodes. This will help

us to understand the scalability of the algorithm when being deployed in the current sensor platform. The

experiments with real link quality measurements will also reveal the actual routing performance of the

protocols in a real network environment. The implementation process helps to verify the applicability of

the current point-to-point routing design and it also identifies some key issues, that may affect the run

time performance of all protocols.

Due to the complexity of the algorithms and the hardware constraints in the MICAz and TelosB

sensor platforms available to us, we leave the implementation of SCR for future work.

5.1 Implementation of the PCA-based Routing Algorithm

We compare the performance of PCA with LCR and VPCR, because the latter two represent two main

streams of the connectivity-based routing protocols: hop count vector-based routing and tree-based rout-

ing. The implementation details of these protocols will be introduced in this section, including link

quality estimation, construction of hop count vectors, computation and allocation of the geographic co-

ordinates and the location service.

The procedures to build the VPCR tree and compute the PCA coordinates are summarized in Fig. 5.1.

After booting up, all nodes will initiate the neighbor discovery process by exchanging beacons. The peri-

odic beacons are used to estimate the packet reception ratio and ETX (expected number of transmissions)

on each link. The anchor nodes for the PCA and LCR routing will announce their identities to the net-

work such that the hop count vectors can be constructed. Meanwhile, VPCR will build a spanning tree

from the links with low ETX values and the size of each subtree will be reported to the root. From the

62 Implementation and Experiments on the Indriya Testbed

root downwards, the nodes at each level will allocate the polar coordinates to the children proportional

to the subtree size. Once the PCA coordinates and the polar coordinates have been assigned, all nodes

will upload their addresses to the root to create a lookup directory for the location service. We include

the description of location service because it is a fundamental requirement for all geographic routing

protocols and it is often ignored in the performance evaluation of previous works. The design of the

location service will impose significant impacts on the outcome of geographic routing. The details of

each step are given in the following sections.

Build Spannng Tree
with Polar Coordinates

Build NeighborList Estimate Link Quality

Propagate Anchor Hopcount
Vectors, build matrix

Upload Coordinates
to Parent Nodes

b. anchor matrix is full loaded
c. local_hv matches anchor matrix

a. subtree size is reported

Compute PCA Coordnates

4. select parent, get subtree size

1. broadcast beacons, win = 20

3. embed anchor_hv in beacon2. choose parent by ETX for anchors

Build Local Hopcount
Vector (ETX based)

6. upload addresses of all subtree nodes
5. apply dimension reduction to hopcount vectors

Figure 5.1: Procedures to Compute Coordinates and Update Address Cache

5.1.1 Link Quality Estimation

All nodes monitor the link quality by keeping track of the incoming beacons. As described in Ap-

pendix C, the link quality results measured by broadcast probes give a close approximation to the results

of the unicast probes. Hence, all neighbors are probed simultaneously which will substantially shorten

the probe latency compared to iterative unicast probes, especially in a dense network. Since beacons are

commonly used in wireless network protocols to maintain network connectivity, utilizing the existing

control traffic will reduce the network overhead and conserve the bandwidth for data traffic.

The receiver can keep track of the lost beacons and derive the packet reception ratio from the se-

quence number in the beacons, as shown in Algorithm 7. A node keeps two counter r and l for each

neighbor Ni, where r is the number of beacons received from Ni and l is the number of lost beacons.

When a beacon B arrives, the receiver will compare the sequence number in the beacon B.seqno with

the previous sequence number from Ni, Ni.seqno. The gap between the two numbers is computed as

gap = B.seqno − Ni.seqno and the number of lost beacons is updated as l = l + (gap − 1). As the

sequence number is of uint8 t type, if it wraps around after 255, we will have gap < 0. In this case,

we calibrate gap by setting gap = gap + 255. The packet reception ratio is updated as r
r+l

after every

5.1 Implementation of the PCA-based Routing Algorithm 63

Algorithm 7 Estimating Incoming PRR from Received Beacons

1: // Assume Beacon B is received from neighbor Ni

2: Beacon Win = 20 ⊲ PRR estimation interval

3: gap = B.seq −Ni.seq
4: Ni.num recvd += 1
5: if gap < 0 then ⊲ beacon sequence number wrapped around

6: gap += 255; ⊲ B.seq is uint8 t

7: end if

8: Ni.num lost += (gap− 1)
9: if Ni.num lost+Ni.num recvd ≥ Beacon Win then ⊲ enough beacons to update PRR

10: Ni.incoming prr = Ni.num recvd/(Ni.num recvd+Ni.num lost)
11: Ni.num recvd = 0 ⊲ reset the counters

12: Ni.num lost = 0
13: end if

14: Ni.seq = B.seq ⊲ update the current sequence number

20 beacon intervals.

A

B

D

C

PRR Measured at A:
B −> A: 90%
C −> A: 80%
D −> A: 90%

B C

A

D

A −> C: 100%

C −> A: 80%

ETX of AC: 1.25

A −> B: 70%

ETX of AB: 1.59

B −> A: 90%

Beacon of A carries incoming
PRR of B, C and D:

B −> A: 90%
C −> A: 80%
D −> A: 90%

A −> D: 80%

ETX of AD: 1.39

D −> A: 90%

A −> D: 80%

beacon of A

beacon of B

beacon of C

beacon of D

beacon of A

A −> C: 100%A −> B: 70%

Figure 5.2: Link Quality Estimation and ETX Computation

While the incoming packet reception ratio measured by Algorithm 7 is directional, we use the esti-

mated number of transmissions (ETX) to quantify the link quality. Assuming that p and q represent the

incoming and outgoing packet reception ratios, the link ETX is computed as 1
pq

. A node can measure the

incoming PRR p by monitoring the beacons received. In order to advertise the corresponding outgoing

PRR to the neighbors, each node will iteratively attach the incoming PRRs of 5 neighbors in each beacon

message. This procedure is illustrated by an example in Fig. 5.2. For a node with 40 neighbors and

a beacon interval of 10 seconds, it will take 8 beacon messages to announce the incoming PRRs from

all neighbors. Therefore, it will complete the exchange of link qualities after 80 seconds. In order to

maintain a stable topology, the links with low ETX are used to construct the spanning tree and propagate

the hop count vectors.

5.1.2 Local Hop count Vector

The anchor nodes are identified by a flag in their beacons. In a network with k anchor nodes, k spanning

trees will be built, one from each anchor. Every node will choose a neighbor with the minimum cumula-

tive ETX as the parent to reach the anchor. The hop count metric is not used here, because hop count can

64 Implementation and Experiments on the Indriya Testbed

be easily interfered by transient links providing shorter paths but poor connectivity, leading to unstable

topologies. The ETX metric can effectively reduce oscillation in the topology based on link qualities

estimated through continuous observation. Compared to the blacklisting method, the ETX metric will

prevent the network segmentation problem caused by a rigid threshold. Exploiting all links available in

the network will also improve the resilience to changes in the nodes’ connectivity.

Node

uint8_t nodeid,

hc_entry_t* local_hv,
Row_t* anchor_hc_matrix,

Addr_t* local_addr,
Child_t* child_list,

Neighbor_t* nbr_list,

uint8_t from_nodeid,
uint8_t anchor_nodeid,

float etx,
uint8_t hopcount,

hc_entry_t

uint8_t src_nodeid,

BeaconMsg

uint8_t seqno,

uint8_t spt_root_nodeid,
Addr_t addr,
hc_entry_t* local_hv,

uint8_t spt_parent_nodeid,
uint32_t spt_etx,

uint8_t incoming_prrs[5],
uint8_t nbr_nodeids[5],
uint8_t spt_subtree_size,
uint8_t spt_hopcount,

Neighbor’s beacon msg

Figure 5.3: Format the Hop count Vector Entries

As depicted in Fig. 5.3, the hop count vector contains a list of entries, corresponding to the anchors in

the network. A hop count entry consists of the anchor’s node ID, the parent node ID, the cumulative ETX

and the hop distance between the node and the anchor. The hop count vector local hv is embedded in

the beacons, such that a spanning tree based on minimum ETX can be constructed from each anchor.

A

B

C

D

PRR = 0.3

0.8
1.0

0.2
0.2

1.0

1.0

0.9
P1

P2

A

B

C

D

P1

P2

ETX = 11.11

1.23

25

1.56
1.0

1.0

1.0

25

Anchors: P1 and P2

Compute ETX

Select nodes with min ETX as parents

Hopcount vectors (anchor, parent, etx, hopcount):

D: (P1, B, 2.56, 2), (P2, B, 3.23, 3);

C: (P1, D, 3.56, 3), (P2, D, 4.23, 4);

B: (P1, P1, 1.56, 1), (P2, A, 2.23, 2);

A: (P1, B, 2.56, 2), (P2, P2, 1.23, 1);

Figure 5.4: Build Hop count Vectors based on Link ETX

The example in Fig. 5.4 shows how the node’s hop count vector is obtained, where node P1 and P2

are the anchors. Assume all links are symmetric and the figure beside a link refers to the PRR in both

directions. To minimize the path ETX, node A selects B as the parent for anchor P1 and P2 as the

parent for anchor P2. The path ETX from A to P1 is 2.56 with hop count equal to 2. The path from A

to P2 has a hop count of 1 and ETX of 1.23. Therefore, the hop count vector of A is [(P1, B, 2.56, 2),

(P2, P2, 1.23, 1)], which can be applied in LCR routing and also be used to calculate PCA coordinates

once the anchors’ hop count matrix has been propagated.

5.1.3 Anchor Hop count Matrix

To perform dimension reduction, the hop count vectors of all anchors must be propagated to all nodes.

These vectors will form a matrix representing the hop distance between each pair of anchors. Besides the

conventional flooding method, we have also attempted a hop-by-hop propagation approach (Algorithm 8)

5.1 Implementation of the PCA-based Routing Algorithm 65

to advertise the anchors’ hop count vectors. In the flooding method, each anchor maintains a timer

to periodically broadcast its hop count vector to the neighbors. Upon receiving the update, a node

will examine the sender of the message. If the sender is not the parent, the message will be ignored.

Otherwise, the node will update the local record and continue the broadcast. The flooding method can

dissipate the hop count vector information in a timely manner. However, the chain reactions triggered

by flooding may cause severe network contention in dense areas and lead to message loss. Since a node

will only accept the copy from the parent and each message is forwarded only once, a weak link on the

spanning tree may repeatedly interrupt the message propagation and increase the convergence delay. Due

to these drawbacks of flooding, the slower but more reliable hop-by-hop propagation method is used in

the current implementation.

Algorithm 8 Hop by Hop Propagation of Anchor Hop count Matrix

1: Let max dim = 7 ⊲ the maximum number of anchors is 7

2: Let anchor idx = 0 ⊲ index of anchors

3: Let target vector = null ⊲ hop count vector to send

4: Schedule a periodic timer t whose interval is 10 / 60 seconds.

5: if t is fired then

6: for i = 0 to max dim− 1 do

7: anchor idx = (anchor idx+ 1)%max dim
8: hc vector = anchor hc matrix[ancchor idx]
9: if hc vector.anchor nodeid > 0 then ⊲ the hop count vector entry is valid

10: target vector = hc vector
11: end if

12: end for

13: broadcast target vector
14: end if

The propagation algorithm is given in Algorithm 8. If a hop count vector is sent by the parent, the

node will store the received vector in a matrix named anchor hc matrix. A timer t is scheduled at

the interval of 10 seconds during initialization. When t fires, the node will fetch a valid hop count vector

entry from the matrix and advertise it to the neighbors. The periodic timer is used to avoid simultaneous

packet forwarding triggered by messages from a common parent. Iteratively, it circulates the matrix

and broadcasts all entries repeatedly. This will overcome message losses and allow nodes with poor

connectivity to capture all information required to compute the PCA coordinates. Once the nodes have

obtained the complete anchor hc matrix and a hop count vector local hv, the PCA coordinates

will be calculated as described in Chapter 4. After the PCA protocol converges, the interval of timer t

will be raised to 60 seconds to reduce redundant advertisements.

5.1.4 Spanning Tree with Polar Coordinates

The spanning tree for VPCR routing is constructed using Algorithm 9. When a node P discovers a new

neighbor Ni, P will insert a new entry into the neighbor list nbr list. The structure of a neighbor entry

is shown in Fig. 5.5. If P is not attached to the spanning tree and the neighbor Ni has joined the tree, P

will choose Ni as the parent. If node P is already attached, it will switch to neighbor Ni if Ni provides

a path with smaller ETX to the root than its current parent. As the link quality may fluctuate from time

to time, a node will switch to a new parent if the path ETX can be reduced by at least 20% in order to

66 Implementation and Experiments on the Indriya Testbed

reduce oscillation of the tree topology. The updated parent node ID and the ETX value will be reflected

in the beacons and be informed to the nearby neighbors such that the subtree can be updated.

Algorithm 9 Select Parent for the Spanning Tree

1: // Upon receiving a beacon msg from neighbor n, update the neighbor list nbr list.
2: for Ni in nbr list do

3: if Ni.spt parent nodeid > 0 then ⊲ Neighbor Ni is attached to the tree

4: Let p be the incoming PRR from Ni and q be the outgoing PRR to Ni

5: if Ni.spt etx+ 1

pq
< spt etx or spt etx ≤ 0 then

6: spt parent nodeid = Ni.nodeid ⊲ use Ni as parent

7: spt hopcount = Ni.spt hopcount+ 1
8: spt etx = Ni.spt etx+ 1

pq

9: end if

10: end if

11: end for

Addr_t

uint8_t spt_hopcouunt,

uint8_t spt_left_angle,

uint8_t spt_right_angle,

uint16_t loc_z,

uint16_t loc_y,

uint16_t loc_x,

uint32_t last_heard,

Neighbor_t

uint8_t nbr_nodeid,

uint8_t incoming_prr,
uint8_t outgoing_prr,
uint8_t spt_root_nodeid,
uint8_t spt_parent_nodeid,
uint8_t spt_subtree_size,
uint32_t spt_etx,
Addr_t addr,
hc_entry_t* nbr_hv,

Figure 5.5: Format of the Neighbor Entry and Address Entry

The algorithm to collect the subtree size is given in Algorithm 10. Since each node announces

their parent ID in the beacons, a node can determine if it is at the leaf level by overhearing the beacon

messages. A leaf node will report back a subtree size of 1 to the parent, once all its neighbors have

joined the spanning tree. Subsequently, the intermediate nodes will wait for the report from all children

and report the subtree size upwards. The propagation time for the subtree size to reach the root depends

on the depth of the spanning tree and the beacon interval.

Algorithm 10 Update the Subtree Size

1: // Upon receiving a beacon message,

2: for neighbor Ni in neighbor list nbr list do

3: if Ni.spt parent nodeid ≤ 0 then

4: stop ⊲ some nodes are not attached

5: end if

6: if Ni.spt parent nodeid = nodeid and Ni.spt subtree size = 0 then

7: stop ⊲ some child nodes have not obtained the subtree size yet.

8: end if

9: end for

10: // all neighbors are attached to the tree and all child nodes have valid subtree tree sizes.

11: for neighbor Ni ∈ nbr list do

12: if Ni.spt parent nodeid = nodeid then ⊲ Ni is a child node

13: Let spt subtree size += Ni.spt subtree size
14: end if

15: attach spt subtree size in the beacon message.

16: end for

The root node has the initial polar coordinates and it will compute the polar coordinates for the one

5.1 Implementation of the PCA-based Routing Algorithm 67

hop neighbors. The angle range in the polar coordinates will be allocated proportional to the subtree

size and be recorded in the neighbor list. Upon receiving a neighbor’s beacon, if the beacon reveals that

the neighbor has not received the assigned polar coordinates, a request message will be sent to inform

the neighbor about its coordinates. Once all one hop neighbors will have been updated, they will be

in charge of allocating polar coordinates to the nodes two hops away from the root. In a distributed

manner, the polar coordinates will be assigned from the root to the leaf level gradually, as summarized

in Algorithm 11.

Algorithm 11 Assign Angle Range to Child Nodes

1: Root has spt left angel = 0 and spt right angle = 10000;

2: Initialize spt angle mark to spt left angle
3: // Upon receiving a beacon from neighbor Ni,

4: if spt right angle > 0 and Ni.spt parent nodeid = nodeid and Ni.spt right angle ≤ 0 then

5: Let Ni.spt left angle = spt angle mark
6: Let range = Ni.spt subtree size∑

n∈nbr list
n.spt subtree size

(spt right angle− spt left angle)

7: Let Ni.spt right angle = Ni.spt left angle+ range
8: spt angle mark = Ni.spt right angle ⊲ update the free angle range

9: end if

10: send polar coordinates to Ni

5.1.5 Centralized Location Service

For geographic routing, a location service is required to provide the source node with the destination

address. We employ a simple, centralized address lookup service, which stores all addresses at the root

and routes the queries and replies using VPCR. We use the VPCR protocol because it provides a reliable

point-to-point delivery service for the request and reply messages and the VPCR coordinates are more

convenient for debugging the location service records. Once each node has obtained its PCA coordinates

and polar coordinates, it will insert a child entry containing its own address in the local cache as in

Fig. 5.6. Each entry carries an upload flag, indicating if the entry has been uploaded to the parent. An

address upload timer periodically examines the local cache and reports a new entry to the parent every 2

seconds. This allows all node addresses to be propagated back to the root reliably without causing severe

congestion.

uint8_t src_nodeid,
uint8_t dst_nodeid,

uint8_t spt_subtree_size,

UploadSptChildRequestMsg

uint8_t child_nodeid,

Addr_t addr,

uint8_t spt_parent_nodeid,

uint8_t* lcr_hv,

UploadSptChildReplyMsg

uint8_t child_nodeid,
uint8_t dst_nodeid,
uint8_t src_nodeid,

uint8_t spt_parent_nodeid,

Child_t

Addr_t addr,
uint8_t* lcr_hv,
uint8_t uploaded,

uint8_t spt_subtree_size,

uint8_t child_nodeid,

Figure 5.6: Upload Node Address Message

As the addresses are stored in a hierarchical manner, the query for the destination can be resolved at

various levels. The lookup process is illustrated in Fig. 5.7. When node F has a data packet for node H ,

it will first search the local cache for the address of H . If it is not found, F will forward the query to its

parent D. The query packet also contains the polar coordinates of F , such that the reply can be sent back

using VPCR. As the initial cache of D contains only the addresses of D, F and G, node D will pass

68 Implementation and Experiments on the Indriya Testbed

the query further to its parent node C. Node C will use the source address in the query packet to send

the reply back to F . When the reply message passes node D before arriving at F , node D will insert

this new entry to its cache to accommodate subsequent queries for H . More queries can be resolved at

lower levels as more replies are returned. This will effectively reduce the lookup latency for the location

service. In a dynamic topology, a expiration interval will be used to eliminate the stale records.

D

A

F

B C

H

E

G

Initial Node Address Allocation

cache: A

cache: B

cache: C

cache: D

cache: E

cache: G cache:Hcache: F

(a) Initial Node Address Cache

D

A

F

B C

H

E

G

Upload Addresses of Child Nodes

cache: G cache:Hcache: F

cache: B

cache: D, F, G
cache: E, H

cache: C, D, E, F, G, H

cache: A, B, C, D, E, F, G, H

(b) Upload Subtree Addresses

D

A

F

B C

HG

Address Query and Caching

Hcache: F,

E3. cache the the
 address of H

cache: D, F, G, H

cache: C, D, E, F, G, H

1. address of H is ?

2. address found, send reply

(c) Node Address Query: F to H

Figure 5.7: Management of Address Cache and Node Address Query

5.2 Simulation Results

We first compare the performance of PCA, LCR and VPCR using simulations in TOSSIM. The simu-

lation parameters are selected based on our link measurement results conducted on the Indriya testbed.

The Indriya testbed is a wireless sensor network testbed deployed in the COM-1 building of School of

Computing at NUS. It contains 127 TelosB nodes installed in 3 floors and uses USB connections for

power supply and data logging. It supports TinyOS-2 and uses a web interface ported from MoteLab

for job management. We measured the node density, link quality and network topology to choose ap-

propriate values for the simulation parameters, including the beacon interval, the neighbor list size, the

buffer size on the radio interface and the placement of the anchor nodes. The link measurement results

are presented in Appendix C.

The details of the simulation configuration are shown in Table 5.1. The network topology contains

126 nodes and the link quality data is imported from the link measurement results. The nodes are pro-

grammed to send data packets using the following 4 routing algorithms in an interlaced manner: PCA,

VPCR, PCA with VPCR and LCR. For each protocol, a node sends 250 data packets to randomly se-

lected destinations at an interval of 1 packet/minute. The data packet size is 51 bytes and each data

packet can be retransmitted maximally 7 times with a delay of 10 ms. We manually choose 7 nodes in

the network as anchors. As the network topology is three-dimensional, the dimensionality of the PCA

coordinates is set to 3 and the LCR protocol selects 3 anchors for routing. The simulation lasts for 20

hours, in which the first hour is the warm up period.

The TOSSIM simulator requires an input network topology with link qualities represented by RSSI.

We examine the relation between the packet reception ratio and RSSI in TOSSIM by sending 100 data

packets over a link with average RSSI between −103 dBm and −30 dBm. We plot the average delivery

ratio at each RSSI level in Fig. 5.8. The input topology is generated by converting the measured PRR

5.2 Simulation Results 69

Table 5.1: Configuration of Simulation Parameters
Parameter Value

Number of Nodes 126

Number Data Packets 250 for each protocol

Data Packet Size 51 Bytes

Data Packet Interval 1 packet/minute

MAC Retransmission 7 times, interval = 10 ms

Address Query Retry 10 times

Routing Protocols PCA, VPCR, PCA+VPCR, LCR

Number of Anchors 7 (basement: 3, level-1: 1, level-2: 3)

Dimensionality of PCA Coordinates 3

Number of Routing Anchors in LCR 3

Neighbor List Capacity 40

Node Address Cache Size 127, multi-level caching

Simulation Time 20 hours, warm up: 1 hour

Beacon Interval 10 seconds

back to its corresponding RSSI value according to Fig. 5.8.

 0

 0.2

 0.4

 0.6

 0.8

 1

-110 -100 -90 -80 -70 -60 -50 -40 -30

P
a
c
k
e
t

R
e
c
e
p
ti
o
n
 R

a
ti
o

RSSI (dBm)

Packet Reception Ratio vs. RSSI in TOSSIM

(max, avg, min) PRR in TOSSIM

Figure 5.8: Packet Reception Ratio vs. RSSI in TOSSIM, 100 pkts/RSSI, 10 times

5.2.1 Routing Performance of Data Packets

The delivery ratio of the data packets and the address query packets is shown in Fig. 5.9. The address

query has an average success ratio of 98.9%, which is computed as the number of queries sent divided by

the number of replies received. With maximally 10 times of retry, all queries are resolved successfully.

The PCA protocol applies greedy forwarding based on the embedding coordinates and the data packets

are dropped at the local minimum nodes, leading to a delivery ratio of 93.1%. In VPCR, every node will

be able to identify the next hop for the destination through the polar coordinates. As the simulation uses

link qualities measured from the testbed, the delivery ratio drops slightly to 99.7% due to fluctuations in

link quality. The VPCR protocol always relies on the spanning tree for routing, resulting in longer paths

than LCR and PCA. To achieve high delivery ratio and a short average path length, we combine PCA

with VPCR, where greedy forwarding by PCA coordinates is applied until a local minimum is reached

and after that, the routing will resort to VPCR. The combined algorithm has a delivery ratio of 98.8%,

70 Implementation and Experiments on the Indriya Testbed

comparable to that of VPCR. For connectivity-based routing such as LCR, the number of routing anchors

should be larger than the intrinsic dimensionality of the deployment space. However, in order to retain

the same routing overhead in the packet as PCA, LCR employs only 3 anchor nodes for routing and

obtains the lowest delivery ratio of 60.7%.

In order to investigate the delivery performance of LCR with different number of anchors, we vary

the number of anchors used by LCR from 3 to 7 (the maximal number of anchors available) and plot the

delivery ratios of LCR in Table 5.2. The result shows that as the number of routing anchors increases, the

delivery ratio of LCR slowly grows from 60.7% to 76.0%. The inferior performance of LCR is caused

by the discrete nature in the hop count vectors and the limited network size in our testbed. As the hop

count distance from the nodes to the anchors are very small (normally less than 5), a slight variation in

the hop count value may divert the packets to the wrong direction and cause delivery failure. The PCA

algorithm computes the coordinates as floating point values which have finer granularity than discrete

values. Each node also applies an iterative method to normalize its coordinates by taking the average

of all its neighbors’ coordinates, which helps to remove some of the local minimum cases. Therefore,

although the PCA coordinates are computed from the hop count vectors, its floating point format and the

normalization procedure help it to achieve higher delivery ratio than the hop count vectors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Addr PCA VPCR PCA+VPCR LCR

D
e
liv

e
ry

 R
a
ti
o

Packet Types: Node Address Query and Data

Delivery Ratio of the Packets

98.9%
93.1%

99.7% 98.8%

60.7%

Figure 5.9: Packet Delivery Ratio for Address Queries and Data Packets

Table 5.2: Delivery Ratios of LCR with Various Number of Anchors

Number of Anchors 3 4 5 6 7

Delivery Ratio 60.7% 63.2% 67.2% 75.6% 76.0%

In Fig. 5.10(a), the cumulative distribution of the hop count shows that the average path length of

PCA and LCR is smaller than the rest and 95% of the paths are within 4 hops due to the greedy forwarding

method employed. The average path length of PCA+VPCR is slightly longer than LCR, although 92.3%

of the paths are still ≤ 4 hops long. The VPCR protocol generates the longest routes as packet forwarding

follows the spanning tree in Fig. 5.11, even when shorter paths are available. Only 61.3% of the paths

found by VPCR are within 4 hops and the average is 3.84 hops, 58% longer than that of LCR and 40%

longer than that of PCA and PCA+VPCR.

5.2 Simulation Results 71

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

D
is

tr
ib

u
ti
o
n

Path Hopcount

CDF of Path Hopcount

PCA
VPCR

PCA+VPCR
LCR

(a) CDF of Path Hop count

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12

C
u
m

u
la

ti
v
e
 N

u
m

b
e
r

o
f

P
a
th

s

Path Hopcount

Total Number of Paths vs Hopcount

PCA
VPCR

PCA+VPCR
LCR

(b) Packet Count vs. Hop count

Figure 5.10: Path Hop Count of the Data Packets

Fig. 5.10(b) shows the number of the paths at the corresponding length. PCA+VPCR and VPCR find

more paths than PCA and LCR because the polar coordinates will not create local minimum cases that

may appear in the PCA coordinates and the hop count vectors. With the assistance of greedy forwarding,

the PCA+VPCR protocol generally returns shorter paths than VPCR, although both protocols return

nearly equal number of paths. Despite the fact that LCR achieves the lowest average path length, it

finds 39.1% less routes than the tree-based routing algorithms, with the same control overhead. In

general, the PCA+VPCR protocol successfully retains high delivery ratio and low average path length

by complementing greedy forwarding with polar coordinate routing and outperforms the rest.

The delivery latency of the data packets is given in Fig. 5.12. The distribution of packet delay in

Fig. 5.12(a) reveals that all the four protocols achieved similar delivery latency, where the delay of LCR

and VPCR is slightly lower than the rest. This is because LCR finds limited number of short routes

with less hops to traverse, while VPCR uses entirely the reliable spanning tree links, resulting in less

retransmissions. Around 99.5% of packets are delivered within 50 ms for all protocols. Even on the

routes longer than 10 hops, the delivery delay is less than 140 ms. Fig. 5.12(b) gives the number of

packets received within each interval. Note the log-scale on the Y axis. The number of packets delivered

in each interval decreases exponentially as the delay increases. Applying greedy forwarding does not

introduce as much benefit to the delivery delay as it does to the hop count. This is because greedy

forwarding may risk using unreliable shortcut links to minimize the distance to the destination at each

hop, which may cause more frequent MAC layer retransmissions compared to tree-based routing and

subsequently increases the routing latency.

5.2.2 Performance of Location Service

The address record consists of the PCA coordinates, the hop count vector for LCR and the polar coordi-

nates for VPCR. A node will report its coordinates to the root in order to initialize the location service. In

Fig. 5.13, the hop count value represents the total number of hops travelled by the node address request

and reply packets.

When the destination address is not found in the local cache, a node will send an address query to

72 Implementation and Experiments on the Indriya Testbed

2

1

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
5

2
4

3
4

2
6

2
7

2
8

3
3

2
9

3
0

3
1

3
2

3
5

3
6

3
7

3
8

4
6

3
9

5
7

4
0

4
1

4
2

4
3

5
4

4
4

4
5

4
9

4
7

4
8

5
0

5
1

5
2

5
3

5
5

5
6

5
8

5
9

6
0

6
4

6
1

7
7

6
2

6
3

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
8

7
9

8
0

8
1

8
2

8
5

8
3

8
9

8
4

9
8

1
2

0

8
6

8
7

1
0

3

1
2

3

8
8

9
0

1
2

4

9
1

9
2

1
2

2

1
1

3

9
3

9
4

9
5

1
1

0

9
6

9
7

9
9

1
0

0
1

0
2

1
0

4
1

0
5

1
0

6
1

0
7

1
0

8
1

0
9

1
1

1
1

1
2

1
1

4
1

1
5

1
1

6
1

1
7

1
1

8
1

1
9

1
2

1

1
2

5
1

2
6

1
2

7

Figure 5.11: The Spanning Tree Topology built from ETX in Simulation

5.2 Simulation Results 73

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140

D
is

tr
ib

u
ti
o
n

Packet Delay (ms)

CDF of Data Packet Delay

PCA
VPCR

PCA+VPCR
LCR

(a) CDF of Packet Delay

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

P
a
c
k
e
t

C
o
u
n
t

(l
o
g
 s

c
a
le

d
)

Packet Delay (ms)

Distribution of Data Packet Delay

PCA
VPCR

PCA+VPCR
LCR

(b) Packet Count vs. Delay

Figure 5.12: Delay of the Data Packets

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 3 4 5 6 7 8

D
is

tr
ib

u
ti
o
n

Node Address Query Hopcount

CDF of Node Address Query Hopcount

Node Address Query

(a) CDF of Path Hop count

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 2 3 4 5 6 7 8

C
u
m

u
la

ti
v
e

 N
u
m

b
e
r

o
f
Q

u
e
ri
e
s

Query Hopcount

Total Number of Node Address Query Packets vs Hopcount

Node Address Query

(b) Packet Count vs. Hop count

Figure 5.13: Path Hop count of the Address Query Packets

74 Implementation and Experiments on the Indriya Testbed

its parent. The query is handled in a manner similar to a recursive DNS query, where it is propagated

towards the root until the address can be returned. The reply is sent back using VPCR based on the

source address attached in the query. The returned address is recorded at each hop on the return path to

handle future queries for the same destination.

The spanning tree used for routing the query packets has a maximum depth of 4 hops. In Fig. 5.13(a),

the total hop count of the address query and reply packets varies between 2 to 8 hops. With address

caching, over 76% of the queries can be answered directly by the parent nodes and 92% of the queries

can be processed by the predecessor nodes within 2 hops.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120 140

D
is

tr
ib

u
ti
o
n

Node Address Query Latency (ms)

CDF of Node Address Query Latency

Node Address Query

(a) CDF of Address Resolution Delay

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

P
a
c
k
e
t

C
o
u
n
t

(l
o
g
 s

c
a
le

d
)

Query Packet Delay (ms)

Distribution of Packet Delay

Node Address Query

(b) Packet Count vs. Delay

Figure 5.14: Delay of the Address Query Packets

The delay of the address query packets is given in Fig. 5.14, where the maximum query latency is

138 ms and 92% queries are answered within 20 ms. In Fig. 5.14(b), as delay increases, the number of

query packets in the delay interval decreases exponentially.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
Q

u
e

ri
e
s
 P

ro
c
e
s
s
e
d

Node ID

Workload of Node Address Queries at Each Node

Number of Address Queries

Figure 5.15: Load of Node Address Queries at Each Node

To examine the effectiveness of multi-level address caching, we plot the number of address queries

handled by each node in Fig. 5.15. The 9169 address queries are resolved by 41 nodes. Table 5.3 reveals

the top 6 nodes that have processed the most number of queries. The root node (node 1) took the highest

5.3 Experimental Results 75

load by replying 30% of the queries. Node 77, 64 and 49 handled 10.8%, 7.9% and 6.3% of the queries

respectively. The figures indicate that the address caching method can successfully divert the load away

from the root and reduce the hot spot effects caused by the query traffic, as 70% of the address queries

are resolved by nodes at lower levels.

Table 5.3: Ranking of Address Resolution Workload. Total: 9169 queries
Rank Node ID Number of Queries Ratio Subtree Size Level

1 1 2750 30% 126 1

2 77 992 10.8% 20 2

3 64 728 7.9% 12 3

4 34 575 6.3% 19 2

5 49 529 5.8% 9 3

6 25 434 4.7% 17 2

5.3 Experimental Results

As the simulation uses a snapshot of the network topology collected from the testbed, it cannot reflect

how the protocols will perform under the temporal variations of the link quality. In order to examine

the protocols under real network conditions, we conduct experiments on the Indriya testbed and log

the controls messages and data packets through the USB connection for performance analysis. The

configuration of the parameters are listed in Table 5.4. Due to hardware issues, the protocols fail to

converge on node 76, 101 and 126. Node 1 is the root for VPCR routing and the location service. Every

node sends 50 data packets to randomly selected destinations by each protocol. The packet interval is

set to 60 seconds to reduce inter-flow interference. We manually select 7 nodes as the anchors to build

PCA coordinates. Three of them are used as the routing anchors in LCR, one from each floor in the

COM-1 building. All packets are transmitted with the maximum power of 0 dBm. Due to the high node

density, the beacon interval is set to 10 seconds to prevent congestion from overhead traffic. A stale

neighbor will be removed from the neighbor list if its beacons are not heard for 10 consecutive intervals.

The experiment lasts for 6 hours and the first one hour is the initialization period to compute the PCA

coordinates and polar coordinates. The program image has a code memory size of 47.8 KBytes and a

data memory size of 9.2 KBytes, complying with the memory constraints.

5.3.1 Routing Performance of Data Packets

To avoid the interference from the campus wireless network, experiments were conducted during the

night time from 12:00am to 6:00am. The experiments were repeated 3 times, where the performance re-

sults show very low variation. We present one set of the results in the following sections for comparison.

In Fig. 5.16, the packet delivery ratios of the spanning tree-based protocols are very close to the

simulation results, where VPCR and PCA+VPCR deliver around 95% of the packets. The PCA protocol

delivers 86.6% of the packets, where delivery failures mainly result from the local minimum cases (7%)

and link losses (6.4%). The LCR protocol achieves the lowest delivery ratio of 49.6% due to insufficient

number of routing anchors, as a comprise to the control overhead in the packet header.

76 Implementation and Experiments on the Indriya Testbed

Table 5.4: Configuration of Parameters used in Experiments
Parameter Value

Number of Nodes 124 (failed nodes: 76, 101, 126)

Number of Data Packets 50 for each protocol

Data Packet Size 51 bytes

Packet Interval 60 seconds

Routing Protocols PCA, VPCR, PCA+VPCR, LCR

Anchors for PCA Coordinates 7 nodes: 15, 31; 52, 58, 72; 107, 113

Dimensionality of PCA Coordinates 3

Routing Anchors for LCR 3 nodes: 15, 58, 113

Neighbor List Capacity 40

Address Cache Size 127

Radio/Serial Buffer Size 3 packets

Beacon Interval 10 seconds, timeout: 10 intervals

Default Transmission Power max: level 31 (0 dBm)

Experiment Time 6 hours, warm up: 1 hour

Image Size Program: 47.8 KBytes, Data: 9.2 KBytes

The node address query and reply packets are routed by VPCR and the success ratio for the node

address queries is 95.3%. Given the maximum number of retries of 10 times, all queries are resolved

correctly.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Addr PCA VPCR PCA+VPCR LCR

D
e
liv

e
ry

 R
a
ti
o

Packet Types: Node Address Query and Data

Delivery Ratio of the Packets

95.3%

86.6%

95.4% 94.7%

49.6%

Figure 5.16: Packet Delivery Ratio in the Testbed

The average path length of the protocols is plotted in Fig. 5.17. The LCR protocol has the lowest hop

count, as it discovers only 50% of the paths, 98% of which are within 4 hops. The PCA and PCA+VPCR

protocols achieve nearly identical hop count distribution. The average path length for PCA is 2.75 hops

and the average path length for PCA+VPCR is 2.94 hops. To escape from the local minimum spots in the

PCA coordinates, the PCA+VPCR protocol falls back to the spanning tree, generating the longest path

of 13 hops. Although the PCA+VPCR protocol has the largest maximum path length, over 96% of the

its paths are ≤ 5 hops, which makes it generally more efficient than VPCR. The spanning tree used for

VPCR routing and node address resolution is given in Fig. 5.19, with a depth of 5 hops. The maximum

VPCR path length is 8 hops and the average path length is 3.86 hops, 40% longer than PCA and 31%

longer than the paths returned by PCA+VPCR.

5.3 Experimental Results 77

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

D
is

tr
ib

u
ti
o
n

Path Hopcount

CDF of Path Hopcount

PCA
VPCR

PCA+VPCR
LCR

(a) CDF of Data Path Length

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 N

u
m

b
e
r

o
f

P
a
th

s

Path Hopcount

Total Number of Paths vs Hopcount

PCA
VPCR

PCA+VPCR
LCR

(b) Packet Count vs. Hop count

Figure 5.17: Path Hop count of Data Packets

In Fig. 5.18, all protocols exhibit very similar delivery latency for the data packets, despite the vari-

ation in the hop count. The difference in the packet delay distribution for PCA, VPCR and PCA+VPCR

is negligible. As LCR tends to find shorter but fewer paths, the delivery delay for LCR is slightly lower

than the rest. The percentage of data packets delivered within 50 ms is 71% for LCR and 65% for the rest

protocols. The average delivery latency for LCR is 39.6 ms, while the rest protocols retain an average

of 44.7 ms. The packet count in Fig. 5.18(b) shows that PCA delivers fewer packets compared to VPCR

at all delay intervals, as the links attempted by the greedy forwarding step in PCA are more likely to

degrade the delivery ratio than the tree links selected by ETX.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

D
is

tr
ib

u
ti
o
n

Packet Delay (ms)

CDF of Data Packet Delay

PCA
VPCR

PCA+VPCR
LCR

(a) CDF of Data Packet Delay

 10

 100

 1000

 0 20 40 60 80 100 120 140

P
a
c
k
e
t
C

o
u
n
t
(l
o
g
s
c
a
le

d
)

Packet Delay (ms)

Distribution of Data Packet Delay

PCA
VPCR

PCA+VPCR
LCR

(b) Packet Count vs. Delay

Figure 5.18: Delay of Data Packets

5.3.2 Performance of Location Service

The depth of the spanning tree is 5 hops; thus, the address query and reply packets travel maximally 10

hops, While each node selects 50 random destinations to send data packets, the total number of node

address queries is 3779. The ratios of queries replied by predecessor nodes 1, 2 and 3 hops away are

59.4%, 26.6% and 11.5%.

78 Implementation and Experiments on the Indriya Testbed

2

1

3
4

5

6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
8

2
5

2
4

3
3

2
6

3
2

2
7

2
9

3
1

3
0

3
4

3
5

3
6

3
7

3
8

5
7

3
9

4
0

4
1

4
2

4
6

4
3

5
8

4
4

5
4

4
5

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
5

5
6

5
9

6
0

6
7

6
1

7
7

6
2

6
3

6
4

6
5

6
6

6
8

6
9

7
4

7
0

7
1

7
2

7
3

7
5

7
8

7
9

8
0

8
1

8
2

9
5

1
2

7

8
3

8
4

1
0

3

1
2

0

8
5

1
2

3

8
6

8
7

8
9

8
8

9
0

1
1

1

9
1

9
2

9
3

9
4

9
6

9
7

1
2

2

1
1

0

9
8

9
9

1
0

0

1
0

2
1

0
4

1
0

5

1
0

6

1
0

7

1
0

8
1

0
9

1
1

2

1
1

3

1
1

4
1

1
5

1
1

6
1

1
7

1
1

8
1

1
9

1
2

1

1
2

4

1
2

5

Figure 5.19: The Spanning Tree Topology for Location Service and VPCR in the Indriya Testbed

5.3 Experimental Results 79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

D
is

tr
ib

u
ti
o
n

Node Address Query Hopcount

CDF of Node Address Query Hopcount

Node Address Query

(a) CDF of Address Path Length

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 N

u
m

b
e
r

o
f

Q
u
e
ri
e
s

Query Hopcount

Total Number of Node Address Query Packets vs Hopcount

Node Address Query

(b) Packet Count vs. Hop count

Figure 5.20: Hop count of Address Query Packets

In Fig. 5.21(a), the maximum latency of an address query is 538 ms and the average is 79.4 ms. The

maximum address resolution delay is longer than the maximum data packet delay, as it consists of the

time for the address query to reach the replier and the time for the reply to return. The 98-percentile of

the address resolution delay is 250 ms, slightly over twice of the 98-percentile of data delivery delay,

which is 110 ms. The distribution of the query latency is exponential as revealed by Fig. 5.21(b), similar

to the delay distribution of the data packets.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500 550

D
is

tr
ib

u
ti
o
n

Node Address Query Packet Delay (ms)

CDF of Node Address Query Packet Delay

Node Address Query

(a) CDF of Address Query Packet Delay

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600

P
a
c
k
e
t
C

o
u
n
t

Query Packet Delay (ms)

Distribution of Packet Delay

Node Address Query

(b) Packet Count vs. Delay

Figure 5.21: Delay of Node Address Query Packets

Fig. 5.22 shows the number of address queries handled by each node. Out of the 40 non-leaf nodes

involved in address resolution, the root node shares 43% of the workload, higher than the simulation

result. This is because each node in the experiment only sends one fifth of the data packets compared

to those sent in the simulation. The number of address queries generated is only 3779, significantly less

than the 9169 queries in simulation. The node address records have not yet been fully populated down

the tree, causing more queries to be sent to the root. The top 6 nodes with the highest query workload

are listed in Table 5.5, indicating that the address resolution workload is generally proportional to the

subtree size before the address cache converges.

80 Implementation and Experiments on the Indriya Testbed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f
Q

u
e

ri
e

s
 P

ro
c
e

s
s
e

d

Node ID

Workload of Node Address Queries at each Node

Number of Addr Queries

Figure 5.22: Workload of Node Address Query at Each Node

Table 5.5: Ranking of Address Resolution Workload, total: 3779 queries
Rank Node ID Number of Queries Subtree Size (rank) Level

1 1 1641, 43.4% 124 (1) 1

2 25 352, 9.3% 18 (3) 2

3 79 350, 9.2% 37 (2) 2

4 95 268, 7.1% 12 (5) 4

5 77 218, 5.8% 10 (6) 2

6 127 130, 3.4% 17 (4) 3

5.4 Summary

Through the link quality measurements and the experiments, we have identified the following issues that

should be addressed for employing a geographic routing protocol in a real network deployment.

• Due to the limit on memory size and memory access mechanism, the routing algorithm should be

implemented with one-dimensional data structures, e.g. array and list. The number of functions

and temporary variables is determined by the flash memory size and the global variables are limited

by RAM. The floating point value must be packed into an integer variable before being transmitted

in a message.

• Storing the mapping between node ID and node address in the memory is only applicable when

the memory size is large enough for all nodes deployed. If the network size is overwhelming, a

gateway node with dedicated storage space for location service should be installed. Resorting to

the data flash for extra storage space is another alternative, although it will increase the lookup

delay and energy consumption.

• In an indoor deployment, the network density may have very large variations at different locations.

When the neighbor list is not large enough to hold all neighbors, a blacklisting method should be

applied to preserve the good links.

• On some testbeds, it is a feasible approach to use the reception ratio of broadcast beacons to

estimate the reception ratio of unicast data packets on the link. However, beacon message intervals

5.4 Summary 81

should be selected carefully to achieve a balance between the control message overhead and the

agility to reflect link quality fluctuations. An adaptive beaconing mechanism used in the Collection

Tree Protocol can be adopted to adjust the beacon interval based on the link status.

• When a message needs to be propagated to the entire network, the hop-by-hop propagation method

exhibits very high reliability compared to a simple flooding. The flooding method is vulnerable

to packet drops due to collisions in dense areas and it may fail to reach the weakly connected

nodes as a result of link losses. Nevertheless, hop-by-hop propagation may introduce longer delay

depending on the propagation interval of each hop and the network diameter.

• When sufficient memory is available, it is applicable to employ a distributed design for each node

to compute its coordinates independently. This will eliminate the risk of a single point of failure

and provide higher resilience to network dynamics. For a large-scale indoor network deploy-

ment, where a distributed localization method is not feasible, the geographic coordinates can be

computed by a centralized gateway. It will considerably reduce the memory consumption and

complexity of the program on the individual nodes. This offline approach also allows fine-tuning

of the coordinates before they are assigned to the nodes.

• Even if most links in a network have high delivery ratios, packet losses may still occur due to

collision, fluctuation in the link quality or interference from the environment. To provide more

reliable data delivery, the retransmission mechanism should be enabled at the MAC layer or be

implemented at the application layer. In order to avoid duplicates caused by the MAC layer re-

transmissions, each unicast message should carry a unique identification tag.

• A packet buffer should be provided to handle bursty traffic, such as the chain reactions triggered by

a control message. For point-to-point delivery, an ETX-based spanning tree with polar coordinates

can obtain very high reliability. The greedy forwarding method can be integrated into tree-based

routing to avoid the hop-spot effects and reduce the average path length. However, the hybrid

method may risk using poor links in order to minimize the distance to the destination, leading to

more packet losses.

82 Implementation and Experiments on the Indriya Testbed

Chapter 6

Conclusion

Besides the basic converge-cast service for collecting data, many sensor network applications are imple-

mented on the more generic point-to-point communication service, such as data-centric storage, trans-

mission control and in-network query processing. The ability provided by the point-to-point routing

protocols to exchange information between any pair of connected nodes will diversify the design of

sensor applications and greatly improve their usability.

As sensor network deployments spread from outdoor to indoor, the sensor nodes can be placed on

multiple floors inside a building, creating a three-dimensional topology. Therefore, an adaptive point-to-

point routing protocol should be able to provide reliable service in both 2D and 3D network scenarios.

Due to the delay and network overhead in the path discovery procedures, the conventional ad hoc

routing protocols are not feasible for the current sensor platforms. Geographic routing protocols provide

a plausible alternative for point-to-point communication in wireless sensor networks. Geographic routing

discards the usage of the routing table by identifying each node through its coordinates. It obviates the

requirement for path discovery by forwarding packets based on the destination address in a localized

manner.

The tree-based routing protocols provide a promising option, as the tree structure can be built effi-

ciently in both 2D and 3D networks. The coordinates of the nodes at each level provide a description

of the subtree structure, which can be used to locate a unique path towards the destination. However,

the existing tree-based routing protocols are often designed for 2D networks and the performance in 3D

networks is not investigated extensively. The position information is assumed to be available through

localization methods, while the effects of location errors are often ignored. The routing efficiency is

provided by the shortcut links in the tree, which is hard to utilize due to the imbalanced tree structure,

leading to long routing paths.

Greedy forwarding can be integrated into tree-based protocols to reduce the path length. For many

indoor deployments, the actual node positions are not always known. In this case, hop count vector-based

routing offers a practical option for greedy forwarding, as hop count vectors can be learnt automatically

and be populated in a timely manner. Since the delivery ratio heavily depends on the number of beacons

available, it generally requires higher control overhead to achieve better routing performance. Without

an effective measure to reduce the routing cost, the trade-off between performance and overhead will

prevent hop count vector-based routing from being applied to large-scale networks.

84 Conclusion

In this thesis, we propose the Spherical Coordinate Routing protocol (SCR) to evaluate the perfor-

mance of tree-based routing in 3D networks. We also apply the Principal Component Analysis-based

dimension reduction algorithm (PCA) to hop count vector-based routing, such that greedy forwarding

can be performed at lower cost when combined with tree-based routing for better routing efficiency. As

geographic routing requires a location service to map the node IDs to the coordinates, the maintenance

cost and performance of the location service will significantly affect the applicability of the routing pro-

tocols. We implemented a location service based on the VPCR protocol to show that the reliable location

service can be provided at a relatively low cost.

6.1 Summary of Contributions

To provide point-to-point routing in 3D networks, we designed the SCR protocol based on VPCR. It

applies a 3D variant of NoGeo to localize the network and allocates the spherical coordinates based on

the location and subtree size of child nodes. Instead of using the shortcut links between sibling nodes,

the SCR protocol applies greedy forwarding based on the hop count vectors built at the localization step,

which can significantly reduce the average path length against irregularities in an unbalanced tree topol-

ogy. We compare the performance of SCR with BVR, LCR and VPCR by simulations in 3D network

scenarios. The SCR protocol achieves lower hop stretch than VPCR as a result of the effective greedy

forwarding procedure. The paths returned by SCR are slightly longer than those found by LCR; how-

ever, SCR can successfully identify the routes for all node pairs without resorting to flooding. The high

delivery ratio and low hop stretch performance makes SCR a more favorable protocol for 3D networks.

To further reduce the cost of greedy forwarding in SCR, we apply the PCA algorithm to hop count

vector-based routing. The PCA algorithm collects the hop count vectors from the beacon nodes through

hop-by-hop propagation. To maintain a stable topology, the propagation paths are selected based bi-

directional link qualities instead of the hop count metric. In the current distributed design, each node

independently applies the algorithm to convert the hop count vector to low-dimensional Euclidean coor-

dinates. This conversion allows packet forwarding to be done at much lower cost without sacrificing the

routing performance significantly. The PCA algorithm is implemented in TinyOS and we conducted both

simulations in TOSSIM and experiments on the Indriya testbed with 127 TelosB nodes for performance

evaluation. The simulation and experimental results show that the PCA algorithm can achieve higher

delivery ratio, lower hop stretch and shorter flooding range than the hop count vectors using the same

packet overhead, which makes it a promising approach to improve greedy forwarding in a real sensor

network.

In summary, for point-to-point data delivery in 3D networks, a tree-based routing protocol can

achieve very high delivery ratio with longer average path length compared to greedy-based protocols.

The hop count vector-based greedy forwarding method can be integrated into the tree-based protocols to

reduce the path length. However, the delivery ratio may be degraded when greedy forwarding attempts

shorter but less reliable links. Since the performance of the hop count vector-based algorithms largely

rely on the selection of anchors, more anchors are preferred in order to improve the success ratio of the

greedy procedure, which creates a trade-off between packet overhead and delivery performance. Di-

mension reduction methods, such as PCA, can be applied to retain the performance while reducing the

6.2 Future Work 85

packet overhead for better communication efficiency; however, they may also impose higher computa-

tional cost and memory requirement on the sensor nodes. For a small-scale network with around 100

nodes, it is possible to implement a centralized location service on the current platform (e.g. TelosB).

The node address queries can be resolved reliably (100% in our experiments), when the link-layer and

application-layer retransmission schemes are enabled.

6.2 Future Work

The work introduced in this thesis leaves the following issues for future exploration.

• The tree-based routing protocols ensure the packet delivery by aggregating the location informa-

tion of subtrees at the parent nodes, such that the routing path can be identified from the subtree

information. This hierarchical structure can be expensive to maintain under network dynamics,

as changes in the subtrees must be updated in the parent levels. It will be desirable to create a

more efficient coordinate system, where the insertion or removal of child nodes will impose negli-

gible effects to the coordinates of the parent and the packet delivery is still guaranteed for any two

connected nodes without flooding.

• The current PCA-based dimension reduction scheme can reduce the packet overhead; however,

it requires O(k2) memory for computation, where k is the number of beacons. For a large-scale

network, this cost prevents PCA from being adopted in a distributed design. Other dimension

reduction methods should be studied, in order to reduce the packet overhead at lower temporary

memory demand.

• In the current implementation, the link quality is estimated from the reception of beacon packets

sent at static intervals. To remain responsive to link changes and reduce the communication over-

head, adaptive beacon intervals should be applied based on the density and temporal changes in

the network. The existing data traffic should also be exploited to give a better estimation.

• In the experiments, the neighbor table size was set large enough to handle all entries based on

the link measurement results. Without the prior knowledge, the neighborhood size may actually

exceed the capacity of the neighbor table. A blacklisting method should be incorporated to select

the reliable link adaptively without causing network segmentation.

• Our work does not consider the effects of duty-cycling, a common energy-saving technique for

battery-powered sensor networks. When the nodes are not always in the active mode, the tem-

poral effects may change the design of route selection, buffer management and retransmission

algorithms.

86 Conclusion

Appendix A

Sensor Network Applications

We summarize below 7 categories of sensor applications to highlight some popular areas where the

wireless sensor networks are currently applied.

A. Ecosystem monitoring: Wireless sensor networks are extensively exploited in the ecosystem mon-

itoring projects, where continuous data collection is required in remote [88] or hostile environments [89]

and frequent human intervention may disturb the natural behavior of the targets [90]. The Great Duck

Island project [1, 15] deployed 32 sensors to the nest burrows of seabirds to observe the nesting behavior

from fluctuations in temperature. The self-organized sensor nodes form a spanning tree to report data

back to solar-powered gateways which in turn transmit the data to back end servers through a satellite

link. Barrenetxea et al. built a network with 16 stations [91] on the 2500 m high Génépi peak at the

Swiss Alps. The stations provided temperature, humidity and rainfall data on the rock glacier for two

months, which was used to evaluate the possibility of avalanche and land slide. Hefeeda et al. mod-

eled the early forest fire detection [92] as a k-coverage problem. By measuring the temperature, relative

humidity, wind and rain statistics, they compute the probability of ignition and fire intensity through

the Fire Weather Index system. Santoni et al. conducted real fire sensor experiments by protecting the

sensor nodes with the thermal insulation layer named Firesensorsock [93]. This allows the sensor nodes

to remain functioning during the spreading of fire, such that the spatial and temporal movement of the

fire zone can be predicted.

Batalin et al. combined the autonomously articulated sensor nodes with the static nodes and built a

3D mobile sensor network [94]. It measures the solar radiation, temperature, and chemical composition

in the atmosphere at the tree canopy. Upon sensing a variation in the readings, the static nodes will call

the mobile nodes for a close up examination of the phenomenon, which effectively provides better spatial

and temporal coverage at a lower cost. A similar system is deployed by Tolle et al. [95] to observe the

micro-climate at different altitude in a forest. Vasilescu et al. experimented an underwater sensor network

[96], where static nodes are placed under the sea to collect the water temperature and pressure data, and

mobile nodes are used for data muling and network maintenance. The acoustic signal is used for node

localization and synchronization, while optical transmission is used for point to point communication to

relay data from the static nodes to the mobile nodes. Instead of using static deployment, SensorFlock

[97] is designed to actively trace and detect the target event in an open air space through micro aerial

vehicles. The airborne sensor network can be remotely controlled to follow the phenomenon such as a

88 Sensor Network Applications

toxic plume, a spreading wild fire or a storm to gather real time information. Some other environmental

monitoring projects include weather monitoring [98, 99], early warning flood detection [100], acoustic

noise monitoring at the airport [101], and estimation of the canopy coverage [102, 103].

B. Intrusion detection and target tracking: Arora et al. created a target classification and tracking

system [2] which uses the magnetometer, infrared sensor and radar sensor to detect the existence of a

person, a soldier and a vehicle and perform target classification based on the speed, bearing and magnetic

signature of the target. The network focuses on a collaborative sensing and data processing design, where

the collected data is processed at a central classifier to counter the side effects of noise and hardware

errors. Simon et al. proposed a counter-sniper system [104] using a group sensors to track the acoustic

signal generated from a gun fire. The shooter’s position can be computing by comparing the arrival

time of the signal with the position of the sensors. Gu et al. proposed a hierarchical detection and

classification system [105], where the target classification procedure is performed hierarchically at the

sensor node, group and base levels in order to reduce the data traffic in the network. Each node computes

a confidence vector based on the sensor readings. The confidence vectors are reported back to the cluster

head and the data sink for further analysis, such that higher level information can be obtained such as

the number and the speed of intruders. The anti-theft car park system [106] constructs a spanning tree

from the cars, while each car is equipped with a communication sensor with a unique identity. As each

node periodically reports a beacon back to the data sink, a car theft event is detected from a timeout.

Cyclops [107] is designed to be a low power image sensor that can be used in a video surveillance sensor

network for detecting intruding objects. Tso et al. presented the 3G robot surveillance system [108],

which allows the user to control the patrol robot through a cellphone. The static sensor nodes report

the observed phenomenon to the gateway which will notify the user through SMS. The user can use the

cellphone to dispatch the robot to retrieve visual information.

C. Structural health monitoring: Kim et al. [109] deployed 64 nodes in a span of 4200 feet on the

Golden Gate Bridge to detect ambient vibration and strong motion of the bridge structure. All nodes

form a spanning tree based on the measured link qualities and each node samples the accelerometer at an

interval of 5 ms. Over a duration of 12 hours, the data sink pulled data from each node one by one. The

seismic signal is examined to evaluate the time scale and severity of the motions. The Wisden [110] uses

the accelerometer to monitor the vibration of the buildings due to wind or an earthquake. It performs

wavelet-based compression to convert the sensor readings to byte stream and rely on hop-by-hop and

point-to-point recovery to ensure reliable data delivery to the sink. By subjecting the sum of forwarding

delay from the arrival time, the event occurrence time can be derived without clock synchronization.

Krishnamurthy et al. [111] built a industrial sensor network with sensors installed on the equipments

to predict the hardware failures. A gateway is used to coordinate the schedule and collect vibration

signature from nodes through direct communication. The Nonintrusive Autonomous Water Monitoring

System (NAWMS) [112] estimates the water flow rate and computes the water usage from vibration of

the water pipes, which will be exploited for water conservation. Nasipuri et al. [113] deployed a sensor

network at the substation to monitor the temperature of the circuit breakers and transformers, which

eliminates the hazards of on site data collection. Allen et al. proposed a volcanic earthquake localization

system [114] to detect and localize the earthquake from the arrival time of the seismic and acoustic

signals at various sensors.

89

D. Road mapping: The BikeNet [115] is a mobile sensing system installed on bikes to collect road

condition information and the rider’s performance data. Each bike is equipped with multiple sensors

to record the wheel speed, paddling speed, inclination angle, traveling distance, etc. The environment

factors such as the noise level, air pollution and traffic condition are also monitored by the chemical,

acoustic sensors and magnetometers. The cellphone carried by each rider acts as a gateway to forward

the local data to the Service Access Points (SAP) along the routes. The bikes can also be configured as

data mules to relay data for other members encountered. The collected data is analyzed offline to evaluate

quality of the routes and refine the athletics training program. The Nericell [5] system is designed to

record the noise condition and traffic condition for mobile vehicles during a ride. Nericell exploits the

commodity sensors readily available on the cellphones, such as the accelerometer, microphone and the

GPS. It provides a reorientation algorithm to calibrate the placement of the cellphone. The accelerometer

will record the bumpy road sections and the GPS device can identify the exact location. The average

driving speed is used to derive the traffic condition. The microphone records the environmental noise and

applies a filtering algorithm to differentiate human voice from the honk of vehicles. The traffic condition

collected from the various routes can serve as the input for route planning, such that the chaotic roads

can be avoided.

E. Body sensor network: Mercury [4] is a wearable sensor network platform to evaluate the motion

function of the patient and progression of the disease. A patient wears 8 accelerometer sensors on the

limb segments, such that the body movements can be constantly monitored. All sensor nodes form

a one-hop collection tree with the data sink installed in the ward and periodically report the motion

data. Upon detecting suspicious movement pattern, the data sink can trigger the gyroscope sensor for

detailed examination. The CenWits [116] is a search and rescue system that tracks the location of the

hikers through the witness information. Each person carries a wireless sensor, which exchanges the ID

information with neighboring sensors. The records are tagged with the time stamp of the encounter.

Each sensor also acts as a data mule, such that the information can be duplicated to increase the chances

of delivery. When a target is reported missing, all witness information can be retrieved to sketch the

search area. The CenceMe application [117] running on the smart phones estimate the type of human

activities and the occasion based on the embedded microphone, accelerometer and GPS. It collects sound

samples from the microphone and perform discrete Fourier transformation to classify the source as a

conversation or ambient noise. The accelerometer samples are used to determine whether the person is

sitting, walking, or exercising. The Bluetooth MAC addresses on the cellphones are gathered to identify

the neighbors around. Random photos can be taken if the video camera is enabled to provide a snapshot

of the current occasion a person is involved with. The results can be uploaded to social network websites

as a real time information sharing mechanism.

F. Precision agriculture: The LOFAR-agro project [118, 119] deployed 97 wireless sensor nodes

on the potato field to monitor humidity and temperature under the crop canopy, as an effort to prevent

the fungal disease. The network experienced severe packet losses, attributed to the ill-formed routing

topology and inadequate neighbor list management scheme in the MAC layer. The Deluge scheme

used for network programming also kept most nodes constantly awake and considerably shortened the

network lifetime. This project provides several valuable lessons for all researchers planning a large-scale

deployment. Wark et al. developed a “smart farm” [120] that applies wireless sensor network technology

90 Sensor Network Applications

to animal agriculture. The smart farm incorporates static sensors to monitor the pasture growth and

mobile sensors attached on cattle to monitor the animal behavior. The static nodes are placed in the soil

to monitor the temperature and soil moisture from which the growth of the pasture can be predicted. The

mobile node consists of a GPS receiver, an electronic compass and an accelerometer. The cattle behavior

such as sleeping, grazing and ruminating can be monitored from the accelerometer readings and the speed

reported by GPS. Combined with the location information, the farm owners can protect the pasture areas

from overgrazing and land erosion. Beckwith et al. [121, 3] use the wireless sensor network to predict

maturity of grapes based on temperature readings and perform preventive measure if a potential frost is

predicted. The Camalie Networks Solutions [10] provides the technical support for wireless vineyard

monitoring. One of their early deployments placed 26 nodes to monitor the temperature, soil moisture

and the water tank pressure. By adjusting the irrigation system according to the temperature and soil

moisture, the farmers can improve the grape quality and reduce the water consumption.

G. Inventory tracking: The MAX system [122] was designed to facilitate human-centric search of

the objects in the physical world. MAX employs a hierarchical structure, consisting of the base station,

the substations and the tags. Each object carries a “tag” which is either an RFID tag or a wireless

sensor node. The tag contains the description of the labelled object and the substations are placed at

the selected locations as landmarks. When a query is issued, the substations will collect the responses

from the tags and find the matched replies. The RSSI of the response message serves as an indicator

to the distance of the objects. The results are presented based on the similarity level and the estimated

distance. McKelvin et al. [123] and Mason et al. [124] proposed to integrate the RFID reader with

a wireless sensor module through the RS232 interface, such that the response received by the readers

can be relayed back to the data sink through the ad hoc networks formed by sensor modules over a

longer distance. As the RFID tags may carry the identity information of the target object or target area,

the combination of RFID readers with sensor modules will help reveal the relations between the sensed

events and the corresponding sources. Ho et al. proposed a prototype system [125] that uses RFID tags

and sensors to monitor patients’ medication in take. The patients and the medicine are identified by the

RFID tags they carry. The consumption of medicine can be computed from the weight change of the

medicine bottles.

Appendix B

Challenges and Research Areas

Table B.1 provides the specifications of the commonly used sensor nodes. Some sensor network testbeds

open to public are shown in Table B.2.

Table B.1: Hardware Specifications of Sensor Nodes
Name Processor Memory Flash Radio Provider

BSN TI MSP430 - 64KB TI CC2420 Imperial College,

8MHz 2.4GHz, 250kbps UK

BTnode rev3 ATmega128L 4KB 128KB TI CC1000 ETH, Zurich

8MHz 868MHz, 76.8kbps

Ember EM351 ARM Cortex M3 12KB 128KB 2.4GHz, 250kbps Ember

12MHz

eyesIFXv2 TI MSP430 10KB 40KB Infineon TDA5250 EYES

4MHz 868MHz, 19.2kbps

Imote2 Intel PXA271 Xscale 256KB 32MB TI CC2420 CrossBow

13-416MHz 2.4GHz, 250kbps

Medusa Atmega128L 4KB 32KB RFM TR1000 UCLA

4MHz 916.5MHz, 115.2kbps

MeshBeaon2 ATmega1281V 4KB 128KB AT86RF230 Meshnetic

4MHz 2.4GHz, 250kbps

Mica2 Atmega128L 4KB 128KB TI CC1000 CrossBow

8MHz 868/916MHz, 38.4kbps

MICAz ATmega128L 4KB 128KB TI CC2420 CrossBow

8MHz 2.4GHz, 250kbps

TelosB TI MSP430 10KB 48KB TI CC2420 CrossBow

8MHz 2.4GHz, 250kbps

TMote Sky TI MSP430 10KB 48KB TI CC2420 Moteiv

8MHz 2.4GHz, 250kbps

uPart PIC 18F6720 1KB 128KB RFM TR1001 TECO,

Particle 2/29 20MHz 868MHz, 125kbps University of Karlsruhe

The compact size and the low power hardware components in the wireless sensors impose new chal-

lenges for the protocol design and network deployment.

• Radio Range: The radio chips currently used in a typical wireless sensor node commonly oper-

ate at high frequencies, providing limited network bandwidth and a relatively short transmission

range. Powered by the batteries, the output power of radio is very low, which implies that the

network connectivity may be easily interfered leading to frequent updates in the topology. Due to

the limited radio range and network bandwidth, high network densities are preferred in order to

92 Challenges and Research Areas

Table B.2: Sensor Network Testbeds
Name Sensor Platform Network Size Deployment OS Maintainer

Emulab [126] Mica2, Stargate 25 (static) + Indoor, single floor TinyOS University of Utah

6 (mobile)

Indriya [17] TelosB 127 Indoor, 3 floors TinyOS National University of Singapore

JHU Testbed [127] TMote 47 Indoor Kamikaze John Hopkins University

Kensai [128] XSM, Stargate 210 Indoor, grid, Emstar Dev. Ohio-State University

5800 sq feet

Mirage [129] MICAz 100 Indoor, single floor, TinyOS Intel Research, Berkeley

160× 140 sq feet

MoteLab [130] TMote Sky 190 Indoor, 3 floors TinyOS Harvard University

NetEye [131] TelosB 130 Indoor TinyOS Wayne State University

TWIST [132] TMote Sky, eyesIFX 102, 102 Indoor, 3 floors TinyOS Technische Universität Berlin

Tutornet [133] TMote Sky, MICAz 91, 13 Indoor, 2 floors TinyOS University of Southern California

VineLab [134] TMote Sky 48 Indoor, 1 floor TinyOS Virginia University

provide sufficient coverage and robustness for network communication. For data collection in such

a dense network, the packet transmission should be carefully planned, in order to reduce intra-flow

and inter-flow contention.

• Error Detection: Most radio transceivers in the sensor nodes only provide limited error detec-

tion functions. For critical application requiring reliable delivery, MAC layer retransmission is

normally enabled to counter the effects of packet drops. Therefore, the application layer must

handle duplicates resulted from premature MAC retransmissions. All packets must be tagged at

the application layer such that duplicates can be identified and ignored.

• Battery Power: For sensor nodes using batteries as the sole energy supply, the duty-cycling mech-

anism must be enabled to extend the network lifetime for long term deployments. The duty-cycle

ratio must be determined based on the task required on each node. As the radio chip switches to the

sleep mode periodically, nodes must coordinate with the neighbors to ensure the packet delivery

will not be interrupted by the power saving mechanism and the network latency is maintained at a

satisfactory level. Time synchronization is often required to ensure the relevant nodes will remain

available for the transmission.

• Processing Capacity: The low power processors equipped on the sensor nodes may become an-

other performance bottle neck. On TelosB, the TI MSP430 processor has a clock frequency of 8

MHz, which is generally adequate for radio communication. However, some applications require

more sophisticated in-network data processing to reduce the network traffic. For example, sound

samples collected in the time domain may be transformed into the frequency domain for spectrum

analysis. Such procedures often involve computation over large volume of data, imposing extra

workload on the processor. The algorithm and program flow must be optimized carefully, such

that the normal network operations will not be affected.

• Memory: One of the toughest challenges of working on the sensor motes is to cope with the

limited amount of memory available for programming. For example, a TelosB mote is equipped

with a RAM of 10 KBytes and a programming flash memory of just 48 KBytes. The RAM de-

termines the total amount of memory available to the global variables at run time. The program

93

flash memory provides space for data structures and function declarations. All auxiliary variables

and data structures must be simplified to comply with the memory constraints. As sensor applica-

tions often involve packet exchange, packet buffering is commonly applied to reduce packet drops

during transient network congestion. Given the maximum packet size of 128 bytes in TinyOS-2,

a buffer with 10 slots will occupy 1.2 KBytes of RAM. Another memory consuming component

is the neighbor list holding the neighboring nodes’ information, such as the node ID, coordinates

and battery level. As the network density varies with different radio output powers at different

locations, when the neighbor list size cannot accommodate all candidates, the network protocol

must incorporate an eviction algorithm to select desirable neighbors for the application.

• Software: The limitations in the development toolkit create another hurdle for designing and

implementing sensor network protocols. The TinyOS library provides limited options for data

structures and functions, especially in memory management. For example, it does not support two-

dimensional arrays, which is inconvenient for applications involving matrix operations. Although

floating number calculation is allowed on a mote, a floating point value must be packed into an

integer variable for network transmission. Dynamic memory management is not yet supported

in the standard TinyOS library. Recursion should be avoided in the algorithm design in order to

avoid the risk of stack overflow. The cross compilers currently employed are not as intelligent

as the standard C compilers; thus, memory operations must be examined carefully and run time

errors may lead to malfunction of multiple components. Due to the lack of an output console

for debugging information, the development of sensor network program tends to be more time

consuming.

To cope with the hardware constraints and tackle the challenges in the software stack, new protocols

have been proposed from various aspects to facilitate the intended tasks. Some active areas in wireless

sensor network research are summarized below.

• Routing protocols are in charge of delivering data packets across the network through multi-hop

forwarding. In a data collection scenario, convergecast can be achieved through a spanning tree

[135] where routing paths are built on reliable links. In a data dissemination scenario, information

will spread from a source node to the entire network. To disseminate larger volume of data such

as network re-programming [136], data integrity must be ensured and data discrepancies must be

resolved efficiently. For more complex network functions where point-to-point delivery service is

required, more generic routing protocols must be employed.

• Localization algorithms [59, 58] provide the network embedding function, which computes the

node coordinates through the topological information. It allows the target events to be reported

with specific addresses and the coordinates can also be used in geographic routing to support more

complex communication patterns other than convergecast.

• Time synchronization algorithms [137] allow node scheduling to be implemented, such that nodes

can switch to power saving modes in a coordinated manner while maintaining sufficient network

coverage and connectivity.

94 Challenges and Research Areas

• Congestion control algorithms [9, 138] will help to reduce network contention due to concurrent

transmissions or bandwidth limitation. Some congestion control algorithms perform bandwidth

allocation to the flows based on the scale or priority of the reported information, creating a priori-

tized transmission mechanism.

• Topology control protocols [139, 140] help to maintain good network connectivity by ignoring

the weak links among the neighboring connections. By avoiding the poor links, packets can be

forwarded through more reliable paths, such that higher delivery ratio and better energy savings

can be achieved.

• Data aggregation [141] or data compression [142] algorithms are applied to reduce the network

traffic through in-network data processing. The data aggregation algorithms allow each node to

create application dependent index values from collected data, such that the sensed information

can be summarized and conveyed in a compact format. The data compression algorithms can be

applied to trade the low computational cost for the high communication cost in terms of energy

consumption.

• MAC protocols [143] can play a crucial part on energy saving by reducing packet collisions [144],

idle listening [145] and the control packet overhead. As duty-cycling is often employed [146] to

reduce power consumption during periods of in-activities, MAC protocols must provide a proper

scheduling among the neighboring nodes to ensure efficient packet delivery.

• Security and encryption algorithms [147, 148] can help to counter the effects of malicious nodes

and prevent unauthorized access to the sensor network resources.

• Network coding algorithms [149, 150] can provide resilience to packet corruption and packet losses

in network transmissions by introducing data redundancy in the packets. It can also protect the data

integrity of in-network storage systems from individual node failures.

Appendix C

Connectivity and Link Quality

Measurements

The Indriya testbed [17] contains 127 TelosB motes deployed on three floors of the COM-1 building of

School of Computing at the National University of Singapore. The nodes are divided into 6 clusters,

where power supply and the backbone connections are provided through USB links. A web interface

ported from the MoteLab [16] project is used for testbed status monitoring and job management. Some

snapshots of the testbed are given in Fig. C.1, showing the motes installed on the ceilings of two floors

in COM-1.

(a) Level-1, Corridor (b) Level-2, Student Area

Figure C.1: Snapshots of the Indriya Testbed at COM-1 Building

The specifications of the TelosB motes are summarized in Table C.1. The program flash memory

indicates that the program image size should be limited to 48 KBytes. The run time variables should

occupy less than 10 KBytes of RAM. The CC2420 radio chip has a data rate of 250 kbps compliant

with the IEEE 802.15.4 standard. The output power level of the radio can be configured from level 1

to 31, equivalent to the range from −24 dBm to 0 dBm. As Indriya is an indoor testbed, the expected

communication range is between 20 to 30 meters due to the presence of obstacles. Our experiments show

that the observed link can exceed 50 meters when two nodes are within the line of sight.

96 Connectivity and Link Quality Measurements

Table C.1: Specifications of the TelosB Mote (source: [7]).
Attribute Value

Processor 8 MHz, TI MSP430, 16-bit RISC

Program Flash Memory 48 KBytes

RAM 10 KBytes

Measurement Serial Flash 1024 KBytes

Frequency band 2400 ∼ 2483.5 MHz

Data Rate CC2420, 250 kbps

RF Power −24 dBm ∼ 0 dBm

Range Outdoor: 75 ∼ 100 meters

Indoor: 20 ∼ 30 meters

Antenna Integrated Onboard Antenna

Interface USB

We measure the network density, the link quality with both broadcast and unicast packets and the

network topology in the Indriya testbed. The network density will indicate the minimum and maximum

number of neighbors of the nodes, which can be used to determine the neighbor list size in the program.

The average density value can also be used to the select beacon intervals, in order to maintain the agility

to reflect network dynamics with low overhead traffic. The link qualities collected from the testbed will

be used to determine the appropriate buffer size on the radio interface in order to cope with the bursty

traffic and retransmissions. We compare the link quality results measured from broadcast and unicast

packets, showing that both methods will obtain nearly identical results. This implies that it is a valid

approach to use broadcast beacons for bi-directional link quality estimation on the Indriya testbed. The

network topology can be derived from the connectivity information. It will reveal the network diameter

and the distribution of node clusters, which can help improve the routing efficiency of the anchor nodes

selected manually.

C.1 Configuration of Link Measurements

Both broadcast and unicast probes are employed to measure the network connectivity and the link quali-

ties. The parameters are summarized in Table C.2. Each node maintains a neighbor list with a maximum

capacity of 40 and the warm up period is set to 300 seconds for the neighbor discovery process. A probe

message is 19 bytes in length, including the source and destination node IDs, the probe iteration index,

the total number of probes and a sequence number. A node with k neighbors will send the probes in k+1

iterations, where the first batch will be sent as broadcast to all neighbors and each subsequent iteration

will use unicast to probe an individual neighbor. Each node is scheduled to send packets at a different

interval to avoid collisions due to concurrent probing. The transmission power is set to the maximum of

0 dBm.

C.2 Network Density

The network density on the Indriya testbed is given in Fig. C.2, showing the number of neighbors at

each node and the neighbor count distribution. Although the placement of the nodes is arranged in a grid

pattern, the connectivity varies significantly. The number of neighbors observed by the nodes ranges

C.3 Link Quality 97

Table C.2: Configuration of Link Measurements
Parameter Value

Number of Probes 100

Probe Message Size 19 bytes

Probe Interval burst

Probe Method Broadcast and Unicast

RTX and ACK disabled

Neighbor List Capacity 40

Transmission Power max level of 31, 0 dBm

Warm up Duration 300 seconds

Initial Probe Delay 5 minutes × node ID

Beacon Interval 10 seconds

from 1 to 35, depending on the location and the surrounding environment. Node 101 fails to log its

neighbor list to the database due to a faulty USB cable. Fig. C.2(b) reveals that over 80% of the nodes

have more than 10 neighbors and the average neighbor count is 21; therefore, the testbed is a dense

network at the maximum transmission power.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
N

e
ig

h
b
o
rs

Node ID

Neighbor Count at Each Node

Neighbor Count

(a) Number of Neighbors at Each Node

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
u
m

b
e
r

o
f
N

o
d
e
s
 w

it
h
 t
h
e
 N

e
ig

h
b
o
r

C
o
u
n
t

C
D

F
 o

f
N

e
ig

h
b
o
r

C
o
u
n
t

Neighbor Count

Distribution of Number of Neighbors

Y1 - Number of Nodes
Y2 - CDF of Neighbor Count

(b) Neighbor Count Distribution

Figure C.2: Neighbor Count of 127 Nodes in the Indriya Testbed.

C.3 Link Quality

We observed 2445 directional links during the experiment and the cumulative distribution of the packet

reception ratios is given in Fig. C.3. The link qualities measured by the broadcast and unicast probes

follow two nearly identical distributions. As the average inter-node distance on the deployment grid is 8

meters (much shorter than the expected indoor range of 20 to 30 meters [7]) and all nodes use the default

maximum transmission power, most links exhibit high reliability. The average reception ratio is 99.2%

and 85% of the links delivered more than 95% of the unicast and broadcast probe packets.

The total number of node pairs that have connections in at least one direction is 1363. For every

connected node pair, its link quality in each direction is given in Fig. C.4. Each point represents a

connected pair A ⇔ B and its position (p1, p2) indicates that the Packet Reception Ratio (PRR) from

Node A to B is p1 and the PRR in the reverse direction is p2. We examine the bi-directional link

98 Connectivity and Link Quality Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
ti
o

Percentage (total: 2445 links)

Distribution of Directional Link PRR on Indriya Testbed

Unicast Probe
Broadcast Probe

Figure C.3: CDF of Link Packet Reception Ratio, number of links = 2445

qualities and plot the CDF curve in Fig. C.4(b). While 74% of the links retain a high PRR ≥ 90%

in both directions, around 83% links have a PRR ≥ 90% in at least one direction. As the network is

dense and most links are highly reliable in both directions, a blacklisting method can be incorporated to

ignore the weak links without sacrificing network connectivity. Since the probes are scheduled to avoid

interferences from simultaneous probing at nearby neighbors, these results represent the network link

quality in an ideal scenario under minimum network contention. Nevertheless, we believe that the results

provide a benchmark on the best performance a data delivery protocol can achieve on the testbed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L
in

k
 P

R
R

 B
 -

>
 A

,
p
rr

-2

Link PRR A -> B, prr-1

Bi-directional Link PRR for Unicast

(prr-1, prr-2)

(a) Packet Reception Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
e
rc

e
n
ta

g
e
 o

f
L
in

k
s
 w

it
h
 P

R
R

 >
=

 r

Threshold PRR r

Link with PRR1 and PRR2 >= r
Link with PRR1 or PRR2 >= r

(b) CDF of Bi-directional Link Quality

Figure C.4: Packet Reception Ratio on Bi-directional Links

We define the level of link asymmetry as the difference of the PRRs (p1−p2). In Fig. C.5, over 85.9%

of the links have consistent delivery ratios in both directions, with a difference less than 0.1. Fig. C.5(b)

depicts the CDF of the absolute PRR difference, where 43.6% of the links have identical delivery ratios

in both directions. Around 82% of the links have |p1−p2| < 0.05, revealing that most links in the testbed

are highly symmetric. There are also 2% of the links having a PRR difference above 0.8, most of which

belong to transient connections that fail to be discovered by one side of the link during the experiment.

As mentioned in [151], the wireless link quality estimated with broadcast packets may fail to reflect

C.3 Link Quality 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

PRR1 - PRR2, range = [-1, 1]

CDF of Unicast PRR Difference for Bi-directional Links

PRR1 - PRR2

(a) CDF of PRR Difference

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

abs(PRR1 - PRR2), range = [0, 1]

CDF of Absolute Unicast PRR Difference for Bi-directional Links

abs(PRR1 - PRR2)

(b) CDF of Absolute PRR Difference

Figure C.5: Link Asymmetry on the Bi-directional Links

the actual throughput of the unicast traffic due to different data rates used for broadcast and unicast traffic.

On the Indriya testbed, the CC2420 radio [6] in the TelosB motes provides a transmission rate of 250

kbps for all packets. In order to examine the validity of using broadcast probes to estimate the unicast

reception ratio, we compare the link estimation results obtained from the broadcast and unicast probes in

Fig. C.6 and Fig. C.7. Every point in Fig. C.6 represents a directional link, whose coordinates (x, y) are

formed by the broadcast PRR pb = x and its unicast PRR pu = y. As most of the data points are aligned

along the diagonal, the link quality estimated from the broadcast probes is generally consistent with the

unicast results. The PRR difference between the broadcast traffic and the unicast traffic is depicted in

Fig. C.7(a). Over 91.7% of the links retain a link quality difference less than 0.1 and on 87.3% of the

links, the difference is below 0.05. There are 1.2% of the links with |pu − pb| > 0.8, most of which are

transient connections unavailable during either the unicast or broadcast probe iteration. As the unicast

performance can be closely approximated by the broadcast performance, the results in Fig. C.7 imply that

broadcast probing is an efficient and reliable method for link quality estimation on the Indriya testbed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

U
n
ic

a
s
t
P

R
R

,
P

u

Broadcast PRR, Pb

Unicast PRR vs. Broadcast PRR

(Pb, Pu)

Figure C.6: Packet Reception Ratio of Unicast and Broadcast Probes

100 Connectivity and Link Quality Measurements

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

unicast PRR - broadcast PRR, range = [-1, 1]

CDF of Unicast and Broadcast PRR Difference

unicast PRR - broadcast PRR

(a) Unicast PRR - Broadcast PRR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

abs(unicast PRR - broadcast PRR), range = [0, 1]

CDF of Absolute Unicast and Broadcast PRR Difference

abs(unicast PRR - broadcast PRR)

(b) abs(Unicast PRR - Broadcast PRR)

Figure C.7: PRR Difference for Broadcast and Unicast Probes

C.4 RSSI and LQI

Srinivasan et al. [72] evaluated the approach of deriving real time link qualities based on RSSI and LQI

values reported by the CC2420 radio chip. Their results conclude that a threshold RSSI value can be

utilized as a binary indicator to identify the reliable links with high reception ratios. As a comparison,

we compute the average RSSI and LQI values for all the unicast probe packets collected from the testbed

and plot the relations between RSSI, LQI and PRR in Fig. C.8. The RSSI value observed on the links

varies between −95 dBm to −38 dBm. There is a sharp increase in the average reception ratio when

the average RSSI increases above −90 dBm. The transitional area lies between the RSSI values of −95

dBm and −87 dBm, where the link PRR fluctuates between 0% and 100%. When the average RSSI

is larger than −87 dBm, the packet reception ratio consistently remains above 95%, indicating that the

average RSSI can serve as a threshold to differentiate the high quality links from the weak ones. The

relation between the average LQI and PRR in Fig. C.8(b) shows a different pattern. The perceived LQI

value lies between 54 to 107, while most links have an average LQI greater than 95. The PRR linearly

increases as LQI grows from 60 to 90. For LQI values above 95, the corresponding packet reception

ratios remain above 98% on average.

We plot the average RSSI and the corresponding LQI readings of each links in Fig. C.8(c). There is

a radical increase for the LQI value as RSSI grows from −95 dBm to −87 dBm. When the average RSSI

on a link is ≥ −87 dBm, the corresponding LQI readings are usually above 95. Combined with the PRR

results in Fig. C.8, the RSSI value of −87 dBm and the LQI value of 95 can be utilized as the threshold

to distinguish the good links with an average PRR above 95%. Although there is also a correspondence

between the average LQI and PRR at the transitional region with RSSI between −95 dBm and −87 dBm,

it is not feasible to estimate the link quality based on LQI in this range due to the large PRR variation

(not shown) and the lack of samples.

C.4 RSSI and LQI 101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-100 -90 -80 -70 -60 -50 -40 -30

P
a
c
k
e
t

R
e
c
e
p
ti
o
n
 R

a
ti
o

RSSI (dBm)

Link PRR vs RSSI

Link PRR

(a) PRR vs. RSSI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 50 60 70 80 90 100 110

P
a
c
k
e
t

R
e
c
e
p
ti
o
n
 R

a
ti
o

LQI

Link PRR vs LQI

Link PRR

(b) PRR vs. LQI

 40

 50

 60

 70

 80

 90

 100

 110

-100 -90 -80 -70 -60 -50 -40 -30

A
v
e
ra

g
e
 P

a
c
k
e
t
L
Q

I

Average Packet RSSI

Average Packet LQI vs RSSI

LQI vs RSSI

(c) RSSI vs. LQI

Figure C.8: Packet Reception Ratio vs. RSSI and LQI

102 Connectivity and Link Quality Measurements

Bibliography

[1] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson. Wireless

sensor networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications, pages 88–97, Atlanta, GA, USA, 2002.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demir-

bas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and

M. Miyashita. A line in the sand: A wireless sensor network for target detection, classification,

and tracking. Computer Networks, 46:605–634, 2004.

[3] Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard computing: Sensor networks in

agricultural production. Pervasive Computing, pages 10–17, 2004.

[4] Konrad Lorincz, Bor rong Chen, Geoffrey Werner Challen, Atanu Roy Chowdhury, Shyamal patel,

Paolo Bonato, and Matt Welsh. Mercury: A wearable sensor network platform for high-fidelity

motion analysis. In Proceedings of th 7th International Conference on Embedded Network Sensor

System, Berkeley, CA, USA, 2009.

[5] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee. Nericell: Rich moni-

toring of road and traffic conditions using mobile smartphones. In Proceedings of the 6th Inter-

national Conference on Embedded Network Sensor Systems, pages 323–336, Raleigh, NC, USA,

2008.

[6] Texas Instrument. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, 2008.

http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[7] Crossbox Technology Inc. TelosB - Telosb Mote Platform, 2009. http://www.xbow.com/

Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf.

[8] Sylvia Ratnasamy, Brad Karp, Lin Yin, Fang Yu, Deborah Estrin, Ramesh Givindan, and Scott

Shenker. GHT: A geographic hash table for data-centric storage. In Proceedings of the 1st ACM

International Workshop on Wireless Sensor Networks and Applications, pages 78–87, Atlanta,

Georgia, USA, 2002.

[9] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and Konstantinos Psounis.

Interference-aware fair rate control in wireless sensor networks. In Proceedings of the 2006

Conference on Applications, Technologies, Architectures and Protocols for Computer Commu-

nications, pages 63–74, Pisa, Italy, 2006.

[10] Camalie Networks LLC Wireless Vineyard Monitoring. http://camalienetworks.com/.

[11] Yong Yao and Johannes Gehrek. The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec., 31(3):9–18, 2002.

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://camalienetworks.com/

104 BIBLIOGRAPHY

[12] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (dsdv) for mobile computers. SIGCOMM Comput. Commun. Rev., 24(4):234–244, 1994.

[13] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance vector routing. In Pro-

ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pages 90–

100, New Orleans, LA, USA, 1999.

[14] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks.

In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer Academic Publishers,

1996.

[15] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler. An

analysis of a large scale habitat monitoring application. In Proceedings of the 2nd International

Conference on Embedded Networked Sensor System, pages 214–226, Baltimore, MD, USA, 2004.

[16] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. Motelab: A wireless sensor net-

work testbed. In Proceedings of the 4th International Symposium on Information Processing in

Sensor Networks, Los Angeles, CA, USA, 2005.

[17] Communication and Internet Research Lab. Indriya Testbed. National University of Singapore,

2009. http://indriya.comp.nus.edu.sg.

[18] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.

In Proceedings of the 6th Annual International Conference Mobile Computing and Networking,

pages 243–254, Boston, MA, USA, 2000.

[19] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing: of

theory and practice. In Proceedings of the 22nd Annual Symposium on Principles of Distributed

Computing, pages 63–72, Boston, MA, USA, 2003.

[20] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. On the pitfalls of geographic

face routing. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing,

pages 34–43, Cologne, Germany, 2005.

[21] J. Newsome and D. Song. GEM: Graph embedding for routing and data-centric storage in sensor

networks without geographic information. In Proceedings of the 1st ACM Conference on Embed-

ded Networked Sensor Systems, pages 76–88, Los Angeles, CA, USA, 2003.

[22] B. Leong, B. Liskov, and R. Morris. Geographic routing without planarization. In Proceedings of

the 3rd Symposium on Networked Systems Design and Implementation, pages 339–352, San Jose,

CA, USA, 2006.

[23] Q. Cao and T. Abdelzaher. A scalable logical coordinates framework for routing in wireless

sensor networks. In Proceedings of the 25th IEEE Real-Time Systems Symposium, pages 349–

358, Lisbon, Portugal, 2004.

[24] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica. Beacon vector

routing: Scalable point-to-point routing in wireless sensornets. In Proceedings of the 2nd Sympo-

sium on Networked Systems Design and Implementation, volume 2, pages 329–342, Boston, MA,

USA, 2005.

[25] S. Srinivasan and E. Zegura. An empirical evaluation of landmark placement on internet coordi-

nates schemes. In Proceedings of the 13th International Conference on Computer Communica-

tions and Networks, pages 335–340, Chicago, IL, USA, 2004.

http://indriya.comp.nus.edu.sg

BIBLIOGRAPHY 105

[26] Ke Liu and Nael Abu-Ghazaleh. Addressing anomelies in geometric routing. In Proceedings of

the IEEE Upstate New York Workshop on Communications and Networks, Rochester, NY, USA,

2006.

[27] Hideaki Takagi and Leonard Kleinrock. Optimal transmission ranges for randomly distributed

packet radio terminals. IEEE Transactions on Communications, 32(3):246–257, 1984.

[28] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A distance

routing effect algorithm for mobility(DREAM). In Proceedings of the 4th Annual ACM/IEEE

International Conference on Mobile Computing and Networking, pages 76–84, Dallas, Texas,

USA, 1998.

[29] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric net-

works. In Proceedings of the 11th Canadian Conference on Computational Geometry, pages

51–54, Vancouver, Cananda, 1999.

[30] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with guaranteed delivery

in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

[31] Q. Cao and T. Abdelzaher. Scalable logical coordinates framework for routing in wireless sensor

networks. ACM Transactions on Sensor Networks, 2(4):557–593, 2006.

[32] Yao Zhao, Bo Li, Qian Zhang, Yan Chen, and Wenwu Zhu. Efficient hop id based routing for

sparse ad hoc networks. In Proceedings of the 13th IEEE International Conference on Network

Protocols, pages 179–190, Boston, MA, USA, 2005.

[33] Roland Flury and Roger Wattenhofer. Randomized 3d geographic routing. In Proceedings of

the 27th Annual IEEE Conference on Computer Communications, pages 834–842, Phoenix, AZ,

USA, 2008.

[34] Omnet++ community site. http://www.omnetpp.org/.

[35] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[36] Tinyos 2.1.0. http://www.tinyos.net/.

[37] Gregory G. Finn. Routing and addressing problems in large metropolitan-scale internetworks.

Technical Report ISI/RR-87-180, University of Southern California Marina del Rey Information

Science Institute, Los angeles, CA, USA, 1987.

[38] Ben Leong, Sayan Mitra, and Barbara Liskov. Path vector face routing: Geographic routing with

loal face information. In Proceedings of the 13th IEEE International Conference on Network

Protocols, pages 147–158, Boston, MA, USA, 2005.

[39] Susanta Datta, Ivan Stojmenović, and Jie Wu. Internal node and shortcut based routing with

guaranteed delivery in wireless networks. In Proceedings of the 21st International Conference on

Distributed Computing Systems Workshop, pages 461–466, Mesa, AZ, USA, 2001.

[40] Hannes Frey. Scalable geographic routing algorithms for wireless ad hoc networks. IEEE Network,

18(4):18–22, 2004.

[41] Hannes Frey and Ivan Stojmenović. On delivery guarantees of face and combined greedy-face

routing in ad hoc and sensor networks. In Proceedings of the 12th International Conference on

Mobile Computing and Networking, pages 390–401, Los Angeles, CA, USA, 2006.

http://www.omnetpp.org/
http://www.isi.edu/nsnam/ns/
http://www.tinyos.net/

106 BIBLIOGRAPHY

[42] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geome-

try: Algorithms and Applications. Springer, 3rd edition, 2008.

[43] Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative neighborhood graphs and their relatives.

Proceedings of the IEEE, 80(9):1502–1517, 1992.

[44] K. Ruben Gabriel and Robert R. Sokal. a new statistical approach to geographic variation analysis.

Systematic Zoology, 18(3):259–278, 1969.

[45] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed construction of a planar spanner

and routing for ad hoc wireless networks. In Proceedings of the 21st Annual Joint Conference of

the IEEE Computer and Communications Societies, volume 3, pages 1268–1277, New York, NY,

USA, 2002.

[46] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges of reliable multihop

routing in sensor networks. In Proceedings of the 1st International Conference on Embedded

Networked Sensor Systems, pages 14–27, Los Angeles, CA, USA, 2003.

[47] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Lazy cross-link removal for

geographic routing. In Proceedings of the 4th International Conference on Embedded Networked

Sensor Systems, pages 112–124, Boulder, Colorado, USA, 2006.

[48] Jiangwei Zhou, Yu Chen, Ben Leong, and Pratibha Sundar Sundaramoorthy. Practical 3d ge-

ographic routing for wireless sensor networks. In Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, Zurich, Switzerland, 2010.

[49] G. R. Hjaltason and H. Samet. Properties of embedding methods for similarity searching in metric

space. IEEE Transaction on Pattern Analysis and Machine Intelligence, 25(5):530–549, 2003.

[50] Yun Mao, Feng Wang, Lili Qiu, Simon S. Lam, and Jonathan M. Smith. S4: Small state and small

stretch routing protocol for large wireless sensor networks. In Proceedings of the 4th USENIX

Symposium on Networked Systems Design and Implementation, Cambridge, MA, USA, 2007.

[51] Y. Chen, K. H. Lim, R. Katz, and C. Overton. On the stability of network distance estimation.

ACM SIGMETRICS Performance Evaluation Review, 30(2):21–30, 2002.

[52] R. Zhang, Y. Charlie Hu, X. Lin, and S. Fahmy. A hierarchical approach to internet distance

prediction. In Proceedings of the 26th IEEE International Conference on Distributed Computing

Systems, pages 73–80, Lisboa, Portugal, 2006.

[53] G. Kao, T. Fevens, and J. Opatrny. Position-based routing on 3d geometric graphs in mobile ad

hoc networks. In Proceedings of the 17th Canadian Conference on Computational Geometry,

pages 88–91, Windsor, Canada, 2005.

[54] A. E. Abdallah, T. Fevens, and J. Opatrny. Power-aware 3d position-based routing algorithms

for ad hoc networks. In Proceedings of the IEEE International Conference on Communications,

pages 3130–3135, Glasgow, Scotland, 2007.

[55] M. Costa, M. Castro, A. Rowstron, and P. Key. Pic: Practical internet coordinates for distance es-

timation. In Proceedings of the 24th International Conference on Distributed Computing Systems,

pages 178–187, Tokyo, Japan, 2004.

[56] Y. Mao and L. K. Saul. Modeling distances in large-scale networks by matrix factorization. In

Proc. of the 4th ACM Internet Measurement Conference, pages 278–287, Taormina, Sicily, Italy,

2004.

BIBLIOGRAPHY 107

[57] C. Lumezanu and N. Spring. Playing vivaldi in hyperbolic space. Technical Report CS-TR-4843,

University of Maryland, College Park, 2006.

[58] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without

location information. In Proceedings of the 9th ACM Annual International Conference on MObile

Computing and Networking, pages 96–108, San Diego, CA, USA, 2003.

[59] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordinate

system. In Proceedings of the 23rd Annual IEEE Conference on Computer Communications,

pages 15–26, Portland, Oregon, USA, 2004.

[60] B. Leong, B. Liskov, and R. Morris. Greedy virtual coordinates for geographic routing. In

Proceedings of the 2007 International Conference on Network Protocols, pages 71–80, Beijing,

P.R.China, 2007.

[61] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 1st edition, 1993.

[62] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N. Taft. Structural analysis

of nework traffic flows. In Proceedings of Joint ACM SIGMETRICS / Performance conference,

pages 61–72, New York, NY, USA, 2004.

[63] P. Xi, C. Shu, and M. Rioux. Principal components analysis of 3-d scanned human heads. In

Proceedings of the 34th International Conference and Exhibition on Computer Graphics and In-

teractive Techniques (poster), San Diego, California, USA, 2007.

[64] H. Lim, J. C. Hou, and C. Choi. Constructing internet coordinate system based on delay measure-

ment. In Proceedings of the 3rd ACM Internet Measurement Conference, pages 129–142, Miami,

FL, USA, 2003.

[65] L. Tang and M. Crovella. Virtual landmarks for the internet. In Proceedings of the 3rd ACM

Internet Measurement Conference, pages 143–152, Miami, FL, USA, 2003.

[66] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding using small sets of beacons.

In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages

444–453, Rome, Italy, 2004.

[67] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in dense wireless

sensor networks. In Proceedings of the 1st International Conference on Embedded Networked

Sensor Systems, pages 1–13, Los Angeles, CA, USA, 2003.

[68] Alberto cerpa, Jennifer L. Wong, Louane Kuang, Miodrag Potkonjak, and Deborah Estrin. Sta-

tistical model of lossy links in wireless sensor networks. In Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks, pages 81–88, Los Angeles, CA, USA,

2005.

[69] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-throughput path

metric for multi-hop wireless routing. In Proceedings of the 9th Annual International Conference

on Mobile Computing and Networking, pages 134–146, San Diego, CA, USA, 2003.

[70] Alberto Cerpa, Jennifer L. Wong, Miodrag Potkonjak, and Deborah Estrin. Temporal properties

of low power wireless links: Modeling and implications on multi-hop routing. Technical Report

CENS 0044, UCLA, 2005.

108 BIBLIOGRAPHY

[71] Gentian Jakllari, Stephan Eidenbenz, Nicolas Hengartner, Srikanth V. Krishnamurthy, and

Michalis Faloutsos. Link positions matter: A noncommutative routing metric for wireless mesh

networks. In Proceedings of the 27th IEEE Conference on Computer Communications, pages

744–752, Phoenix, AZ, USA, 2008.

[72] Kannan Srinivasan and Philip Levis. Rssi is under appreciated. In Proceedings of the 3rd Work-

shop on Embedded Networked Sensors, Cambridge, MA, USA, 2006.

[73] Omprakash Gnawali, Mark Yarvis, John Heidemann, and Ramesh Govindan. Interaction of re-

transmission, blacklisting and routing metrics for reliability in sensor network routing. In Proceed-

ings of 1st IEEE International Conference on Sensor and Ad Hoc Communications and Networks,

pages 34–43, Santa Clara, CA, USA, 2004.

[74] Tao Liu, Ankur Kamthe, Lun Jiang, and Alberto Cerpa. Performance evaluation of link quality

estimation metrics of static multihop wireless sensor networks. In Proceedings of the Sixth Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks, Rome, Italy, 2009.

[75] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip Levis. Four-bit wireless link

estimation. In Proceedings of the 6th Workshop on Hot Topics in Networks (HotNets), Atlanta,

GA, USA, 2007.

[76] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A

scalable location service for geographic ad hoc routing. In Proceedings of the 6th Annual Interna-

tional Conference on Mobile Computing and Networking, pages 120–130, Boston, Massachusetts,

United States, 2000.

[77] Jorge Ortiz, Chris R. Baker, Daekyeong Moon, Rodrigo Fonseca, and Ion Stoica. Beacon location

service: A location service for point-to-point routing in wireless sensor networks. In Proceedings

of the 6th International Conference on Information Processing in Sensor Networks, pages 166–

175, Cambridge, Massachusetts, USA, 2007.

[78] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,

7:308–313, 1965.

[79] Linksys. WRT150N Product Data, 2007. 7032810A-JL, http://www.linksys.com.

[80] Crossbow Technology Inc. MICAz - Wireless Measurement System, 2008. http://www.xbow.

com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf.

[81] Deepak Ganesan, Deborah Estrin, Alec Woo, and David Culler. Complex behavior at scale: An

experimental study of low-power wireless sensor networks. Technical Report CSD-TR 02-0013,

UCLA, 2002.

[82] Lifeng Sang, Anish Arora, and Hongwei Zhang. On exploiting asymmetric wireless links via

one-way estimation. In Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc

Networking and Computing, pages 11–21, Montréal, Québec, Canada, 2007.

[83] J. B. Tenenbaum, V. Silva, and J. C. Langford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[84] J. Edward Jackson. A User’s Guide to Principal Components, chapter 3, pages 72–75. Wiley-

Interscience, 1st edition, 1990.

http://www.linksys.com
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf

BIBLIOGRAPHY 109

[85] J. Hicklin, R. F. Boisvert, and et al. Jama: Java Matrix Package. The MathWorks and NIST,

http://math.nist.gov/javanumerics/jama/, 1.0.2 edition, July 2005.

[86] C. Bond. Singular value decomposition source code, 2000. http://www.crbond.com/

download/misc/svd.c.

[87] S. Lin, J. Zhang, G. Zhou, L. Gu, T. He, and J. Stankovic. Atpc: Adaptive transmission power

control for wireless sensor networks. In Proceedings of the 4th ACM Conference on Embedded

Networked Sensor Systems, pages 223–236, Boulder, Colorado, USA, 2006.

[88] Walter Colitti, Kris Steenhaut, Nicolas Descouvemont, and Adam Dunkels. Satellite based wire-

less sensor networks: Global scale sensing with nano- and pico-satellites. In Proceedings of the

6th ACM Conference on Embedded Network Sensor Systems, pages 445–446, Raleigh, NC, USA,

2008.

[89] Muhammad Omar Khan, Affan Syed, Wei Ye, John Heidemann, and Jack Wills. Bringing sensor

networks underwater with low-power acoustic communications. In Proceedings of the 6th ACM

Conference on Embedded Network Sensor Systems, pages 379–380, Raleigh, NC, USA, 2008.

[90] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret Martonosi. Hardware design

experiences in zebranet. In Proceedings of the 2nd International Conference on Embedded Net-

worked Sensor System, pages 227–238, Baltimore, MD, USA, 2004.

[91] Guillermo Barrenetxea, Francois Ingelrest, Gunnar Schaefer, and Martin Vetterli. The hitchhiker’s

guide to successful wireless sensor network deployments. In Proceedings of the 6th ACM Confer-

ence on Embedded Network Sensor Systems, pages 43–56, Raleigh, NC, USA, 2008.

[92] Mohamed Hefeeda and Majid Bagheri. Wireless sensor networks for early detection of forest

fires. In Proceedings of the 2007 International Conference on Mobile Adhoc and Sensor Systems,

pages 1–6, Pisa, Italy, 2007.

[93] Thierry Antoine-Santoni, Jean-Francois Santucci, Emmannuelle de Gentili, Xavier Silvani, and

Frederic Morandini. Performance of a protected wireless sensor network in a fire. analysis of fire

spread and data transmission. Sensors, 9:5879–5893, 2009.

[94] Maxim A. Batalin, Mohammad Rahimi, Yan Yu, Duo Liu, Aman Kansal, Gauray S. Sukhatme,

William J. Kaiser, Mark Hansen, Gregory J. Pottie, Mani Srivastava, and Deborah Estrin. Call

and response: Experiments in sampling the environment. In Proceedings of the 2nd International

Conference on Embedded Networked Sensor System, pages 25–38, Baltimore, MD, USA, 2004.

[95] G. Tolle, N. Turner, K. Tu, and P. Buonadonna. A macroscope in the redwoods. In Proc. of the 3rd

ACM Conference on Embedded Networked Sensor Systems, pages 51–63, San Deigo, CA, USA,

2005.

[96] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage and retrieval

with an underwater sensor network. In Proceedings of the 3rd International Conference on Em-

bedded Networked Sensor System, pages 154–165, San Diego, California, USA, 2005.

[97] Jude Allred, Ahmad Bilal Hasan, Saroch Panichsakul, William Pisano, Peter Gray, Jyh Huang,

Richard Han, Dale Lawrence, and Kamran Mohseni. Sensorflock: An airborne wireless sensor

network of micro-air vehicles. In Proceedings of the 5th International Conference on Embedded

Networked Sensor Systems, pages 117–129, Sydney, Australia, 2007.

http://math.nist.gov/javanumerics/jama/
http://www.crbond.com/download/misc/svd.c
http://www.crbond.com/download/misc/svd.c

110 BIBLIOGRAPHY

[98] Hock Beng Lim, Keck Voon Ling, Wenqiang Wang, Yuxia Yao, Mudasser Iqbal, Boyang Li, Xi-

aonan Yin, and Tarun Sharma. The national weather sensor grid. In Proceedings of the 5th Inter-

national Conference on Embedded Networked Sensor Systems, pages 369–370, Sydney, Australia,

2007.

[99] Chin-Jung Liu, Huang-Chen Lee, Jung Yang, Jen-Tse Huang, Yao-Min Fang, Bing-Jean Lee, and

Chun-Ta King. Development of a long-lived, real-time automatic weather station based on wsn. In

Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pages 401–402,

Raleigh, NC, USA, 2008.

[100] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based monitoring for early warning

flood detection. In Proceedings of the 6th International Conference on Embedded Network Sensor

Systems, pages 295–308, Raleigh, NC, USA, 2008.

[101] Jinhai Cai, Dominic Ee, Andy Lau, Richard Mason, Binh Pham, Paul Roe, Jinglan Zhang, and

Stuart Gage. Acoustic sensor networks for environmental monitoring. In Proceedings of the

5th International Conference on Embedded Networked Sensor Systems, pages 391–392, Sydney,

Australia, 2007.

[102] Lufeng Mo, Yuan He, Yunhao Liu, Jizhong Zhao, Shaojie Tang, Xiang-Yang Li, and Guojun Dai.

Canopy closure estimates with greenorbs: Sustainable sensing in the forest. In Proceedings of the

7th International Conference on Embedded Network Sensor System, Berkeley, CA, USA, 2009.

[103] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang, J. Stankovic,

D. Young, and J. Porter. Luster: Wireless sensor network for environmental research. In Proceed-

ings of the 5th International Conference on Embedded Networked Sensor Systems, pages 103–116,

Sydney, Australia, 2007.

[104] Gyula Simon, Miklos Maroti, Akos Ledeczi, Gyorgy Balogh, Branislav Kusy, Andras Nadas,

Gabor Pap, Janos Sallai, and Ken Frampton. Sensor network-based countersniper system. In

Proceedings of the 2nd International Conference on Embedded Networked Sensor System, pages

1–12, Baltimore, MD, USA, 2004.

[105] Lin Gu, Dong Jia, Pascal Vicaire, Ting Yan, Liqian Luo, Ajay Tirumala, Qing Cao, Tian He,

John A. Stankovic an dRarek Abdelzaher, and Bruce H. Krogh. Lightweight detection and clas-

sification for wireless sensor networks in realistic environments. In Proceedings of the 3rd In-

ternational Conference on Embedded Networked Sensor Systems, pages 205–217, San Diego,

California, USA, 2005.

[106] Hui Song, Sencun Zhu, and Guohong Cao. Svats: A sensor-network-based vehicle anti-theft

system. In Proceedings of the 27th IEEE International Conference on Computer Communications,

pages 171–175, Phoenix, AZ, USA, 2008.

[107] Mohammad Rahimi, Rick Baer, Obmdinachi I. Iroezi, Juan C. Garcia, Jay Warrior, Deborah Es-

trin, and Mani Srivastava. Cyclops: In situ image sensing and interpretation in wireless sensor

networks. In Proceedings of the 3rd International Conference on Embedded Networked Sensor

System, pages 192–204, San Diego, California, USA, 2005.

[108] Fung Po Tso, Lizhou Zhang, and Weijia Jia. Video surveillance patrol robot system in 3g, internet

and sensor networks. In Proceedings of the 5th International Conference on Embedded Networked

Sensor Systems, pages 395–396, Sydney, Australia, 2007.

BIBLIOGRAPHY 111

[109] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser, and

Martin Turon. Health monitoring of civil infrastructures using wireless sensor networks. In Pro-

ceedings of the 6th International Conference on Information Processing in Sensor Networks, pages

254–283, Cambridge, MA, USA, 2007.

[110] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad, Ramesh

Govindan, and Deborah Estrin. A wireless sensor network for structural monitoring. In Proceed-

ings of the 2nd International Conference on Embedded Networked Sensor System, pages 13–24,

Baltimore, MD, USA, 2004.

[111] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra, Mick Flanigan,

Nandakishore Kushalnagar, Lama Nachman, and Mark Yarvis. Deisgn and deployment of indus-

trial sensor networks: Experiences from a semiconductor plant and the north sea. In Proceedings

of the 3rd International Conference on Embedded Networked Sensor System, pages 64–75, San

Diego, California, USA, 2005.

[112] Younghun Kim, Thomas Schmid, Zainul M. Charbiwala, Jonathan Friedman, and Mani B. Sri-

vastava. Nawms: Nonintrusive autonomous water monitoring system. In Proceedings of the 6th

International Conference on Embedded Network Sensor Systems, pages 309–322, Raleigh, NC,

USA, 2008.

[113] Asis Nasipuri, Luke Van der Zel, Ralph McKosky, Robert Cox, Hadi Alasti, Bienvenido Ro-

driguez, and Joseph Graziano. Wireless sensor network for substation monitoring: Design and

deployment. In Proceedings of the 6th International Conference on Embedded Network Sensor

Systems, pages 365–366, Raleigh, NC, USA, 2008.

[114] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. Real-time volcanic earthquake

localization. In Proceedings of the 4th International Conference on Embedded Networked Sensor

System, pages 357–358, Boulder, Colorado, USA, 2006.

[115] S. B. Eisenman, E.Miluzzo, N. D. Lane, R. A. Peterson, G. S. Ahn, and A. T. Campbell. The

bikenet mobile sensing system for cyclist experience mapping. In Proceedings of the 5th Inter-

national Conference on Embedded Networked Sensor Systems, pages 87–101, Sydney, Australia,

2007.

[116] Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. Cenwits: A sensor-based loosely coupled

search and rescue system using witnesses. In Proceedings of the 3rd International Conference on

Embedded Networked Sensor Systems, pages 180–191, San Diego, California, USA, 2005.

[117] Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Ronald peterson, Hong Lu, Mirco Musolesi,

Shane B. Eisenman, Xiao Zheng, and Andrew T. Campbell. Sensing meets mobile social net-

works: The design, implemetation and evalaution of the cenceme application. In Proceedings of

the 6th International Conference on Embedded Network Sensor Systems, pages 337–350, Raleigh,

NC, USA, 2008.

[118] Aline Baggio. Wireless sensor networks in precision agriculture. In Proceedings of ACM Work-

shop on Real-World Wireless Sensor Networks, Stockholm, Sweden, 2005.

[119] Koen Langendoen, Aline Baggio, and Otto Visser. Murphy loves potatoes: Experiences from a

pilot sensor network deployment in precision agriculture. In Proceedings of the 14th International

Workshop on Parallel and Distributed Real-Time System, Island of Rhodes, Greece, 2006.

112 BIBLIOGRAPHY

[120] Tim Wark, Peter Corke, Pavan Sikka, Lasse Klingbeil, Ying Guo, Chris Crossman, phil Valencia,

Dave Swain, and Gred Bishop-Hurley. Transforming agriculture through pervasive wireless sensor

networks. IEEE Pervasive Computing, 6(2):50–57, 2007.

[121] Richard Beckwith, Dan Teibel, and Pat Bowen. Unwired wine: Sensor networks in vineyards. In

Proceedings of the IEEE Sensors, pages 561–564, Vienna, Austria, 2004.

[122] Kok-Kiong Yap, Vikram Srinivasan, and Mehul Motani. Max: Human-centric search of the phys-

ical world. In Proceedings of the 3rd International Conference on Embedded Networked Sensor

System, pages 166–179, San Diego, California, USA, 2005.

[123] Jr. Mark L. McKelvin, Mitchel L. Williams, and Nina M. Berry. Integrated radio frequency identi-

fication and wireless sensor network architecture for automated inventory management and track-

ing applications. In Proceedings of the 2005 Conference on Diversity in Computing, pages 44–47,

Albuquerque, New Mexico, USA, 2005.

[124] A. Mason, A. Shaw, A. I. Al-Shamma’a, and T. Welsby. RFID and wireless sensor network

integration for intelligent asset tracking systems. Technical report, General Engineering Research

Institute, Liverpool John Moores University, 2006.

[125] Loc Ho, Melody Moh, Zachary Walker, Takeo Hamada, and Ching-Fong Su. A prototype on

RFID and sensor networks for elder healthcare: Progress report. In Proceedings of the 2005 ACM

SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis,

pages 70–75, Philadelphia, PA, USA, 2005.

[126] Emulab Total Network Testbed. http://www.emulab.net/tutorial/

mobilewireless.php3.

[127] John Hopkins Testbed. http://hinrg.cs.jhu.edu/Main/NSLU2.

[128] Kansei: Sensor Testbed for At-Scale Experiments. http://ceti.cse.ohio-state.edu/

kansei/.

[129] Brent N. Chun, Philip Buoadonna, Alvin AuYoung, Chaki Ng, David C. Parkes, Jeffrey Shneid-

man, Alex C. Snoeren, and Amin Vahdat. Mirage: a microeconomic resource allocation system for

sensornet testbeds. In Proceedings of the 2nd IEEE workshop on Embedded Networked Sensors,

pages 19–28, 2005.

[130] MoteLab: Harvard Sensor Network Testbed. http://motelab.eecs.harvard.edu/.

[131] NetEye. http://neteye.cs.wayne.edu/neteye/home.php.

[132] TKN Wireless Indoor Sensor network Testbed. http://www.twist.tu-berlin.de/

wiki.

[133] Tutornet: A Tiered Wireless Sensor Network Testbed. http://enl.usc.edu/projects/

tutornet/.

[134] VineLab Wireless Testbed. http://www.cs.virginia.edu/˜whitehouse/

research/testbed/.

[135] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. Collec-

tion tree protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor

Systems, Berkeley, CA, USA, 2009.

http://www.emulab.net/tutorial/mobilewireless.php3
http://www.emulab.net/tutorial/mobilewireless.php3
http://hinrg.cs.jhu.edu/Main/NSLU2
http://ceti.cse.ohio-state.edu/kansei/
http://ceti.cse.ohio-state.edu/kansei/
http://motelab.eecs.harvard.edu/
http://neteye.cs.wayne.edu/neteye/home.php
http://www.twist.tu-berlin.de/wiki
http://www.twist.tu-berlin.de/wiki
http://enl.usc.edu/projects/tutornet/
http://enl.usc.edu/projects/tutornet/
http://www.cs.virginia.edu/~whitehouse/research/testbed/
http://www.cs.virginia.edu/~whitehouse/research/testbed/

BIBLIOGRAPHY 113

[136] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol for

network programming at scale. In Proceedings of the 2nd International Conference on Embedded

Network Sensor System, pages 81–94, Baltimore, MD, USA, 2004.

[137] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization

using reference broadcasts. In Proceedings of the 5th Symposium on Operating System Design

and Implementation, pages 147–163, Boston, Massachusetts, USA, 2002.

[138] Kai-Wei Fan, Zizhan Zheng, and Prasun Sinha. Steady and fair rate allocation for rechargeable

sensors in perpetual sensor networks. In Proceedings of the 6th ACM Conference on Embedded

Network Sensor Systems, pages 239–252, 239-252, 2008.

[139] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. Experimental study of the effects

of transmission power control and blacklisting in wireless sensor networks. In Proceedings of the

2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communi-

cations and Networks, pages 289–298, Santa Clara, CA, USA, 2004.

[140] Gregory Hackmann, Octav Chipara, and Chenyang Lu. Robust topology control for indoor wire-

less sensor networks. In Proceedings of the 6th ACM Conference on Embedded Networks Sensor

Systems, pages 57–70, Raleigh, North Carolina, USA, 2008.

[141] Nisheeth Shrivastava, Chiranjeeb Buragohain, and Divyakant Agrawal. Medians and beyond:

New aggregation techniques for sensor networks. In Proceedings of 2nd International Conference

on Embedded Networked Sensor Systems, pages 239–249, Baltimore, MD, USA, 2004.

[142] Christopher M. Sadler and Margaret Martonosi. Data compression algorithms for energy-

constrained devices in delay tolerant networks. In Proceedings of the 4th International Conference

on Embedded Network Sensor System, pages 265–278, Doulder, Colorado, USA, 2006.

[143] G. P. Halkes, T. Van Dam, and K. G. Langendoen. Comparing energy-saving mac protocols for

wireless sensor networks. Mobile Networks and Applications, 10(5):783–791, 2005.

[144] Kyle Jamieson, Hari Balakrishnan, and Y. C. Tay. Sift: A mac potocol for event-driven wireless

sensor networks. Wireless Sensor Networks, pages 260–275, 2006.

[145] Jan-Hinrich Hauer. Tkn15.4: An ieee 802.15.4 mac implementation for tinyos 2. Technical Report

TKN-08-003, Telecommunication Networks Group, Technique University Berlin, 2009.

[146] Wei Ye. Medium access control with coordinated adaptive sleeping for wireless sensor networks.

IEEE/ACM Transaction on Networking, 12(3):493–506, 2004.

[147] David J. Malan. Implementing public-key infrastructure for sensor networks. ACM Transactions

on Sensor Networks, 4(4), 2008.

[148] Prasanth Ganesan, Rannath Venugopalan, Pushkin Peddabachagari, Alexander Dean, Frank

Mueller, and Mihail Sichitiu. Analyzing and modeling encryption overhead for sensor network

nodes. In Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks

and Applications, pages 151–159, San Diego, CA, USA, 2003.

[149] Yufeng Lin, Ben Liang, and Baochun Li. Passive loss inference in wireless sensor networks based

on network coding. In Proceedings of the 28th IEEE Conference on Computer Communications,

pages 1809–1817, Rio de Janerio, Brazil, 2009.

114 BIBLIOGRAPHY

[150] Jun-Hong Cui Zheng Guo, Peng Xie and Bing Wang. On applying network coding to under-

water sensor networks. In Proceedings of the 1st ACM International Workshop on Underwater

Networks, pages 109–112, Los, Angeles, CA, USA, 2006.

[151] Kyu-Han Kim and Kang G. Shin. On accurate measurement of link quality in multi-hop wireless

mesh networks. In Proceedings of the 12th International Conference on Mobile Computin and

Networking, pages 38–49, Los angeles, CA, USA, 2006.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	List of Publications
	Introduction
	Necessity of Point-to-Point Communication
	Options and Challenges
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Definition of Geographic Routing
	Performance Metrics
	Evaluation Tools

	Geographic Routing Protocols
	Greedy Forwarding
	Face Routing
	Tree-based Routing
	Hop Count Vector-based Routing
	Randomized Algorithm

	Other Related Areas
	Network Embedding
	Link Quality Estimation
	Location Service

	Spherical Coordinate Routing for 3D Networks
	Introduction
	Protocol Design
	Localization Algorithm in 3D Networks
	Spherical Coordinates Assignment
	Routing Algorithm
	Tree Reparation for Network Dynamics

	SCR Overhead and Routing Metrics
	Control Overhead of SCR
	Storage Cost of the Key Components
	Selection of Routing Metrics

	Performance Evaluation
	Packet Delivery Ratio
	Hop Stretch Factor
	Overhead per Packet Delivery
	Performance with Topology Changes and Recovery

	Summary

	Practical Connectivity-based Routing using Dimension Reduction
	Introduction
	PCA-based Routing Algorithm
	Embedding with Dimension Reduction
	Critical Dimension
	Routing with Fallback
	Implementation Issues

	Simulation Results
	Packet Delivery Ratio
	Hop Stretch Factor
	Scoped Flooding Range
	Storage and Transmission Cost
	Effects of Dimensionality

	Testbed Results
	Distance Metric Comparison
	Routing Performance
	Packet Overhead

	Summary

	Implementation and Experiments on the Indriya Testbed
	Implementation of the PCA-based Routing Algorithm
	Link Quality Estimation
	Local Hop count Vector
	Anchor Hop count Matrix
	Spanning Tree with Polar Coordinates
	Centralized Location Service

	Simulation Results
	Routing Performance of Data Packets
	Performance of Location Service

	Experimental Results
	Routing Performance of Data Packets
	Performance of Location Service

	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Sensor Network Applications
	Challenges and Research Areas
	Connectivity and Link Quality Measurements
	Configuration of Link Measurements
	Network Density
	Link Quality
	RSSI and LQI

