
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Dealing with Non-Uniformity in Wireless
Sensor Networks

Francesco Nidito

Supervisor

Prof. Susanna Pelagatti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14695529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Worthy of my undying regard

Abstract

In this thesis, we step inside an unexplored region of Wireless Sensor Networks
(WSNs) research. Nowadays, almost all WSNs research relies upon a hidden uni-
formity assumption. This assumption involves deployment, distribution and radio
transmissions. Unfortunately, the real world is not uniform. In the thesis, we break
the uniformity assumption and study the non-uniformity influence in WSNs. In par-
ticular, we show that addressing common WSN problems taking non-uniformity into
account can provide results that are sensibly different from the ones achieved in a
uniform world. In our work, we focus on the influence of non-uniformity on a partic-
ular aspect of WSNs: data management. First of all, we point out that even widely
accepted solutions based on the uniformity assumption are not able to survive inside
an non-uniform world. Then, we propose our approach to data management and de-
tail a solution able to deal successfully with non-uniformity. This allows us to catch
out the fundamental aspects of non-uniformity influence in WSNs and to cope with
non-uniformity. Results, discussed in the thesis, show that models and solutions we
propose are competitive in a uniform scenario and continue to work properly in a
non-uniform world.

4

Acknowledgments

Probably, acknowledgments are the most difficult part of a Ph.D. Thesis to be writ-
ten: I always fear to forget someone. Indeed, I do not fear to forget someone generic,
I fear to forget someone vindicative... by the way, I will try to acknowledge everyone.
First of all, I want to thanks all my girlfriend Chiara, for her infinite patience,
support and love during the all Ph.D. years and (especially) during the writing of
this Thesis.
A very special thanks goes to my supervisor Susanna Pelagatti, she is more than my
supervisor, she is a great friend. She supported me during my Thesis and listen to
my strange ideas without throwing me throughout the window of her office... also
when throwing me throughout the window could seem the only logical reply to my
statements.
Then, I want to thanks my family and my girlfriend’s family for everything they did
to support and encourage me during the years of study.
I want to thanks my commission: Stefano Chessa, Fabrizio Luccio and Paolo Santi.
Moreover, I want to thanks the reviewers of this thesis: Elias P. Duarte Jr. and Jose
Rolim.
I would like to thanks my historic friends since the first days of University: Carlo
Bertolli, Pietro Bini, Patrizio Dazzi, Simone Montaresi, Stefano Pacifici, Daniele
Picciaia, Luca Pizziniaco, Luca Saiu and Andrea Venturi.
I want to thanks my officemates at the department, Gianni Franceschini and Claudio
Scordino, for the great time together (and silence when needed). Moreover, I want
to thanks all the Ph.D. students that lived with me this extraordinary experience.
Another special thanks goes to Prof. Giuseppe Attardi who gave me the opportunity
to be his teaching assistant for the class of “Programmazione Avanzata” (Advanced
programming) where I learned more things than I taught.
I cannot forget all the friends of my adventure/research experience in Boston: Ste-
fano Basagni, Michele Battelli, Luca Caracoglia, Alessio Carosi, Paolo Casari, Elisa
Dell’Oglio, Rituparna Ghosh and Michele Nati.
Finally, I want to thanks all the fiends and colleagues at the Ask.com R&D office in
Pisa).
A last note to everyone I acknowledged here (and for the ones that I forgot): the
dedication of this thesis “Worthy of my undying regard”∗ is for you.

∗ That is the same that Joseph Conrad used in “The Shadow Line”.

6

Contents

Introduction 17
I.1 Linked: how networks changed our perception of the world 17

I.1.1 Natural networks . 18
I.1.2 Human networks . 18
I.1.3 Computer networks . 19
I.1.4 Everyone goes wireless . 19

I.2 The plot behind this thesis . 20
I.2.1 Wireless sensor networks . 20
I.2.2 Non-uniformity . 20
I.2.3 Data management in wireless sensor networks 21

I.3 Organization of the thesis . 21
I.4 The pillars of this thesis . 22

1 Wireless Sensor Networks 25
1.1 Applications, technology and architecture 27

1.1.1 Infrastructured vs. ad hoc wireless networks 27
1.1.2 Applications of wireless sensor networks 28
1.1.3 Technology constraints of wireless sensor networks 29
1.1.4 Wireless sensor networks’ architecture. 31

1.2 An abstract wireless sensor networks model 33
1.2.1 Missing features . 34

1.3 Research issues and topics . 36
1.4 Summary . 38

2 Non-Uniformity 41
2.1 Why does non-uniformity matter? . 42
2.2 Models of non-uniformity . 43

2.2.1 Deployment non-uniformity 44
2.2.2 Geographical non-uniformity 46
2.2.3 Functional non-uniformity . 48
2.2.4 Movement non-uniformity . 49

2.3 Related work . 49
2.4 Summary . 50

8 CHAPTER 0. CONTENTS

3 Data Management 53

3.1 Data management in wireless sensor networks 54

3.2 Data centric storage and database support systems 58

3.2.1 Localization systems . 58

3.2.2 Routing systems . 62

3.2.3 Redundancy systems . 66

3.3 Database model . 67

3.3.1 TinyDB . 67

3.3.2 Cougar . 69

3.3.3 MaD-WiSe . 69

3.4 Data Centric Storage model . 70

3.4.1 Geographic Hash Tables . 71

3.4.2 Cell Hash Routing . 73

3.4.3 Graph EMbedding . 75

3.4.4 K-D tree based Data-Centric Storage 76

3.5 Summary . 79

4 Q-NiGHT: Non-uniformity Aware Data Management 81

4.1 Why do we need Q-NiGHT? . 83

4.2 Q-NiGHT . 89

4.2.1 A first step: GHT with non-uniform hashing 91

4.2.2 Q-NiGHT: adding quality of service to Geographic Hash Tables 99

4.2.3 How much does Q-NiGHT cost? 116

4.3 A Q-NiGHT based application for location management 123

4.3.1 Heterogeneous wireless sensor networks and location manage-
ment . 123

4.3.2 System architecture and operations 124

4.3.3 Experimental results . 127

4.4 Summary . 130

5 Stripes: Finding Out Distributions 133

5.1 Why do we need Stripes? . 134

5.2 Stripes . 134

5.2.1 Building blocks . 135

5.2.2 Moving density around: broadcast, Stripes and Fat-Stripes 137

5.2.3 Density rebuilding algorithm 144

5.2.4 Comparative cost of active and passive protocols 148

5.3 Summary . 156

0.0. CONTENTS 9

Conclusions 157

C.1 How did we arrive here? . 157

C.2 Drawing a conclusion . 158

C.3 Looking to the future . 160

Bibliography 163

10 CHAPTER 0. CONTENTS

List of Figures

1.1 Peers’ communications in infrastructured networks. (a) depicts the
communication between two peers located into two different cells us-
ing the infrastructure to communicate and (b) two peers inside the
same cell that need to uses the infrastructure too. 28

1.2 Sensor node. (a) depicts the typical architecture of a sensor, made
up of a processor, memory, some acquisition devices and a radio. (b)
depicts the photo of a real sensor node. 30

1.3 Hidden host problem in which the two transmitting nodes are unaware
of the presence of each other and simultaneously transmit to the cental
peer that is unable to receive correctly the two messages. 31

1.4 WSNs architectures. (a) depicts a sensor network without a sink node
and where each node is able to communicate to the user (in this case
using a satellite up-link). (b) depicts a sensor network with a sink node
that collect the data from the sensors, via multi-hop communication,
and then it sends data to the user using a satellite up-link. 32

1.5 Communication range models. (a) depicts the ideal case in which
the communication range is a perfect disk around the sensor and (b)
depicts the more realistic case in which the communication range is no
more a perfect disk but it is a irregular area in which the neighborhood
relations, with respect to the ideal model, can be changed. 35

1.6 Multi-path fading example. The waves propagated by the antenna
belonging to the sending device (on the right) arrive to the receiver
(on the left), following multiple paths and in different times. 36

2.1 Deployment non-uniformity. (a) depicts the typical Gaussian dis-
tributed network more dense in the center and sparser on the borders
of the distribution and (b) the skewed distribution with the majority
of the nodes in an angle. 45

2.2 Modality of distributions. (a) depicts a mono-modal distribution
formed by one Gaussian distribution and (b) a multi-modal distri-
bution made up of two independent Gaussian distributions. 46

12 CHAPTER 0. LIST OF FIGURES

2.3 Geographical non-uniformity. (a) depicts a sample geographic ter-
rain conformation with a central valley and (b) an example of a net-
work deployed accordingly to a Hill distribution with the sensors more
dense in an angle. 47

3.1 Directed Diffusion: (a) the interest dissemination from the sink node
(in gray) to the sensor nodes (in white), (b) the gradients that are
built in response to the interest dissemination and (c) the delivery of
data from a sensor node to the sink following one gradient. 56

3.2 Information Directed Routing: a message from the query proxy node
to the exit node, does not follow the shortest path (the dashed line),
but follows a longer path (solid line) to get data from the nodes inside
the dark gray area. 57

3.4 Areas used to choose to insert or not an edge inside the planarized
graph. (a) depicts the area used by the Gabriel Graph planarization.
It is a disk of diameter equal to the distance between A and B and
centerd in the middle point with reapect to A and B. (b) depicts the
area used by the Relative Neighborhood Graph planarization. It is a
lens-shaped area given by the intersection of two disks of radius equal
to the distance between A and B and each one of them is centered in
A and B . 63

3.5 Perimeter mode of GPSR protocol. The grey nodes are the ones that
belong to the perimeter built to move the message from the source to
the destination. 64

3.6 VPCR routing techniques: (a) the naive-tree routing that forwards
messages to a common ancestor of both sender and receiver, (b)
smart-tree routing that forwards the messages to an ancestor of the
destination as soon as the protocol finds such ancestor and (c) greedy
routing that forwards the message to nodes closer to the destination
without using ancestors. 65

3.10 CHR cell division of the sensors space. (a) depicts the greedy routing
on the cell structure: the message is forwarded from one cell to another
and when it arrives to the destination cell it is copied on all the nodes
belonging to the cluster. (b) depict the case in which home cell is
empty (the dark gray cell) and the data must be stored on the home
perimeter of the home cell (the light gray cells). 74

4.1 Mean and variance of perimeters (number of nodes) measured for
different sensors numbers with GG and RNG planarization. The figure
shows that the variance of the length of the perimeters is very high
with respect to the number average number of nodes forming the
perimeters. 84

0.0. LIST OF FIGURES 13

4.2 Amount of data stored in each node for uniform sensors distribution
of 5000 nodes with GG and RNG planarization. 86

4.3 Amount of data stored in each node for uniform sensors distribution
of 12000 nodes with GG and RNG planarization. 87

4.4 Amount of data stored in each node for uniform sensors distribution
of 20000 nodes with GG and RNG planarization. 88

4.5 The border area (grey) and the storing area (white). 89

4.6 Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization without con-
sidering the borders of the network. The figure shows a lower length
of the perimeters with respect to the results presented in Figure 4.1. . 90

4.7 Amount of data stored in each node for uniform sensors distribution
of 5000 nodes with GG and RNG planarization without considering
the borders of the network. 91

4.8 Amount of data stored in each node for uniform sensors distribution
of 12000 nodes with GG and RNG planarization without considering
the borders of the network. 92

4.9 Amount of data stored in each node for uniform sensors distribution
of 20000 nodes with GG and RNG planarization without considering
the borders of the network. 93

4.10 Mean and variance of perimeters (number of nodes) measured for
different sensors numbers with GG and RNG planarization using the
Gaussian distribution. 94

4.11 Mean and variance of perimeters (number of nodes) measured for
different sensors numbers with GG and RNG planarization using the
Hill distribution. 95

4.12 Amount of data stored in each node by GHT for the Gaussian and
Hill sensors distribution of 5000 nodes. 96

4.13 Amount of data stored in each node by GHT for the Gaussian and
Hill sensors distribution of 12000 nodes. 97

4.14 Amount of data stored in each node by GHT for the Gaussian and
Hill sensors distribution of 20000 nodes. 98

4.15 Rejection method: The probability function is boxed and we generate
uniform random values in the box. If the value generated is below the
distribution function the value is accepted and returned. Otherwise,
it is rejected. 99

4.16 Mean and variance of perimeters (number of nodes) measured for
different sensors numbers with GG and RNG planarization using the
Gaussian distribution and the RejectionHash hashing function. . . 100

14 CHAPTER 0. LIST OF FIGURES

4.17 Mean and variance of perimeters (number of nodes) measured for
different sensors numbers with GG and RNG planarization using the
Hill distribution and the RejectionHash hashing function. 101

4.18 Amount of data stored in each node by GHT (using Rejection-

Hash) for the Gaussian and Hill sensors distribution of 5000 nodes. . 102

4.19 Amount of data stored in each node by GHT (using Rejection-

Hash) for the Gaussian and Hill sensors distribution of 12000 nodes. 103

4.20 Amount of data stored in each node by GHT (using Rejection-

Hash) for the Gaussian and Hill sensors distribution of 20000 nodes. 104

4.21 Dispersal protocol of a datum D with Q = 3 and (x, y) = h(M)
(represented by the star in the three pictures). (a) The home node
(shaded) broadcasts D up to distance r. (b) The nodes inside the
B(x,y)(r) replay to the home node. (c) The home node sends the con-
firmation to the Q − 1 closest nodes. 105

4.22 Amount of data stored in each node for uniform sensors distribution
of 5000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 106

4.23 Amount of data stored in each node for Gaussian sensors distribution
of 5000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 107

4.24 Amount of data stored in each node for Hill sensors distribution of
5000 nodes using RejectionHash and the Q-NiGHT dispersal pro-
tocol. 108

4.25 Amount of data stored in each node for uniform sensors distribution
of 12000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 109

4.26 Amount of data stored in each node for Gaussian sensors distribution
of 12000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 110

4.27 Amount of data stored in each node for Hill sensors distribution of
12000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 111

4.28 Amount of data stored in each node for uniform sensors distribution
of 20000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 112

4.29 Amount of data stored in each node for Gaussian sensors distribution
of 20000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 113

4.30 Amount of data stored in each node for Hill sensors distribution of
20000 nodes using RejectionHash and the Q-NiGHT dispersal
protocol. 114

0.0. LIST OF FIGURES 15

4.31 GPSR routing perimeter mode . 115

4.32 Mean and standard deviation of the costs (number of messages) of
put with uniform distribution and RNG planarization. 117

4.33 Mean and standard deviation of the costs (number of messages) of
get with uniform distribution and RNG planarization. 118

4.34 Mean and standard deviation of the costs (number of messages) of
put with Gaussian distribution and RNG planarization. 119

4.35 Mean and standard deviation of the costs (number of messages) of
get with Gaussian distribution and RNG planarization. 120

4.36 Mean and standard deviation of the costs (number of messages) of
put with Hill distribution and RNG planarization. 121

4.37 Mean and standard deviation of the costs (number of messages) of
get with Hill distribution and RNG planarization. 122

4.38 Cost for server look-up plus the cost for contacting the servers. The
figure shows the effectiveness of the caches in our solution. With the
growth of the number of the queries the cost of the protocol decreases
because the nodes caching the wanted information grow up. 128

4.39 Cost for servers look-up operations only. The figure shows in detail
the effectiveness of the caches in our solution (considering that the
server contacting operations cannot be cached in our model). 128

4.40 Cumulative cost for servers look-up operations. The cumulative cost
for the qth look-up is given by its cost and summed to the cost of all
the previous q − 1 look-ups. 129

4.41 Server locators residual energy level before the server locators refresh
step. The residual energy is normalized to the energy level of the
system without using the caches. 130

5.1 Watch-points and the areas approximates by the watch points. (a)
shows the grid distribution of the watch points in the deployment
area. (b) shows the watch-area belonging to the watch-point in the
top left part of the deployment area. 136

5.2 Sentinel and watch-point distance relation with respect to the com-
munication range r. 137

5.3 Relation between d and r. d must be greater or equal than 3r to
guarantee that a sentinel reports only the nodes inside its own watch-
area. 138

5.4 Cumulative cost of the Stripes protocol. 140

5.5 Nodes that cache the pair 〈watch − pointxy, number of nodes〉 on
the way back of a query. 142

5.6 Cumulative cost of the Fat-Stripes protocol. 143

16 CHAPTER 0. LIST OF FIGURES

5.7 False zeroes problem. 146

5.8 Average error in approximation algorithm. (a) is the error introduced
by the in the RebuildDensity algorithm and (b) is the error after
the smoothing step performed by the SmoothDensity algorithm. . 147

5.9 The convenience of the active protocol with respect to the passive
protocol in the dynamic case. 150

5.10 Comparative cost of the protocols (uniform case). 153

5.11 Comparative cost of the protocols (Gaussian case). 154

5.12 Comparative cost of the protocols (hill case). 155

Introduction

Vi veri veniversum vivus vici
- Dr. Johan Faust

The objective of this introduction is to provide a guideline for the readers of this
thesis. Our work in the network research field was originated by the author’s interest,
and love, for networks in general. This love is depicted in Section I.1, where we point
out the networks represent the hidden structure of the world we live in. Then, in
Section I.2, we unveil our development plot for this thesis: we describe what we are
intended to show with the thesis, pointing out what we like and what we do not like
in the current wireless sensors networks research and how we intend to react to this.
Finally in Section I.3, we provide a brief outline of the thesis’ structure.

I.1 Linked: how networks changed our perception

of the world

Networks are the hidden structure of our world. They play a fundamental role in
natural, social and technological sciences. Current research works in all these fields
have spotted out the common network structure of the world.

Moreover, recent studies try to find out common properties of all kinds of net-
works to archive a better understanding of our world and life. These works, such
as (Dorogovtsev and Mendes, 2003), (Watts, 1999) and (Watts, 2003), point out
that networks can be found in any shape and size in the world around us. These
works also study the problem of finding out the common structures and properties
of both natural and artificial networks. These studies point out that all the networks
(natural and artificial) have common structures and patterns inside them. Paradox-
ically, these outstanding results tend to show that the world, as we know it, does
not contain network structures but, as opposite, the world appears as it is because
it is generated by these (not so much) hidden network structures.

In this section, we want to follow a (short) path that will review the networks
starting from natural networks, running throughout human networks and finally,
coming to computer networks. Moreover, we will point out the natural wireless
shift : in nature, networks tends to move wireless to be more efficient and to grow
up at a higher rate.

18 CHAPTER . INTRODUCTION

I.1.1 Natural networks

Recent studies in various aspects of biology have shown how networks are a constant
structure in biological systems.

The preys/predators structure in a ecosystem is the simplest network-shaped sys-
tem that we may find in biology (Lässig et al., 2001): various species are linked
together in an eaten-eater graph structure. This graph structure links with few hops
species that at first sight can be considered very distant, for instance, a flower and
a tiger.

Another very interesting case of network-like structure that we can find in nature is
represented by the south-eastern Asia fireflies visual communication network (Buck,
1988). These little beings synchronize their lights looking at their neighbors so that
large groups are able to flash simultaneously. Recent hypothesis about the meaning
of this phenomenon are related to the fact that this synchronized flashing may help
firefly males to attract distant females and/or to create a natural defense because
a predator is confused by the number of possible preys, but this reasons are out
of the scopes of this thesis and, a more important fact, out of the scope of this
introduction.

I.1.2 Human networks

Sociologists sentence that the success of mankind is related to our feeling for commu-
nications (Lieberman, 1998). In sociology’s terms, the success is identified with the
capacity of humans to organize in large societies as nations, which is not common
in other species.

Since ancient times, we, as humans, have the need to communicate our experience
and stories. To easily prove this, we can think to cave paintings made by primitive
men, that were used to communicate throughout time, generation by generation,
the experience and believes of the population they belonged to. Today, as in the
ancient times, we continuously leave signs of our presence writing books, building
monuments and modifying the face of the world in which we live. As an extreme case
of this kind of communications, in 1977, we were not fully satisfied by communication
throughout time and we decided to communicate also throughout space: we sent
the “Voyager Golden Record” to communicate sounds and images of the Earth to
intelligent extraterrestrial life forms that the Voyager spacecraft may encounter in
the space.

Apart from this, the principal network structure of our society is still language:
our need of communication brought to complex languages with thousands of terms
and structural forms to join them and being able to establish complex social rela-
tionships.

The need for communication of the human race was, and it is still, the most
important engine that brought mankind to invent forms of networks that were not

I.1. LINKED: HOW NETWORKS CHANGED OUR PERCEPTION OF THE WORLD 19

present in nature, for instance, the postal system and telephones. As a consequence,
our world became smaller and smaller and our society highly connected (Milgram,
1967).

John Donne, a Jacobean metaphysical poet, said that “No man is an Iland, intire
of it selfe; every man is a peece of the Continent, a part of the maine” (Meditation
XV II). In our opinion, John Donne was probably right.

I.1.3 Computer networks

Computer networks try to answer to the natural need for communications. As well
as the postal service and other human-related communication networks, computer
networks are a powerful communication network characterized by an incredible high
speed and a high number of users†.

Wired computer networks were born in the middle of the 20th century to respond
to military need for a reliable and fault-tolerant communication infrastructure. Com-
puter networks rapidly evolved enabling people to exchange pieces of information at
rates never seen before. However, in the past twenty years there has been a grow-
ing need for ubiquitous communications (anytime, everywhere) (Kleinrock, 1996).
This need cannot be satisfied by wired media and brought new interest to wireless
communications. Satellites, cellular and radio communications, that were used only
to communicate voice or broadcast TV, are now used to enable people to exchange
data from everywhere.

As a consequence of this unwiring revolution, current hosts, lighter and more
powerful, can move around and connect to the web or network resources from almost
everywhere.

I.1.4 Everyone goes wireless

Every kind of communication seems to move “naturally” to wireless.

The south-eastern Asia fireflies use a kind of optical network to coordinate and
to synchronize: each firefly looks at other fireflies flashing and starts to synchronize
with them.

Humans at great distance, once communicating with letters, now prefers to phone
each other. The spoken word prevails in interpersonal communications: it is more
expressive due to intonations‡.

Today communication networks are experiencing the same unwiring revolution:
our traditional telecommunication systems are dropping the heavy cables moving to
wireless connections due to their flexibility because we want to be able to commu-
nicate each other from everywhere.

† As of June 10, 2007, 1.133 billion people use the Internet.
‡ In the same way IP phones, for instance Skype, are eclipsing e-mail

20 CHAPTER . INTRODUCTION

I.2 The plot behind this thesis

The first thing we do, let’s kill all the lawyers
- William Shakespeare (Henry VI)

In this section, we present the plot behind our thesis. We present where we are, what
we want to study and, most important, why we want to study it. In this thesis, we
study the non-uniformity issues in wireless sensor networks: that is how the non-
uniformity influences the behavior of this kind of networks and how we can prevent
(or use) this influence. Non-uniformity can influence all the aspects of wireless sensor
networks, for this reason, in this thesis, we focus on the problem of the influence of
non-uniformity in data management.

I.2.1 Wireless sensor networks

We focus on one particular kind of wireless network: the wireless sensor net-
works (Akyildiz et al., 2002a). Wireless sensor networks (WSNs for short) are made
up by a large number of little devices that sense the environment and exchange data
with wireless media. They represent a natural evolution of monitoring and sens-
ing systems: wireless sensor networks’ possible applications range from military to
medic, from domotics to industry and precision agriculture.

Wireless sensor networks can be used also to provide an easily deployable com-
munication infrastructure in areas where there was some kind of natural disaster.
In this case, sensors form a backbone for the routing of messages between groups of
rescuers.

I.2.2 Non-uniformity

In this thesis, we study a particular aspect of the WSNs, namely the influence of
non-uniformity in such kind of networks.

Non-uniformity is a topic that is far from the mainstream of WSNs research. In
current WSNs’ research, there is a silent axiom that rule out the models and the
protocols development: the uniformity of these kind of networks. We refer to this
assumption with the name uniformity dogma.

We intend to show up that the uniformity dogma has no foundations and we intend
to point out that non-uniformity exists in nature, that non-uniformity can influence
WSNs and that non-uniformity can prevent the good behavior of the protocols that
were designed with only uniformity in mind.

Uniformity is assumed in various aspects of WSNs. It is assumed in the deployment
when nodes are randomly scattered in the area intended to be monitored, also when
deployment occurrs by dropping nodes from above. It is assumed in communication

I.3. ORGANIZATION OF THE THESIS 21

patterns and technologies, also when the nature itself of radio communications brings
to unstable links from both bandwidth and connectivity point of view. Finally, it is
assumed into the environment, also when the deployment can happen into woods or
even cities where obstacles can prevent close nodes to communicate properly.

I.2.3 Data management in wireless sensor networks

Due to the fact that non-uniformity can influence the largest part of current WSNs
solutions, we choose to focus, as a case study, on the influence of non-uniformity in
data management.

We will start from the influence of non-uniformity in a widely accepted data
management solution, then, we will find out the non-uniformity soft spots in the
design of that solution and then we will propose our non-uniformity-proof solution:
pointing out the design choices that we must take to produce non-uniformity-proof
solutions.

I.3 Organization of the thesis

This thesis is organized as follows.

Chapter 1 provides an introduction to WSNs. We point out that WSNs are a
recent technology designed for unattended, remote monitoring and control,
which have been successfully employed in several applications. WSNs are de-
signed to perform environmental data sampling and processing, and to guar-
antee access of the processed data to remote users. Moreover, we point out
that in traditional WSN these tasks consist in transmitting sensed data to a
powerful node (the sink) which performs data analysis and storage.

Chapter 2 points out how most of the current WSNs research focus on uniform
networks and more specifically on networks in which the sensors are all iden-
tical or on networks that are distributed following the uniform distribution.
Then, we show that in current WSNs research uniformity is a dogma, a be-
lieved true assumption that no one wants to offend. At this point, we analyze
real life and show that uniformity does not actually exist in nature. Starting
from this consideration, we can only begin to study non-uniformity, its funda-
mental characteristics, how non-uniformity influences WSNs results and how
we must learn to think in a non-uniform way to prevent its influence.

Chapter 3 provides the description of the state of the art of the data manage-
ment in WSNs. All the reasonable uses of WSNs deal with the idea of data
acquisition and data retrieval. These two concepts are strictly related because
data retrieval is the response to a user query. The user should be able to

22 CHAPTER . INTRODUCTION

actively program the network, via control programs, to retrieve data that is
considered useful. In traditional WSN models, these tasks consist in transmit-
ting sensed data to a powerful node (the sink) which performs data analysis
and storage. However, these models resulted unsuitable to keep the pace with
technological advances which granted to WSNs significant (although still lim-
ited) processing and storage capabilities. For this reason, recent paradigms
for WSNs introduced database approaches to define the tasks of data sam-
pling and processing, and the concept of data-centric storage for efficient data
access.

Chapter 4 presents our contribution to non-uniformity in the data management re-
search in WSNs. We focus on the the data-centric storage model and our main
contribution in this area is Q-NiGHT. Q-NiGHT originated by the analy-
sis of the experiments we performed on the Geographic Hash Tables (GHT)
approach in non-uniform networks. Results of such experiments point out the
inability of plain GHT to provide good results in non-uniformly distributed
WSNs. Moreover, we provide an application scenario in which Q-NiGHT is
used as a building block for a more complex system that enables the networks
to find out special nodes that are able to provide services to the other nodes.

Chapter 5 proposes the Stripes suite of protocols, that are used to find out in a
efficient way the network distribution. The knowledge of the network distribu-
tion is a central point in many protocols that are intended to be non-uniformity
aware. The Stripes suite of protocols uses an on-demand strategy to rebuild
the network density. When a node needs to know the density of the network,
asks for density samplings from predefined points of the network and then
reconstructs the density with a simple algorithm. To optimize the resources
usage of the network, Stripes uses a caching strategy to store the sampled
data around the network and not only in the sampling points and into the
nodes that reqired such information.

Conclusions draws the conclusions of the work that was presented in this thesis.

I.4 The pillars of this thesis

This thesis is based on various papers by the author of this thesis and some of his
colleagues (and friends).

In (Chessa et al., 2007), we previously revised, described and analyzed the data
management techniques that are used in WSNs.

In (Albano et al., 2006a), (Albano et al., 2006b) and (Albano et al., 2007), we
presented Q-NiGHT. We analyzed the problems related to non-uniformity in data
management and how non-uniformity can prevent current systems to work properly.

I.4. THE PILLARS OF THIS THESIS 23

Then, we proposed our solution to this problem providing a modus operandi for the
non-uniformity management in WSNs.

In (Nidito et al., 2007), we presented an application scenario that takes great
benefit of the Q-NiGHT system to provide a reliable and load balanced system to
locate services inside heterogeneous WSNs.

In (Nidito and Pizziniaco, 2006), we studied the problem of non-uniformity from
a new and higher point of view. We studied the problem of finding out the number
of sensors that is needed to acquire connectivity in a WSN deployed using a non-
uniform distribution.

24 CHAPTER . INTRODUCTION

Chapter 1

Wireless Sensor Networks

Then Jesus asked him, “What is your name?”
“My name is Legion,” he replied, “for we are many.”

- Mark 5:9

Abstract

Wireless sensor networks (WSNs) are a recent technology designed for unat-
tended, remote monitoring and control, which have been successfully employed
in several applications. WSNs perform environmental data sampling and pro-
cessing, and guarantee access of the processed data to remote users. In tra-
ditional WSN models these tasks consist in transmitting sensed data to a
powerful node (the sink) which performs data analysis and storage.

A Wireless Sensor Network (WSN) is a computer network formed by a large number
of little and inexpensive wireless devices (the sensors or sensor nodes) that cooperate
to monitor the environment using transducers (Zhao and Guibas, 2004) (Al-Karaki,
2004) (Akkaya and Younis, 2005) (Akyildiz et al., 2002b) (Akyildiz et al., 2002c).
Recent technology advances have enabled the design and the development of tiny
processors and radio systems that can be easily embedded in little multi-purpose and
easily programmable sensors. A sensor is a micro-system which also comprise one
or more sensing units (transducers), a radio transceiver and an embedded battery.
Sensors are spread in an environment (the sensor field) without any predetermined
infrastructure and cooperate to execute common monitoring tasks which usually
consist in sensing environmental data from the surrounding environment. Due to
low cost, sensors have poor reliability and are subject to failures and battery ex-
haustion. Sensors are typically deployed in harsh environments where the nodes’
substitution can be impracticable. Due to these reasons protocols and sensors’ ap-
plications must be highly fault-tolerant and the network must be able to self adjust
to fast configuration changes.

26 CHAPTER 1. WIRELESS SENSOR NETWORKS

WSNs can be employed in a large variety of tasks. They can be used in medicine,
agriculture, military, inventory monitoring, intrusion detection and many other
fields. In the medical field, they can be used to remotely monitor patients’ con-
ditions in a non intrusive way: this enables the patients to move in the medical
facility while their life parameters are still monitored (Malan et al., 2004,Gao et al.,
2005,Amato et al., 2005b). In agriculture, sensors can be used to enable the so called
precision farming, in which the fields’ conditions are constantly monitored to tune
the water or fertilizing quantities to maximize the production. Pollution monitoring
can be enhanced by such little sensors. The presence of a large number of non in-
trusive sensors enables a fine grain monitoring of the environment. Such a fine grain
monitoring can be essential in the location of pollution sources. The same sensor
systems can be used to monitor the environment to prevent flooding, fire or other
natural disasters (Steere et al., 2000). A more recent application of the wireless sen-
sor networks is the monitoring of animals in a non intrusive way, due the reduced
size of the nodes (Szewczyk et al., 2004,Cerpa et al., 2001,Wang et al., 2003). Other
applications range from home automation to education (Srivastava et al., 2001) to
inventory monitoring and machinery status monitoring.

The WSN advantage is in the capability of reporting data every time from ev-
erywhere in the sensor field. One of the main issues in sensor networks is how to
organize data management and retrieval in a reliable and efficient way. In early
sensor networks, data collection was performed by human operators who had to
physically reach specific positions in the deployment area to acquire data from the
environment. This manual operation has three main drawbacks:

1. The data collecting operation was very expensive because human operators
had to manually collect data.

2. The operation was error prone due to poor automation.

3. The operation could be risky because of environmental hostile conditions (ra-
diations, poison etc.).

The typical sensors’ deployment in an environment consists of hundreds of sensors.
The deployment can be both random or predetermined by the user of the network.
After the deployment, the sensors self-organize to form a multi-hop network to
enable communications between nodes that lie out of the communication range of
each other. For instance, in structures monitoring, sensors can be deployed on both
static structures, as bridges and building, or dynamic structures, as airplanes or
cars. Sensors continuously monitor these equipments ensuring their reliability. In
particular, they sense the current status of the system and help to forecast the
future evolution of that equipment (Lin et al., 2003).

The user can query a WSN using one or more special purpose nodes called sinks.
The network can be queried using different paradigms. In traditional networks, sen-

1.1. APPLICATIONS, TECHNOLOGY AND ARCHITECTURE 27

sors collect data and send them to the sink without processing. More recent ap-
proaches, however, use the whole network as a database enabling the user to perform
complex queries and in-network computation.

Chapter organization. This chapter is organized as follows. Section 1.1 presents
the description of WSNs architecture, standard applications and technologies. Sec-
tion 1.2 presents the abstract model of the WSNs used for our research work. Sec-
tion 1.3 reviews briefly the research issues in WSNs research. Finally, section 1.4
draws the conclusions of the work described in this chapter.

1.1 Applications, technology and architecture

In this section, we review the main characteristics that identify WSNs: architecture,
applications and technology. We move throughout these three characteristics to find
out the distinctive traits of this kind of networks.

1.1.1 Infrastructured vs. ad hoc wireless networks

Wireless networks can be divided in two main categories: the infrastructured and
the ad hoc networks.

Infrastructured networks. Infrastructured networks have one or more central co-
ordination points. A good example of such networks are cellular networks (Rahnema,
1993). To communicate to another peer, each cellular device needs to negotiate with
the infrastructure hardware of the cell it belongs to. Once this communication has
took place the infrastructure takes care of setting up a channel between the peers
(and to manage accounting, related services etc.). It seems a paradox, but all the
communications in an infrastructured network must use the infrastructure. In cel-
lular networks the communication between two peers must pass throughout the
network infrastructure also if the two devices could be able to communicate to each
other because they are in the transmission range of each other. As depicted in Fig-
ure 1.1.a, two peers belonging to two different cells need to communicate to the
respective cell manager to set up a communication. The same happens in the case
depicted in Figure 1.1.b, in which the two peers would be able to communicate
directly but need to use the infrastructure.

Ad hoc networks. Ad hoc networks are totally self-organizing and usually do not
rely upon any centralized authority. A distinguished feature of ad hoc networks
is being able to organize themselves to perform any activity (e.g. routing, balanced
data storage, etc.) without a centralization point. All the peers of an ad hoc network
must perform two different roles: (i) the role of an active communication peer (as
sender or receiver) and (ii) the role of passive communication peer, performing

28 CHAPTER 1. WIRELESS SENSOR NETWORKS

switched
network

(a) Communication between different cells (b) Communication in-
side the same cell

Figure 1.1: Peers’ communications in infrastructured networks. (a) depicts the com-
munication between two peers located into two different cells using the infrastructure
to communicate and (b) two peers inside the same cell that need to uses the infras-
tructure too.

routing for the other peers’ communications. In this sense, ad hoc networks are
collaborative networks in which all the nodes need all the others to be able to set
up communications.

A particular kind of ad hoc networks is given by WSNs. WSNs (Akyildiz et al.,
2002a) are formed by hundreds, or even thousands, of simple nodes that are deployed
to monitor areas of interest. Each node is able to acquire data from the environment,
store the sensed data, possibly after little processing, and coordinate to route the
acquired data to one or more special nodes, namely the sink nodes. Usually the sink
nodes store and use data in different ways depending on the user’s needs. Due to
their strict constraints in CPU performance, memory on board and battery lifetime,
WSNs represent an “extreme” case of ad hoc networks because all the problems
related to ad hoc networks are amplified by such strict constraints.

1.1.2 Applications of wireless sensor networks

Due to the nature of self-organization, the WSNs have found a lot of applications
in all the fields that need to collect data in environments in which a predefined
infrastructure cannot be built up for different reasons: due to time and/or space
constraints, or more simply, the user does not want to build such infrastructure.

Military. Military applications are the simplest to imagine. WSNs can be set up
to monitor the battlefield or to create intrusion detection systems. In a similar way
wireless sensor networks can find an application in the monitoring of ammunition or
to create an easily deployable communication infrastructure in which each soldier is
equipped with a sensor. This sensor can be used to communicate with other soldiers
and to monitor soldiers’ health status.

1.1. APPLICATIONS, TECHNOLOGY AND ARCHITECTURE 29

Medical. WSNs can be used also for medical purposes. We can think to employ
them to monitor patients when they move inside the hospital or to locate medical
stuff, for instance a moving x-ray machine, inside the same structure.

Environmental. Another application is represented by environmental monitoring
and control. In this scenario, sensors can be attached to objects, for instance indus-
trial robots, to control their status and position and to send commands to them.
In this way, we can also use sensors to locate some furniture or devices quickly, for
instance monitors or projectors, in an office.

Domotics. In domotics, WSNs can be used as the underlying architecture to provide
all the features required by domotics applications. For instance, sensors can be used
inside rooms to monitor the presence of people to automatically turn on and off
lights.

Assisted learning. In a possible assisted learning application, people are free to
move inside a museum and when they arrive close to an object of the museum
collection, an automatized system can start to describe the object. Moreover, the
sensors can synchronize themselves with other sensors-like devices that visitors bring
with them to provide a multilingual description of the object.

Disasters. Finally WSNs can be used in disaster areas with two main applications:
the first is to create an easily deployable communication system and the second one
is to monitor, in real time, the evolution of a dangerous environment.

1.1.3 Technology constraints of wireless sensor networks

In most applications, sensors have to be small and cheap. They need to be small
because during their usage they must be “invisible” (military surveillance) or because
patients in a hospital cannot be expected to carry a workstation on their back to be
monitored. They also need to be cheap because in military or disaster monitoring
sensors are dropped in areas where, probably, no one wants to enter. When a sensor
breaks down, or its battery is over, no one will repair it and the device is gone
forever.

Due to their nature of small and cheap devices, sensors have very limited resources.
Current sensors are equipped with a small battery, a CPU with very low computa-
tional power (MICA-MOTEs from Crossbow Inc.∗ have an 8MHz processors with
8 bits words), memory limited to few hundreds of kilobytes, a wireless communi-
cator (radio or IR) and some acquisition devices (for temperature, pressure, etc.).
Figure 1.2.a depicts the standard architecture for a sensor node. The architecture is
very simple and made up few components as said before. Figure 1.2.b depicts a real
sensor. To give a scale factor for such devices its measures are 58×32×7 millimeters
and it weights 18 grams (excluding batteries).

∗ www.xbow.com

30 CHAPTER 1. WIRELESS SENSOR NETWORKS

ProcessorMemory Radio

acquisit ion
device

acquisit ion
device

...

(a) Sensor architecture (b) A MICA-MOTE sensor node

Figure 1.2: Sensor node. (a) depicts the typical architecture of a sensor, made up of
a processor, memory, some acquisition devices and a radio. (b) depicts the photo of
a real sensor node.

Like in other wireless networks, in WSNs, packet collisions due to multiple com-
munication taking place in the same space at the same time is more difficult to
handle than in wired networks. In traditional wired networks, when an host sends
a packet, the host is able to receive its own signal on the on the same cable. In this
way, it is easy to notice interferences due to packet collisions. On the other hand,
in wireless networks, we can experience the so called hidden terminal problem (or
hidden host problem). As depicted in Figure 1.3, when two hosts (that are not in
communication range of each other) send a packet at the same time to a common
receiver, it will receive only a junk transmission. However, none of the senders is able
to detect the collision without help. The hidden host problem is solved using MAC
level protocols which exchange a few control messages to rule out all the possible
collisions before starting a real sending operation (Fullmer and Garcia-Luna-Aceves,
1997).

A similar problem arises when a large number of devices try to communicate in
the same area. In this case, the communications collide frequently and the problem
known as channel contention may rise. In the channel contention problem many
nodes share the same subarea and all the nodes are able to communicate each other.
When two or more nodes try to communicate at the same time (also to different
receivers) their requests to establish a communication clash and the nodes try again
to send the requests. This problem has a domino effect on the sensor nodes: at the
beginning it limits bandwidth because packets need to be transmitted again and then
the retransmissions’ cost is payed by the sensor via battery exhaustion. Again we
can use suitable MAC protocol strategies to orchestrate the channel access in order
to avoid collisions. Typical techniques used to avoid such clashes take care of waiting
a random time before trying again to communicate. If the number of nodes trying to
communicate is high the time range in which they randomize that time can be too

1.1. APPLICATIONS, TECHNOLOGY AND ARCHITECTURE 31

snd(x) snd(y)rcv(f%s#*v)

Figure 1.3: Hidden host problem in which the two transmitting nodes are unaware
of the presence of each other and simultaneously transmit to the cental peer that is
unable to receive correctly the two messages.

short and new clashes happen again. However, a collision free communication forces
nodes to communicate one at the time drastically reducing the potential bandwidth
of the network.

1.1.4 Wireless sensor networks’ architecture.

Each sensor, per se, is a too powerless device to be useful if used alone†. Actual WSNs
are made up of hundreds (or maybe thousands) of sensors. All sensors cooperate to
provide sensing, communication and reliability to all the system. More specifically,
cooperation is used to achieve multiple results.

For instance, if each sensor is able to measure the temperature in less than 1m of
distance from itself, thousand of nodes can be used to monitor the temperature of
whole buildings of even cities. In the same way, the transmitting range of a single
sensor ranges from 5m up to 30m but a WSN can route messages, hop by hop, for
tenths of kilometers if needed.

We stated that each sensor is very unreliable and short living, but a dense network
can overcome the problem of sensors ceasing to work simply with the number. If
inside the network, each sensor is anonymous, in the sense that it can be replaced
by any other in its neighborhood.

Architecture. As for any other technological device, the task to be accomplished
defines the shape (or better, the architecture) of such device. WSNs are no exception
to this rule. Since the main WSNs’ applications are driven by the need to acquire,
collect and communicate data, the WSNs must, at some point, communicate to the

† By the way, the first computer owned by the author of this thesis was as powerful as a single
sensor, nevertheless the author had a lot of fun with it.

32 CHAPTER 1. WIRELESS SENSOR NETWORKS

(a) WSN without sinks (b) WSN using a sink

Figure 1.4: WSNs architectures. (a) depicts a sensor network without a sink node
and where each node is able to communicate to the user (in this case using a satellite
up-link). (b) depicts a sensor network with a sink node that collect the data from the
sensors, via multi-hop communication, and then it sends data to the user using a
satellite up-link.

external world the acquired data. This can happen in two ways: either every node
can communicate to the user or only few nodes can do that.

In the first case (Figure 1.4.a), we can imagine that all sensors have enough power
to communicate out of the area of interest (e.g., using a satellite up-link) or, some
times, the user can enter the area and use a sensor-like device, for instance attached
to a laptop, to query the devices.

In the second case (Figure 1.4.b), we have one or more special nodes, called sinks,
that collect and communicate data to the user. Sink nodes are special nodes, differ-
ent from other sensors, with more computational power and battery. They can be
always active, active only at pre-established times or active at request by the user.
Sinks are gateways between the users of WSNs and the network itself. The kind of
interconnection between the sink and the outside world is not part of the WSN and
it can take place in a large number of forms.

Inside WSNs, the communications can take place in only two ways: single-hop
and multi-hop. In single-hop communications, data are exchanged directly from the
sender node to the receiver node. In multi-hop communications, one or more interme-
diate nodes route communications between senders and receivers not in transmission
range.

1.2. AN ABSTRACT WIRELESS SENSOR NETWORKS MODEL 33

Deployment. Roughly speaking, sensors can be deployed only in two ways‡: (i)
“by hand” or (ii) randomly.

In the deployment “by hand”, sensors are placed one by one in specific locations
to create networks with desired characteristics, for instance sensors can be deployed
to form a mesh or tori or, more simply, the sensors are placed to be aware of their
position, of the position of the other sensors and of the position of the sink. This
placement can be used to easily set up communications, find routes and keep track
of the distribution and so on.

On the other hand, random deployment in the area of interest is performed with
much less control. For instance, when sensors are dropped from an airplane or fired
out from some fixed location, we could know the approximated distribution of the
sensors in the sensing field but the exact position of each sensor (sometimes we are
not aware of the distribution too) is definitely unknown. This kind of deployment
generates a lot of problems: the nodes have to effectively self-organize to find out
their relative positions and to find out the sink node(s) before the sensing operations
can take place.

As a kind of pervert version of the icing on the cake, sensors can move during
their lifetime. This usually happens by means of an external force, for instance if
the sensors are dropped in a tornado to monitor air-flows or when a WSN, deployed
to monitor a slope, starts to move with the mountains itself.

Apart from the “by hand” deployment, random WSNs deployment is a crucial
part of the WSNs’ architecture. The deployment introduces problems into a WSN
configuration and performance. Partitioned WSNs can miss the connection to the
sink, also for a large part of the nodes. Moreover, a non-uniform distribution of the
nodes can bring to pathological states of unfair load distribution across the network
if not properly managed.

1.2 An abstract wireless sensor networks model

In this section, we present our reference model for wireless sensor networks. The
model is used throughout this thesis to develop our studies. We also discuss some
problems and some simplifications with respect to the reality. The model that we are
going to use is widely accepted and used by the scientific community (Bettstetter,
2004a), (Santi et al., 2001), (Santi and Blough, 2002), (Xue and Kumar, 2004),
(Panchapakesan and Manjunath, 2001), (Gupta and Kumar, 1998) and (Dousse
et al., 2002).

In our abstract model, we represent the sensors as zero-dimensional points in Rd,
with d ∈ {1, 2, 3}. Each sensor, si, can communicate with other sensors with its

‡ All the other, “picturesque”, ways in which sensors can be deployed by, fall in one of these
two categories.

34 CHAPTER 1. WIRELESS SENSOR NETWORKS

antenna. The communication range, r, can be fixed or can vary in some interval
(0, rmax] for each one or all the sensors.

The communication range r, is a critical factor in wireless sensor networks because
the energy consumption in data transmission is very large and grows as a super-linear
function of the range. In our model, the power pi used by si to transmit correctly
data to sj must satisfy the following inequality

pi

δα
i,j

≥ β, (1.2.1)

where α ≥ 2 is the distance power gradient, β ≥ 1 is the transmitting quality
and δi,j is the Euclidean distance between si and sj in Rd. Typically β = 1 and
α depends from the environment in which the communication happens. In the ideal
case α = 2, but in more realistic conditions α = 4 (α ∈ [2, 6]).

Equation (1.2.1) describes the energy used by the sender, but we must remember,
that also the receiver uses energy to receive and to decode the signal and this factor
is taken in account in our experiments.

Thus, a WSN can be represented as a graph in which vertices represent sensors
and edge exists between si and sj if and only if δi,j ≤ r. When the sensors are
deployed randomly in Rd, this structure is called Random Geometric Graph (RGG
for short (Bollobas, 1985)).

1.2.1 Missing features

The model previously presented is widely accepted by WSNs community as a rea-
sonable approximation of the reality. However, communications in WSNs show some
interesting properties which are not captured by the model. Here, we give a brief
overview of these properties and we point out which part of the model should be
refined to take them into account. The aim of this discussion is to make the reader
aware of the approximations introduced.

A first, important, difference is that in the real world the communication volume
that the transmitting range draws around the sensor is not a perfect sphere. In the
reality, we must consider a spheroid of radius r with a log-normal perturbation

LN(x) =

exp

[

−1
2

(

ln(x)−µ
σ

)2
]

√
2πσ2x2

(1.2.2)

Equation (1.2.2) highlights that the range r has a high probability to be lightly mod-
ified, and a very low probability to be modified significantly. Figure 1.5 depicts the
differences between a circular communication range and a log-normally perturbed
communication range. In Figure 1.5.a the communication range is a perfect circle

1.2. AN ABSTRACT WIRELESS SENSOR NETWORKS MODEL 35

R

(a) Perfect circle communication
range

R

(b) Log-normally perturbed communication
range

Figure 1.5: Communication range models. (a) depicts the ideal case in which the
communication range is a perfect disk around the sensor and (b) depicts the more
realistic case in which the communication range is no more a perfect disk but it is
a irregular area in which the neighborhood relations, with respect to the ideal model,
can be changed.

and the central node can communicate only with one of the two neighbors. In Fig-
ure 1.5.b the communication range is no more a perfect circle and also the second
node can be used to communicate with. This configuration can vary with time and
other environmental conditions.

Another simplification introduced by the model is that, in the hidden host prob-
lem, a packet collision always causes a packet loss. This is not completely true
because of the frame capture phenomenon (Arnbak, 1987,Ware et al., 2001). We use
an example to show the phenomenon: let us suppose that many people try to talk
to us at the same time and using approximately the same volume. In this situation,
we hear only noise and we are not able to follow any conversation. However, if one
speaker pumps up the volume, we are able to hear his/her words and all other voices
became only background noise.

The same happens in radio transmissions. When many transmissions arrive at the
same time, the receiver is not able to decode them. However, if one transmission is
enough powerful, the others become only white noise. In order to be able to capture
frame f , its power Pf must satisfy the following inequality

Pf > γ
N

∑

i=1

Pi,

36 CHAPTER 1. WIRELESS SENSOR NETWORKS

Figure 1.6: Multi-path fading example. The waves propagated by the antenna belong-
ing to the sending device (on the right) arrive to the receiver (on the left), following
multiple paths and in different times.

where N is the number of all the frames (excluding the frame f), Pi is the power of
the ith frame and γ is the capture ratio. Capture ratio is expressed in decibels (dB)
and it is a characteristic of the antenna.

Another phenomenon typical of wireless networks is the power fading. In the real
world, the communication range is not a fixed value r because the power of the
signal decreases with distance from sender’s antenna. The signal loss L is computed
using the following formula

L = 32.4 + 20 log F + 20 log R

L is a function of the frequency F (MHz) and distance R (Km). The derivation of
the formula, starting from the propagation model of waves in the vacuum is out of
the scope of our research. However, it can be found in (Seybold, 2005).

The last simplification introduced by the model is the multi-path fading (Fig-
ure 1.6). In multi-path fading the signal can be corrupted by its own copies that
arrive at the receiver at different times after that the environment has reflected
them. Let us suppose that a radio enabled device communicates inside an obstacle’s
full area, in this case when a message is sent to a destination device, it is propagated
all around the device and the radio waves start to hit the obstacles inside the area.
Part of the waves are absorbed, and part of them are reflected by the environment.
The reflected waves arrive at the destination device with a certain amount of delay
with respect to the waves that proceed following a direct path and they arrive to the
destination with a certain amount of delay. If this delay is too long and the reflected
waves arrives with a strong enough signal they can corrupt each other.

1.3 Research issues and topics

Since their appearance, various aspects of WSNs have been investigated. WSNs re-
search addresses all the typical problems of wired networks: routing, security, load

1.3. RESEARCH ISSUES AND TOPICS 37

distribution and the like. Moreover, there are problems which are peculiar of WSNs.
For instance topology control, in which the network structure is adjusted, setting
communication ranges, to satisfy some requirement. However, any research in wire-
less sensor networks must take in account some specific constraints:

Low energy, sensors are equipped with small batteries. Since computations and
wireless communications have a high cost, algorithms and protocols should
have a low complexity and communications should be reduced as much as
possible.

Limited bandwidth, the transmission power must be kept low to save sensor en-
ergy, therefore, only a few bytes of data can be exchanged in the time unit in
order to save energy.

Unstructured and varying topologies, sensor nodes can sleep to save power or
they can have faults or, more simply, they can move. In all the cases, as a
result, we have a topology change and, for instance, the routes from a sensor
to the sink may change and they must be computed again, and/or some datum
can be lost.

Low-quality communications, low energy communications tend to be received
with a lot of errors at long distance and WSNs must be able to cope with it
using correcting codes and/or retransmissions.

Hostile environment, the nodes can be destroyed by the environment and/or envi-
ronmental radiations can cause transmission failures. In any case the protocols
must be tolerant to such events as in the case of topology changes.

In the rest of this thesis, we focus on non-uniformity, in its influence in WSNs
and how we can overcome the problems that are originated by it. To show up the
non-uniformity influence and the techniques that can be used to get rid of it we use
a case study. Our case study is the non-uniformity issues in data management in
WSNs.

Research on data management. Data management research covers the problems
related to storing data in a balanced and fault-tolerant way in WSNs. The impor-
tance of these problems is due to the unreliable nature of sensors and by the low
quantity of memory on board.

The central problem to be solved is to be able to locate data in an efficient way
for both store and load operations. In WSNs, data can have two different ways to
be located. Some data are localized in some area and must be stored there, for
instance, the temperature measured in a given place can be kept in such a place.
On the other hand, other kind of data are not related to a particular location, for
instance, the average temperature of a region has not a particular position in which

38 CHAPTER 1. WIRELESS SENSOR NETWORKS

it can be stored in. This last kind of data must be stored in a way such that: (i)
it balances the load across the whole network and (ii) it is readily accessible when
needed. Moreover, data produced at a high rate can easily fill the memory of a single
sensor and it must be stored around the network in a balanced way.

A promising approach to data storage in WSNs is based on geographic hash ta-
bles (Ratnasamy et al., 2003). In this approach, a datum is identified by a key and
there is a hash function that provides, given the key, the geographical coordinates
where the datum must be stored in or can be loaded from. The hash function is used
to distribute data in a balanced way, giving to each sensor the same amount of data
to store. The protocol stores data in some sensors in the proximity of the coordinate
identified by the hash function, in this way it adds fault tolerance because data is
stored in multiple nodes.

As we will point out in Chapter 4, the geographic hash tables, as they are presented
in (Ratnasamy et al., 2003), tend to have problems in presence of non-uniformity
both for the load distribution and for the fault tolerance aspects. For these reasons,
we have chosen to use them to point out some of the typical problems introduced by
non-uniformity and to show up what is the path that we must follow to solve these
problems.

1.4 Summary

In this chapter, we reviewed the principal features of WSNs, giving a gentle intro-
duction to them. We reviewed the architectural properties of both single sensors and
of the networks made up of these little devices.

WSNs are a special case of ad hoc networks: once deployed in an area of interest,
the sensors have to self organize to provide the basic network services as routing. The
main difference between ad hoc networks and WSNs is given by the tight constraints
of such kind of networks.

While ad hoc networks are made up of devices, such as PDAs, whose compu-
tational power increases everyday, WSNs are made up of inexpensive devices with
limited resources, both in terms of energy and computational power.

These constraints move all the ad hoc networks’ problems to a more difficult
level of resolution: algorithms need to be simple and very fast, protocols need few
messages to be executed and brand new energy saving strategies have to be found
to keep the network fully functional.

Then, we moved in the definition of an abstract model of WSNs useful for the
analysis and for the formalization of our research in the field of WSNs. Our model is
suited to catch the problems that we are going to present in the next chapters. We
need a suitable model to study the influence of non-uniformity in WSNs. For this
reason, we need to be free from all the characteristics that are not influenced (or
not influenced very much) by non-uniformity. In our research, we need to focus on

1.4. SUMMARY 39

the distinguishing characteristics of the non-uniformity issues that can influence, in
a negative or positive way, the current results in WSNs that were build up on top
of the uniformity assumption.

In the next chapter, we are going to give full suite of motivations to the reasons way
the uniformity dogma is not suitable for WSNs’ research, how we can characterize
non-uniformity and how we can start to think in a non-uniform way to create non-
uniformity aware architectures, protocols and systems.

40 CHAPTER 1. WIRELESS SENSOR NETWORKS

Chapter 2

Non-Uniformity

Variety of mere nothings gives more pleasure than uniformity of something.
- Jean Paul (Johann Paul Friedrich Richter)

Abstract

Most of current WSNs research focus on uniform networks: networks in which
sensors are equals to each other or networks that are distributed following
the uniform distribution. In current WSNs research, uniformity is a dogma, a
believed true assumption that no one wants to offend. In this chapter, we start
from a slightly different point: we simply state that uniformity does not exist.
Moreover, the uniformity assumption that can be found in the mainstream
WSNs research produces solutions that can be non-tolerant with respect to
non-uniformity and these solutions can be difficult to adapt to a non-uniform
environment. In this chapter, starting from the consideration that uniformity
does not exist, we begin to study non-uniformity and its influence in WSNs
research.

In this chapter, we introduce non-uniformity and its influence in WSNs. Our in-
tention is to show that the typical uniformity assumption found in almost all the
research work in WSNs field is best suitable to be defined as an uniformity dogma:
the assumption was never motivated by anyone, but was assumed as something true
and reasonable.

In this chapter, we start with some general consideration about the uniformity
which target is to disrupt the uniformity dogma: we show how the uniformity is
rarely present in nature and, as a consequence of this, in every human artifact as
WSNs.

Once this task is performed, we review non-uniformity: we describe it formally
and we present four models of non-uniformity that may influence WSNs, namely

42 CHAPTER 2. NON-UNIFORMITY

the deployment non-uniformity, the geographical non-uniformity, the functional non-
uniformity and finally the movement non-uniformity.

These models present a rough taxonomy of non-uniformity and we do not pretend
that this taxonomy is the best one or the only one: we define this taxonomy because
it is an aurea mediocritas for the model developed in the rest of the thesis and a
reasonable representation of the main characteristics of non-uniformity for WSNs.

Chapter organization. This chapter is organized as follows. Section 2.1 points out
the importance of the non-uniformity as a substantial part of WSNs research. Sec-
tion 2.2 presents our taxonomy of the non-uniformity in WSNs. Section 2.3 presents
the (few) related work on non-uniformity in WSNs. Finally, Section 2.4 draws the
conclusions of the work described in this chapter.

2.1 Why does non-uniformity matter?

In our opinion, non-uniformity matters because in “nature” perfect uniformity does
not exist.

If we observe reality from a distant point of view, we can find uniformity almost
everywhere. However, if we pay more attention in observing the world, for instance
with a magnifying lens, we are no more able to find such uniformity.

As a common experience, if we observe the smooth marble surface of a beautiful
renaissance statue we can argue that it is uniform: no asperities can be perceived by
eyes or fingers. But, if we observe it using a microscope, this uniformity gets lost:
the unveiled surface is full of asperities and it does not look possible that it could
be the same surface as before.

In computer science, sometimes we manage data structures or algorithms that
need to be uniform. For instance, when we use hash tables we need to provide
uniform hashing algorithms to have a good distribution of data and in turn of this
provide balanced tables. Moreover, in randomized and Monte-Carlo algorithms, we
need uniform random number generators to explore in a random, but fair, way
some result space. But, when we want to simulate, or analyze the real world, we
cannot pretend that the simulated world behaves uniformly because in the real
world uniformity is far from reality.

This happens in WSNs research too. Even if we distribute sensors “by hand”
and we create structures with interesting properties as grids, meshes and so on,
we cannot call them uniform because we may introduce some errors during the
distribution and/or once distributed it may happen that their behavior (for instance
the transmitting range) is not uniform.

If we drop sensors from above, using an airplane or a helicopter, we cannot obtain
an uniform distribution at all. The sensors are more likely to fall accordingly to some
more complex distribution such as Gaussian or Gaussian-like distributions.

2.2. MODELS OF NON-UNIFORMITY 43

Now, let us suppose that we can distribute sensors with perfect uniformity. Prob-
ably the environment itself is not uniform. Real applications of sensors include bat-
tlefields, harsh regions and urban scenarios. Scenarios too variegated and complex
to be defined as uniform (or to find some kind of ruled non-uniformity as a Gaus-
sian curve): these scenarios have obstacles that, for instance, change the behavior of
transmissions, disabling the sensors to communicate each other.

2.2 Models of non-uniformity

In this section, we present the four models of non-uniformity that we have spotted
out during the development of this thesis. The classification of the models of non-
uniformity, that we developed, is a suitable high-level classification that catches the
four main families of non uniformity. We do not think that this classification is the
only possible one. As stated before in this chapter, these four families represents
an aurea mediocritas, literally a golden way in the middle: this taxonomy catches
the essential differences between the different kinds of non-uniformity and it defines
only four models but it may be extended in multiple ways mixing up two, or more,
of the presented models or creating sub models inside the ones presented here.

In a WSN, we can find different kinds of non-uniformity, appearing in different
situations. Non-uniformity can be due to the method used for the deployment of
the network (e.g., when the sensors are dropped from above) or it can depend on
some functional patterns of the WSN itself. Moreover, non-uniformity can be due to
the geography or by obstacles present in the deployment area. Finally, a last kind
of non-uniformity is typical of WSNs in which the nodes can move, by themselves
or simple because the environment can move.

We refer to these four models as: the deployment non-uniformity, the geograph-
ical non-uniformity, the functional non-uniformity and finally the movement non-
uniformity.

Intentional Accidental
Static Deployment Geographic

Dynamic Functional Movement

Table 2.1: Our taxonomy of non-uniformity in WSNs.

We developed this taxonomy for the models of non-uniformity because, in our
opinion, this is a reasonable high level representation of the possible kinds of non-
uniformity. Moreover, our taxonomy catches four aspects of the possible distribu-
tions. Table 2.1 shows the four aspects. These aspects represent four main charac-
teristics of distributions:

Intentional: the distribution that we are going to analyze (or its approximation)
is known a priori. For instance, when we drop sensors from above, we are

44 CHAPTER 2. NON-UNIFORMITY

quite confident of the fact that they will distribute following a Gaussian-like
distribution.

Accidental: the distribution that we are going to analyze (or even its approxi-
mation) cannot be known a priori. For instance, when we drop sensors on a
terrain full of hills and depressions, we cannot estimate what the distribution
will be.

Static: the distribution that we have at the beginning will be almost the same
during all the network lifetime. For instance, once we deploy the sensors, if
the sensors cannot move, they will be in the same place for all the network life
time.

Dynamic: the distribution of the sensors changes with time. If the sensors moves
the physical distribution changes. If the network is made up of different kind
of sensors, its behavior changes with the possible interactions between nodes,
considering that this behavior is known only at the network run time it has to
be considered dynamic.

2.2.1 Deployment non-uniformity

The way in which the sensors are deployed is the first cause of non-uniformity in our
taxonomy. WSNs deployed by hand can be structured in very fascinating topologies
with a lot of interesting properties, such as meshes, tori and many more structured
distributed topologies. Unfortunately, real WSNs are usually deployed in a random
fashion.

Random WSNs deployment follows two main kinds of non-uniform distributions:
Gaussian and skewed (Zhou et al., 2005).

The Gaussian distribution, depicted in Figure 2.1.a appears when the WSNs are
deployed from above, for instance when the sensors are dropped from an airplane or
from any other kind of flying object. This kind of nodes distribution is well suited
for military applications in which the sensors are deployed on the battlefield without
any predefined pattern. The Gaussian distribution of sensors on a plane is described
by the following Equation

f(x, y) =
1

2πσxσy

e−[((x−µx)2/2σ2
x)+((y−µy)2/2σ2

y)]. (2.2.1)

Equation (2.2.1) is the result of the product of two independent Gaussian distri-
butions. The terms µx and σx represent the mean and the standard deviation for the
Gaussian distribution on the x-axis; in the same way µy and σy represent the mean
and the standard deviation of the distribution on the y-axis.

Typically Equation (2.2.1) is found in the form where both µx and µy at zero, to
represent the fact that the distribution is centered in an ideal (0, 0) point.

2.2. MODELS OF NON-UNIFORMITY 45

(a) Gaussian (b) Skewed

Figure 2.1: Deployment non-uniformity. (a) depicts the typical Gaussian distributed
network more dense in the center and sparser on the borders of the distribution and
(b) the skewed distribution with the majority of the nodes in an angle.

The values of σx and σy are the most important, because they give the shape of
the distribution, low values produce a steep distribution and high values a flat one:
if we drop sensors from a fixed point then σx = σy (or more precisely | σx − σy| ≤ ǫ,
with ǫ small); if we drop sensors from a moving point then σx 6= σy (or more
precisely | σx − σy| > ǫ, with ǫ small). In other terms, the values of σx and σy can
be combined to produce a large variety of shapes more or less suitable to describe
different deployment situations as the deployment actuated by a fast moving objects
or static ones.

The Skewed distribution, depicted in Figure 2.1.b, appears when the WSNs are
deployed shooting them from a fixed point: for instance a cannon or any other
suitable devices for such operation. In this case the sensors take position in a cone
with maximum density at one corner of the deployment area (the impact point);
then, their density exponentially decreases with the growth of the distance from the
maximum density point. The skewed distribution on a plane is described by the
following Equation

f(x, y) =
1

βxβy

e−[x/βx+y/βy] with x ≥ 0 and y ≥ 0. (2.2.2)

Equation (2.2.2) is the result of the product of two independent exponential dis-
tributions. The terms βx and βy represent the shape of the exponential on both axis

46 CHAPTER 2. NON-UNIFORMITY

(a) Mono-modal (b) Multi-modal

Figure 2.2: Modality of distributions. (a) depicts a mono-modal distribution formed
by one Gaussian distribution and (b) a multi-modal distribution made up of two
independent Gaussian distributions.

x and axis y. When the shape decreases the function is more steep.

These two distributions, Gaussian and Skewed, can be found in two main vari-
ants: mono-modal and multi-modal, respectively depicted in Figure 2.2.a and in
Figure 2.2.b.

A distribution is mono-modal, when it is deployed from a single point and the
nodes follow a single distribution.

On the other hand, a distribution is multi-modal when it is deployed from mul-
tiple points (in one or more times) using the same distribution or using different
distributions. For instance, if we deploy a WSN dropping sensors from two distant
points we obtain a distribution as the one in Figure 2.2.b, with two different peaks.

2.2.2 Geographical non-uniformity

WSNs’ distributions can be affected by the geographical characteristics of the de-
ployment area in which the sensors lay on. In this non-uniformity models, we can
distinguish two cases.

In the first case, the deployment region is full of obstacles (walls, building, people,
environmental radiations etc.) that prevent nodes physically close to communicate.
In this situation, the sensors have an altered perception of the space that can bring to
problems where, for instance, nodes are equipped with GPS antennas and interpret
these connection errors as GPS errors or worst as security attacks from malicious
users.

2.2. MODELS OF NON-UNIFORMITY 47

(a) Soil (b) Hill

Figure 2.3: Geographical non-uniformity. (a) depicts a sample geographic terrain
conformation with a central valley and (b) an example of a network deployed accord-
ingly to a Hill distribution with the sensors more dense in an angle.

In the second case, sensors dropped on a terrain tend to follow the terrain shape
and to fall into soil depressions. This situation can bring to networks in which the
nodes are more dense in the valleys and less dense at high points. If we add the fact
that hills can represents obstacles that prevent the sensor-to-sensor communications,
we can have an highly partitioned network.

For the case in which sensors follow the terrain shape, we explore two different
distributions. The first one, fully generic and related only to the geography, and the
second one, that is a distribution function that approximates reality.

In the first one, as stated before, the terrain geography can cause node redistri-
bution as depicted in Figure 2.3.a. The nodes deployed on steep terrains tend to fall
down following the direction of the slope. This effect is per se complex to examine
and to evaluate but it can become very difficult to model if we use it in conjunction
with the effects of the deployment non-uniformity.

The second one is a distribution function that approximates reality. The Hill
distribution, depicted in Figure 2.3.b was first presented in (Orecchia et al., 2004a).
The Hill distribution is very simple, and comes from an intuition and not from
experimental results. This distribution simulates an uniform sensor distribution on
a hill and the consequent fall of the sensors from the top of the hill to its base. In
the paper, the authors provide only generator functions for the sensors coordinates
generation: x =

√
u and y =

√
v where u and v are uniformly distributed variables

in [0, 1]. From the generators, it is simple to find out the distribution function of the
sensors on the plane

f(x, y) = 4xy with x ∈ [0, 1] and y ∈ [0, 1] (2.2.3)

48 CHAPTER 2. NON-UNIFORMITY

Equation (2.2.3) is very simple but reasonable and, at first sight, we can spot sim-
ilarities with the Skewed distribution due to the maximum concentration in one
corner of the distribution.

2.2.3 Functional non-uniformity

The functional non-uniformity is related to functional patterns of the network itself.
A single network can be made up by multiple kinds of sensors, with different ca-
pabilities and constraints, or can be formed by a single kind of nodes behaving in
different ways. These functional patterns are related to two basic concepts.

In the first one, the nodes of a WSN can adopt some kind of sleeping pattern
to enlarge life time as in (Ye et al., 2002), (Ye et al., 2004), (Cerpa and Estrin,
2002), (Chen et al., 2002) and (Xu et al., 2001). The effect of these sleeping patterns
is to create an effect of dynamic non-uniformity in which the sensors’ distribution
is not only a function of the deployment method but also a function of time, the
sensor “disappears” for some time and than “appears” again. Depending on the
sleeping pattern, we can experience an effect of the same region that is alternatively
monitored by two or more networks sharing only few nodes.

In the second one, a single WSN can be made up of different kind of nodes with
different capabilities and constraints. An example of this kind of networks in which
two kind of nodes are present:

1. Sensing nodes, which are small and with low power, and perform data acqui-
sition from the environment;

2. Communication nodes, which are more powerful and with a high power com-
munication system, that can communicate at a larger distance providing a
bridge-like service between sub-areas of the network.

In this way, the sensing nodes can chose two ways to communicate: if they want
to communicate with close peers, they use the usual multi-hop communication but
if they need to communicate with nodes that are far away, they can use the commu-
nication nodes as communication highways. To have a perfect collaboration, that is
a situation in which the two kinds of nodes works together to perform a monitoring
task, we require a load balancing between the sensing and communication nodes
because in this case all communication nodes need to manage the same number of
sensing nodes.

One example of functional non-uniformity is provided by networks using three
layers of nodes: the sensing nodes, the sink nodes and the proxy nodes (Desnoyers
et al., 2005). in this kind of networks, the proxy nodes collect data from the sensors,
do some computation on these data and finally send data to sink nodes.

Another example is provided by Mules (Shah et al., 2003). The mules are moving
proxies that go around the network collecting data from sensors and bring data to
one or more sink nodes.

2.3. RELATED WORK 49

2.2.4 Movement non-uniformity

The last non-uniformity model that we want to present is the movement non-
uniformity. This non-uniformity model can be due to two different factors. In the
first one, the sensors are free to move in an autonomous and predictable way, for in-
stance, the sensors that are piggybacked on moving objects such as industrial robots
that the sensors are intended to monitor and control. In the second one, the sensors
are supposed to be stable and/or the movement is not predictable, for instance, the
sensors are dropped in the water to track the flows or sensors that are attached to
animals and are used to monitor the wildlife.

The sensors distributions that describe movement non-uniformity are functions
of both time and space. Moreover, we can have situations in which the sensors can
converge to a single point and create a unbalanced network for a short period of
time, or the sensors can move randomly changing network topology continuously.

In literature we find few studies aimed to find out the characteristic distributions
for movement uniformity. One of these, few, works is (Bettstetter, 2001). In the
paper, we can find a relevant study of this phenomenon limited to nodes that move
accordingly to the random waypoint strategy (Johnson and Maltz, 1996). These
sensors tend to create a node distribution (in function of the time) similar to a
Gaussian distribution. In random waypoint strategy, at the beginning each node
is stationary in a random location, then it randomizes a point in the plane and
moves there, waits a random time and than moves again. This movement creates a
concentration of nodes in the middle of the area, because the nodes, to go from one
point to another, cross the center of the area or pass nearby the center of the area.

2.3 Related work

Due do its nature of dogma, the uniformity assumption prevails in almost all the
research work on WSNs. As a consequence of this, the study of non-uniformity in
WSNs is an emerging topic. By now, only a few papers approach different problems
in WSNs taking into account networks deployed in a non-uniform way (Bettstetter,
2004b), (Orecchia et al., 2004a), (Tilak et al., 2003), (Zhou et al., 2005) and (Bash
et al., 2004). Between them, we can find non-uniformity depicted in two ways.

The first way addresses WSNs that are deployed in non-uniform fashion. In this
area, we can find two main contributions. The first one is (Bettstetter, 2004b), in
which the author studies the connectivity properties of sensor networks with uni-
form and Gaussian distributions. For Gaussian distributions, given the transmitting
range of sensors and the shape of the distribution function, the author finds out
the radius around the maximum of the function in which all sensors are connected.
A second result is (Orecchia et al., 2004a), in which the authors study the prob-
lem of broadcast in sensor networks distributed with both uniform distribution and
“Hill” distribution, which is a quite simple but reasonable distribution that we will

50 CHAPTER 2. NON-UNIFORMITY

study and use in the rest of the thesis. Finally, in (Zhou et al., 2005), the authors
propose a construction scheme of small worlds for the physical topology of Multiple-
Input Multiple-Output (MIMO) wireless networks. In this work, the authors take
into account various topologies (uniform, Gaussian, skewed and grid) to study the
possibility to create short cut channels to optimize the network communications.

The second way does not use non-uniformity in terms of deployment. In (Tilak
et al., 2003) the non-uniformity is related to the concept of non-uniform information
granularity. The non-uniform information granularity is related to the concept of
accuracy of information. The paper states that the required accuracy, or precision, of
information is proportional to the distance between the producer and the consumer
of the information. Another result is (Bash et al., 2004), in which the non-uniformity
is related to information sampling from the network itself. The authors provide a
method to perform data sampling from a sensor network with approximately uniform
methods. Even when a network is non-uniformly distributed (they study the case
in which the nodes are hand distributed into a building to monitor it), the authors
pick data form the network uniformly. This is possible because the sensors space
is normalized to an uniform space using Voronoi regions computed in a distributed
fashion.

2.4 Summary

In this section, we introduced non-uniformity and we present some keys to motivate
our work.

At the beginning, we presented the need for non-uniformity in current WSNs
research and we pointed out how the uniformity dogma is widely used in research
while the world itself, that we are going to explore with our research, is, by its own
nature, non-uniform.

Then, we moved to the classification of various models of non-uniformity. The
model that we propose out are general and each of them covers a large part of
possible problems and networks. Our taxonomy of the models of non-uniformity
is, intentionally, coarse gained. We preferred to give an intuitive division of the
possible sources of non-uniformity without being too formal. We know well that our
taxonomy can be rewritten in a finer, or simply different, way but we think that a
finer grain in the taxonomy does not help the comprehension of the problem itself
and it risks to be a pure formalization and style exercise.

Our classification presents four possible sources of non-uniformity. The deployment
non-uniformity is related to the way in which the sensors are deployed in the interest
area by the user. The geographical non-uniformity is based on the idea that the
environment that the sensors are intended to monitor influences the way in which
the sensors can communicate. The functional non-uniformity catch the different
behaviors of the sensors. Finally, the movement non-uniformity is related to the
idea of movement of the sensors themselves.

2.4. SUMMARY 51

In the related work section, we presented the few papers that walked inside the
non-uniformity world and we realized that with the help of these few papers alone,
we are not able to comprehend non-uniformity. Moreover, with the only help of these
papers, we are not able to provide new solutions and, from our point of view more
important, a new way of thinking solutions that are able to deal with non-uniformity.

52 CHAPTER 2. NON-UNIFORMITY

Chapter 3

Data Management

“Data! Data! Data!” he cried impatiently. “I can’t make bricks without clay.”
- found in “The Adventures of Sherlock Holmes”

Abstract

All the possible uses of WSNs deal with the idea of data acquisition and data

retrieval. These two concepts are strictly related because data retrieval is the
response to a user query. The user should be able to actively program the
network, via control programs, to retrieve data that is considered useful. In
traditional WSN systems, these tasks consist in transmitting sensed data to a
powerful node (the sink) which performs data analysis and storage. However,
these models resulted unsuitable to keep the pace with technological advances
which granted to WSNs significant (although still limited) processing and stor-
age capabilities. For this reason, more recent paradigms for WSN introduced
data base approaches to define the tasks of data sampling and processing, and
the concept of data-centric storage for efficient data access. In this chapter,
we revise the main research contributions in the data management field.

All the possible uses of wireless sensor networks deal with the idea of data acquisition
(by the sensors) and data retrieval (by the user). These two concepts are strictly
related because data retrieval is the response to a user query. The user should be
able to actively program the network, via control programs, to retrieve data that is
considered useful. This can be achieved in many ways, following various paradigms.

WSNs applications can be classified in two different families.

The first family is the one in which sensors continuously check the environment for
some particular data pattern (as in an intrusion detection system). In these applica-
tions, the cooperation of nodes is be essential in providing extra information to the
end user. Nodes that are aware of their own position can communicate to produce a

54 CHAPTER 3. DATA MANAGEMENT

localization of the event using triangulation or other systems (Bejar et al., 2001,Kr-
ishnamachari et al., 2002). This collaboration is essential to provide meaningful data
to the end user.

The second family is the one in which sensors are employed to monitor some
physical characteristic of the environment. For instance, sensors can provide the
sensed temperature to the user. This use of the network produces data streams
from a single sensor to the sink. In this case, the real challenge in network data
management is to find an optimal strategy to delivery this (maybe) large amount of
data to the user, in the most efficient way. The simplest approach to this problem
is data aggregation. In data aggregation, the nodes used to perform routing (also
called relay nodes) take packets that are sent to the sink and combine the different
pieces of information in a single packet to reduce the total amount of transmissions.
Data aggregation still works with small amount of data because the maximum size
of packets is fixed and cannot be exceeded.

Modern approaches move the computation of data in the network itself (Madden
et al., 2002b, Madden et al., 2002a). Sensed data are not directly sent to the sink
and the computation is not done off-line: sensors that acquire data also process
them to extract information. The nodes can actively cooperate to produce highly
meaningful correlated data (such as the average, the variance and other statistical
measures or spacial and temporal associations of data). Moreover, these modern
approaches place the storage itself inside the network. In cases in which the sink
can be unavailable for long periods of time (or in cases in which the sink is not
present inside the network and the user has to enter the network to query it) these
approaches are able to distribute data inside the network in such a way that the
storage is fault tolerant and load balanced. Some of these systems provide to the
user a high level distributed query language and engine (a là SQL) to query the
network.

Chapter organization. This chapter is organized as follows. Section 3.1 provides
a brief introduction to the data management issues and models. Section 3.2 points
out which services have to be provided by a data management system in WSNs and
their underlying needs (e.g. routing). Section 3.3 describes the state of the art of the
database implementation inside WSNs. Section 3.4 gives a wide range introduction
to the data centric storage (DCS) model, that will be the central topic of the research
work that we present in Chapter 4. Finally, section 3.5 summarizes and draws some
conclusions regarding the research work described in this chapter.

3.1 Data management in wireless sensor networks

In current WSNs, data management tasks are performed accordingly to different
network storage models. A network storage model defines how to manage data inside
a WSN, starting from data acquisition up to data retrieval by the user. For this

3.1. DATA MANAGEMENT IN WIRELESS SENSOR NETWORKS 55

reason, each network storage model needs to define how to implement, even partially,
the basic services necessary to the good work of a data management system: (i)
network programming, in which the sensors are programmed to replay to queries (set
up of routes, data aggregation strategies etc.). (ii) data acquisition and in-network
aggregation, in which the data is physically acquired by transceivers and refined to
produce more useful streams. (iii) data retrieval, that provides the collection of data
by an external entity.

In the literature, we can identify four main models to data management: namely
external storage, directed diffusion, data centric storage, and database model. Each
one of these models implements a part or all the above services. The services provided
by these models are summarized in Table 3.1.

External
Storage

Directed
Diffusion

Data
Centric
Storage

Database
Model

Network programming no yes no yes
Data acquisition and
in-network processing

partially partially yes yes

Data retrieval yes yes yes no

Table 3.1: Correspondence between models and services.

External storage is the simplest storage model and provides node cooperation only
by data aggregation and data forwarding. Directed diffusion is able to program the
network to optimize the data flow from the sensors to the sink, providing a better
usage of the resources with respect to external storage. Data centric storage is able
to use the network to easily store and retrieve a datum using its meta-datum (an
unique name for the datum) as a key. Data centric storage does not need, or provide,
network programming facilities for the data management. Such facility can be added
on an upper layer laying on this one. Finally, the database model is able to abstract
the network as a relational database to perform complex queries that are executed
by the sensors themselves.

In the rest of this section, we give more details on these four models. We will focus
more on directed diffusion and external storage because the data centric storage and
the database model will be the focus of the rest of this Chapter.

External storage model. In the External Storage (ES) model, the nodes send the
sensed data, in both raw or more refined forms, to one or more sinks which perform
the actual aggregation, processing and storage. In this model, the sensor nodes
perform only data acquisition and send sensed data to the sink. To this purpose,
they also have some routing capability. Each sink node collects data from the sensors
and implements an interface for the user. For instance, a sink might be a PC acting
as router between the sensor network and other networks.

56 CHAPTER 3. DATA MANAGEMENT

The main advantage of this model is that it is simple to implement. Moreover, if
the network produces few data it can be energy efficient.

The drawbacks of ES are represented by the poor usage of the network’s computa-
tional resources because the sensors, that can be capable of more complex operation
could refine data. Moreover, data correlation is due to the sink and off line pro-
cessing can require multiple sink-to-sensors communications while in an in-network
computation the sensors can efficiently self organize to provide correlated data. For
instance, a user who wants to correlate various temperature sampling from a region
(far from the sink) needs to query all the nodes of that region while an in-network
processing strategy is able to program the sensors of the same region to communicate
and provide only the correlated data.

Diffusion model. Directed Diffusion (DD) is one of the first approaches proposed
for data management in sensor networks (Intanagonwiwat et al., 2000). The user
requests some specific data with a query including a tuple 〈key, value〉 and a data
rate, which specifies the amount of data that must flow in the unit of time.

(a) interest dissemination (b) gradients (c) delivery of a datum

Figure 3.1: Directed Diffusion: (a) the interest dissemination from the sink node (in
gray) to the sensor nodes (in white), (b) the gradients that are built in response to
the interest dissemination and (c) the delivery of data from a sensor node to the
sink following one gradient.

The first step in data retrieval is represented by the interest dissemination phase
in which the sink broadcasts the query in the network (as depicted in Figure 3.1.a).
The broadcast used to disseminate the query sets up a directed acyclic graph (DAG)
in the network which is rooted at the sink (as depicted in Figure 3.1.b). A node x is
connected to a set of upstream nodes (the gradients) which are its relay nodes when
x sends packets to the sink. Each node receives the query, records the query data rate
and sets up the corresponding gradient toward the sink. The nodes that receive or
sense some data that match one or more interests forward them up the route created
by the gradients according to the data rate (as depicted in Figure 3.1.c). The sink,
at the reception of messages with the queried data, can exploit reinforcement of the
paths that bring data with higher data rates sending a packet down to the data
stream. Reinforced paths may augment their data rate, while paths that are not
reinforced expire after a given amount of time.

3.1. DATA MANAGEMENT IN WIRELESS SENSOR NETWORKS 57

The main advantage of the DD model is that the interest propagation happens
hop by hop and the network does not need to use long communications to set up or
modify paths’ characteristics. DD is able to provide multi-path routing and delivery
using the reinforcement of multiple paths. The nodes are capable to repair or tune
the paths in a local way sending local reinforcement messages.

DD presents also two main drawbacks. The first one is related to the poor load
distribution of the protocol: the nodes that are closer to the sink are burdened
with data and control packets. The second drawback is the limited opportunity
for in-network data processing because data may pass through different paths and
aggregation and processing often happens only at the sink or at its neighbors.

Some recent improvements on DD have been proposed in (Marcucci et al., 2005)
and (Liu et al., 2003,Liu et al., 2005).

In (Marcucci et al., 2005), the authors present Directed Diffusion Light (DDL).
The improvement of DDL acts on interest propagation: each node can have only a
limited set of gradients (while in DD the size of this set was not limited). In this
way, the DAG is sparser and it is not formed by all the nodes in the network. When
reinforcement is performed the DAG may change to include previously discarded
nodes. This offers the opportunity of replacing depleted nodes with fresh spares and
thus extends the network lifetime.

Figure 3.2: Information Directed Routing: a message from the query proxy node to
the exit node, does not follow the shortest path (the dashed line), but follows a longer
path (solid line) to get data from the nodes inside the dark gray area.

In (Liu et al., 2003,Liu et al., 2005), the authors present the Information Directed
Routing (IDR). IDR can operate in two ways. In the first way, a source node injects
a query with a particular interest and such query is routed throughout a path build
upon interest gradients spread by the possible query receivers. In the second way,
depicted in Figure 3.2, it is able to find paths between a source node and a destination
node (called respectively the query proxy node and the exit node in the paper)
with maximum information gain. When the source node injects the query into the
system, it is routed as close as possible to the areas that have a high probability to
be information rich (the nodes inside the dark gray area in Figure 3.2) to collect as
much data as possible.

58 CHAPTER 3. DATA MANAGEMENT

Data centric storage. In the Data Centric Storage (DCS) model, the sensors net-
work itself provides support to data storage (Ratnasamy et al., 2003). Data is stored
in the network according to keys (meta-data) which are also used for data retrieval.
Given a data and its key, DCS stores the data in a subset of sensors which is uniquely
determined by the key.

Database model. The Database model (Madden et al., 2002b, Madden et al.,
2002a,Yao and Gehrke, 2002,Amato et al., 2005a,Amato et al., 2006a,Amato et al.,
2006b) is a more recent model that offers a high abstraction. In this model the user
can issue SQL-like queries on the network. The WSN is abstracted as a distributed
database and the user can specify both queries and their duration (to provide tem-
poral aggregation). In these systems, the queries are translated in data acquisition,
data processing and data transfer operations that are performed in a distributed
way by the nodes of the network.

3.2 Data centric storage and database support

systems

Both the data centric storage and the database models need some basic systems to
operate in a correct and efficient way. These support systems can be grouped into
three main areas: the localization to be able to associate a position in space to data
or to nodes, the routing to find paths to move data from one node to another and
finally redundancy to achieve fault tolerance.

Localization is necessary to relate data with the physical location where they have
been collected, but it can also provide support to geographic routing (which uses
geographical position of the nodes to perform routing). Routing is essential because
sensor networks are generally multi-hop, hence data must be routed through multi-
hop paths to reach the sink or a storage point. Redundancy enables a more reliable
data storage because each datum is stored in multiple copies inside the network. In
this way, an unique node does not represent a single point of failure.

We address localization in Section 3.2.1, routing in Section 3.2.2 respectively and
redundancy in Section 3.2.3.

3.2.1 Localization systems

Localization systems are used to find the position of a sensor. The position of a
sensor can be useful for two different reasons:

1. Queries request data from specific locations.

2. A datum must be stored in a specific location for later retrieval.

The localization systems are grouped into three main categories: GPS-based, ap-
proximate, and virtual.

3.2. DATA CENTRIC STORAGE AND DATABASE SUPPORT SYSTEMS 59

GPS-based systems. GPS-based systems assign real geographical coordinates to
sensors. In this model, each sensor is equipped with a GPS antenna and it is able
to receive the GPS signal and to locate itself.

This solution is not always applicable in current WSNs because GPS receivers are
expensive both in terms of money and energy and they may fail if the nodes are
located inside buildings or in areas in which obstacles prevent the GPS signal to
arrive (Kaplan, 1996).

The growing capabilities in hardware could provide, in a near future, cost effective
and energy inexpensive GPS receivers. If this happens, solutions that now seem
poorly applicable could become future standards.

Approximate coordinate systems. The physical coordinates of a sensor can be
approximated using special hardware and/or network topology. In these systems, the
geographical coordinates of some of the nodes must be known (for instance using
GPS), and a distributed algorithm exploits this information to infer the approxi-
mate position of other nodes. To this purpose the algorithm exploits information
about relative distances or angles between nodes which can be obtained equipping
the sensors with specialized hardware. More specifically, as in (Savvides et al., 2001),
(Nasipuri and Li, 2002), (Niculescu and Nath, 2003b), (Niculescu and Nath, 2003a),
(Bulusu et al., 2000), (Nagpal et al., 2003) and (Niculescu and Nath, 2003b), the
nodes can estimate the relative distances between themselves using different tech-
niques: signal power, which estimates the distance based on the power of the received
signal, and difference in arrival time which exploits messages sent on different com-
munication medium (e.g. radio and acoustic) that have different propagation times,
and estimates the distances based on their inter-arrival time. A different approach
exploits the angle of arrival of the messages to estimate the relative position of a
sender. This approach however must be supported by directional antennas.

A general classification of approximate coordinate systems divides them in range
based and range free.

In range-based systems some nodes (called anchors) know their physical position.
Non-anchor nodes compute their position using multilateration techniques which
minimize the square of the distance between them and the anchors. This computa-
tion returns the position of the nodes.

In (Savvides et al., 2001) a node can use multilateration techniques using both an-
chors and nodes that used anchors previously to estimate their position. In (Nasipuri
and Li, 2002) the anchors are special nodes equipped with powerful radios with nar-
row and rotating beams. The non-anchor nodes use both the signal strength and
the angle of messages sent by the anchors to locate themselves. In (Niculescu and
Nath, 2003b) and (Niculescu and Nath, 2003a) less accurate systems are provided:
they use an approximate strategy in which only a fraction of the nodes has a GPS
and such nodes are used as landmarks for the other nodes to find out their position.

60 CHAPTER 3. DATA MANAGEMENT

Range free systems can be used by nodes equipped with cheaper radios that are
not able to compute the distance of the received signals. In (Bulusu et al., 2000)
the nodes compute their position as the centroid of the positions of the anchors
that they can receive. This approach requires a high number of anchors. In (Nagpal
et al., 2003) and (Niculescu and Nath, 2003b) the anchors flood their position in the
network. The number of hops (that is related to communication range) is used to
find a node’s position.

Virtual coordinate systems. Virtual coordinate systems define a coordinate space
that is unrelated to the physical position of the nodes but it is related to other
concepts as neighborhoods. In such systems the focus is in providing an efficient
support for routing systems and for geographic routing too, with the only difference
that the coordinates used in routing are virtual and not real ones.

Multidimensional scaling (MDS) (Shang and Ruml, 2004, Ji and Zha, 2004) is a
technique that maps proximity information of the nodes to the element of a matrix:
devices have connectivity information (whether or not two devices are in range).
The distance between two connected nodes is defined to be 1, while the distance
between two nodes not in range is set to the number of hops in the shortest path
between them. In this new space the Euclidean distance between nodes is related
to the original proximity information. Each node has knowledge of its neighbors at
various hops of distance (for energy saving reasons, typically this distance is no more
than 2 hops), and it creates a matrix containing the shortest paths between itself
and its neighbors. These local matrixes are then merged to produce a global map.
The global map can be then used by anchor nodes (which know their position) to
give to all the nodes a physical position.

In (Rao et al., 2003), the authors introduce a family of coordinate assignment
protocols with increasing complexity suitable for different scenarios. In the first
scenario, the coordinate of the nodes in the network are computed, in an iterative
fashion, as the averages of the coordinates of the nodes on the external perimeter
of the network because these last nodes are the only ones that know their own
position. In the second scenario, the nodes on the border do not know their own
position and the first step of the algorithm consists in the construction of a perimeter
vector with the distance from each node of the network with all the nodes on the
borders. In the third scenario, the sensors are not aware to be on the border or in
the central part of the network, thus two nodes start a bootstrap phase in which the
nodes on the border are identified because they are the most distant from the two
bootstrapping nodes. All the three systems in (Rao et al., 2003), use a large amount
of energy and memory to compute the coordinates of the nodes. Energy is used by
the iterative systems that are used to compute the average of the coordinates of the
nodes. Memory is used to maintain the perimeter vectors used in such computation.

It is possible to provide less expensive solutions that use only the distance in hops
from some of the nodes on the border. In (Cao and Abdelzaher, 2004), a recon-
figurable number of nodes are used as anchors. The anchors are chosen randomly,

3.2. DATA CENTRIC STORAGE AND DATABASE SUPPORT SYSTEMS 61

and the coordinates of each node are the hop distances between the node and the
anchors. However, since anchors are selected randomly, some of them might be close
to each other, and this may result in an unbalanced coordinate system in which too
many nodes share the same coordinates. To overcome this problem, (Caruso et al.,
2005) presents a result for uniformly deployed networks. In this solution the size
of the areas of nodes sharing the same virtual coordinate is minimized because the
anchors are selected as far as possible from each other. To select distant anchors,
the authors propose a distributed algorithm that elect three nodes on the border of
the network in such a way that their position approximates the tips of a equilateral
triangle and then, they compute the virtual coordinates of all the nodes in a dis-
tributed fashion. The authors also show that proactive routing protocols, perform
similarly with virtual and physical coordinates.

[0,180)

[0,75)

[0,19) [19,75)

[19,47) [47,75)

[75,98) [98,120)

[75,120) [120,180)

[120,140) [140,180)

[140,180)

Figure 3.3: A VPCS angle range assignment (Newsome and Song, 2003). The root
has range [0, 180). Each first level neighbor has an assigned range proportional to
the number of nodes in its sub tree.

Virtual Polar Coordinate Space (VPCS) is the virtual coordinate system used
by the GEM storage system (Newsome and Song, 2003). In VPCS a ringed tree
graph is embedded in the network topology. Each node of the tree has an identifier
that is formed by two values: the first one is the level in the tree and the second
one is a virtual angle that identifies the node in the level. The virtual angle is
assigned in such a way that it is consistent with the network topology. In this way,
the coordinates represent a polar system whose origin is a single node (usually the
sink). The VPCS algorithm uses several steps to build the polar coordinates. The
first step builds the ringed tree (as the one depicted in figure 3.3). To build the tree,
the root node assigns to itself the level 0 of the tree. All the nodes that are at one
hop distance from the root have level 1. At this point, the nodes at level 1 broadcast
the information to all their neighbors. The procedure continues until all the nodes
are assigned with a level. After the tree is built, the size of each sub-tree is sent back
to the root of the tree in a recursive way starting from the leaves. The nodes at level
i collect the information about the size of the sub-trees formed by the nodes of level
i + 1 or greater. When the root has collected all the sub-tree sizes for each node of
level 1 it begins to assign the virtual angles. The root uses for itself the whole angle
range, let us say the range [0, 180). Then it assigns to each one of its neighbors a

62 CHAPTER 3. DATA MANAGEMENT

sub-range of its angle. The size of the sub-range is proportional to the size of the sub
tree. This system gives to larger sub-trees a wider angle, balancing the coordinate
system. Each level 1 node assigns to its neighbors of level 2 a sub range of its range
proportional to the size of the sub-trees. This procedure is repeated until the leaves
are reached as presented in Figure 3.3, where the root of the tree has the whole
virtual range [0, 180) and the three first level neighbors the virtual ranges [0, 75),
[75, 120) and [120, 180). This ranges assignment reflects the sizes of the sub-trees
rooted into the first level neighbors.

At this point, VPCS aligns the computed topology with the geographical infor-
mation of the network to provide a more efficient structure. The alignment provides
the routing system to jump from one branch of the tree to another using cross-
links in the embedded tree structure (which are represented by the dotted lines in
Figure 3.3).

To perform the alignment in a distributed fashion, each node must find the order
of its children. The order is given by the way in which the nodes are mapped on
the tree structure, and then, we must be able to identify, on the tree, the nodes
on the left and the nodes on the right of one node. The order is found out using
the relative distance between the nodes at a particular level of one sub-tree. To
compute such distance the authors first propose to use the signal attenuation of
the transmission. However, this system can introduce errors, and for this reason
the authors themselves propose an alternative method based on triangulation. The
coordinate system based on the triangulation is computed starting from the root
node. The root node selects two other nodes in such a way that the three nodes
are not collinear and then, using spanning trees from the root and these other two
nodes identify the relative position of the other nodes.

3.2.2 Routing systems

Traditional reactive approaches (Johnson et al., 2001,Perkins and Royer, 1999) to
routing in ad hoc networks appear unsuitable to wireless sensor networks due to the
limitations of the sensors in terms of energy, memory and processing capabilities.
For this reason, recent approaches in WSN focus on geographic, stateless routing
which does not burden the sensors with routing tables and caches. Among these
protocols, we mention GPSR and VPCR, which are the most widely used in WSNs.

Greedy Perimeter Stateless Routing. The Greedy Perimeter Stateless Routing
(GPSR) (Karp and Kung, 2000) is the routing protocol used by GHT (Ratnasamy
et al., 2003) system to route and store messages in the network. The GPSR protocol
uses nodes coordinates to route packets in the network. The key idea in GPSR is
that the packet is routed in a greedy way, reducing the distance to the receiver at
each hop, when possible. When no improvement is possible, the protocol switches
to perimeter mode that grant to find a closer hop.

3.2. DATA CENTRIC STORAGE AND DATABASE SUPPORT SYSTEMS 63

(a) GG

(b) RNG

Figure 3.4: Areas used to choose to insert or not an edge inside the planarized graph.
(a) depicts the area used by the Gabriel Graph planarization. It is a disk of diameter
equal to the distance between A and B and centerd in the middle point with reapect to
A and B. (b) depicts the area used by the Relative Neighborhood Graph planarization.
It is a lens-shaped area given by the intersection of two disks of radius equal to the
distance between A and B and each one of them is centered in A and B

In in perimeter mode the protocol uses the graph planarization of the graph to
prevent loops. The graph planarization (Jaromczyk and Toussaint, 1992) is imple-
mented with a distributed algorithm and creates a graph in which there are no
crossed edge between the nodes. The planarization used by GPSR is the Gabriel
Graph (GG) planarization, but Relative Neighborhood Graph (RNG) planarization
can be used too.

In the planarization of a graph an edge is inserted between two nodes, say A and
B, if and only if we cannot find a third node C that can connect A and B. The
difference between GG and RNG is the size and the definition of the area in which
we must look for node C.

As depicted in Figure 3.4.a, to compute the GG of a graph the edge (A,B) is
included into the planar graph if and only if the disk with diameter (A,B) does not
contain any other nodes of G.

On the other hand, as depicted in Figure 3.4.b, to compute the RNG of a graph
G the edge (A,B) is present if and only if the lens defined by the intersection of
the two disks of radius (A,B) and centered in A and B does not contain any other
nodes of G.

Both the GG and the RNG of a graph G guarantees some property such as
connectivity: a GG (or a RNG) of G is connected if G is connected.

The algorithm to compute the GG is described in the following distributed algo-
rithm (Bose et al., 2001):

64 CHAPTER 3. DATA MANAGEMENT

Algorithm 1 GG(v)

Require: A node v of the graph
Ensure: A GG planarization of v’s neighborhood

for all u ∈ Neighborhood(v) do
if disk(u, v) ∩ (Neighborhood(v) \ {u, v}) 6= ∅ then

delete(u, v)
end if

end for

In the Algorithm 1, each node v looks in its neighborhood N(v) to find the nodes
that are part of the GG: for all the nodes u in its neighborhood it creates the disk of
diameter (u, v) and centers it in the middle between u and v and then verifies that
no other node in the neighborhood of v is inside the disk. The algorithm complexity
is O(d2), where d is the node degree. Using some additional information, as the
Voronoi diagram and Delaunay triangulation (Okabe et al., 1992) the complexity
can be reduced to O(d log d).

Destination

Source

Figure 3.5: Perimeter mode of GPSR protocol. The grey nodes are the ones that
belong to the perimeter built to move the message from the source to the destination.

As said before the routing is performed using two different modes, used in two
different situations.

Greedy routing is used to move quickly the packet from the source to the destina-
tion. The greedy routing works as follows. When a node receives the packet and the
node is not the destination of the packet it must forward it to one of its neighbors.
The node forwards the message to a node which distance from the destination is
less than its own distance and less than the distance of any other node in its neigh-
borhood. If the forwarding node is the closest to the destination between the nodes
of its neighborhood and it is not the destination node the routing mode is switched
to switch perimeter mode (Figure 3.5).

The first step of the perimeter routing consists in the planarization of the graph
around the forwarding node. Once the planarization is computed, the message is
forwarded to the first node of the planarized structure (as depicted in Figure 3.5)

3.2. DATA CENTRIC STORAGE AND DATABASE SUPPORT SYSTEMS 65

in counterclockwise (or clockwise) direction. If also the receiver node is not able to
forward the message in a greedy way, it planarizes its neighborhood and proceeds
in perimeter mode too.

The perimeter routing starting from a node v, to arrive to destination d, continue
to move on the perimeter until the forwarder node finds out a suitable node to
perform greedy routing again. If such node is not found, the packet returns to the
node that begun the perimeter mode triggering some user defined action (as we will
see in Section 3.4.1, GHT uses this event to start the storage of a datum on such
perimeter, or in the case of data retrieval, to signal that the datum is not present
inside the network).

Virtual Polar Coordinate Routing. The GEM (Newsome and Song, 2003) sys-
tem uses the Virtual Polar Coordinate Routing (VPCR) to route messages on its
VPCS located network that uses a virtual coordinate system structured as the tree-
like structure presented in Figure 3.3. VPCR uses three different routing techniques:
the naive-tree routing which does not use cross-links (represented by the dotted
lines in Figure 3.3), the smart-tree routing that introduces optimizations on the
naive routing and the greedy routing which uses greedy forwarding on cross-links.
We describe the three models below.

In the naive-tree routing, as depicted in Figure 3.6.a, a packet is forwarded by a
node upward to its parent in the tree in a recursive way until the packet reaches the
root. However, if along this path the packet reaches an ancestor of the destination
node, then the ancestor forwards the packet downward in the tree, directly to the
destination. During the journey from the ancestor to the destination two factors are
taken in account: the first is that the level must increase at each forwarding and the
other is that each node sends the packet in the sub-tree whose angle range contains
the virtual angle of the receiver.

In the smart-tree routing, as depicted in Figure 3.6.b, each node checks if an an-
cestor of the destination is in its neighborhood. In this case, the packet is forwarded

(a) naive-tree (b) smart-tree (c) greedy

Figure 3.6: VPCR routing techniques: (a) the naive-tree routing that forwards mes-
sages to a common ancestor of both sender and receiver, (b) smart-tree routing that
forwards the messages to an ancestor of the destination as soon as the protocol finds
such ancestor and (c) greedy routing that forwards the message to nodes closer to
the destination without using ancestors.

66 CHAPTER 3. DATA MANAGEMENT

directly to that ancestor. In some cases, this may save the cost of reaching a common
ancestor in the tree. This method can be improved using 2-hop neighborhoods. In
this case, if the ancestor is as far as two hops the packet is directly forwarded to
the ancestor using the connecting neighbor. The method can be generalized using
a proactive area of n-hop neighborhoods. However, as n grows, the cost in terms of
space (required to store the proactive area) and messages (to keep updated this in-
formation) also grows, and this approach results impractical even for limited values
of n. In general, the smart-tree optimization reduces costs if the source and the des-
tination are close to each other, but it does not improve significantly the efficiency
for arbitrary pairs of nodes.

Finally, greedy routing, as depicted in Figure 3.6.c, can be used effectively when the
source and the destination are far away from each other. In the ringed tree’s rings,
the virtual angles are assigned in strictly increasing, or decreasing, order. When the
smart-tree routing is forced to route the message upward in the tree the forwarder
node checks if some of its neighbors’ virtual angle and if one of them is closer to the
destination’s angle range than its own, the node greedily forwards the message to
the neighbor which is closer to the destination. If the message reaches a node that is
no more able do greedily forward the massage , the routing algorithm switches to the
smart-tree routing. If smart-tree routing is also impossible, it switches to naive-tree
routing. However, the routing, when possible, can be switched back to greedy or
smart tree routing. This is the case depicted in Figure 3.6.c, in which the message is
greedily forwarded for the first two steps and then, when greedy routing is no more
possible, it is forwarded upward in the tree using naive-tree routing.

3.2.3 Redundancy systems

Redundancy models are used to assure data availability, i.e. the system ensures
that the stored data are still available despite of sensors faults. The fundamental
redundancy technique used in sensor networks is the pure replication.

Pure replication is the simplest way to achieve data availability. It ensures that a
datum is available until all the sensors storing a copy of that datum fail. In a storage
system, pure replication can be used in an uncontrolled or controlled way.

Uncontrolled replication. In uncontrolled replication, the number of replicas of
a datum is not known a priori. This system is widely used in data centric storage
systems such as GHT (Ratnasamy et al., 2003), that we detail in Section 3.4. The
general idea behind uncontrolled replication is the following. Once a location, or a
node, is found to store the datum this last one is stored in the neighborhood of such
location, or node. Since this neighborhood can be arbitrary large, it is not possible
to determine the number of replicas which will be stored in. In some cases, this leads
to excessive replication while in other cases it results in a very poor replication of a
datum. Moreover, the nodes in which each datum is replicated can be far from the

3.3. DATABASE MODEL 67

intended location for the datum and after some faults the datum is unreachable, also
if it is still present inside the network. This high variability, for both the number
of replicas and their distance from the intended datum location, cannot guarantee
that the datum will be available for a long time, or for an expected time. This can
also produce bring to states of unfair load distribution in the network.

Controlled replication. On the other hand, controlled replication systems (Albano
et al., 2007) are based on the concept of Quality of Service (QoS). Each datum has
an associated QoS value. This value can also be the same for all the nodes. The
number of copies of each datum is a function of its QoS level. Let us suppose a
datum d needs n = QoS(d) copies. A system using controlled replication will find n
nodes according to some data distribution rules that will store a copy of the datum.
In this way, each datum can be stored in a predictable number of nodes and both
the reliability and load distribution are acquired.

3.3 Database model

The database model enables the user of the network to abstract a WSN as a
database. Using this abstraction, the user can perform queries that program the
sensors to retrieve and refine data.

This approach provides a network abstraction which is completely independent of
the network details, the sensors do not need to be preprogrammed for specific tasks
and the user can easily change the behavior of the network by injecting new queries.

Specifically programmed applications can be more efficient, but they are very
specialized and they are tuned only for a given task. These applications must be
programmed from scratch each time a new query is needed. In particular when the
query changes, the design, coding and debugging steps must be performed again.
On the other hand, in a database abstraction the system is always the same and
only the queries change to perform different tasks with only little design, code and
debug efforts.

3.3.1 TinyDB

TinyDB (Madden et al., 2003,Madden et al., 2002a) is a WSN database implemen-
tation developed at UC Berkeley. TinyDB provides a SQL-like language extended
to use both duration and sample ratings, to provide averages on time spans. The
database is able to run queries over a single table that contains all the data collected
by the network. Each sensor is represented by a row of the table and continuously up-
dates its own data. TinyDB supports a large set of operators (Madden et al., 2002a):
spatial aggregation, filtering based on patterns and union between row sub-sets. An
example of TinyDB query is the following one (Madden et al., 2003):

68 CHAPTER 3. DATA MANAGEMENT

Example 1 Query example in TinyDB.

SELECT nodeid, light, temp

FROM sensors

SAMPLE INTERVAL 1s FOR 10s

This query specifies that each sensor of the WSN, that is abstracted as the virtual
table sensors, must report its id, light and temperature readings (nodeid, light and
temp) once per second for 10 seconds. The results of the query are sent to the
requester as a stream of records.

TinyDB provides power aware optimizations of the queries and the execution plan
of the query is performed on the basis of the type of datum (its meta-data) and of the
parameters needed by the operators. Then, the operators are scheduled to provide
a suitable environmental sampling to get all the data needed to compute the query.
The query is distributed using Semantic Routing Trees (SRTs). SRTs are routing
trees rooted at the sink. A SRT reaches all nodes needed to cover the attributes of
interests for a given query. In general, it may cover the entire network.

Figure 3.7: SRT collecting data from the whole network.

The SRT depicted in Figure 3.7 is a possible instance of SRT for the query pre-
sented in Example 1. The SRT spans the whole network and the data, composed by
the tuples 〈nodeid, light, temp〉, flow to the sink (the gray node) from each sensor
(the white nodes), each second for 10 seconds.

Although SRTs provide very efficient routing, their use forces a limitation of
TinyDB because the queries can only go from the sink to the leaves. This is an
obstacle to more complex queries that involve more complex communication pat-
terns. For instance, this prevents comparison of data produced in different subtrees
of the SRT. Also, for this reason, TinyDB is a parallel (but not distributed) query
processor that does not perform in-network joins. All the information flow to the
sink and the main operators that are supported by the in-network query processor
are selection and the union of the streams. However, joins can be performed only at
the sink.

3.3. DATABASE MODEL 69

3.3.2 Cougar

Cougar (Bonnet et al., 2000,Bonnet et al., 2001,Yao and Gehrke, 2002) is a WSN
database system developed at Cornell University and exhibits many similarities with
TinyDB. The query language is a SQL dialect in which the nodes of the network are
represented by Abstract Data Types (ADTs) with interface methods (as in object
oriented programming) to retrieve data stored in sensors.

An example of Cougar query is the following one (with similar semantics of the
one presented for TinyDB):

Example 2 Query example in Cougar.

SELECT R.s.getNodeID(), R.s.getLight(), R.s.getTemp()

FROM R

WHERE $every(1);

This query specifies that each sensor of the WSN must report its id, light and
temperature readings (in ADT notation) once per second ($every(1)).

In Cougar’s queries the FROM clause can refer to a WSN’s relation. The relation
includes nodes attributes and nodes ADTs. In Example 2, the FROM clause refers
to all the nodes that are collected in a set of nodes called R.

The SELECT and WHERE clauses can refer to specific node’s data and can use
methods defined in the node’s ADT. For instance, in Example 2, the temperature
of a sensor s in the relation R is denoted by the method invocation R.s.getTemp().

The query optimizer is run on a workstation and generates the query execution
plan that specifies communication patterns, computational activities and tree oper-
ations as joins. For each method invoked on ADTs in the query, a virtual relation is
created. A virtual relation is a tabular representation of a method that contains the
input values and the output argument of the method it is associated with. Following
Example 2, the method getTemp is associated with all the sensors s in the set of
sensors R, it has no input and returns a value of some suitable type, for instance a
float value to represent the sampled temperature.

3.3.3 MaD-WiSe

MaD-WiSe (Amato et al., 2005a,Amato et al., 2006a) is a recent database model for
WSN. Differently from TinyDB and Cougar, its query processor is fully distributed,
so that any query can be completely processed inside the network. MaD-WiSe defines
an SQL-like query language, a query algebra, and a data model based on streams.

An example of MaD-WiSe query is the following:

70 CHAPTER 3. DATA MANAGEMENT

Example 3 Query example in Mad-WiSe.

SELECT roomB.Temperature

FROM roomA, roomB

WHERE roomA.Temperature > roomB.Temperature and

roomA.Temperature > 50

EVERY 10 seconds

The query specifies that the temperature of the sensors placed in two locations,
called roomA and roomB, must be compared and only when the condition in the
WHERE clause is true, it outputs the Temperature in roomB. The sampling of the
temperatures is performed every 10 seconds.

MaD-WiSe defines heuristics for query optimization which take into account the
transducer sampling costs, predicate selectivity and transmission costs. In the opti-
mized query plan, each sensor involved in the query is assigned with a subset of the
operators. For this reason, the communication pattern between sensors involved in
a query can be arbitrary, and it requires general routing strategies.

The MaD-WiSe architecture comprises a user-side module and a network-side
module. The user-side module implements the query parser, the query optimizer, and
the tools to inject queries and collect results. The network-side module implements
a layered architecture with a network layer, a stream system layer and a query
processor layer.

The network layer implements both connection oriented and connectionless ser-
vices as well as a general point-to-point routing. It also embeds an energy efficiency
module which governs the duty cycle of the sensors.

The stream system layer (Amato et al., 2006b) provides a stream abstraction to the
query processor. The streams abstract the transducers, the remote communications
between nodes and the local data exchange between operators allocated on the
same node, providing a unifying view of all these sources for the underlying query
processor that can use them in the same way.

The query processor layer implements all the operators of the algebra, which
include selections, projections, spatial and temporal aggregates as well as unions
and joins. Note that the ability to perform joins within the network is unique to
MaD-WiSe and allows comparison of data from different source nodes in the network
itself without the need of collecting all the data on the sink before the processing.

3.4 Data Centric Storage model

Storage systems can be used either with simple data acquisition mechanisms, or in
combination with more sophisticate models such as databases. DCSs provide support

3.4. DATA CENTRIC STORAGE MODEL 71

for efficient storage of sensed/processed data and for data retrieval, and they exploit
data redundancy to ensure data reliability.

DCS addresses all the problems concerning the topology changes due to node
failures, energy efficiency and fair load distribution using Geographic Hash Tables
(GHT) (Ratnasamy et al., 2003), which are based on physical coordinates of the
sensors. Other approaches to DCS, such as Graph EMbedding (GEM) (Newsome
and Song, 2003), use virtual coordinates instead of real ones. Cell Hash Routing
(CHR) (Araujo et al., 2005), is another DCS system based on hash tables. CHR
clusters nodes in cells of predefined and globally known shape using a distributed
protocol (e.g. dividing the sensor field in a mesh of squares) and stores each data in
a cell. Moreover, K-D tree based Data-Centric Storage (KDDCS) (Aly et al., 2006)
is an in-network data storage that addresses the problem of load distribution using
a distributed K-D tree (Bentley, 1975).

3.4.1 Geographic Hash Tables

A Geographic Hash Table (GHT) (Ratnasamy et al., 2003) provides a 〈key, value〉
associative memory abstraction of the sensor network. Data are represented by
〈key, value〉 pairs and GHT offers two operations: put and get. put(k,v) stores
the value v according to a geographic position (x, y) that is computed using the key
k. get(k) retrieves the value v that was stored using the the key k looking in the
position (x, y) computed using k.

The central part of GHT is a deterministic and uniform hash function that enables
both put and get to find the same geographical location starting from the same key
k. The hash of the key k (h(k)) is a point (x, y) of the WSN deployment area: a
〈key, value〉 pair is stored on the nodes that are closer to the point (x, y). To this
purpose GHT exploits GPSR (Karp and Kung, 2000) to route a pair 〈key, value〉
towards the point (x, y) = h(key).

Home node

(x,y)

Figure 3.8: The point (x, y) (the star), the home node (the circle in black) and the
home perimeter (the circles in gray).

72 CHAPTER 3. DATA MANAGEMENT

In general, (x, y) is a generic coordinate in the deployment area and, with high
probability, does not match with any real node, as for the case depicted in Fig-
ure 3.8, where the nodes of the network are the circular points and the point (x, y)
is represented by a star. To deal with this problem, GHT uses the concept of home
node. The home node of (x, y) is defined as the node that is closest to the point
(x, y), and it is the rendez-vous point for both put and get operations. In Figure 3.8
the home node is represented by the black colored node, which is the closest one to
the point (x, y).

GHT finds the home node of (x, y) using the perimeter mode of the GPSR pro-
tocol. Once a packet arrives in the proximity of the point (x, y), it is routed around
that point. At the end of the perimeter mode the packet returns at the starting node
of the perimeter mode because there is no other way to reach point (x, y). This event
triggers the home perimeter building procedure that replicates the pair 〈key, value〉
on all the nodes that surround the point (x, y). The sensor that is closest to (x, y)
becomes the home node. In Figure 3.8, the nodes that belong to the perimeter and
that store the datum, as well as the home node, are the gray colored nodes.

GHT provides a DCS system that is scalable and robust because in a WSN, which
nature is unreliable, these two characteristics are fundamental. GHT features data
persistence, data consistency, load distribution, database increase and topological
generality. Data persistence means that a pair 〈key, value〉 that is stored in the
system is available to queries, despite of sensors failures. Data consistency means
that a query for a key k, is correctly routed to a node that hosts the right pair
〈key, value〉. Load distribution means that the pairs 〈key, value〉 are stored in fair
way such that data is not concentrated in any particular node. Database increase
means that when new nodes are added to the system data is spread also on the
new nodes. Topological generality means that the system does not need a particular
topology to work properly.

To the purpose of data persistence and data consistency all the nodes in the home
perimeter store the pair 〈key, value〉. However, when one or more topology changes
of the network occur, a home node can disappear or home perimeters can be broken.
In this case, data consistency can fail because a request for a datum can be taken to
the new closest node to the point (x, y), that is neither the home node nor part of the
home perimeter. For this reason, GHT implements the Perimeter Refresh Protocol
(PRP). PRP periodically generates refresh packets. Each t seconds, the home node
performs a put operation to the (x, y) point. The packet enters in perimeter mode
and refreshes the data on the home perimeter. If the perimeter is broken, due to
some node failure, a new perimeter is built. In the same way, if new nodes are
deployed in the network, the PRP is able to compute a new home node and a new
home perimeter using both the new and the old nodes.

Each time that a node receives a refresh packet it stores the data again and sets
a timer, to be notified after t seconds. This operation is necessary because, if no
refresh messages arrive after t seconds, the node itself starts the refresh procedure.
This ensures that a home node failure is recovered as soon as t seconds expire.

3.4. DATA CENTRIC STORAGE MODEL 73

Figure 3.9: Structured Replication (SR). The black node is the original hashed coor-
dinate, the grey nodes are the level one copies and the white nodes are the level two
copies.

In GHT, if a pair 〈key, value〉 is very popular the nodes that store that value, and
the routes to them are heavily stressed. To resolve this scaling problem, GHT uses
the structured replication (SR) strategy (Figure 3.9). SR uses space decomposition.
The plane is divided into a square grid and groups of contiguous areas are grouped
in larger squares in a hierarchical fashion. The hierarchy is represented as a tree.
The root of this tree is the whole area and the leaves are the smaller squares. For
instance, the hierarchical decomposition depicted in Figure 3.9 shows a sensing area
divided in 16 squares. The squares are aggregated in 4 macro-squares (solid lines).
With SR a pair 〈key, value〉 is still stored only in one position, this position is not
(x, y) = h(key), but can be one of the in the 4d − 1 mirror points of the location
(x, y). The point (x, y) is located in a squared sub-area of the grid and occupies a
relative position in it, let us call it (x′, y′). A mirror point is a point, belonging to a
different sub-area, that has the same relative coordinate (x′, y′) of the point (x, y).
In Figure 3.9 the black node represents the hashed position, the gray nodes are the
mirrors of the second level and the white nodes are the mirrors of the third level. A
node that performs a put operation thus stores the data on a mirror node, and the
mirror, informs all the ancestor mirrors about the actual position of the data. The
get operation starts querying the root mirror, which propagates to its child mirrors
the request, until the request reaches the mirror actually storing the data, that is
than returned to the querying node.

The SR does not replicates the actual datum. SR replicates the pointers to the
actual position of the datum in a hierarchical way.

3.4.2 Cell Hash Routing

The Cell Hash Routing (CHR) (Araujo et al., 2005) is an evolution of GHT. CHR
divides the space in cells of equal size. Cells are squared and divide the space in

74 CHAPTER 3. DATA MANAGEMENT

a grid. Each cell defines a cluster of sensor nodes. The choice of the size of the
cells is based on the communication range of the nodes. Each node in a cell must
be able to receive messages from all the nodes in its cell and from the nodes in all
the adjacent cells. With this restriction CHR guarantees that, if the initial network
was connected, the graph interconnecting the cells is connected too. Let r be the
communication range of a node of the network. To enable the node to communicate
with all the nodes in its cell and with the eight adjacent cells, CHR requires that the
side of a cell is at most r/

√
8. CHR uses cells to solve the problem of node mobility,

that was not addressed by GHT. A cell is considered a super-node that stores some
data. If a node moves into a cell, the other nodes inside the cell replicate the data
in the newcomer’s memory.

(a) Greedy routing on cells (b) Cells home-perimeter

Figure 3.10: CHR cell division of the sensors space. (a) depicts the greedy routing
on the cell structure: the message is forwarded from one cell to another and when it
arrives to the destination cell it is copied on all the nodes belonging to the cluster.
(b) depict the case in which home cell is empty (the dark gray cell) and the data
must be stored on the home perimeter of the home cell (the light gray cells).

CHR uses a modified version of the GPSR routing protocol to route messages
from one node to another. The modified version of GPSR works on cells and not
on single nodes. As depicted in Figure 3.10.a, to route a message from one cell to
another one, the modified GPSR routing protocol forwards the message from one
cell to the following one using a single node per cell and, when the destination cell
receives the message, the receiver node copies the message in all the nodes belonging
to the cell.

The choice of CHR, to use of small cells, guarantees that a node in a cell commu-
nicates with all the nodes inside its cell and in the surrounding cells. The routing
protocol takes advantage of this because (i) the routing protocol is able to know if
the cells around the actual node are empty and if it is no more possible to forward
the message in a wanted direction and (ii) the next node, during routing from a cell
to the following one, is found using a simple randomization scheme between all the
nodes in the next cell.

3.4. DATA CENTRIC STORAGE MODEL 75

The cell structure itself provides two major benefits to geographic routing (in a
more general fashion) because the geographic routing performs better in low density
networks: each hop covers a larger space and the clustered network is a less dense
version of the underlying network because each cell may contain more nodes.

Moreover, geographic routing performs better in networks which have a smaller
number of edges and enables a simpler planarization during perimeter mode. Also
in this case the clustered network is a good choice because each cell is connected
with all the neighbor cells.

CHR manages data storing it in a whole cluster, that is all the nodes belonging
to a cell. To find out the cell that will store a datum (that is called the home cell),
CHR uses a hash function to return the position where the datum must be stored to
(or retrieved from). The hash function used by CHR, differently from the GHT hash
function, does not return a point (x, y) inside the space defined by the network. The
CHR hash function returns a cell index, that refers to one of the cells in which CHR
divided the space.

In the case in which the hashed cell index points to an empty cell, as for the case
depicted in Figure 3.10.b, in which the home cell is the one in darker gray, using the
GPSR perimeter mode, the messages are routed to the home cell. At this point, the
messages are routed around the perimeter of the empty cell and data are stored in all
the cells that belong to the home perimeter (the cells in light gray in Figure 3.10.b).

3.4.3 Graph EMbedding

Graph EMbedding (GEM) (Newsome and Song, 2003) is an infrastructure for data
centric storage that does not need to use of geographical coordinates. GEM is based
on VPCS and the routing protocol used on this coordinate system is the VPCR.

In GEM, all the nodes have a label that enables them (i) to route the messages
from one node the other and (ii) to map data names to the existing labels. The
nodes are labeled using the VPCS algorithm, presented in Section 3.2.2.

In GEM, data centric storage is enabled using a hash function that maps the
pair 〈key, value〉 to the embedded graph’s labels. The system uses a function h(key)
to achieve this result. The function h(key) depends only on the parameter passed
enabling a consistent output for all the possible senders.

The node-to-node communication is enabled using a lookup mechanism based on
data centric storage itself. If a node x wants to communicate with a node y, it
needs to know the label of y. Let us call such label L(y). At network setup, a node y
computes both L(y) and h(y). Then it routes the message 〈y, L(y)〉 to the node with
label h(y). When node x wants to communicate with y it sends a message to the
node h(y) to query the value L(y). After this step the node x can send the message
to y routing it to L(y).

With GEM, the user can easily add new nodes and the network is able to recon-
figure to use the newcomers. When a new node enters in the network, GEM uses

76 CHAPTER 3. DATA MANAGEMENT

VPCS to assign the new node a level and an angle. In particular, a new node selects
a parent node in its neighborhood and the assigned level is the level of the parent
plus one. At this point, the parent removes part of the angle range from one of its
children and assigns it to the new node. This change affects all the child of the node
whose range was decreased to keep the whole tree consistent.

GEM enables the user to add nodes when the network operates. Adding nodes
to the network can be used to substitute broken nodes inside the network. When
a new node is added to the system, the new node chooses a parent from its set
of neighbors. The parent assigns the new node a level (the parent’s level plus one)
and an angle range taken away from one of the children nodes. The new node can
become the new parent of previously disconnected nodes. In this case, the previously
disconnected nodes start again the procedure to acquire a level and an angle from
the new parent.

3.4.4 K-D tree based Data-Centric Storage

The K-D tree based Data-Centric Storage (KDDCS) (Aly et al., 2006) is an in-
network data storage that addresses the problem of load distribution. The authors
claim that non-uniform sensor readings, due to the presence of information hot
spots inside the network (such as nodes more frequently queries than others), can
bring to states of unfair load distribution in both storage and queries execution
features. The general idea of KDDCS is that data are stored using a distributed
K-D tree (Bentley, 1975). A K-D tree is a data structure which allows logarithmic
storage and retrieval of data that are identified by geographical coordinates. The
K-D tree uses the coordinates to build a balanced tree and to guarantee poly-log
access. In KDDCS, the K-D tree is used to provide virtual coordinates to the nodes.
A virtual coordinate is a bit string of the form 11001 in which each one of the bits
represents the branch of the K-D tree in which the nodes is located.

KDDCS builds the K-D tree in a distributed fashion. In particular, it builds the
levels of the tree using partition lines which are constructed by a weighted split me-
dian algorithm. This algorithm divides the area in regions that contain the same
number of sensors. The weighted split median algorithm is built on top of a dis-
tributed Breadth First Search (BFS) algorithm (Cormen et al., 1990). A node is
first elected root of the BFS algorithm in a distributed way.

The election is done independently by each sensor using a probability to be the
root of the BFS. If more than one node becomes a root node, each node starts to
build its own tree. To overcome the problem of having multiple trees, at the end
only the tree built from the root with higher id is kept.

Once the tree is built, the root proceeds in the retrieval of the coordinates of the
nodes in the network, computes the median value, and communicates it to the other
sensors.

3.4. DATA CENTRIC STORAGE MODEL 77

Node 0 (00)

Node 1 (01)

Node 2 (10)

Node 3 (11)

X

Y’

Y"

Figure 3.11: K-D tree built on top of a four nodes network. In the first step, the area
is first divided in two using line X, in the second step each resulting sub-area of the
first division is divided using the lines Y ′ and Y ′′. (The last step is performed in
parallel on each sub-area)

The algorithm partitions recursively the network, dividing the sensor set in two
balanced parts using alternatively the x and the y values. A result of such partition-
ing is depicted in Figure 3.11.

The algorithm starts partitioning the whole area horizontally. Once the median
value is computed and spread on the network, the sensors with y coordinate lesser
than the median value assign to themselves the coordinate 0, and the sensors with
y coordinate larger than the median value assign to themselves the coordinate 1.
At the second step the weighted split median algorithm is applied locally in each
sub-region. The sensors with x coordinate lesser than the median value left-shift to
their coordinate the value 0, the sensors with x coordinate greater than the median
value left-shift to their coordinate the value 1. The algorithm continues to divide,
alternatively on the x and the y values, until each node has an unique id.

The tree that is built using this procedure is balanced because at each step the
sensors set is split in two sub-sets having half of the nodes each.

Following the previous algorithm, Figure 3.11 shows an example of network that
is divided in a K-D tree structure: the first step of the algorithm divides the plane
in two halves following line X, thus both Node 0 and Node 1 have the first bit of
their address set to 0 and both Node 2 and Node 3 have the first bit of their address
set to 1. The second step divides each one of the previous halves in two, following
line Y ′ and Y ′′ respectively. This last step sets the second bit of the address.

The logical coordinates built using the K-D tree are used to balance the load of

78 CHAPTER 3. DATA MANAGEMENT

the network. To provide fair load distribution the system uses a mapping between
the events that must be notified and this coordinate system. The mapping requires
the events’ probability distribution. This distribution is computed during the net-
work lifetime and the tree is adjusted to keep the load balanced and to pace with the
current distribution. At the beginning the network assumes that the events’ gener-
ation probability is uniform. The mapping assigns the coordinates to specific event
ranges. Consider, for instance, a network that must control temperature. KDCCS
initially guesses a possible range of values for the temperature and this range is
mapped on the the virtual coordinates: when the situation evolves, and the actual
range is discovered and the mapping is corrected to balance the load again.

t

s

t’

t"
L

L’

Figure 3.12: LSR routing from node s to node t using points t′ and t′′ belonging to
L and L′ respectively.

KDDCS uses a routing protocol, defined into the paper itself, called Logical State-
less Routing (LSR) to route the messages on the network. LSR uses the tree structure
of the network to perform GPSR routing in multiple rounds. LSR uses log n rounds
to route a message from one sensor to another. A sensor s that wants to send a
message to a node t must identify the least common ancestor (LCA) of both itself
and the receiver. Let R be the region that contains the LCA and let L be the line
that splits R in the two sub-regions containing s and t. s knows the position (only
one component) of the line L because part of its address belong to this line. The
message is routed from s to the point t′ of line L that is perpendicular to that line
using GPSR. Once arrived at the node closer to the point t′, the procedure is re-
peated, and the message is forwarded to a point t′′ belonging to L′ that is the LCA
of t′ and t. Figure 3.12 shows an example of routing performed by LSR. To send a
packet to node t, node s, must follow the tree structure and must use the points t′

and t′′ to route the message. Both t′ and t′′ are points belonging to the division lines

3.5. SUMMARY 79

that where used to divide the network.

3.5 Summary

In this chapter, we have presented a review of the principal topics and results in
data management for WSNs.

Early WSNs were able only to perform data acquisition and to send raw data
streams, without processing, to a special node (the sink) which task was to collect
these streams and provide them to the user. More recent data management strategies
use the network itself to provide data computation. In this way, the user is able
to program the network as a database. The network organizes itself to manage
sensor-to-sensor communications to compute more complex functions and to enable
in-network data storage.

At the beginning of this chapter, we provided a brief introduction to the models
of data management systems in WSNs. We actually identified four models: external
storage, directed diffusion, data centric storage, and database models.

Then, we moved into the description of the building blocks that are essential in
the construction of an effective and efficient data management system. First of all,
we described the localization systems (Savvides et al., 2001,Nasipuri and Li, 2002,
Niculescu and Nath, 2003b,Niculescu and Nath, 2003a,Bulusu et al., 2000,Nagpal
et al., 2003,Niculescu and Nath, 2003b,Shang and Ruml, 2004,Ji and Zha, 2004,Rao
et al., 2003,Caruso et al., 2005,Cao and Abdelzaher, 2004,Newsome and Song, 2003)
that are in use to provide a coordinate system to the whole network and to the
sensed data. Then, we described the routing systems (Karp and Kung, 2000,Bose
et al., 2001,Newsome and Song, 2003) that are essential for the reliable and efficient
transport of messages to both communicate data and to organize the infrastructure
of data management. Finally, we described the redundancy mechanisms (Ratnasamy
et al., 2003,Albano et al., 2007) to guarantee a more reliable storage.

After that, we described the database model (Madden et al., 2003,Madden et al.,
2002a,Bonnet et al., 2000,Bonnet et al., 2001,Yao and Gehrke, 2002,Amato et al.,
2005a,Amato et al., 2006a) for data management into WSNs. The database model
enables the user of the network to abstract a WSN as a database. Using this ab-
straction, the user can perform queries that program the sensors to retrieve and
refine data. Then, we pointed out the two faces of the database model. The first face
shows that the database model is easy to use i.e., the ability to change the network
behavior via queries redefinition without the need of (re)programming the network.
The second face shows the limited efficiency of the system itself i.e., the cost of the
flexibility must be paid in terms of complex operations executed by the network.
Some database systems try to limit the inefficiency (e.g., disabling the in-network
capability to perform join operations in a distributed fashion) at the cost of lowering
of the flexibility of the systems themselves.

80 CHAPTER 3. DATA MANAGEMENT

Finally, at the end of this chapter, we focused on the data centric storage which
enables the network to work as a data storage for the data that are collected by
the sensors. This use of the network is suitable for applications in which the sink
node can be unavailable for long periods of time and between such accesses the
network must store the data in a reliable way. We presented different protocols
that implement such a model, namely Geographic Hash Tables (Ratnasamy et al.,
2003), Cell Hash Routing (Araujo et al., 2005), Graph EMbedding (Newsome and
Song, 2003), and K-D tree based Data-Centric Storage (Aly et al., 2006). All these
systems are based on the capability to associate a datum to a specific location inside
the network. The value used to locate a datum inside the network is given by its
associated meta-datum.

Still focusing on the DCS, all the systems that we have seen until now do not con-
sider the problem of the non-uniformity in WSNs. The only solution that mentions
non-uniformity is KDDCS, in which the non-uniformity is seen as the presence of
hot spots inside the network.

In the next chapter, we will focus on the problem of DCS in non-uniform WSNs.
Our approach to the design of a DCS system that can deal with non-uniformity can
be summarized as follows: we want to provide a system starting from the assumption
that the network is non-uniform. Such system must work also in uniform network,
without any modification and the cost of dealing with non-uniformity must be as
small as possible.

To define our non-uniformity resistant system, we start from GHT (that, as we will
see, is able to work properly only in uniform networks): we analyze GHT finding the
non-uniformity weaknesses and than we rethink it from scratch focusing on dealing
with non-uniformity. This process will bring us to a system (Q-NiGHT) that has
two major features: (i) it is able to deal with non-uniformity and (ii) it is able to
provide a high level of fault-tolerance, using QoS associated to the data.

Apart from providing a non-uniformity proof solution to the DCS problem, we
intend to use Q-NiGHT as a Trojan-horse to breakthrough into the structure of
the non-uniformity in WSNs. To provide a solution that is able to deal with non-
uniformity, we need to know how non-uniformity can influence the behavior of a
WSN and we must provide countermeasures to block such influence without loosing
efficiency.

From this point of view, the design of a non-uniformity proof system is similar to
a chess game between the designer and the non-uniformity: a player need to prevent
the winning moves of the other player without loosing the opportunity to make the
good move to win. The designer need to prevent the influence of the non-uniformity
without loosing too much the opportunity to provide an efficient protocol.

Chapter 4

Q-NiGHT: Non-uniformity Aware
Data Management

Resistance does not start with big words
But with small deeds [...]

Asking yourself a question
And then asking that question to others

That is how resistance starts.
- Remco Campert

Abstract

The data management in WSNs, as presented in the last chapter, is a wide
topic and it is made up of different approaches and techniques. In this thesis,
we choose focus on the data-centric storage model. Our main contribution in
this area is Q-NiGHT. Q-NiGHT originated by the analysis of the experi-
mental results that we performed on GHT in non-uniform sensor networks.
These results pointed out the inability of GHT to provide good results in
non-uniformly distributed WSNs. In this chapter, we revise Q-NiGHT using
the following approach. We start with the analysis of GHT in both uniformly
and non-uniformly distributed networks. Our aim is to point out that GHT is
unable to provide good load balance in uniform networks and things get worse
in non-uniform environments. GHT’s problems are due to the poor control of
the perimeters where the data is stored on and the lack of flexibility of the
hash function used to provide the coordinates of the point used to store data.
Then, we move into the the study of our improvements of GHT to provide a
better load distribution. This task is achieved using two different techniques.
The first one dismisses the use of perimeters to store data and the second one
uses a new, adaptive, hash function to deal with non-uniformity.

82 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

In this chapter, we present Q-NiGHT∗, our approach to non-uniformity aware data-
management in WSNs.

In the first part of this chapter, we analyze the characteristics of the GHT system
described in Chapter 3.4.1, simulating its behavior with uniform, Gaussian and Hill
distributions of sensors.

Results show the pathological problems of GHT in non-uniform networks i.e., the
lack of fair load distribution in non-uniform networks due to the religious use of
an uniform hash functions for the data distribution and the lack of control on fault
tolerance issues due to the uncontrolled replication of data used by GHT.

Then we describe Q-NiGHT. We present our solution to the problem of the lack
of fair load distribution with the introduction of a new class of hash functions. Then
we present our solution to the problem of the lack of control of perimeter length
with the introduction of a better strategy to distribute data.

In this chapter, we do not cover the problem of how the network distribution is
found out by Q-NiGHT. We leave the description of this problem to Chapter 5,
in which, we present a suite of protocols to find out networks distribution in a
efficient way. These protocols are independent from Q-NiGHT and can be used in
any distribution-aware sensor system.

This chapter notation. In this chapter we use a recurrent notation to identify
the actors of our research (i.e., sensors, their number, communication range and so
on). Theses symbols are used across all the chapter with the meaning defined in
Table 4.1. In the text sometimes we redefine some of these symbols and/or use them
with a slightly different meaning. In all these cases, we make the reader aware of
such changes.

s si sj generic sensors
n number of sensors in the network
r communication range of a sensor
A deployment area in which sensors are located
f geographical distribution of sensors in A
h hash function used to locate data
D datum to be stored/retrieved, in the system
M name (meta-data) for D

Table 4.1: Recurrent symbols

∗ The name Q-NiGHT stands for “Quality of service in Non-uniform Geographic Hash Tables”
and it is pronounced as “knight”.

4.1. WHY DO WE NEED Q-NIGHT? 83

A note about simulations. In this chapter, we make a large use of simulations to
(i) study the influence of non-uniformity on GHT and (ii) study the performance
and effectiveness of Q-NiGHT. Our simulation environment is a self-made simulator
that is able to deal with large quantity of nodes. All the experiments are repeated
until we achieve a statistical confidence of 95%, with a precision within 5%.

Chapter organization. This chapter is organized as follows. Section 4.1 presents
the weaknesses of GHT, that motivate our work. Section 4.2 describes our main
contribution to data management in non-uniform networks: Q-NiGHT (published
in (Albano et al., 2006a, Albano et al., 2006b, Albano et al., 2007)). Section 4.3
describes an application of Q-NiGHT in the field of resource localization inside an
heterogeneous WSN (published in (Nidito et al., 2007)). Finally, Section 4.4 draws
the conclusions of the research work described in this chapter.

4.1 Why do we need Q-NiGHT?

GHT (Ratnasamy et al., 2003) implements Data Centric Storage using Geographic
Hash Tables and the GPSR protocol. We have already discussed how the protocol
works in Chapter 3.4.1. Here, we discuss the behavior of GHT, with respect to load
distribution. In particular, we describe a simulation experiment that gives better
insights on the protocol behavior and settles some motivations for Q-NiGHT.

The first thing that we want to measure is the mean and the variance of the
perimeters found by GHT. As GHT stores a datum on all the perimeter surrounding
the corresponding hash coordinates, this measure gives us an idea on the number of
copies of each datum stored by GHT.

Our experiment is organized as follows. In order to measure the degree of unbal-
ance of GHT, we simulated a flat square sensing field, with a 1000m side. Each node
has circular transmission range with 30m radius. In this area, we simulated several
WSNs ranging from 5000 to 20000 sensors. For each network size, we randomly
generate 100 networks with uniform distribution. For each network, we compute
the mean and the variance of the number of nodes found in a GPSR perimeter as
follows. For each sensor network the simulator uniformly selects 1000 points and,
for each point, it computes the number of nodes in the perimeter surrounding the
point. GPSR need to work with a planar graph in order the perimeter mode to
behave correctly, thus, in our experiments we use both GG and RNG planarization.

Figure 4.1.a and Figure 4.1.b show the mean and variance of the perimeter length
used to store data by GHT. Figure 4.1.a shows the length of such perimeter found
out using GG planarization and Figure 4.1.b shows the length of such perimeter
found out using RNG planarization.

Both Figure 4.1.a and Figure 4.1.b show that the lenght of the perimeters is
highly variable. This is even more evident if we compare the standard deviation of

84 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

-20

 0

 20

 40

 60

 80

 100

 120

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

-20

 0

 20

 40

 60

 80

 100

 120

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.1: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization. The figure shows that the
variance of the length of the perimeters is very high with respect to the number
average number of nodes forming the perimeters.

the lenght of the perimeters with the average of the length of the perimeters. This
variability is partly due to the behavior of nodes in the outer part of the sensing
area, since in that area the probability of having very long perimeters (i.e., following
the whole border) is high. With low densities, the probability that a random point
belongs to the exterior of the network (and thus it is associated to the external
perimeter) is not negligible.

4.1. WHY DO WE NEED Q-NIGHT? 85

To provide a better understanding of the load unbalancing problems that can be
introduced by the variability of such perimeters, we perform another set of exper-
iments, using the same setting as before, to measure how many pieces of data are
stored by GHT on each node of the network.

The results of this last set of experiments are presented in Figure 4.2–4.4 and they
present the results for the network size 5000, 12000 and 20000 and using both GG
and RNG planarization.

In all charts, the x axis shows the different load (i.e., the amount of data for
each sensor) on a node and the y axis shows the number of nodes storing exactly
this number of data. Values on the y axis follow a logarithmic scale for better
comprehension.

All the figures show the situation of load unbalance of the data distribution pro-
vided by GHT. In all the cases we can spot the nodes of the network stores an high
variable quantity of data. We have a large number of nodes holding few data and a
smaller number of nodes storing a lot of data.

All the results show how the uniform hash function used by GHT is not able to
guarantee a control over the perimeter length and, as a consequence of this it is not
able to provide a fair distribution of data inside the network.

Perimeters on the border In order to understand this border effect, we performed
another set of simulations in which the sensing networks are generated in the same
way as above but the external part of the sensors area is not used to store data. We
“cut away” the 5% of the area from each border. Figure 4.5 shows the area that we
are going to “cut away” in grey and the area that we use to store the data in white.

We randomly generate 1000 points in the white area and again measure the length
of each perimeter and compute the mean and the variance. Figure 4.6.a and Fig-
ure 4.6.b show the results of this new experiment. Figure 4.6.a shows the length of
such perimeter found using GG planarization and Figure 4.6.b shows the length of
such perimeter found using RNG planarization.

The mean and the variance, as depicted in both Figure 4.6.a and Figure 4.6.b,
improve if the border nodes are let out but standard deviation remains high.

To show the benefits of the perimeter exclusion form the perimeter computation,
we perform another set of experiments to measure how many piece of data are stored
by GHT on each node of the network if we exclude the border of the network.

The results of this last set of experiments are presented in Figure 4.7–4.9 and they
present the results for the network size 5000, 12000 and 20000 and using both GG
and RNG planarization.

All the figures show the high benefits introduced by the exclusion of the border
region of the network. If we compare these last results with the one shown in Fig-
ure 4.2–4.4, it is evident how the exclusion of the external part of the network and
thus the exclusion of the external perimeter can bring to better load distribution
performances.

86 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

N
od

es

Amount of data per node

(b) RNG

Figure 4.2: Amount of data stored in each node for uniform sensors distribution of
5000 nodes with GG and RNG planarization.

Non uniform sensor distribution In order to understand the behavior of GHT
with non-uniform sensor distribution, we repeated our experiments using both a
Gaussian function and a Hill function (Orecchia et al., 2004b) for distributing sen-
sors. The Gaussian function has σ = 1 with maximum on the center of the area.
The function is structured to have the 99 percentile matching the area.

The results concerning the perimeter lengths for the Gaussian distribution are
shown in Figure 4.10.a and in Figure 4.10.b and the results for the Hill distribution
are shown in Figure 4.11.a and in Figure 4.11.b.

4.1. WHY DO WE NEED Q-NIGHT? 87

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

N
od

es

Amount of data per node

(b) RNG

Figure 4.3: Amount of data stored in each node for uniform sensors distribution of
12000 nodes with GG and RNG planarization.

All the results show a behavior that is much worse than the one shown with
uniform distribution because GHT uses a uniform hash function independently of
the real distribution of the sensors.

The results concerning the load distribution are presented in Figures 4.12–4.14
and they present the results for Gaussian and Hill distributed networks of size 5000,
12000 and 20000.

All the figures show how the use of the uniform hashing function bring to a state
of high unbalance in load distribution, much times worse than the one presented in

88 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

N
od

es

Amount of data per node

(b) RNG

Figure 4.4: Amount of data stored in each node for uniform sensors distribution of
20000 nodes with GG and RNG planarization.

Figures 4.2–4.4.

This brings to a pathological state of load unbalance that is due to the different
amount of data that must be managed by an equal number of sensors: a sensor
belonging to a sparser region the deployment area must manage a quantity of data
that is larger than the quantity managed by a sensor inside a denser part of the
network.

Load unbalance and QoS. Another issue with GHT is that there is no way to
control the QoS provided for each datum. Since the point (x, y) on which a datum

4.2. Q-NIGHT 89

Figure 4.5: The border area (grey) and the storing area (white).

should be stored is obtained computing a hash function h on its associated meta-
data M , the selection of the sensors candidate for storage is in practice independent
from the importance of the datum.

In principle, this ensures the same treatment for each stored datum. However,
if the meta-datum M is particularly popular and many sensors generate the data
described by M , the sensors located in the perimeter around (x, y) = h(M) would
be burdened with a high storage and communication load.

For this reason, the authors of GHT introduce the technique of structured replica-
tion (Ratnasamy et al., 2003), that replicates the same datum in different sub-areas
of the sensing field. However neither GHT nor structured replication ensure that the
level of redundancy associated to a datum is related to the importance of the datum
itself: GHT assures only the same average treatment of each stored datum.

Another aspect is that, although the average level of redundancy of the meta-
datum is constant, in practice it can vary significantly (due to the fact that each
geographic point is surrounded by a different perimeter), even in case of uniform
distribution of the sensors.

4.2 Q-NiGHT

In this section we present Q-NiGHT, a novel DCS protocol which moves from
GHT incorporating QoS control and featuring good load balance among sensors
distributed in a non-uniform way.

Q-NiGHT uses a strategy similar to the rejection method (Neumann, 1951) to
build a hash function biased with sensor distribution. This spreads data more evenly
among nodes. In addition, Q-NiGHT can provide QoS with different redundancy
techniques. We first detail the protocol using pure replication, allowing the user to

90 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 4

 6

 8

 10

 12

 14

 16

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

 4

 6

 8

 10

 12

 14

 16

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.6: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization without considering the
borders of the network. The figure shows a lower length of the perimeters with re-
spect to the results presented in Figure 4.1.

choose the number of replicas required for a given datum. however all replication
methods discussed in Chapter 3 can be used.

Then, we conduct detailed simulations of Q-NiGHT and analyze the results
obtained with respect to the load of each sensor (i.e., the number of data stored
in each node) and the number of messages needed for data storage and retrieval.
Results show a good performance of Q-NiGHT on different sensors distributions

4.2. Q-NIGHT 91

 1

 10

 100

 1000

 10000

 0 5 10 15 20

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

N
od

es

Amount of data per node

(b) RNG

Figure 4.7: Amount of data stored in each node for uniform sensors distribution of
5000 nodes with GG and RNG planarization without considering the borders of the
network.

on terms of both protocol costs and load distribution.

4.2.1 A first step: GHT with non-uniform hashing

As we have seen, a serious problem with GHT is the fact that it uses a uniform hash
function independently of the real distribution of sensors. This leads to a poor control
on the perimeter lengths as shown in Figures 4.10–4.11 and to the pathological state

92 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

N
od

es

Amount of data per node

(b) RNG

Figure 4.8: Amount of data stored in each node for uniform sensors distribution of
12000 nodes with GG and RNG planarization without considering the borders of the
network.

of unbalancing in load distribution, as shown in Figures 4.12–4.14.

In this section, we explore what happens if we use hash functions which scatter
data approximately with the same distribution of the sensors. We can observe that
a hash function h(k) is a kind of pseudo-random number generator: starting from
a seed (in our case the key k) it produces an output (in our case in a value in
R2) such that for near values of the key the hashed values must be distant. With
this consideration in mind we define a new hash function, whose pseudo-code is

4.2. Q-NIGHT 93

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

N
od

es

Amount of data per node

(b) RNG

Figure 4.9: Amount of data stored in each node for uniform sensors distribution of
20000 nodes with GG and RNG planarization without considering the borders of the
network.

shown in Algorithm 2. This function uses a strategy similar to the one used in the
rejection method (Neumann, 1951), but with some differences. Rejection method is a
technique used in random number generation to produce random numbers following
any probability distribution, with limited dominion.

The basic idea is the following. Let us suppose to have a probability function
and an interval (a, b) in which we want to generate random numbers, as depicted in
Figure 4.15.

94 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 150

 200

 250

 300

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

 150

 200

 250

 300

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.10: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization using the Gaussian distri-
bution.

The probability function is boxed and we generate uniform random values in the
box. If the value generated is below the distribution function the value is accepted
and returned. Otherwise, we randomly generate new points in the box until a value
is below the function.

Notice that in principle there is a non-null probability of non termination because
the values can be generated all above the function. In practice a good uniform hash
grants to generate values in all the box.

4.2. Q-NIGHT 95

 0

 50

 100

 150

 200

 250

 300

 350

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

 0

 50

 100

 150

 200

 250

 300

 350

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.11: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization using the Hill distribution.

From its key k, the function RejectionHash returns a pair (x, y) of coordinates
where to place data, belonging to distribution f . Instead of using uniform random-
ization to provide the points inside the box, RejectionHash uses uniform hashing
on the key. At each iteration, if necessary, it changes lightly the key in a determin-
istic way. This operation is represented by the increment of the key k of a quantity
i that is increased at each iteration. This operation is needed to guarantee that at
each iteration we provide a new, and very different, uniformly hashed vale.

In order to understand the goodness of RejectionHash function we repeated

96 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700

N
od

es

Amount of data per node

(b) Hill

Figure 4.12: Amount of data stored in each node by GHT for the Gaussian and Hill
sensors distribution of 5000 nodes.

our experiments presented in Figures 4.10–4.11 and in Figures 4.12–4.14 using the
RejectionHash function instead of the uniform GHT hash function.

The results showing the mean and the variance of the length of the perimeters
for the Gaussian distribution are shown in Figure 4.16 and the results for the Hill
distribution are shown in Figure 4.17.

Both Figure 4.16 and Figure 4.17 show the good behavior of the non-uniform hash
function. RejectionHash fits well the sensors distribution in the data dissemina-
tion strategy with a good global load distribution.

4.2. Q-NIGHT 97

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

N
od

es

Amount of data per node

(b) Hill

Figure 4.13: Amount of data stored in each node by GHT for the Gaussian and Hill
sensors distribution of 12000 nodes.

These results are even better than the results provided with uniform distribution
and uniform hashing (Figure 4.1 and Figure 4.6). This is due to the nature of non-
uniform distributions themselves.

A non-uniform distribution tends to have parts of the network that are more
dense than others. RejectionHash function distributes more data in these region.
As happened in the uniform case, the perimeters get shorter in larger, and thus
denser, networks because the nodes are closer and few nodes are needed to form a
perimeter around a point.

98 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

N
od

es

Amount of data per node

(b) Hill

Figure 4.14: Amount of data stored in each node by GHT for the Gaussian and Hill
sensors distribution of 20000 nodes.

The evidence of these results is more clear if we look at Figures 4.18–4.20. This
last set of experiments show the quantity of data stored in each node by GHT if it
uses RejectionHash instead of the uniform hash function.

Figures 4.18–4.20 show a big improvement in the load distribution of GHT, with
respect to the results presented in Figures 4.12–4.14. Even if GHT still the perimeters
to store data in the network, the use of a hash function that is able to provide the
data coordinates with a distribution biased on the network distribution shows big
improvements.

4.2. Q-NIGHT 99

a b

(x,y)

(x’,y’)

max

Rejected

Accepted

Figure 4.15: Rejection method: The probability function is boxed and we generate
uniform random values in the box. If the value generated is below the distribution
function the value is accepted and returned. Otherwise, it is rejected.

Algorithm 2 RejectionHash(k, f)

Require: A key k and a function f .
Ensure: A coordinate pair (x, y).

i ← 0
loop

(x, y, z) ← Hash(k + i)
i ← i + 1
if z < f(x, y) then

return (x, y)
end if

end loop

4.2.2 Q-NiGHT: adding quality of service to Geographic
Hash Tables

Exactly as GHT (Ratnasamy et al., 2003), Q-NiGHT is built atop the GPSR (Karp
and Kung, 2000). Q-NiGHT provides data insertion (via put) and data retrieval
(via get) on the sensor network.

To our purposes, the interface of the put includes, along with the meta-data
M and the data D, also a parameter Q expressing the desired QoS. Q gives a
measure of the dependability required for the data, and may be expressed using
different metrics and ranges according to the particular redundancy technique used
(see Section 3.2.3).

For instance, if Q-NiGHT adopts pure replication then Q can express the number
of sensors on which the data should be replicated, or, if Q-NiGHT adopts n out of
m redundant encodings (Rabin, 1989,Rizzo, 1997), then Q can express the number
of fragments in which partition the data (each fragment to be stored in a different

100 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

-10

 0

 10

 20

 30

 40

 50

 60

 70

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

-10

 0

 10

 20

 30

 40

 50

 60

 70

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.16: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization using the Gaussian distri-
bution and the RejectionHash hashing function.

sensor) and the number of redundant fragments.

In the following, we describe Q-NiGHT assuming pure replication of the data.
Data insertion is expressed with put(M,D,Q). We assume Q ranges in [1, Qmax] and
gives the number of sensors on which the data should be replicated. Let s be the
source node of a put(M,D,Q) operation. s first computes h(M), where h is the Re-

jectionHash function conditioned with the sensor distribution function, f , in the
sensing field, as discussed in Section 4.2.1. h(M) returns a pair of geographic coor-

4.2. Q-NIGHT 101

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(a) GG

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
ri

m
et

er
 le

ng
th

Number of nodes

(b) RNG

Figure 4.17: Mean and variance of perimeters (number of nodes) measured for dif-
ferent sensors numbers with GG and RNG planarization using the Hill distribution
and the RejectionHash hashing function.

dinates (x, y) as the destination of the packet Pp=<(x,y),<M,D,Q>>. The packet in
turn is sent to the destination using the GPSR protocol. As in GHT, we call home
node the sensor sd (of coordinates (x′, y′)) geographically closest to the destination
coordinates. The home node naturally receives the packet as a consequence of ap-
plying GPSR. Upon the reception of packet Pp, sensor sd begins a dispersal protocol
which selects Q sensors to store a copy of <M,D>.

The dispersal protocol is iterative and uses the concept of ball. Given a sensor sd

102 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

N
od

es

Amount of data per node

(b) Hill

Figure 4.18: Amount of data stored in each node by GHT (using RejectionHash)
for the Gaussian and Hill sensors distribution of 5000 nodes.

of coordinates (x′, y′), we denote with B(x,y)(r) the ball centered in (x, y) of radius
r, that is the set of sensors that are within a Euclidean distance r from (x, y). As
depicted in Figure 4.21.a, in the first iteration sd broadcasts a replica of D to all
the sensors included in the ball B(x,y)(r). r is chosen in order to reach the Q sensors
closest to (x, y) with high probability†.

Each sensor receiving a replica responds with an acknowledgment to sd as de-

† A more detailed description of the computation of r with such a property is described in the
next subsection.

4.2. Q-NIGHT 103

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

N
od

es

Amount of data per node

(b) Hill

Figure 4.19: Amount of data stored in each node by GHT (using RejectionHash)
for the Gaussian and Hill sensors distribution of 12000 nodes.

picted in Figure 4.21.b. Finally, sensor sd confirms the Q − 1 acknowledgments
received from the sensors geographically nearest to (x, y) and disregards the others
(Figure 4.21.c). The confirmation requires an extra packet sent by sd. Sensors which
receive the confirmation keep the datum while the others will disregard the data
after a timeout. If sd receives Q′ < Q acknowledgments, then it executes another
iteration of the dispersal protocol with r = 2r in which it considers only the sensors
in B(x′,y′)(2r) − B(x′,y′)(r). The dispersal protocol stops as soon as Q sensors have
been hired or the outermost perimeter has been reached. The dispersal protocol is

104 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

N
od

es

Amount of data per node

(a) Gaussian

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

N
od

es

Amount of data per node

(b) Hill

Figure 4.20: Amount of data stored in each node by GHT (using RejectionHash)
for the Gaussian and Hill sensors distribution of 20000 nodes.

a simple implementation of a geo-casting protocol (Seada and Helmy, 2006).

When a node sg of coordinates (r, z) executes get(M), it first computes (x, y) =
h(M), and then sends a query packet Pg=<(x,y),<(r,z),M>> using the GPSR pro-
tocol. In turn, packet Pg will reach the perimeter surrounding (x, y) and it will start
to move across the perimeter. Eventually, the packet will reach either the home node
or another node containing a replica of the data D associated to M . This node will
stop packet Pg and will send the required data back to sg.

The complexity of the put protocol clearly depends upon the choice of r as this

4.2. Q-NIGHT 105

(a) Broadcast phase (b) Replay of the nodes
inside B(x,y)(r)

(c) Choice of the closest
sensors

Figure 4.21: Dispersal protocol of a datum D with Q = 3 and (x, y) = h(M) (rep-
resented by the star in the three pictures). (a) The home node (shaded) broadcasts
D up to distance r. (b) The nodes inside the B(x,y)(r) replay to the home node. (c)
The home node sends the confirmation to the Q − 1 closest nodes.

determines the number of iterations made to successfully place the Q replicas.

In order to evaluate our solution, using the ball instead of the perimeter to store
data, we perform simulations to check the quantity of data stored in each node.
As before, we simulate a flat square sensing field, with a 1000m side. Each node
has circular transmission range with 30m radius. In this area, we simulated several
WSNs made up of 5000, 12000 and 20000 sensors, using both RNG and GG to
planarize the networks during GPSR perimeter modes. For each network size, we
randomly generated 100 networks with uniform, Gaussian and Hill distributions,
and performed 2000 put operations with uniformly generated meta-data using both
GHT and Q-NiGHT. In these trials, Q-NiGHT uses a pure replication QoS with
15 replicas for each datum.

In all charts, the x axis shows the different load (i.e., the number of pieces of data
stored) on a node and the y axis shows the number of nodes storing exactly this
number of pieces of data. Values on the y axis follow a logarithmic scale for better
comprehension.

Figures 4.22–4.24 show the quantity of data stored in each node for uniform,
Gaussian and Hill sensors distributions of a network made up of 5000 sensors using
RejectionHash and the Q-NiGHT dispersal protocol.

If we compare Figures 4.22–4.24 with their counterparts that do not use the
dispersal protocol, namely Figure 4.2, Figure 4.7, Figure 4.12 and Figure 4.18, we
can notice that Q-NiGHT reaches better load balance than GHT, even in the
uniform case. In all the cases, GHT shows its unbalance problems, while Q-NiGHT

manages to balance the load. The reason of such a behavior, is that GHT stores
data on perimeters and since such perimeters are chosen arbitrarily, GHT produces
very unbalanced storages.

106 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

N
od

es

Amount of data per node

(b) RNG

Figure 4.22: Amount of data stored in each node for uniform sensors distribution of
5000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

For instance, comparing Figure 4.22 (the uniform case) with Figure 4.2, the differ-
ences are very large. We can spot the following interesting situation: a large number
of nodes store few data (approximatively between 0 and 25 data for each node) and
at the same time, in the same network, we have good number of nodes storing a
lot of data (approximatively between 100 and 150 data for each node). This storage
configuration finds its explanation in the use of the external perimeter to store data.

On the other hand, Q-NiGHT stores almost the same number of data on each
node (approximatively between 0 and 18 data for each node) because Q-NiGHT

4.2. Q-NIGHT 107

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

N
od

es

Amount of data per node

(b) RNG

Figure 4.23: Amount of data stored in each node for Gaussian sensors distribution
of 5000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

looks for a fixed number Q of storage nodes for each datum and it is much more
difficult for the same node to store a large number of different data.

The difference is smaller if we compare Figure 4.22 with Figure 4.7, in this last
case the network do not use the external perimeter to store data and thus, GHT
finds smaller perimeters, with size comparable to our Q.

The different behaviors of Q-NiGHT and GHT are more evident in non-uniform
networks (Figures 4.23–4.24). If we compare Figures 4.23–4.24 with Figure 4.12 and
Figure 4.18, we can easily see the great advantage of using both the Rejection-

108 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 0 5 10 15 20 25

N
od

es

Amount of data per node

(b) RNG

Figure 4.24: Amount of data stored in each node for Hill sensors distribution of 5000
nodes using RejectionHash and the Q-NiGHT dispersal protocol.

Hash, to locate data accordingly to the network distribution and thus preventing
to use sparser regions of the network and the use of the dispersal protocol to spread
data on a limited number of nodes.

Figures 4.25–4.27 show the quantity of data stored in each node for uniform,
Gaussian and Hill sensors distributions of a network made up of 12000 sensors using
RejectionHash and the Q-NiGHT dispersal protocol.

Finally, Figures 4.28–4.30 show the quantity of data stored in each node for uni-
form, Gaussian and Hill sensors distributions of a network made up of 20000 sensors

4.2. Q-NIGHT 109

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(b) RNG

Figure 4.25: Amount of data stored in each node for uniform sensors distribution of
12000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

using RejectionHash and the Q-NiGHT dispersal protocol.

All the considerations made for the 5000 nodes networks still apply when we
move into the analysis of larger networks. Also in the case of 12000 nodes networks
(Figures 4.25–4.27) and 20000 nodes networks (Figures 4.28–4.30), we can notice
that Q-NiGHT reaches better load balance than GHT.

On the other hand, Q-NiGHT, reaches better performance while the network
size increases. Once fixed the number of data to be stored and the parameter Q, the
probability that a same node stores multiple data become smaller as the number of

110 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(b) RNG

Figure 4.26: Amount of data stored in each node for Gaussian sensors distribution
of 12000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

nodes inside the network increases.

r computation. We now discuss how to compute the radius r of the ball used by
the Q-NiGHT dispersal protocol to choose the nodes to store data in.

Let f be the sensor probability distribution function, Q an integer in [1, Qmax],
and (x, y) a point in R2 we want to fix r in such a way that, called SB the set
of sensors laying in the space defined by the ball B(x,y)(r), |SB| ≥ Q with high
probability.

4.2. Q-NIGHT 111

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(b) RNG

Figure 4.27: Amount of data stored in each node for Hill sensors distribution of
12000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

We first discuss the intuition behind our approximation schema. Let Ar denote
the circle of radius r, we want to fix r such that

E[number of sensors ∈ Ar] = Q (4.2.1)

Equation (4.2.1) can be rewritten in terms of the probability f

n ·
∫

Ar

f(x, y)dAr = Q (4.2.2)

112 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

N
od

es

Amount of data per node

(b) RNG

Figure 4.28: Amount of data stored in each node for uniform sensors distribution of
20000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

where n is the total number of sensors in the network and the integral represents
the probability to have a sensor in Ar. Direct computation of the integral above is
likely to need a large number of floating point operations in practical distributions.

To simplify the computation of r, we use the following strategy. Instead of using
Ar ,we use the square inscribed in the circle of radius r. This square has edge r

√
2

and area A′
r = 2r2. If we impose to have Q nodes in A′

r, we grant at least Q nodes

4.2. Q-NIGHT 113

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

N
od

es

Amount of data per node

(b) RNG

Figure 4.29: Amount of data stored in each node for Gaussian sensors distribution
of 20000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

in Ar. Equation (4.2.2) becomes

n ·
∫

A′

r

f(x, y)dA′
r = Q.

The volume identified by the integral can be represented in terms of r as follows

n · 2 · r2 · h = Q (4.2.3)

where h is the ideal height of the cuboid which volume is equivalent to the one of
integral.

114 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(a) GG

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

N
od

es

Amount of data per node

(b) RNG

Figure 4.30: Amount of data stored in each node for Hill sensors distribution of
20000 nodes using RejectionHash and the Q-NiGHT dispersal protocol.

We use the height h to simplify the computation of r: sensors do not compute the
integral but have a stepped version of the nodes distribution function f . A sensor
chooses h between the heights of the steps that include A′. h is the the minimum of
such heights. If the minimum of such heights is 0, the second minimum is chosen.
This means that the value of r identifies a number of sensors greater than Q. Now,
from Equation (4.2.3) we can derive the minimum r that identifies a number of

4.2. Q-NIGHT 115

sensors greater than Q

r =

√

Q

2 · n · h. (4.2.4)

The complexity of the computation of Equation 4.2.4 is low, even for a sensor. The
computation involves two multiplications, a division and a square root operation.
The multiplications and the division are simple operations supported by hardware.
Then, the square root operation can be computed using tables and/or approximated
methods, which complexity depends on the memory usage and the wanted approx-
imation.

Behavior in case of faults. In case some of the nodes holding the replicas of <M,D>
fail, our protocol continues to operate correctly. Due to the GPSR protocol, any get

with key M is routed to the node geographically closest to (x, y) = h(M).

If the faulty node is not the home node, GPSR is able to find out the the home
node and then it returns the datum stored on that node.

In the case the faulty node is the home node, the way in which the nodes are
selected by the dispersal protocol guarantees that the nodes that store datum D are
the Q closest nodes to point (x, y) = h(M). In this way, when the GPSR routes the
request to the (x, y), if is not able to find the old home node (due to its fault), it
is still able to find the new home node (that was the second closest node), because
it was part of the the Q closest nodes. In this way, our protocol guarantees that a
datum is still reachable until the at least one of the Q nodes storing the datum is
alive.

Enhanced GPSR. Q-NiGHT uses a slightly modified version of GPSR. Usually,
when GPSR is in the perimeter mode, it always adopts clockwise turn to reach the
destination coordinates. This behavior leads to pathological situations as the one
shown in Figure 4.31.a.

Source

Destination

(a) Standard perimeter mode

Source

Destination

Center

< 180

(b) Enhanced GPSR perimeter mode

Figure 4.31: GPSR routing perimeter mode

116 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

The right hand rule makes the packet traverse all the perimeter before reaching
the destination node. This is not a problem for GHT as the datum is replicated on
all the perimeter nodes, but may be very inefficient for Q-NiGHT , which replicates
only on a ball surrounding the destination.

In our GPSR version, we turn clockwise or counterclockwise depending on which
is the closest path to the destination, as shown in Figure 4.31.b. Let sa be the
position of the sender node, c the position of the center of the deployment area and
sd be the position of the destination. We turn clockwise if 0 < ŝacsd < 180‡, and
counterclockwise otherwise.

4.2.3 How much does Q-NiGHT cost?

In order to understand the cost that we must pay to achieve QoS and non-uniformity
resistance in our protocol we have to compute the cost of both GHT and Q-NiGHT.
The metric used to measure the cost of both GHT and Q-NiGHT is the number of
messages used to perform puts and gets. We choose to use the number of messages
metric because it is the same metric used by the original GHT paper (Ratnasamy
et al., 2003) and thus, to have a direct comparison with the original paper.

In our experiments, we aimed to provide both the mean and the variance of
number of used messages. We perform 2000 puts and 2000 gets with randomly
chosen meta-data. Both puts and gets requester nodes are chosen uniformly on the
whole sensors set.

The QoS for Q-NiGHT is again pure replication with 15 replicas for each datum.
We always consider RNG networks because the results in the case of GG networks
are almost the same and do not introduce considerations different from the ones
that we make here in our study.

In all graphs, the x axis shows the sensor density in the network and the y axis
the operation cost measured that is the average number of messages used by the
two protocols.

Figure 4.32 and Figure 4.33 show respectively the results of our experiments for the
evaluation of the puts and of the gets in the case of networks distributed accordingly
to the uniform distribution.

Figure 4.34 and Figure 4.35 show respectively the results of our experiments for the
evaluation of the puts and of the gets in the case of networks distributed accordingly
to the Gaussian distribution.

Figure 4.36 and Figure 4.37 show respectively the results of our experiments for the
evaluation of the puts and of the gets in the case of networks distributed accordingly
to the Hill distribution.

The first thing that we notice, comparing Figures 4.32–4.33 with Figures 4.34–
4.37 is that the cost (or better, the convenience) of Q-NiGHT with respect to the

‡ Computed in clockwise way

4.2. Q-NIGHT 117

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.32: Mean and standard deviation of the costs (number of messages) of put
with uniform distribution and RNG planarization.

cost of GHT is different is we consider the uniform case and the non-uniform case.
Now, we study this two situations separately.

Uniform case. In the uniform case, shown in Figure 4.32 and in Figure 4.33, shows
that in both Q-NiGHT and GHT have comparable cost in the case of get operation,
but in the case of put operation, the performance of Q-NiGHT is better than the
performance of GHT.

The reason of this behavior is that in the case of the put operations, the cost of
GHT is influenced by the use the external perimeters to store data. This is more

118 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 5

 10

 15

 20

 25

 30

 35

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

 5

 10

 15

 20

 25

 30

 35

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.33: Mean and standard deviation of the costs (number of messages) of get
with uniform distribution and RNG planarization.

evident if we look at the variance of the cost of the protocol. While the mean is quite
similar in both cases, the variance in the case of GHT is very large with respect to
the one of Q-NiGHT.

In the case of the get operations, the cost of Q-NiGHT is a little larger than
the cost of GHT. In Q-NiGHT, once the home node is found, data is stored in
the ball surrounding the home node. In GHT, once the home node is found, data is
stored on all the nodes in the perimeter around the point (x, y). When Q-NiGHT

needs to retrieve a datum, it needs to reach the perimeter around (x, y), and then it

4.2. Q-NIGHT 119

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.34: Mean and standard deviation of the costs (number of messages) of put
with Gaussian distribution and RNG planarization.

has to be routed around such perimeter until it finds a node in the ball that stores
the datum. In GHT, the query simply needs to reach the perimeter to retrieve the
datum.

Non-uniform case. In the non-uniform case, Q-NiGHT shows better perfor-
mances than GHT for both puts and gets.

In Figure 4.34 and in Figure 4.36, we can see the cost of the put operation for
both Gaussian and Hill distributions. In both cases, GHT has a performance that

120 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 0

 5

 10

 15

 20

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

 0

 5

 10

 15

 20

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.35: Mean and standard deviation of the costs (number of messages) of get
with Gaussian distribution and RNG planarization.

is 4 to 6 times worst than the case of Q-NiGHT. This behavior is due to the bad
interaction between the use of the uniform hashing and the use of the perimeters
to store data: the uniform hashing distributes, with the same probability, data in
denser and sparser regions, moreover, in sparser regions perimeters are longer than
in denser regions. On the other hand, Q-NiGHT uses the dispersal protocol to
store data and the dispersal protocol guarantees that we need only a small number
of messages to be exchanged to store a datum, once the home node is found.

In Figure 4.35 and in Figure 4.37, we can see the cost of the get operation for

4.2. Q-NIGHT 121

-500

 0

 500

 1000

 1500

 2000

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

-500

 0

 500

 1000

 1500

 2000

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.36: Mean and standard deviation of the costs (number of messages) of put
with Hill distribution and RNG planarization.

both Gaussian and Hill distributions. In both cases, Q-NiGHT has a better per-
formance with respect to GHT. This is due to the use of RejectionHash. Using
RejectionHash, Q-NiGHT stores the largest part of data in denser regions. Stor-
ing the largest part of data in denser regions has two benefits: (i) the majority of
requests for data arrives from denser regions too and in turn of it, the requesters
tend to be closer to the nodes that store data and (ii) the greedy mode used to
route messages goes though dense regions very fast because nodes are closer. On the
other hand, GHT stores data uniformly on all areas (both dense and sparse). When

122 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

-20

-10

 0

 10

 20

 30

 40

 50

 60

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(a) GHT

-20

-10

 0

 10

 20

 30

 40

 50

 60

 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
os

t (
m

es
sa

ge
s

se
nt

)

Nodes Number

(b) Q-NiGHT

Figure 4.37: Mean and standard deviation of the costs (number of messages) of get
with Hill distribution and RNG planarization.

the nodes need to get a datum, that are more probably inside denser region, they
need to perform longer paths. The need to perform longer paths is mitigated by the
use of the perimeters that enable a large number of nodes to store a datum and thus
the paths are not much longer than in Q-NiGHT.

This last set of experiments, as well as the others that helped us into the analysis of
GHT and into the design of Q-NiGHT, show how the non-uniformity can influence
a widely accepted system such as GHT. Moreover, these experiments show that it
is possible to provide new solutions able to deal with non-uniformity and that these

4.3. A Q-NIGHT BASED APPLICATION FOR LOCATION MANAGEMENT 123

solutions do not introduce a large overhead in uniform networks.

4.3 A Q-NiGHT based application for location

management

In this section, we describe an application of Q-NiGHT. In this application, we
deal with another kind of non-uniformity, namely the functional non-uniformity.

In the functional non-uniformity, a network is made up of different kind of nodes.
Some of these nodes a simple sensing nodes, while others are nodes that are able to
provide services to the sensing nodes (the servers).

In this scenario, the sensor nodes must be able to locate the servers to use the
services that they provide. To enable the sensors nodes to locate the servers, we use
Q-NiGHT. The servers use Q-NiGHT to store their position inside the network.
The servers use the ID of the service that they provide as the meta-datum that is
hashed to find the point (x, y) where they will store their own position.

When a sensor node needs to use a service, is hashes the service ID and query
perform a get on the point (x, y) = h(ID) to retrieve the position of the server.
Then, the sensor contacts the server to use its service.

4.3.1 Heterogeneous wireless sensor networks and location
management

Heterogeneous WSNs are made up of various kinds of nodes. Some nodes are used
as the interface to the physical environment (we will call them sensors). Other
nodes act instead as servers, providing services to the other nodes. For instance,
in an outdoor intrusion detection application, the sensor are scattered randomly to
provide tracking of possible intruders, while more powerful nodes provide the service
or connection (e.g., through satellite links) to the end user.

In this section, we define an architecture for enabling efficient discovery of services
for the sensors that need them. Servers are organized in two tiers. The first tier
comprises the actual servers (such as the satellite up-link enabled nodes mentioned
before). Then there is an intermediate server tier (front-end) where some common
nodes (sensor) are chosen for storing the current position of the servers. A sensor
that needs to find a specific service (and hence a server), sends a message to the
front-end of the system and gets back the position of the service. At this point the
sensor knows the server position and is able to start using the service needed.

The proposed architecture implements strategies to provide both load distribu-
tion and fault-tolerance, as described in the rest of the section. It also makes ex-
tensive use of a caching system to speed-up requests and to save energy. The lo-
calization/communication infrastructure used as the basis for our architecture is
Q-NiGHT.

124 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

4.3.2 System architecture and operations

In this section we present our two-tier architecture for locating servers efficiently
and in fault tolerant way.

We start by presenting the actors that play important roles in the architecture.
These roles are both structural (given by the physical nature of the heterogeneous
network) and logical (given the different usage of the same kind of nodes to perform
different tasks).

Then, we present the operations of service registration and look-up that are pro-
vided by the system. The service registration procedure is performed by the servers
to communicate their position to the nodes of the network. The look-up procedure
is executed by the nodes that require the localization of a service.

4.3.2.1 Actors

There are three categories of nodes in our architecture. The sensors, the servers,
and the server locators.

Sensors: the sensors are low power and low cost devices that are equipped with
special equipment to control their surrounding environment. They also sport
a CPU for performing simple computations, and an embedded radio to com-
municate with each other.

Servers: the servers are special nodes that are capable to provide some service
to the sensor nodes. These services range from storage (to keep the sensed
data) to perform as gateways between the WSN and the users. Each server
serveri provides one or more services that are identified by a name, for instance
servicej.

Server locators: the server locator nodes are sensor nodes that know the servers,
i.e., the services that the servers provide and the server locations in the net-
work.

4.3.2.2 Two-tiers servers architecture

The sensors are the clients of the proposed architecture. The architecture per se is
formed by two tiers. The back-end of the architecture is made up of the servers that
are able to provide services to the clients. The servers are randomly deployed (as the
clients) and need to be localized by the server locators. The server locators form the
front-end of the architecture. The nodes requiring a service query the front-end to
have the position of the the server, or servers, providing that service. Once obtained
this information, the nodes communicate directly with the back end servers.

4.3. A Q-NIGHT BASED APPLICATION FOR LOCATION MANAGEMENT 125

4.3.2.3 Services localization

Two operations implement service localization: server registration and server dis-
covery. The first one is used by the servers to make the server locator aware of their
location. The second one is used by the node that needs a service for finding the
corresponding server. These two operations use Q-NiGHT put and get operations.
put is used for storing the position of a server and get to retrieve it later.

4.3.2.4 Servers registration

During the network set-up phase the server i determines its position, positioni,
and registers it with the server locator nodes. To perform such operation each
server hashes the name of each of its services and determines the corresponding
point (x, y). At this time, for each provided service, it performs a put of the pair
〈servicej, positioni〉 to the point (x, y) by using Q-NiGHT. The nodes that store
the pair 〈servicej, positioni〉 become the server locator nodes for servicej.

4.3.2.5 Servers discovery

When a node needs servicej, it hashes the service name by using the Q-NiGHT

hash function, finding the point (x, y). Then it performs a get operation of servicej

from point (x, y), i.e., it sends a request toward that point. One of the server locators
replies with the position of the server (this operation is called a look-up). In addition
to the basic Q-NiGHT get operation, at this time the node caches the position of
the service/server for future use. It then sends the request for servicej to the server.
The use of caches improves the whole look-up process in many ways. First of all,
faster replies are provided to those other nodes interested in locating the same
server whose look-up queries pass through the caching node. Moreover, caching
enables cheaper look-ups because fewer hops can be enough to provide a reply,
and lower energy consumption for the server locator nodes is required since they
have to deal with a lower number of queries. For instance, cached positions increase
information retrieval performance in applications such as intrusion detection. In this
case, messages for a particular server are generated by nodes that are close to each
other and to where the intrusion happens. In this case, spatial locality of caches is
taken advantage of.

4.3.2.6 Load distribution and fault-tolerance

By using Q-NiGHT with the strategy described above, our architecture is able to
balance the query load to the locator servers and it is tolerant to location servers
failures. The load balancing property is particularly useful for distributing multiple
requests of the same service to multiple servers that provide it. Fault-tolerance
helps in removing those servers that are no longer available (because of failures or

126 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

network disconnections) from the list of servers that provide a given service. The
disappearance of a service/server can be signaled to a server locator by a sensor
node who, trying to contact a server, realizes that it is no longer available. This
feature of the architecture presents security issues, which we discuss in a separate
paragraph at the end of this section.

Load balancing. Query load balancing is provided via multiple server registrations.
All the servers that provide a service have the same server locators. This happens
because the servers share a common service name, say servicej. The server locators
store all the coordinates that were provided for each service name. When a request
arrives to a server locator for servicej, the node chooses one of the possible servers
according to a given strategy (for instance, randomly, or in a a round-robin way,
by keeping a pointer to the last server returned and incrementing it modulo the
number of servers). This method also provides an easy way to increase the number
of servers. When a new server (that provides servicej) enters the network, the server
registers itself with the server locators and these return the server location as one
of the possible servers for that service.

Fault-tolerance. Fault-tolerance to service outage is obtained as follows. The
servers keep providing their position to the server locators periodically (for instance
each τ seconds).

In case of service failure, after τ seconds from the last update the server locators
cancel the server position. In the worst case this system provides the cancellation of
a server from server locators after 2τ seconds.

In order to make our protocol completely fault-tolerant we have to remove the
cached server positions from the caches of the sensors that stored such information.
To this aim, a server position is cached by a sensor for at most τ seconds, after
which it is removed from the cache. In case the sensor needs the position of the
server again after τ seconds, it will have to query the server locators again. Finally,
if a node queries a server whose entry was in its cache (i.e., τ seconds from its last
query to a server locator have not passed yet) and the server is no longer available,
the server’s (ex) neighbors report an error to the sensor requesting the service. Upon
receiving the error message the node removes the cache entry and performs a get

for a new server for servicej, at the same time communicating to the server locators
that the server is unavailable.

Security issues. The capability of sensors to invalidate a service location at a server
locator makes possible attacks in which the server locators server list are modified
by malicious (or faulty) nodes.

To address this problem the network user (administrator) can choose between
three solutions: (i) the sensors are not allowed to invalidate server locators and/or
invalidation messages are dropped by server locators, (ii) the server locator verifies
the invalidation querying the server itself to double check about the availability of

4.3. A Q-NIGHT BASED APPLICATION FOR LOCATION MANAGEMENT 127

that server, or (iii) the user provides a cryptography based system to verify the
identity of the message sender and possibly its trust-level. All these solutions are
equally powerful to guarantee a minimum level of trust to our architecture. The
choice of one of them (or any combination of them) depends on the characteristics
of the network (e.g., computational power and energy) as well as the application and
environmental characteristics (probably, for border monitoring or in the battlefield
a level of trust much higher than wildlife monitoring is required).

4.3.3 Experimental results

We have performed experiments for measuring the effectiveness of our service local-
ization architecture with respect to the energy cost of querying with and without
caches, as well as the cost of the look-up operation.

In the simulation setting, we have considered 5000 WSNs where 5000 sensor nodes
are scattered randomly and uniformly in a square area with a side of 1000m. Each
node has communication range of 30m. Power consumption for transmission is set
to 24mW and that for reception is set to 14.4mW as in the EYES sensor proto-
types (Havinga et al., 2003). The sensors that perform a look-up operation and then
send a message to the server are uniformly chosen between the deployed sensors.

All the experiments are aimed at showing the effectiveness of the architecture in
providing prompt and energy efficient response to sensor queries. In particular, we
show here that caching is particularly useful in providing a more balanced energy
consumption, and therefore better performance of the network. For this reason, all
the presented experiments are provided with and without nodal cache enabled. All
tests are performed starting from the same seeds to generate the same scenarios
with different architectural parameters. The results we show achieve a statistical
confidence of 95%, with a precision within 5%.

Figure 4.38, Figure 4.39 and Figure 4.40 depict the cost for a sensor to contact
server locators and servers. In Figure 4.38 the cost is defined as the energy spent by
a node to send a packet to the server locators, to get the server location back and
then to perform one communication to the server. In other words, we compute the
total energy to deliver/receive three packets. In Figure 4.39, the cost is defined only
as the cost to send a message from a sensor to the server locators and to get the
server location back (that is the energy to send two packets). This provides up with
a more detailed idea of how much it costs to the sensor the use of the intermediate
tier provided by the sensor locators. Figure 4.40 shows the cumulative cost of the
look-up operation, to have an idea of difference in the growth of the energy cost. The
cumulative cost is computed as follows: the cost of the qth look-up is given by its
cost and summed to the cost of all the previous q − 1 look-ups. As mentioned, each
set of experiments is performed with and without the cache mechanism enabled.
The network is observed for a time long τ to take into account the maximum usage

128 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 100 200 300 400 500 600 700 800 900 1000

C
os

t (
J)

Number of queries

Without caches
With caches

Figure 4.38: Cost for server look-up plus the cost for contacting the servers. The
figure shows the effectiveness of the caches in our solution. With the growth of the
number of the queries the cost of the protocol decreases because the nodes caching
the wanted information grow up.

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 100 200 300 400 500 600 700 800 900 1000

C
os

t (
J)

Number of queries

Without caches
With caches

Figure 4.39: Cost for servers look-up operations only. The figure shows in detail the
effectiveness of the caches in our solution (considering that the server contacting
operations cannot be cached in our model).

of the caches before their refresh. In our experiments, τ = 30 minutes i.e., the time
that we need to perform 1000 queries.

Figure 4.38 depicts the cost for each single query in the network with and without
the caching enabled. This cost, expressed in Jules, is defined as the sum of the energy
spent at each node for propagating the query. This cost is computed considering both
the cost for transmission and reception We observed that when caching is enabled
the cost of the single query decreases with increasing number of queries because the

4.3. A Q-NIGHT BASED APPLICATION FOR LOCATION MANAGEMENT 129

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

C
os

t (
J)

Number of queries

Without caches
With caches

Figure 4.40: Cumulative cost for servers look-up operations. The cumulative cost for
the qth look-up is given by its cost and summed to the cost of all the previous q − 1
look-ups.

caching mechanism becomes more and more effective (more and more nodes have
the location in cache).

Figure 4.39 depicts only the cost of the look-up operation for each single query
in the network with and without the caching enabled on sensors. This cost, as the
previous one, is defined as the sum of the energy spent at each node for propagating
the query. This case, is analyzed to have a better evaluation of the look-up procedure,
that is cached optimized, with respect to the server interaction, that in our scenario
does not use caches to optimize the sensor-server. Some particular applications can
use caching also between sensors and servers but we chose this situation (the worst
case) in which the interaction with the server is not cached to have a more clear
vision of the look-up costs and benefits.

Figure 4.40 depicts the cumulative cost of the look-ups only (sensor-server locators
communication and back) without considering the cost for server interaction. In this
case, we observe that the cost to reach the server locator nodes decreases when the
number of the queries increases, as expected.

Figure 4.41 presents the (normalized) residual energy level of the server locators
with and without using caches. The residual energy level of the server locator is
computed reading the energy level of the server locators before the first refresh of
the service location by the servers, that restore Q copies of the location, also in
the case in which some server locators run out of energy. The figure shows a high
influence (36%) of the caches in the energy spent by the server locators in their
function.

As shown in the experimental results, the presented architecture provides the lo-
calization service in a load-balanced and fault-tolerant way and the caching system

130 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

1

1.3621

Without cache With cache

N
or

m
al

iz
ed

 li
fe

tim
e

Figure 4.41: Server locators residual energy level before the server locators refresh
step. The residual energy is normalized to the energy level of the system without
using the caches.

enables the nodes that lay in the same region to assist in providing service loca-
tion while relieving the service locators of providing the service. Furthermore, the
obtained results are encouraging and open up possibilities for further studies and
for the application of this method to problems such as data storage and replication,
and similar problems.

4.4 Summary

In this chapter, we have presented our research work in the data management field
in WSNs.

We presented our contribution, describing Q-NiGHT (Albano et al., 2006a,Albano
et al., 2006b,Albano et al., 2007). Q-NiGHT is a data centric storage system based
on GHT. As well as GHT, Q-NiGHT uses an hash function to provide compute the
position of a datum starting from its mata-data (often called key). Moreover, Q-

NiGHT uses a modified version of the GPSR protocol to route messages inside the
network. The key differences between the Q-NiGHT and GHT is in the assumption
made by the protocol to work. GHT assumes that the network is uniform and the
hash function used to find the position of a datum is always the same, independently
from the real distribution of the nodes. On the other hand, Q-NiGHT uses the
RejectionHash algorithm distribute data in the network with a distribution that
is an approximation of the network distribution.

Our work focused into the analysis of GHT, throughout simulations and anal-
ysis of the experimental results, spotting out its weaknesses in both-uniform and
non-uniform environment. Then, we provided a solution that could overcome the

4.4. SUMMARY 131

problems introduced by a bad initial design and the uniformity assumptions. Q-

NiGHT showed up its flexibility and its ability to work properly in non-uniformly
distributed networks. The extensive simulations performed on Q-NiGHT showed
up that all the improvements aimed at providing fair load distribution and QoS
features to GHT have a cost and that this cost is not very high if compared to the
advantages in terms of load distribution and memory resources usage.

Finally, we described and evaluated the performances of a possible application
scenario involving Q-NiGHT. We provide a fault tolerant and load-balanced local-
ization system for services in WSNs. In our scenario, we enable a network made up
of different types of nodes (some of them are normal sensors and some others are
servers) to locate the services provided by the servers and thus to locate the servers
in the network. The system provides a simple solution based on a two-tiers server
system in which some of the sensors act as server-locators storing the position of
the services and the position of the servers providing them. The server-locators are
elected using Q-NiGHT: during the network initialization phase, the servers hash
the name of the services that they provide and store their position in the point re-
turned by the hash function. This operation defines a set of server-locators around
that point. When a sensor needs a service it simply hashes the service name, sends a
query to the server-locator position and as soon as a replay arrives it begins commu-
nicating with the server. This approach is totally generic and can be used to locate
any kind of service provided in a simple and reliable way.

In all this chapter, we used Q-NiGHT pretending to know the correct network
distribution functions, for instance inside the RejectionHash function. This as-
sumption is not realistic but it made simpler the description of Q-NiGHT. Obvi-
ously, we have also addressed the problem of finding out the distribution of a WSN,
which is the central problem for non-uniformly distributed networks. Our research
lead to a system, that we called Stripes. This system is described into the next
chapter.

132 CHAPTER 4. Q-NIGHT: NON-UNIFORMITY AWARE DATA MANAGEMENT

Chapter 5

Stripes: Finding Out Distributions

I’m ten years old. My life is half over and I don’t even know if I’m black with white
stripes or white with black stripes.

- Marty the Zebra (Madagascar, 2005)

Abstract

In the last chapter, we described Q-NiGHT leaving outside our exposition the
way in which our system was able to know the network distribution. In this
chapter, we present Stripes. Stripes is a suite of protocols and algorithms
that can be used to find out the network distribution from a fixed number of
samplings. Moreover, Stripes optimizes energy usage of the network enabling
cached information across the network. Stripes is divided in two equally
important parts: two network density approximation algorithms, that starting
from a limited number of samplings rebuild the density of the whole network
and two protocols that are used to sample the density in the network and to
spread the computed approximation of the density to the nodes of the network
that need such density in normal operations.

In the last chapter, we revised Q-NiGHT. Our description of Q-NiGHT intro-
duced the RejectionHash algorithm to provide data location during load and
store operations. The RejectionHash algorithm needs to know the distribution of
the nodes (or an approximation of it). We deliberately postponed the discussion on
how Q-NiGHT is able to know the network distribution.

In this chapter, we move into the description of the protocols that Q-NiGHT

uses to know the distribution of the nodes in the network. These protocols are
called Stripes and they are proposed to provide an efficient way to reconstruct the
sensors’ distribution starting from a few samples. This protocols family is divided
in two equally important parts.

134 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

The first part rebuilds an approximation of the density of the network starting
from few samples using a two steps algorithm: the first step builds a first approxi-
mation of the density and the second step performs a refinement step that provides
a much better approximation of the network density.

The second part focuses on the dissemination of the sampled densities and of the
density approximation to all the nodes that need it. We proceed using the following
strategy: we start from a very simple (and quite inefficient) broadcast algorithm,
then we move to an on-demand strategy well suited for networks in which few nodes
need to know the network density and, finally, we provide a very efficient protocol
to distribute such information also in networks with a high number of requests.

A note about simulations. In this chapter, as well as in Chapter 4, we make a
large use of simulations to undertand the non-uniformity influence upon networks
and to measure the efficience of Stripes. Again, our simulation environment is a
self-made simulator that is able to deal with large quantity of nodes and all the
experiments are repeated until we achieve a statistical confidence of 95%, with a
precision within 5%.

Chapter organization. This chapter is organized as follows. Section 5.1 presents
the motivations behind the Stripes protocols family. Section 5.2 describes how
Stripes protocols family works and the performance and cost of such protocols.
Finally, section 5.3 draws the conclusions of the research work described in this
chapter.

5.1 Why do we need Stripes?

Non-uniformity introduces new problems that must be addressed in WNSs research.
A non-uniform distribution presents a natural unbalance, for instance in radio in-
terferences, and solutions that well fit the needs of a sub area of the network can be
useless in another. Moreover, as we have seen in Chapter 4, non-uniformity can be
a great source of load unbalance for data storage inside a network.

On top of all the problems brought by the non-uniformity, there is the problem of
finding out the distribution (or an approximation of the distribution) of the network
itself.

This problem is central in the development of non-uniformity resistant solutions.
For instance, without such knowledge Q-NiGHT is unable to perform storage load
distribution in the network throughout the RejectionHash algorithm.

5.2 Stripes

In this section, we present Stripes, which finds out the nodes distribution of a
WSNs starting from a fixed number of samples. Stripes, and it is made up two

5.2. STRIPES 135

orthogonal, and equally important parts.

These two parts are equally important because each of them plays a fundamen-
tal role into the finding out the network density. The algorithm that rebuilds the
density from the samples is crucial to merge up all the samples and to produce the
approximated density. As important as the algorithm used to rebuild the density are
the protocols used to sample the network and to move the computed density around
because they must perform such operation in very efficient way. The efficiency of
such protocols is essential because Stripes is a family of “support” protocols and
they must be used as basements to build up non-uniformity resistant protocols.

Moreover, we designed the two parts to be orthogonal. The algorithm used to
rebuild the density does not need to be used with the protocols presented here to
get the samplings from the network: it is able to work with any other protocol able
to provide density samplings from the network. In a similar way, the protocols used
to sample the density of the network can be used with any other algorithm able to
rebuild the density from samples and not only with the one presented here.

5.2.1 Building blocks

Let us suppose that one node needs to know the WSN density to perform some
task. In this case, the node can do three things: (i) it can guess the density of the
network, (ii) it can wait for some other node to communicate the density of the
network or, (iii) it can query the network to find out the density of the nodes. The
first solution is not really interesting but it is widely used in current protocols and
moreover, the guessed distribution is the uniform one.

In the rest of this chapter, we focus on (ii) and (iii). We call (ii) a passive solution
and (iii) an active solution.

Both solutions can appear in two different versions: the first one, in which the
density is considered static and the other, in which the density is dynamic. In the
case of static density, once the density is computed it is considered to remain the
same for all the network lifetime. In the case of dynamic density, the density is
computed various times during the lifetime of the network. In the dynamic case,
the lifetime of the network can be divided in epochs. At the end of each epoch all
the data used to estimate the density of the network is considered obsolete and our
solutions must find out again the density using new data. The length of an epoch
is system dependent and may vary according to the network usage, environmental
conditions and so on. In the rest of the section we analyze the algorithm and the
protocols in the static case because the dynamic one is only a repetition of the static
one in different epochs.

Watch-points, sentinels and sampled density. Both the active and the passive
solutions use the idea of sentinel. A sentinel is a node that is able to provide infor-
mation about the density in the region it belongs to. Sentinels are related to another
concept: the watch-point.

136 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

d

(a) Watch-points

d

d

(b) Area of interest of a watch-
point

Figure 5.1: Watch-points and the areas approximates by the watch points. (a) shows
the grid distribution of the watch points in the deployment area. (b) shows the watch-
area belonging to the watch-point in the top left part of the deployment area.

A watch-point is a coordinate pair in the deployment area. Watch-points are
distributed in a grid fashion in the network area and represent locations around
which we want to sample the density of the network (Figure 5.1.a). The watch-
points are distant d from each other. The value of d depends only on the number of
watch-points that we want to use to approximate the network density and the size
of the area in which the nodes are deployed. We use the density measured around a
watch-point to approximate the density in a larger area (the watch-areas depicted
in Figure 5.1.b). These sub-areas are squared and non overlapping, with side length
equal to the distance between watch-points (d) and centered on watch-points.

As stated before, a sentinel is a node that is able to provide information about
the density in the region it belongs to. Each watch-area has one sentinel and the
sentinel is the closest node to a watch-area’s watch-point.

We now discuss how each watch-area can elect its sentinel node. When the network
turns on all the nodes check their position. If the distance of a node from a watch-
point if less or equal than r/2 (remember r is the communication range), then the
node can be a possible sentinel for that watch-area.

As depicted in Figure 5.2, where the watch-point is identified by the star symbol
and the candidate sentinel is the dot, if a node is at most at distance r/2 from a
watch-point it is able to communicate to all the other possible candidates and the
sentinel election procedure is very simple: at this time each possible sentinel sends
to its neighbors its own position and ID. The node closest to the watch-point is
the sentinel. If two nodes are at the same distance from a watch-point, the one with
higher ID is the sentinel.

5.2. STRIPES 137

r r/2

Figure 5.2: Sentinel and watch-point distance relation with respect to the communi-
cation range r.

Once the sentinel node is elected, the sentinel node counts the nodes inside its
communication range. The number of the nodes inside the sentinel’s communication
range is the reported density for the corresponding watch-point.

In the case in which no node close is as close as r/2 to a watch-point, the watch-
point is said to be unguarded and the reported density for its watch-area will be
0.

There is an important relation between d and r: it is must be always true that

d ≥ 3r

this is because the sentinel counts how many nodes belongs to the circle or radius r
centered on the sentinel itself. Since a sentinel can be as far as r/2 from its watch-
point, having d < 3r can bring nodes from different areas in the sentinel circle.

Thus, if we want a sentinel to report only the nodes inside its own watch-area,
the watch-area must be greater than the maximum possible distance from a watch-
point, at which a sentinel is able to find, and count, nodes. This implies that the
watch-area side must be greater than 2(r + r/2) = 2(3r/2) = 3r.

Figure 5.3 shows the relationship between d and r. From the picture it is clear
that a smaller d implies that on sentinel can use, to estimate the density, nodes that
belong to other sentinels and/or watch-points.

5.2.2 Moving density around: broadcast, Stripes and Fat-
Stripes

In this section, we discuss how sampled densities from watch-points can be delivered
to other nodes of the network.

138 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

rr r/2 r/2

d

Figure 5.3: Relation between d and r. d must be greater or equal than 3r to guarantee
that a sentinel reports only the nodes inside its own watch-area.

As stated before, there are two different solutions to address the problem of in-
forming the nodes inside the network of its distribution: the passive solution and
the active solution.

In passive solution, each sentinel broadcasts the network density that it found
out in its watch-area to all the nodes inside the network. In the active solution, the
nodes that need to know the network density query the sentinels to know the density
inside each watch-area.

In this section we revise this two solutions. Moreover, for the active solution, we
provide two different protocols: Stripes and Fat-Stripes. Stripes is the first
implementation of the active solution that uses caches to optimize the energy usage.
Fat-Stripes is an optimization of Stripes. Fat-Stripes uses the caches in a
more aggressive way to save even more energy.

5.2.2.1 Passive solution

In the passive solution, a network finds out its own density during a bootstrap phase.

When the network turns on, all the nodes check their position and for each watch-
area sentinel are elected. Once the sentinels election procedure is done and after that
each sentinel has collected the number of nodes to be reported the sentinels broadcast
to every node in the network the pair 〈watch − pointxy, number of nodes〉.

In the case of unguarded watch-areas, no sentinel is elected and no message is
broadcasted. Thus, the absence of messages from a watch-point is interpreted as zero
in the corresponding watch-area. To ensure a correct termination of the network set
up operation, a time out is used in order to prevent that nodes wait for a density
value coming from a particular watch-point forever.

5.2. STRIPES 139

After the reception of the data from the sentinels and after the time out expired,
all the nodes start to rebuild the density of the network according to the algorithm
that will be described in Section 5.2.3.

The cost of the passive protocol (in terms of energy used to communicate the
density) is given by the cost of k broadcasts operations, where k is the number of
sentinels inside the network.

5.2.2.2 Active solution (Stripes)

On the other hand, the active solutions, each node that needs to know the network
density queries the network to have such value. The query operation is performed
sending a message to a watch-point. The sent message will reach the closest point
to the watch-point, that is the sentinel. The sentinel, in turn of the reception of the
query sends back the sampled density to the requester.

In the active protocol, there are two different cases to consider: (i) the node that
queries the network to know the density is the first one attempting to do so and (ii)
the node that do so it is not the first one. We consider the two cases.

A node that needs to know the distribution of the sensors in the network, sends
a message, using GPSR (Karp and Kung, 2000), to each watch-point. The GPSR
protocol finds the closest node to the watch-point (that must be a sentinel if it is
closer than r/2 to the watch-point). In response to the query, the sentinel sends back
to the querier the pair 〈watch − pointxy, number of nodes〉.

If the closest node found by the GPSR perimeter mode, to the watch-point is
much far than r/2, it sends back the pair 〈watch − pointxy, 0〉.

After the reception of the data from the sentinels the node starts to rebuild the
density of the network as described in Section 5.2.3.

In order to improve subsequent queries from nodes traversing the same path,
on the way back to the requester, the pair 〈watch − pointxy, number of nodes〉 is
cached on all the nodes belonging to the path, creating cache stripes across the
network (a stripe for each watch-point).

Consider now what happens when a node queries the watch-point after many
others have done so. As soon as the query message reaches a node belonging to a
cache stripe in a path belonging to a previous query, a reply is sent directly by the
node belonging to the stripe without needing to reach the watch-point. If a node
belonging to a stripe needs to know the density of the network, it simply queries the
watch-points for which it has no cached data.

The idea behind the stripes is that, after some initial queries, a node is able to
find all the data it needs at a few hops of distance from itself. Due to the presence
of cache stripes we call this protocol Stripes.

In order to understand the if our intuition is correct and to measure the real
cost of Stripes we have performed detailed simulations of it. To measure the cost

140 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(a) Uniform

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(b) Gaussian

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(c) Hill

Figure 5.4: Cumulative cost of the Stripes protocol.

5.2. STRIPES 141

we compute the energy (in Joules) spent by the network to collect data from the
watch-points.

The simulations have the following parameters. We simulate the deployment of
5000 nodes in a squared area of size 1000m×1000m. Each node has a communication
range of 30m. We use 9, 16, 25 and 36 watch-points placed in a squared grid fashion.
We distribute nodes using uniform, Gaussian (with σ = 1 and average in the center
of the deployment area) and Hill distributions (stretched to fit the 1000m × 1000m
area). The transmission power is set to 24mW and the receive power to 14.4mW as
in (Havinga et al., 2003). The idle power is set to 0 because we are interested only
in the raw cost of our protocols, without considering the energy spent in idle state.
For each test we generate 5000 requests to find the density: a request for each node
of the network. The order in which the nodes are elected to send the requests is an
uniform permutation of the whole nodes set.

Figure 5.4.a, Figure 5.4.b and Figure 5.4.c show the total energy spent by the
network. These values are presented in a cumulative way: the cost of the qth query
is given by its cost added to the cost of all the previous q − 1 queries.

As we can expect, the total cost of the protocol increases with the number of
queries, but the curve is less step as the number of queries increases. This is due
to cache effect on the length of the routes that must be traversed to find the value
to be returned. The first time that a query is performed it must be routed as close
as possible to the watch-point. The second time a request can stop before reaching
the watch-point because the request has hit a cached density value on a node that
is part of a stripe. This effect increases with the number of queries because more
and more nodes are part of the cache. Moreover, the total cost increases with the
number of watch-points because more queries must be performed in order to get all
the densities from all the watch-areas.

5.2.2.3 A better active solution (Fat-Stripes)

The Stripes experimental results show that the use of caches is able to reduce the
cost of the queries to get the densities from all the watch-areas.

However, we can observe that cache stripes produced by the Stripes protocol
are “thin” stripes. As depicted in Figure 5.5.a, the only nodes that belong to the
stripes are the one used as relay nodes by the GPSR protocol on the way back to
the node that required the density.

A major problem with this approach is that all the nodes that do not actively
cooperate to move data, but still receive the packets spend their energy into the
reception of the message without having any benefit.

This is the key observation for an improvement of Stripes called Fat-Stripes

that works in the same way of Stripes, with only one difference: the nodes that
passively receive a 〈watch − pointxy, number of nodes〉 packet and that are not
involved actively into the communication cache the datum too.

142 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

(a) Stripes (b) Fat-Stripes

Figure 5.5: Nodes that cache the pair 〈watch − pointxy, number of nodes〉 on the
way back of a query.

As depicted in Figure 5.5.b, the cache stripes produced by the Fat-Stripes

protocol are now larger, including all the passive receivers ant the corresponding
cache stripes have become “fat”. The aim of this little improvement is to increase
the number of nodes that do not need to communicate to query the network.

In order to measure the effectiveness of this improvement, we simulated again the
same networks of Section 5.2.2.2.

As did for Stripes, or each test we generate 5000 requests to find the density: a
request for each node of the network. The order in which the nodes are elected to
send the requests is an uniform permutation of the whole nodes set.

Figure 5.6.a, Figure 5.6.b and Figure 5.6.c show the total energy spent by the
network. These values are presented in a cumulative way: the cost of the qth query
is given by its cost and summed to the cost of all the previous q − 1 queries.

The total cost of the protocol increases in a slower way with respect the Stripes

protocol. This is due to the presence of larger stripes. Larger stripes contain nodes
that do not need to communicate to know the density of the network because this
knowledge derives from listening packets that carry that information.

The performance improvement of Fat-Stripes over Stripes is very high: In the
uniform distribution case Fat-Stripes uses less than the 13% of the energy used
by Stripes, in the Gaussian distribution case Fat-Stripes uses less than the 6%
of the energy used by Stripes and in the Hill distribution case Fat-Stripes uses
less than the 10% of the energy used by Stripes. The advantage of Fat-Stripes

over Stripes is more evident in non-uniform distributions because in non-uniform
distributions we have areas in which the nodes are much closer to each other. The

5.2. STRIPES 143

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(a) Uniform

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(b) Gaussian

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

9 Watch-points
16 Watch-points
25 Watch-points
36 Watch-points

(c) Hill

Figure 5.6: Cumulative cost of the Fat-Stripes protocol.

144 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

closer nodes increase the effect of the “fat” stripes because a lot of nodes receive and
cache data without being active relays in the communication. As well as Q-NiGHT,
Fat-Stripes is able to use the non-uniformity of the network as an advantage.

From these results it is evident that the little modification in nodes behavior in-
troduced by the Fat-Stripes protocol with respect to Stripes, brings a very big
improvement in the protocol’s communications cost without increasing the complex-
ity of the original Stripes protocol.

5.2.2.4 Stripes vs. Fat-Stripes

The performance advantage of Fat-Stripes with respect to Stripes is very evident
and it was discussed in Section 5.2.2.3. Fat-Stripes overcomes Stripes in every
cases, requiring a very small number of messages, due to the use of caches.

On the other hand, the use of the caches represents an increase in the memory
usage of the nodes. Every node that receives a sampling message stores the sample,
also if the node will never use it. It is even true that the memory usage to store the
samplings is very limited and with a constan upper bound given by the number of
the watch-points times the size used to represent the value of a sampling.

From the viewpoint of a network designer, the size used to used to represent the
value of a sampling is upper bounded by the number of the nodes inside the network.
For instance, if the maximum number of the nodes that a user can deploy is as large
as N , the bits needed to store the value of a single sampling can be as large as
log(N) + 1: log(N) bits are effectively used to store the cache value and the extra
bit is a flag used to tell if the cache line is a valid value (i.e., a cached sampling) or
a missing value (i.e., a value that is unknown and that must be queried). The same
flag bit is used to invalidate cache lines in the of dynamic densities at the end of
each epoch.

Thus, if we have K watch-points points, the maximum size, in bits, used for the
cached samples is K log(N) + K. For instance, in the case of a network made up
of 100000 nodes and with 25 watch-points, the size of the cache is 450 bits (i.e., 57
bytes).

5.2.3 Density rebuilding algorithm

In both passive and active protocols, once a node gets the number of nodes at each
watch-point, it must rebuild the density of the network, creating a bucket density
structure in which each bucket represents a watch-area.

Here, we propose a simple algorithm to rebuild density. The algorithm acts in two
steps: the first step rebuilds the network density as the the number of nodes reported
in each watch-area by the sentinels over the total number of nodes reported by all
the sentinels and the second step adjusts such values performing a weighted mean
of each watch-area with the neighbor watch-areas.

5.2. STRIPES 145

In the first step (the pseudo-code is presented in Algorithm 3), we reconstruct the
density of each bucket as the fraction of the reported nodes in that bucket over the
total number of nodes reported.

Algorithm 3 RebuildDensity(W)

Require: The set W of messages from watch-points/sentinels.
Ensure: The set D of rebuilt densities.

tot ← 0
for all wi,j ∈ W do

tot ← tot + wi,j.nodes
end for
for all di,j ∈ D ∧ wi,j ∈ W do

di,j ← wi,j/tot
end for

Algorithm 3 acts as following. The number of nodes reported in each watch-area
wi,j are summed up and stored into tot. Then, the approximated density of each
watch-area di,j is computed as the fraction of the nodes reported in such area wi,j

with the total number of nodes tot. In practice, the algorithm assumes that the
total number of the nodes inside the whole network is only the total number of the
reported nodes and that the number of nodes in each watch-area is the only the one
reported by each sentinel.

This approximation can bring to two pathological situations: (i) false zeroes and
(ii) over reported nodes. The false zeroes are reported by areas that have very sparse
nodes, or the nodes are not deployed near the watch-point (for instance in a corner),
and the possible sentinels can be too far from their watch-point and then a zero is
reported when nodes are present. Over reported nodes refers to the opposite problem.
In the case of the over reported nodes, we have that the majority of the nodes in a
watch-area are concentrated near a watch-point and an extra-large number of nodes
is reported.

Figure 5.7 depicts the problem of false zeroes. If we consider the watch-point in
the shaded watch-area, it reports only few (or zero) nodes due to the fact that the
watch-point is located in a low density part of the watch-area. This value is not
indicative of the real quantity of nodes in the watch-area because the majority of
the nodes are located near the left border of the watch-area.

To overcome these two problems, we perform the second step. In the second step
(the pseudo-code is presented in Algorithm 4), we apply a smoothing step to the
density computed by the RebuildDensity algorithm: the computed density for
each watch area is substituted by the weighted average of watch-area density itself
with the computed densities of its neighbors watch-areas.

146 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

Figure 5.7: False zeroes problem.

Algorithm 4 SmoothDensity(D)

Require: The set D of densities.
Ensure: The set D′ of smoothed densities.

for all di,j ∈ D ∧ d′
i,j ∈ D′ do

d′
i,j ← weighted mean of di,j and its neighbors watch − areas

end for

Algorithm 4 works as follows. For each computed density di,j, the algorithm com-
putes the weighted mean of di,j with the ones computed into the 4 neighbor watch-
areas (i.e., di+1,j, di−1,j,di,j+1 and di,j−1). For the areas on the border the 3 neighbor
watch-areas and for the ones in the corners the 2 neighbor watch-areas. In the
weighted mean computation, the value di,j is multiplied by the number of neighbors
watch-areas used to compute the average.

We evaluate the RebuildDensity and of the SmoothDensity algorithms using
simulations.

The simulations have the same parameters of the simulations presented in Sec-
tion 5.2.2.2.

We measure the “fit” of the approximation computing the error in the computed
density with respect to the real one. To compute the error, for each watch-area,
we compute the square of the difference between the real percentage of nodes in
the watch-area and the one computed by our protocol. The error is defined as the
average of the squared of the differences computed for all the watch-areas composing
the network.

The results, depicted in Figure 5.8, show, for each one of the analyzed distribu-
tions, the average of the errors computed for each simulation. We present the average
error for both the Algorithm 3 alone and Algorithm 3 and Algorithm 4 together.

5.2. STRIPES 147

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

493625169

E
rr

or

Watchpoints

uniform
normal

hill

(a) Error after the execution of the RebuildDensity al-
gorithm

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

493625169

E
rr

or

Watchpoints

uniform
normal

hill

(b) Error after the execution of the SmoothDensity al-
gorithm

Figure 5.8: Average error in approximation algorithm. (a) is the error introduced by
the in the RebuildDensity algorithm and (b) is the error after the smoothing step
performed by the SmoothDensity algorithm.

The smoothing step, performed by Algorithm 4, is always effective and lowers the
error in all the cases. However, its effect is more evident when the protocol uses few
watch-points, because a lesser number of watch-points sample very few nodes with
respect to the real number of nodes into the network and the probability to report
false zeroes or over reported nodes is larger. In all cases, the error is very low. As
the number of watch-points increase, the error decreases, and the smoothing step is,

148 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

in turn, less effective, as expected.

From an implementation point of view, the two proposed algorithms are very
simple and can be easily implemented on a sensor. Both algorithms use only sum,
multiplication and division operations that are usually provided by current proces-
sors hardware.

5.2.4 Comparative cost of active and passive protocols

In this section, we compare the costs of the broadcast, the Stripes and the Fat-

Stripes protocols to complete our evaluation of the proposal.

Our comparative evaluation is divided into two parts. The first part provides an
analytical study of the protocol cost and the second one is an experimental study
of such costs.

In the analytical study of the cost, we model both the broadcast and a simpli-
fied version of the Stripes protocol (without using caches) to have a comparative
order of size between a generic passive protocol and a generic active protocol. The
analytical study of the cost measures the cost of the protocols in terms of sent
messages.

In the experimental study of the cost, we perform simulations of all the protocols
and we compare them to study the behavior of the protocols with uniform, Gaussian
and Hill distributions. The experimental study of the cost measures the cost of the
protocols in terms of energy used by the network.

5.2.4.1 Analytical study of the cost

Before going into detailed simulations, we want to explore this issue theoretically. We
assume a simplified setting. The first assumption is related to the fact that we intend
to study networks that are deployed using a fair distribution. The characteristics of
a fair distribution are drawn into the following definition:

Definition 5.2.1 (Fair distribution). A node distribution f is fair if and only if

1. ∀Ai s.t. Ai ∈ domain of f and Ai is non null,
∫

Ai
f(x, y)dxdy > 0.

2. The diameter of the deployed network is close to
√

n, where n is the total
number of deployed nodes.

¤

The first part of the definition states that the nodes could be distributed in all
the deployment area. The second part states that the distribution function of the
network is not too step.

5.2. STRIPES 149

For instance, the uniform distribution is a good example of fair distribution, but
the Gaussian distribution is not.

The study takes into account, for the passive solution, a “good” broadcasts al-
gorithm, that is one that forward the data only once for each node (with a total
number of exchanged messages comparable to n, the size of the network), and for
the active solution does not take into account the effect of the cache stripes.

Let us suppose that in the passive solution all the k sentinels broadcast their data.
The total cost of this operation is

Cp = kn. (5.2.1)

Equation (5.2.1) shows that the cost of the passive protocol is proportional to the
cost of the k broadcasts needed for each sentinel value.

In a fair distribution, the cost of the active solution, for each request, is

Csingle
a = 2k

√
n. (5.2.2)

Equation (5.2.2) shows that the cost of the active protocol for each request is
given by the cost of sending a message to each sentinel that, in the worst case, is at
the largest distance in the network (its diameter) times the number of sentinels. We
must multiply this value by two because, for each query, we need a reply.

The total cost of the active solution depends on the number Q of queries that are
performed

Ca =

Q
∑

i=1

Csingle
a = 2kQ

√
n. (5.2.3)

Equation (5.2.3) shows the total amount of messages sent considering that the
network needs to query Q times the sentinels to know the density.

In the static case, to measure the convenience of a protocol with respect to the
other, we must find when

Cp < Ca

kn < 2kQ
√

n.

The previous relation is satisfied when

Q >

√
n

2
(5.2.4)

Equation (5.2.4) shows that, in the static case, the passive solution is more con-
venient than the active one if the number of queries that the protocol will need is
larger than

√
n/2.

150 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

epoch 1 epoch 2 epoch 3

Passive Cost

Active Cost

Figure 5.9: The convenience of the active protocol with respect to the passive protocol
in the dynamic case.

In the dynamic case, this relation is not valid for all the network lifetime, but it
does hold for each epoch. In this case, we can find a number of queries Q′, for each
epoch, such that the active protocol is always convenient with respect to the passive
one.

As depicted in Figure 5.9, in the dynamic case the cost of the passive protocol
increases at each epoch of the same quantity kn creating a steps-like graph. On
the other hand, the active protocol increases constantly with time, independently
from the epochs. Thus, in the dynamic case, if the number of queries performed by
the protocol, Q′, in each epoch is less than

√
n/2, the cost of the active protocol is

always smaller than the cost of the passive protocol.

5.2.4.2 Experimental study of the cost

This last set of results compares the cost of the active protocols with the cost
of the passive one. Our aim is to spot out the differences between the protocols
presented and to understand the reasons of these differences. Moreover, we compare
the experimental results with the analytical ones to understand better how the
caches can influence the behavior of both Stripes and Fat-Stripes.

We expect a big difference between the experimental results and the analytical
ones due to use of real distributions and caches. Real distributions can be not as
fair as assumed in the theoretical model and caches play an important role in the
cost of the protocols.

In order to compare the tree protocols, we performed simulations with the same
parameters used in Section 5.2.2.2.

5.2. STRIPES 151

Also in this experiment, for each test we generate 5000 requests to find the density:
a request for each node of the network. The order in which the nodes are elected to
send the requests is an uniform permutation of the whole nodes set.

The results that we present in Figures 5.10–5.12 are structured as follows: for each
distribution (uniform, Gaussian and Hill) and for each number of watch-points, we
compare the costs, in terms of energy spent by the passive solution, by Stripes and
by Fat-Stripes.

On the x axis of the charts, we have the number queries and on the y axis, we
have the energy spent by the network. The graph of the energy is presented in a
cumulative way: the cost of the qth query is given by its cost added to the cost of
all the previous q − 1 queries. The cost of the passive solution is independent from
the number of the performed queries, thus it is represented by an horizontal line.

Figures 5.10.(a–d) show the comparative results in the case of uniform distribution
for different numbers of watch-points. In the case of uniform distributions, we can
observe that the total cost of the Stripes protocol (after 5000 queries) is twice the
cost of the passive one because we have that for each point we need to pay for the
query and for the replay. The effect of caches is very evident here. Equation (5.2.4)
suggests that the limit of convenience in the use of Stripes protocol is

√
n/2, that

for n = 5000, is approximatively 35. In our experiments, this value is raised to values
near 1000. The cache effect influenced the protocol efficiency by a factor of 28.

The effect of caches is even more evident in the Fat-Stripes protocol. The pro-
tocol cost is lower than the cost of the other two protocols. This is due to the use
of large cache stripes. In the passive protocol, each node sends the sampled density
one time and all the nodes can receive it multiple times, each time paying the cost
of receiving a message. The Stripes protocol caches values only on relay nodes: all
the nodes that are not in the relay path still spend their energy receiving a message
without the benefit of caching useful information. The Fat-Stripes protocol caches
values in both relay nodes and nodes that passively received replay messages: these
last nodes apply the principle that if they spent energy in receiving a message, it is
convenient to cache information brought by the message, because such knowledge
could be used in the future.

Figures 5.11.(a–d) show the comparative results in the case of Gaussian distribu-
tion for different numbers of watch-points. In the case of Gaussian distributions, we
can observe that the total cost of the Stripes protocol (after 5000 queries) is more
than the double of the passive one. This is due to the fact that Gaussian distribu-
tion is not as fair as uniform distribution. Some watch-points are in sparser regions
of the network (near the borders) and then they have no sentinels. In the case in
which the watch-point is in a border region of the network, GPSR must route the
query all along the external perimeter of the network. This fact increases the total
cost of the protocol that grows faster than in the uniform case. Also in this case,
in despite of the fact of the distribution is not fair, cache stripes do an excellent
job. The Stripes protocol is better than passive one still until 250–300 queries are

152 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

performed, that is a factor 7 with respect to the theoretical result. As in the uniform
case, the Fat-Stripes cost never grows to the level of the passive protocol nor to
the level of the Stripes protocol.

In the case of Gaussian distribution, the external perimeter affects negatively
the cost of Stripes. On the other hand in Fat-Stripes, such long perimeters
becomes an advantage because a lot of sensors, belonging to the external perimeter
of the network, become caches for the replays to all the queries directed outside the
network: less nodes will need to query the network for the density and a cache ring,
around the external perimeter, is able to cache replays for more watch-points.

Figures 5.12.(a–d) show the comparative results in the case of Hill distribution
for different numbers of watch-points. This case is in middle between the uniform
and the Gaussian case. This is due to the fact that Hill distribution is fairer than
the Gaussian one, but less fair than the uniform one. With the Hill distribution
cache stripes work better than Gaussian but worse than uniform. The active pro-
tocol advantage still until 600–700 queries are performed, that is a factor 17 with
respect to the theoretical result. As in the uniform and Gaussian cases, the Fat-

Stripes cost never grows to the level of the passive protocol nor to the level of the
Stripes protocol. In this case, the advantage of external perimeters is less evident
in Fat-Stripes protocol because the distribution is more fair than the Gaussian
distribution.

5.2.
S
T

R
IP

E
S

153

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(a) 9 watch-points

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(b) 16 watch-points

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(c) 25 watch-points

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(d) 36 watch-points

Figure 5.10: Comparative cost of the protocols (uniform case).

154
C

H
A

P
T

E
R

5.
S
T

R
IP

E
S
:
F
IN

D
IN

G
O

U
T

D
IS

T
R

IB
U

T
IO

N
S

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(a) 9 watch-points

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(b) 16 watch-points

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(c) 25 watch-points

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(d) 36 watch-points

Figure 5.11: Comparative cost of the protocols (Gaussian case).

5.2.
S
T

R
IP

E
S

155

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(a) 9 watch-points

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(b) 16 watch-points

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(c) 25 watch-points

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
J)

Queries

Stripes
Fat-Stripes

Passive

(d) 36 watch-points

Figure 5.12: Comparative cost of the protocols (hill case).

156 CHAPTER 5. STRIPES: FINDING OUT DISTRIBUTIONS

5.3 Summary

In this chapter, we focused in finding out the distribution of a network of sensors.

Finding out the density of a network is the most important problem in non-uniform
networks. When we drop the uniformity assumption and we want to deal with non-
uniformly distributed networks, we must find new protocols and systems able to
provide the intended services independently from the distribution of the network.
Some of these systems, such as Q-NiGHT, need to compute the distribution of the
network to provide fair load distribution a good resources usage.

In this chapter, we studied both the problem of density reconstruction starting
from a predefined number of samples, providing a simple but effective algorithm
(and its refinement step too), and the protocols to enable the sensors of the network
to compute the distribution of the nodes.

For this second point, we started from a very simple timed-out broadcast protocol
that spread the sampled density to all the nodes of the network. Then we moved
to a more sophisticated density-on-demand protocol, namely Stripes, that is very
efficient in the case of a low traffic network but it is not so good in high traffic
networks.

To overcome the problem of Stripes with high traffic networks, we provided a
new protocol (Fat-Stripes) that, using an opportunistic caching strategy, is able
to provide density-on-demand in a very efficient way in all traffic conditions.

Conclusions

End? No, the journey doesn’t end here.
- Gandalf (Lord of the Rings)

This is the final chapter of our thesis and now, we are ready to draw the conclusions
of our research work.

In Section C.1, we describe the path throughout the thesis that moved us from
the introduction to its conclusion. In Section C.2, we draw a conclusion motivating
the choices in the development of this thesis. Finally in Section C.3, we present the
possible future work.

C.1 How did we arrive here?

In the Introduction, we pointed out how the networks are the hidden building block
of our world. We presented this concept describing various kinds of networks. We
started from natural networks, showing that nature itself has a network structure
(e.g. preys/predators structure). Then, we moved to human networks pointing out
how our society and its unique features (e.g. nations) are indeed networks. It was
a little step moving from human networks to computer networks because the com-
munication networks are a product of the human society in response to the natural
need for communications. In our review of networks, we ended pointing out that
every kind of communication seems to move naturally to wireless. In other words, in
natural, human and computer networks wireless communications are more flexible
and, as a consequence of this, more practical than other forms of communications.

In Chapter 1 we provided an introduction to WSNs. We pointed out that WSNs
are a recent technology designed for unattended, remote monitoring and control,
which have been successfully employed in several applications. WSNs are designed
to perform environmental data sampling and processing, and to guarantee access of
the processed data to remote users. Moreover, we pointed out that in traditional
WSN models, these tasks consist in transmitting sensed data to a powerful node
(the sink) which performs data analysis and storage.

In Chapter 2, we pointed out how most of the current WSNs research focus on
uniform networks and more specifically on networks in which the sensors are all

158 CHAPTER E. CONCLUSIONS

equals or on networks that are distributed following the uniform distribution. Then,
we showed that in current WSNs research, uniformity is a dogma, a believed true
assumption that no one wants to offend. At this point, we described our point of
view and we showed that uniformity does not exist. Starting from the consideration
that uniformity does not exist, we could only start to study non-uniformity.

In Chapter 3, we provided the description of the state of the art of the data man-
agement in WSNs because all the possible uses of WSNs deal with the idea of data
acquisition and data retrieval. These two concepts are strictly related because data
retrieval is the response to a user query. The user should be able to actively program
the network, via control programs, to retrieve data that is considered useful. In tra-
ditional WSN models these tasks consist in transmitting sensed data to a powerful
node (the sink) which performs data analysis and storage. However these models
resulted unsuitable to keep the pace with technological advances which granted to
WSNs significant (although still limited) processing and storage capabilities. For
this reason recent paradigms for WSNs introduced data base approaches to define
the tasks of data sampling and processing, and the concept of data-centric storage
for efficient data access.

In Chapter 4, we presented our contribution to the non-uniformity in the data
management research field in WSNs. We focused on the the data-centric storage
model and our main contribution in this area is Q-NiGHT. Q-NiGHT originated
by the analysis of the experimental results that we performed on the Geographic
Hash Tables (GHT) approach in non-uniform networks. These results point out the
inability of GHT to provide good results in non-uniformly distributed WSNs. We
revised Q-NiGHT following a top-down approach, defining at the beginning the
whole system, leaving open problems and solving them later in the chapter. At the
end of the chapter we provide also an application scenario in which Q-NiGHT is
used as a building block of a more complex system that enables the networks to
locate special sensor nodes that are able to provide services to other nodes.

Finally, in Chapter 5, we presented Stripes. Stripes is a family of protocols
aimed at finding out the network density starting from a constant number of samples.
Finding out network density is a central problem in non-uniformity aware protocols
and systems. For this reason, the Stripes family of protocols is designed to be not
intrusive i.e., to consume as less energy as possible. Stripes is designed to provide
the network density on demand: when a node needs to know the density of the
network, it queries the sample points (watch-points) to get the local densities and
to reconstruct an approximation of the whole network density. Stripes uses caches
extensively to keep the energy used to sample the network low.

C.2 Drawing a conclusion

We choose to develop our study in the non-uniformity influence into WSNs essen-
tially for one reason: only few people worked on that topic and it seemed exciting

C.2. DRAWING A CONCLUSION 159

to explore something new. And it was exciting.

After an initial study of the general problem, in which we defined non-uniformity
in WSNs (with the classification provided in Chapter 2), we choose to focus on one
particular problem and to analyze that one.

Our choice was the study of non-uniformity in data management in WSNs. Data
management offered a great opportunity to point out two things: (i) the uniformity
assumption/dogma can produce solutions that are not suitable for non-uniformly
distributed networks and (ii) taking non-uniformity into account, we can find general
solutions to solve problems and these solution can be effective both in non-uniform
and in uniform networks.

We started with the analysis of the ill behavior of GHT in non-uniform networks
and we pointed out its design problems. Then, we provided a more general solu-
tion, from the non-uniformity point of view, using a fully generic non-uniform hash
function that was inspired by the non-uniform random number generation using the
rejection method (Q-NiGHT). This solution opened another problem, the problem
of finding out WSNs’ distributions. For this problem, we found an efficient solution
that reconstructs the density starting from few (a fixed number of) samples and we
found a very efficient way to move this knowledge around the network (the Stripes
family of protocols).

The most important thing that we intended to point out, is that GHT (as well
as many other protocols) is not able to deal with non-uniformity because the most
basic design choices are not able to deal with non-uniformity. The original GHT
never looks around to figure out what is the real distribution of the nodes, it simply
assumes that the distribution is uniform. Apart from the QoS support, Q-NiGHT

works exactly as GHT using a different hash function that is more flexible and that
can be used also in uniform networks.

To complete Q-NiGHT and to have a distribution to pass as a parameter to our
hash function, we needed Q-NiGHT to look around to figure out how the nodes
were distributed in the network. We choose to use a simple reconstruction algorithm
based on the sampling of the density from a fixed number of nodes in the network.
The most crucial aspect of the algorithm is how we can get the samplings for the
reconstruction. We wanted this operation to be as efficient as possible, still knowing
that the uniformity assumption costs nothing and that it is not possible to be as
cheap as nothing. To get rid of this problem, the Stripes family of protocols uses an
aggressive caching technique.

As a closing remark on the non-uniformity problem in WSNs, we have to point out
two things: (i) systems are non-uniformity proof by their design (ii) non-uniformity
proof choices can have a reasonable cost.

For the first one, we need to develop a kind of non-uniformity consciousness into
the design procedure of WSNs protocols and we need to take care of a couple of
things in the design process. Every time we need use concepts such as neighbors
number and nodes density in some protocol design step, we need to remember that

160 CHAPTER E. CONCLUSIONS

these concepts can be relative to the position of the nodes in the network and that
nodes position and nodes density will be available only at run time.

For the second one, we need to take into account the problem that finding out the
network density has a cost and that we have to keep it as low as possible. Stripes is a
general solution to find out the network density and it works on the whole network.
Stripes uses caches and fixed sampling points to find out the network density. Both
these two ideas help the protocol to be as efficient as possible.

C.3 Looking to the future

The cave you fear to enter holds the treasure you seek.
- Joseph Campbell

If we think to the possible future developments of the ideas that are presented in
this thesis, we have two things in mind∗: data management and non-uniformity.

In the data management side of the future, we can imagine a lot of development
in the study of non-uniformity proof solutions for the data management problem.
These solutions range from different QoS techniques able to use the non-uniformity
to improve the reliability of the system, up to new hashing techniques that take into
account other factors, such as an estimation of the residual energy of the nodes to
choose the best candidates to store data.

On the other hand, in the non-uniformity side of the future, we can start to work on
other aspects of the non-uniformity influence. We can study the problem of routing
and/or topology control in WSNs taking into account non-uniformity. From the
point of view of the topology control, we started our investigation of non-uniformity
in topology control in (Nidito and Pizziniaco, 2006). In this paper, we study the
problem of the network dimensioning before the deployment of a WSN, taking into
account the problem of deploying a connected network (at least in a particular
region). More studies are on the way. Into an ongoing work, we are studying the
properties of network connectivity in non-uniformly distributed networks.

Network connectivity problem is an interesting theoretical topic in sensor net-
works. In a network whose nodes are randomly deployed in according to a non-
uniform distribution we cannot design the network topology a priori. Many works
study the problem of the critical neighbors number in uniform networks (Santi,
2005,Xue and Kumar, 2004,Blough et al., 2003). The problem can be found in dis-
guised forms too: in (Panchapakesan and Manjunath, 2001) and (Gupta and Kumar,
1998) the problem problem is known as the critical transmitting range. The problem
can be summarized as follows: Let r be the nodes transmitting range, how many
neighbors does a node need to be connected with high probability? If the network is
uniformly distributed (or distributed with a Poisson process), finding this quantity

∗ Or better: we have two main things in mind.

C.3. LOOKING TO THE FUTURE 161

enables us to state if the whole network is connected with high probability or not.
In our work, we will move away from them and we will focus on two main topics: (i)
we will provide a solution that fits the needs of non-uniformly distributed networks
(the old works fit only uniform networks) providing a new mathematical model and
solution to the connectivity problem and (ii) we will provide a Monte Carlo method
to easily compute an approximated solution of the presented mathematical model.
In our work we will show how to find an equation that describes where, in a wireless
network, connectivity is achieved with high probability, given the total number of
deployed nodes n, and their distribution function f .

162 CHAPTER E. CONCLUSIONS

Bibliography

(Akkaya and Younis, 2005) Akkaya, K. and Younis, M. (2005). A survey on routing
protocols for wireless sensor networks. Ad Hoc Networks, 3(3):325–349.

(Akyildiz et al., 2002a) Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci,
E. (2002a). A survey on sensor networks. IEEE Communications Magazine,
40(8):102–114.

(Akyildiz et al., 2002b) Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and
Cayirci, E. (2002b). A survey on sensor networks. IEEE Communications Mag-
azine, 40(8):102–114.

(Akyildiz et al., 2002c) Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and
Cayirci, E. (2002c). Wireless sensor networks: a survey. Computer Networks,
38(4):393–422.

(Al-Karaki, 2004) Al-Karaki, K. (2004). Routing techniques in wireless sensor net-
works: a survey. IEEE Wireless Communications, 11(6):6–28.

(Albano et al., 2006a) Albano, M., Chessa, S., Nidito, F., and Pelagatti, S. (2006a).
Geographic hash tables with QoS in non uniform sensor networks. In ACM
Mobihoc 2006 Poster Proceedings, Firenze, Italy.

(Albano et al., 2006b) Albano, M., Chessa, S., Nidito, F., and Pelagatti, S. (2006b).
Q-NiGHT: Adding QoS to data centric storage in non-uniform sensor networks.
Technical Report TR-06-16, Dipartimento di Informatica, Università di Pisa.

(Albano et al., 2007) Albano, M., Chessa, S., Nidito, F., and Pelagatti, S. (2007).
Q-NiGHT: Adding QoS to data centric storage in non-uniform sensor networks.
In Proceedings of The 8th International Conference on Mobile Data Management
(MDM’07), Mannheim, Germany.

(Aly et al., 2006) Aly, M., Pruhs, K., and Chrysanthis, P. K. (2006). KDDCS: a
load-balanced in-network data-centric storage scheme for sensor networks. In
Proc. of the 15th ACM international conference on Information and knowledge
management, pages 317–326, New York, NY, USA. ACM Press.

164 CHAPTER 0. BIBLIOGRAPHY

(Amato et al., 2005a) Amato, G., Baronti, P., and Chessa, S. (2005a). MaD-WiSe:
Programming and accessing data in a wireless sensor networks. In Proc. of IEEE
Eurocon, pages 300–303, Belgrado, Serbia and Montenegro.

(Amato et al., 2006a) Amato, G., Baronti, P., and Chessa, S. (2006a). MaD-WiSe:
a distributed query processor for wireless sensor networks. Technical Report
2006-TR-39, Istituto di Scienza e Tecnologie dell’Informazione del CNR, Pisa,
Italy.

(Amato et al., 2006b) Amato, G., Baronti, P., Chessa, S., and Masi, V. (2006b).
The stream system: a data collection and communication abstraction for sensor
networks. In Proc. of IEEE International Conference on Systems, Man, and
Cybernetics,, Taipei, Taiwan.

(Amato et al., 2005b) Amato, G., Chessa, S., Conforti, F., Macerata, A., and
Marchesi, C. (2005b). Health care monitoring of mobile patients. Ercim news,
60:6.

(Araujo et al., 2005) Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., and Mitidieri, C.
(2005). CHR: a Distributed Hash Table for Wireless Ad Hoc Networks. In Proc.
of the 25th IEEE International Conference on Distributed Computing Systems
Workshops (ICDCSW’05).

(Arnbak, 1987) Arnbak, J. (1987). Capacity of slotted aloha in rayleigh fading
channels. IEEE Journal On Selected Areas in Communications.

(Bash et al., 2004) Bash, B., Byers, J., and Considine, J. (2004). Approximately
uniform random sampling in sensor networks. Technical Report BUCS-TR-2004-
031, Boston University Department of Computer Science.

(Bejar et al., 2001) Bejar, R., Krishnamachari, B., Gomes, C., and Selman, B.
(2001). Distributed constraint satisfaction in a wireless sensor tracking system.
In Workshop on Distributed Constraints, IJCAI.

(Bentley, 1975) Bentley, J. L. (1975). Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517.

(Bettstetter, 2001) Bettstetter, C. (2001). Smooth is better than sharp: a random
mobility model for simulation of wireless networks. In MSWIM ’01: Proceedings
of the 4th ACM international workshop on Modeling, analysis and simulation of
wireless and mobile systems, pages 19–27, New York, NY, USA. ACM Press.

(Bettstetter, 2004a) Bettstetter, C. (2004a). The cluster density of a distributed
clustering algorithm in ad hoc networks. In Proceeding of the IEEE International
Conference on Communications, ICC 2004, volume 7, pages 4336–4340, Paris,
France.

0.0. BIBLIOGRAPHY 165

(Bettstetter, 2004b) Bettstetter, C. (2004b). On the connectivity of ad hoc net-
works. The Computer Journal, 47(4):432–447. Oxford University Press.

(Blough et al., 2003) Blough, D., Leoncini, M., Resta, G., and Santi, P. (2003). The
k-neigh protocol for symmetric topology control in ad hoc networks. In Proc. of
MobiHoc ’03, Annapolis, MD, USA.

(Bollobas, 1985) Bollobas, B. (1985). Random Graphs. Academic Press.

(Bonnet et al., 2000) Bonnet, P., Gehrke, J., and Seshadri, P. (2000). Querying the
physical world. IEEE Personal Communications, 7(5):10–15.

(Bonnet et al., 2001) Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards sen-
sor database systems. In Proc. of 2nd International Conference on Mobile Data
Management (MDM 2001), pages 3–14, Hong Kong, China.

(Bose et al., 2001) Bose, P., Morin, P., Stoimenovic̀, I., and Urrutia, J. (2001). Rout-
ing with Guaranteed Delivery in Ad Hoc Wireless Networks. Wireless Networks,,
7(6):609–616. Also in Proc. of Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DialM’99), Seattle, Washington,
August 1999, 48–55.

(Buck, 1988) Buck, J. (1988). Synchronous rhythmic flashing of fireflies II. The
Quarterly Review of Biology, 63(3):265–289.

(Bulusu et al., 2000) Bulusu, N., Heidemann, J., and Estrin, D. (2000). ”gps-less
low cost outdoor localization for very small devices. IEEE Personal Communi-
cations Magazine, 7(5):28–34.

(Cao and Abdelzaher, 2004) Cao, Q. and Abdelzaher, T. (2004). Scalable logical
coordinates framework for routing in wireless sensor networks. In Proc. of 25th
IEEE International Real-Time Systems Symposium (RTSS 2004), pages 349–358,
Lisbon, Portugal.

(Caruso et al., 2005) Caruso, A., Chessa, S., De, S., and Urpi, A. (2005). GPS free
coordinate assignment and routing in wireless sensor networks. In Proc. of 24th
Joint Conference of the IEEE Computer and Communications Societies (Infocom
2005), pages 150–160, Miami, FL, USA.

(Cerpa et al., 2001) Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., and
Zhao, J. (2001). Habitat monitoring: Application driver for wireless communi-
cations technology. In Proc. of 1st ACM SIGCOMM Workshop on Data Com-
munications in Latin America and the Carribean, pages 20–41, San Jose, Costa
Rica.

166 CHAPTER 0. BIBLIOGRAPHY

(Cerpa and Estrin, 2002) Cerpa, A. and Estrin, D. (2002). Ascent: Adaptive self-
configuring sensor networks topologies. In Proceedings of Infocom 2002, New
York, NY.

(Chen et al., 2002) Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R. (2002).
Span: an energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks. Wireless Networks, 8(5).

(Chessa et al., 2007) Chessa, S., Nidito, F., and Pelagatti, S. (2007). New Research
on Wireless Communications, chapter Distributed Data Management in Sensor
Networks. Nova Publishers Inc. To be published in 2007.

(Cormen et al., 1990) Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990).
Introduction to Algorithms.

(Desnoyers et al., 2005) Desnoyers, P., Ganesan, D., and Shenoy, P. (2005). TSAR:
A two tier sensor storage architecture using interval skip graphs. In Proc. of of
SenSys’05, San Diego, CA.

(Dorogovtsev and Mendes, 2003) Dorogovtsev, S. and Mendes, J. (2003). Evolution
of Networks: From Biological Nets to the Internet and WWW. Oxford University
Press.

(Dousse et al., 2002) Dousse, O., Thiran, P., , and Hasler, M. (2002). Connectivity
in ad-hoc and hybrid networks. In Proc. of Infocom ’02, volume 2, New York,
NY, USA.

(Fullmer and Garcia-Luna-Aceves, 1997) Fullmer, C. and Garcia-Luna-Aceves, J.
(1997). Solutions to hidden terminal problems in wireless networks. In Pro-
ceedings of the ACM SIGCOMM Conference : Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM-97), pages
39–50, Cannes, France.

(Gao et al., 2005) Gao, T., Greenspan, D., and Welsh, M. (2005). Improving pa-
tient monitoring and tracking in emergency response. In Proc. of International
Conference on Information Communication Technologies in Health.

(Gupta and Kumar, 1998) Gupta, P. and Kumar, P. R. (1998). Critical power for
asymptotic connectivity in wireless networks. In Stochastic Analysis, Control,
Optimization and Applications. Birkhauser, Boston.

(Havinga et al., 2003) Havinga, P. J. M., Etalle, S., Karl, H., Petrioli, C., M. Zorzi,
H. K., and Lentsch, T. (2003). Eyes–energy efficient sensor networks. In Proceed-
ings of PWC 2003, pages 198–201, Venice, Italy.

0.0. BIBLIOGRAPHY 167

(Intanagonwiwat et al., 2000) Intanagonwiwat, C., Govindan, R., and Estrin, D.
(2000). Directed Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proc. of the 6th International Conference on Mobile
Computing and Networking (MobiCom 2000), pages 56–67, Boston, MA, USA.

(Jaromczyk and Toussaint, 1992) Jaromczyk, J. and Toussaint, G. (1992). Relative
neighborhood graphs and their relatives. Proceedings of IEEE, 80(9):1502–1517.

(Ji and Zha, 2004) Ji, X. and Zha, H. (2004). ”sensor positioning in wireless ad-
hoc sensor networks using multidimensional scaling. In Proc. of 23th Annual
Joint Conference of the IEEE Computer and Communications Societies (Infocom
2004), pages 2652–2661, Hong Kong.

(Johnson et al., 2001) Johnson, D., Maltz, D., and Broch, J. (2001). DSR: The dy-
namic source routing protocol for multihop wireless ad hoc networks. In Perkins,
C. E., editor, Ad Hoc Networking, chapter 5, pages 139–172. Addison-Wesley.

(Johnson and Maltz, 1996) Johnson, D. B. and Maltz, D. A. (1996). Dynamic
source routing in ad hoc wireless networks. Mobile Computing, pages 153–181.

(Kaplan, 1996) Kaplan, E. D., editor (1996). Understanding GPS: Principles and
Applications. Artech House, Boston, MA.

(Karp and Kung, 2000) Karp, B. and Kung, H. T. (2000). GPSR: Greedy Perimeter
Stateless Routing for Wireless Networks. In Proc. of the 6th International Con-
ference on Mobile Computing and Networking (MobiCom 2000), pages 243–254,
Boston, MA, USA.

(Kleinrock, 1996) Kleinrock, L. (1996). Nomadicity: Anytime, anywhere in a dis-
connected world. Mobile Networks and Applications (MONET), 1(4):351–357.

(Krishnamachari et al., 2002) Krishnamachari, B., Bejar, R., and Wicker, S. (2002).
Distributed problem solving and the boundaries of self-configuration in multi-hop
wireless networks. In HICSS ’02: Proc. of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02)-Volume 9, page 297.2, Washington,
DC, USA. IEEE Computer Society.

(Lässig et al., 2001) Lässig, M., Bastolla, U., Manrubia, S., and Valleriani, A.
(2001). The shape of ecological networks. Physical Review Letters, 86(19):4418–
4421.

(Lieberman, 1998) Lieberman, P. (1998). Eve Spoke: Human Language and Human
Evolution. W. W. Norton & Company.

(Lin et al., 2003) Lin, M., Kumar, A., Qing, X., Beard, S. J., Russell, S. S., Walker,
J. L., and Delay, T. K. (2003). Monitoring the integrity of filament wound

168 CHAPTER 0. BIBLIOGRAPHY

structures using built-in sensor networks. In Proc. of SPIE – Smart Structures
and Materials 2003: Industrial and Commercial Applications of Smart Structures
Technologies, volume 5054, pages 222–229, San Diego, CA, USA.

(Liu et al., 2003) Liu, J., Zhao, F., and Petrovic, D. (2003). Information-directed
routing in ad hoc sensor networks. In WSNA ’03: Proceedings of the 2nd ACM
international conference on Wireless sensor networks and applications, pages 88–
97, New York, NY, USA. ACM Press.

(Liu et al., 2005) Liu, J., Zhao, F., and Petrovic, D. (2005). Information-directed
routing in ad hoc sensor networks. IEEE journal on selected areas in communi-
cations, 23(4):851–861.

(Madden et al., 2002a) Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong,
W. (2002a). TAG: a Tiny AGgregation service for ad-hoc sensor networks. In
Proc. of 5th Symposium on Operating Systems Design and Implementation (OSDI
2002), Boston, MA, USA.

(Madden et al., 2003) Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong,
W. (2003). The design of an acquisitional query processor for sensor networks.
In Proc. of the 2003 SIGMOD Conference, pages 491–502, San Diego, CA, USA.

(Madden et al., 2002b) Madden, S., Szewczyk, R., Franklin, M. J., and Culler, D.
(2002b). Supporting aggregate queries over ad-hoc wireless sensor networks. In
Proc. of 4th IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 2002), pages 49–58, Callicoon, NY, USA,.

(Malan et al., 2004) Malan, D. J., Welsh, M., and Smith, M. D. (2004). A public key
infrastructure for key distribution in tinyos based on elliptic curve cryptography.
In Proc. of 1st IEEE communications Society Conference on Sensor and Ad-Hoc
Communications and Networks, pages 71–80.

(Marcucci et al., 2005) Marcucci, A., Nati, M., Petrioli, C., and Vitaletti, A. (2005).
Directed diffusion light: low overhead data dissemination in wireless sensor net-
works. In Proc. of Vehicular Technology Conference, VTC 2005-Spring. 2005
IEEE 61st, volume 4, pages 2538–2545.

(Milgram, 1967) Milgram, S. (1967). The small world problem. Psychology Today,
pages 60–67.

(Nagpal et al., 2003) Nagpal, R., Shrobe, H., and Bachrach, J. (2003). Organizing
a global coordinate system from local information on an ad hoc sensor network.
In Proc. of 2nd International Symposium on Information Processing in Sensor
Networks (IPSN 2003), pages 333–348, Paolo Alto, CA, USA.

0.0. BIBLIOGRAPHY 169

(Nasipuri and Li, 2002) Nasipuri, A. and Li, K. (2002). A directionality based loca-
tion discovery scheme for wireless sensor networks. In Proc. of 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications (WSNA 2002),
pages 105–111, Atlanta, GA, USA.

(Neumann, 1951) Neumann, J. V. (1951). Various techniques used in connection
with random digits. In Taub, A. H., editor, John von Neumann, Collected Works,
volume 5, pages 768–770. Pergamon Press, Oxford, Oxford.

(Newsome and Song, 2003) Newsome, J. and Song, D. (2003). GEM: Graph EM-
bedding for Routing and Data-Centric Storage in Sensor Networks Without Geo-
graphic Information. In Proc. of the First International Conference on Embedded
Networked Sensor Systems, pages 76–88, Los Angeles, California, USA.

(Niculescu and Nath, 2003a) Niculescu, D. S. and Nath, B. (2003a). Ad hoc posi-
tioning system (APS) using AOA. In Proc. of 22nd Joint Conference of the IEEE
Computer and Communications Societies (Infocom 2003), pages 1734–1743, San
Francisco, CA, USA.

(Niculescu and Nath, 2003b) Niculescu, D. S. and Nath, B. (2003b). Dv based po-
sitioning in ad hoc networks. Telecommunication Systems, 22(1–4):267–280.

(Nidito et al., 2007) Nidito, F., Battelli, M., and Basagni, S. (2007). Fault-tolerant
and load-balanced localization of services in wireless sensor networks. In Pro-
ceedings of The 66th IEEE Vehicular Technology Conference (VTC2007-Fall),
Baltimore (MD), USA.

(Nidito and Pizziniaco, 2006) Nidito, F. and Pizziniaco, L. (2006). On the dimen-
sioning of ad hoc sensor networks. In 5th Fifth Annual Mediterranean Ad Hoc
Networking Workshop 2006, Lipari, Italy.

(Okabe et al., 1992) Okabe, A., Boots, B., and Sugihara, K. (1992). Spatial Tesse-
lations: Concepts and Applications of Voronoi Diagrams. Wiley.

(Orecchia et al., 2004a) Orecchia, L., Panconesi, A., Petrioli, C., and Vitaletti, A.
(2004a). Localized techniques for broadcasting in wireless sensor networks. In
DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of
mobile computing, pages 41–51, New York, NY, USA. ACM Press.

(Orecchia et al., 2004b) Orecchia, L., Panconesi, A., Petrioli, C., and Vitaletti, A.
(2004b). Localized techniques for broadcasting in wireless sensor networks. In
Proc. of DIALM-POMC ’04, New York, NY, USA. ACM Press.

(Panchapakesan and Manjunath, 2001) Panchapakesan, P. and Manjunath, D.
(2001). On the transmission range in dense ad hoc radio networks. In Proc.
SPCOM ’01.

170 CHAPTER 0. BIBLIOGRAPHY

(Perkins and Royer, 1999) Perkins, C. E. and Royer, E. M. (1999). Ad-hoc on-
demand distance vector routing. In Proc. of the 2nd IEEE Workshop on Mobile
Computer Systems and Applications, New Orleans, LA, USA.

(Rabin, 1989) Rabin, M. O. (1989). Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM, 36(2):335–348.

(Rahnema, 1993) Rahnema, M. (1993). Overview of the GSM system and protocol
architecture. Communications Magazine, IEEE, 31(4):92–100.

(Rao et al., 2003) Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., and Sto-
ica, I. (2003). Geographic routing without location information. In Proc. of
9th International Conference on Mobile Computing and Networking (MobiCom
2003), pages 96–108, San Diego, CA, USA.

(Ratnasamy et al., 2003) Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govin-
dan, R., Yin, L., and Yu, F. (2003). Data-centric storage in sensornets with
GHT, a geographic hash table. Mobile Networks and Applications (MONET),
8(4):427–442.

(Rizzo, 1997) Rizzo, L. (1997). Effective erasure codes for reliable computer com-
munication protocols. ACM Computer Communication Review, 27(2):24–36.

(Santi, 2005) Santi, P. (2005). Topology Control in Wireless Ad Hoc and Sensor
Networks. John Wiley and Sons, Ltd., Chichester, West Sussex, England.

(Santi and Blough, 2002) Santi, P. and Blough, D. (2002). An evaluation of con-
nectivity in mobile ad hoc networks. In Proc. of DSN ’02, Washington, DC,
USA.

(Santi et al., 2001) Santi, P., Blough, D., and Vainstein, F. (2001). A probabilis-
tic analysis for the range assignment problem in ad hoc networks. In Proc. of
MobiHoc ’01, Long Beach, CA, USA.

(Savvides et al., 2001) Savvides, A., Han, C., and Strivastava, M. B. (2001). Dy-
namic fine-grained localization in adhoc networks of sensors. In Proc. of 7th In-
ternational Conference on Mobile Computing and Networking (MobiCom 2001),
pages 166–179, Rome, Italy.

(Seada and Helmy, 2006) Seada, K. and Helmy, A. (2006). Efficient and robust
geocasting protocols for sensor networks. Computer Communications, 29(2):151–
161.

(Seybold, 2005) Seybold, J. (2005). Introduction to RF Propagation. Wiley-
Interscience.

0.0. BIBLIOGRAPHY 171

(Shah et al., 2003) Shah, R., Roy, S., Jain, S., and Brunette, W. (2003). Data
MULEs: Modeling a three-tier architecture for sparse sensor networks. In Pro-
ceedings of IEEE SNPA Workshop.

(Shang and Ruml, 2004) Shang, Y. and Ruml, W. (2004). Improved MDS-based
localization. In Proc. of 23th Joint Conference of the IEEE Computer and Com-
munications Societies (Infocom 2004), pages 2640–2651, Hong Kong.

(Srivastava et al., 2001) Srivastava, M., Muntz, R., and Potkonjak, M. (2001).
Smart kindergarten: Sensor-based wireless networks for smart developmental
problem-solving environments. In Proc. of 7th International Conference on Mo-
bile Computing and Networking (MobiCom 2001), pages 132–138, Rome, Italy.

(Steere et al., 2000) Steere, D. C., Baptista, A., McNamee, D., Pu, C., and Walpole,
J. (2000). Research challenges in environmental observation and forecasting sys-
tems. In Proc. of 6th International Conference on Mobile Computing and Net-
working (MobiCom 2000), pages 292–299, Boston, MA, USA.

(Szewczyk et al., 2004) Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J.,
and Culler, D. (2004). An analysis of a large scale habitat monitoring application.
In Proc. of 2nd International Conference on Embedded Networked Sensor Systems
(SenSys 2004), pages 214–226, Baltimore, MD, USA.

(Tilak et al., 2003) Tilak, S., Murphy, A., and Heinzelman, W. (2003). Non-uniform
information dissemination for sensor networks. Proceedings of the 11th Interna-
tional Conference on Network Protocols (ICNP03), Atlanta, GA, USA.

(Wang et al., 2003) Wang, H., Elson, J., Girod, L., Estrin, D., and Yao, K. (2003).
Target classification and localization in habitat monitoring. In Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2003), pages 844–847, Hong Kong.

(Ware et al., 2001) Ware, C., Chicharo, J., and Wysocki, T. (2001). Modelling of
capture behaviour in ieee 802.11 radio modems. In Proceedings of IEEE Vehicular
Technology Conference, Atlantic City, NJ.

(Watts, 1999) Watts, D. (1999). Small worlds: the dynamics of networks between
order and randomness. Princeton.

(Watts, 2003) Watts, D. (2003). Six degrees: The science of a connected age. WW
Norton.

(Xu et al., 2001) Xu, Y., Heidemann, J., and Estrin, D. (2001). Geography-informed
energy conservation for ad hoc routing. In Proceedings of the 7th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom), pages
70–84, Rome, Italy. ACM.

172 CHAPTER 0. BIBLIOGRAPHY

(Xue and Kumar, 2004) Xue, F. and Kumar, P. R. (2004). The number of neighbors
needed for connectivity of wireless networks. Wireless Networks, 10(2).

(Yao and Gehrke, 2002) Yao, Y. and Gehrke, J. (2002). The Cougar Approach to
In-Network Query Processing in Sensor Networks. SIGMOD Record, 31(3):9–18.

(Ye et al., 2002) Ye, W., Heidemann, J., and Estrin, D. (2002). An energy-efficient
MAC protocol for wireless sensor networks. In Proceedings of Infocom 2002, New
York. IEEE.

(Ye et al., 2004) Ye, W., Heidemann, J., and Estrin, D. (2004). Medium access con-
trol with coordinated, adaptive sleeping for wireless sensor networks. IEEE/ACM
Transactions on Networking, 12(3):493–506.

(Zhao and Guibas, 2004) Zhao, F. and Guibas, L. (2004). Wireless Sensor Networks
An Information Processing Approach. Morgan Kaufman Publisher, S. Francisco.

(Zhou et al., 2005) Zhou, F., Chen, G., and Xu, Y. (2005). Construction of small
worlds in the physical topology of wireless networks. CoRR, abs/cs/0503051.

