2,049 research outputs found

    Extending Similarity Measures of Interval Type-2 Fuzzy Sets to General Type-2 Fuzzy Sets

    Get PDF
    Similarity measures provide one of the core tools that enable reasoning about fuzzy sets. While many types of similarity measures exist for type-1 and interval type-2 fuzzy sets, there are very few similarity measures that enable the comparison of general type-2 fuzzy sets. In this paper, we introduce a general method for extending existing interval type-2 similarity measures to similarity measures for general type-2 fuzzy sets. Specifically, we show how similarity measures for interval type-2 fuzzy sets can be employed in conjunction with the zSlices based general type-2 representation for fuzzy sets to provide measures of similarity which preserve all the common properties (i.e. reflexivity, symmetry, transitivity and overlapping) of the original interval type-2 similarity measure. We demonstrate examples of such extended fuzzy measures and provide comparisons between (different types of) interval and general type-2 fuzzy measures.Comment: International Conference on Fuzzy Systems 2013 (Fuzz-IEEE 2013

    Fuzzy heterogeneous neural networks for signal forecasting

    Get PDF
    Fuzzy heterogeneous neural networks are recently introduced models based on neurons accepting heterogeneous inputs (i.e. mixtures of numerical and non-numerical information possibly with missing data) with either crisp or imprecise character, which can be coupled with classical neurons. This paper compares the effectiveness of this kind of networks with time-delay and recurrent architectures that use classical neuron models and training algorithms in a signal forecasting problem, in the context of finding models of the central nervous system controllers.Peer ReviewedPostprint (author's final draft

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    Event Discovery and Classification in Space-Time Series: A Case Study for Storms

    Get PDF
    Recent advancement in sensor technology has enabled the deployment of wireless sensors for surveillance and monitoring of phenomenon in diverse domains such as environment and health. Data generated by these sensors are typically high-dimensional and therefore difficult to analyze and comprehend. Additionally, high level phenomenon that humans commonly recognize, such as storms, fire, traffic jams are often complex and multivariate which individual univariate sensors are incapable of detecting. This thesis describes the Event Oriented approach, which addresses these challenges by providing a way to reduce dimensionality of space-time series and a way to integrate multivariate data over space and/or time for the purpose of detecting and exploring high level events. The proposed Event Oriented approach is implemented using space-time series data from the Gulf of Maine Ocean Observation System (GOMOOS). GOMOOS is a long standing network of wireless sensors in the Gulf of Maine monitoring the high energy ocean environment. As a case study, high level storm events are detected and classified using the Event Oriented approach. A domain-independent ontology for detecting high level xvi composite events called a General Composite Event Ontology is presented and used as a basis of the Storm Event Ontology. Primitive events are detected from univariate sensors and assembled into Composite Storm Events using the Storm Event Ontology. To evaluate the effectiveness of the Event Oriented approach, the resulting candidate storm events are compared with an independent historic Storm Events Database from the National Climatic Data Center (NCDC) indicating that the Event Oriented approach detected about 92% of the storms recorded by the NCDC. The Event Oriented approach facilitates classification of high level composite event. In the case study, candidate storms were classified based on their spatial progression and profile. Since ontological knowledge is used for constructing high level event ontology, detection of candidate high level events could help refine existing ontological knowledge about them. In summary, this thesis demonstrates the Event Oriented approach to reduce dimensionality in complex space-time series sensor data and the facility to integrate ime series data over space for detecting high level phenomenon

    Fuzzy investment decision support for brownfield redevelopment

    Get PDF
    Tato disertační práce se zaměřuje na problematiku investování a podporu rozhodování pomocí moderních metod. Zejména pokud jde o analýzu, hodnocení a výběr tzv. brownfieldů pro jejich redevelopment (revitalizaci). Cílem této práce je navrhnout univerzální metodu, která usnadní rozhodovací proces. Proces rozhodování je v praxi komplikován též velkým počet relevantních parametrů ovlivňujících konečné rozhodnutí. Navržená metoda je založena na využití fuzzy logiky, modelování, statistické analýzy, shlukové analýzy, teorie grafů a na sofistikovaných metodách sběru a zpracování informací. Nová metoda umožňuje zefektivnit proces analýzy a porovnávání alternativních investic a přesněji zpracovat velký objem informací. Ve výsledku tak bude zmenšen počet prvků množiny nejvhodnějších alternativních investic na základě hierarchie parametrů stanovených investorem.This dissertation focuses on decision making, investing and brownfield redevelopment. Especially on the analysis, evaluation and selection of previously used real estates suitable for commercial use. The objective of this dissertation is to design a method that facilitates the decision making process with many possible alternatives and large number of relevant parameters influencing the decision. The proposed method is based on the use of fuzzy logic, modeling, statistic analysis, cluster analysis, graph theory and sophisticated methods of information collection and processing. New method allows decision makers to process much larger amount of information and evaluate possible investment alternatives efficiently.

    Extending similarity measures of interval type-2 fuzzy sets to general type-2 fuzzy sets

    Get PDF
    Similarity measures provide one of the core tools that enable reasoning about fuzzy sets. While many types of similarity measures exist for type-1 and interval type-2 fuzzy sets, there are very few similarity measures that enable the comparison of general type-2 fuzzy sets. In this paper, we introduce a general method for extending existing interval type-2 similarity measures to similarity measures for general type-2 fuzzy sets. Specifically, we show how similarity measures for interval type-2 fuzzy sets can be employed in conjunction with the zSlices based general type-2 representation for fuzzy sets to provide measures of similarity which preserve all the common properties (i.e. reflexivity, symmetry, transitivity and overlapping) of the original interval type-2 similarity measure. We demonstrate examples of such extended fuzzy measures and provide comparisons between (different types of) interval and general type-2 fuzzy measures

    Fuzzy spectral clustering methods for textual data

    Get PDF
    Nowadays, the development of advanced information technologies has determined an increase in the production of textual data. This inevitable growth accentuates the need to advance in the identification of new methods and tools able to efficiently analyse such kind of data. Against this background, unsupervised classification techniques can play a key role in this process since most of this data is not classified. Document clustering, which is used for identifying a partition of clusters in a corpus of documents, has proven to perform efficiently in the analyses of textual documents and it has been extensively applied in different fields, from topic modelling to information retrieval tasks. Recently, spectral clustering methods have gained success in the field of text classification. These methods have gained popularity due to their solid theoretical foundations which do not require any specific assumption on the global structure of the data. However, even though they prove to perform well in text classification problems, little has been done in the field of clustering. Moreover, depending on the type of documents analysed, it might be often the case that textual documents do not contain only information related to a single topic: indeed, there might be an overlap of contents characterizing different knowledge domains. Consequently, documents may contain information that is relevant to different areas of interest to some degree. The first part of this work critically analyses the main clustering algorithms used for text data, involving also the mathematical representation of documents and the pre-processing phase. Then, three novel fuzzy versions of spectral clustering algorithms for text data are introduced. The first one exploits the use of fuzzy K-medoids instead of K-means. The second one derives directly from the first one but is used in combination with Kernel and Set Similarity (KS2M), which takes into account the Jaccard index. Finally, in the third one, in order to enhance the clustering performance, a new similarity measure S∗ is proposed. This last one exploits the inherent sequential nature of text data by means of a weighted combination between the Spectrum string kernel function and a measure of set similarity. The second part of the thesis focuses on spectral bi-clustering algorithms for text mining tasks, which represent an interesting and partially unexplored field of research. In particular, two novel versions of fuzzy spectral bi-clustering algorithms are introduced. The two algorithms differ from each other for the approach followed in the identification of the document and the word partitions. Indeed, the first one follows a simultaneous approach while the second one a sequential approach. This difference leads also to a diversification in the choice of the number of clusters. The adequacy of all the proposed fuzzy (bi-)clustering methods is evaluated by experiments performed on both real and benchmark data sets
    corecore