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Recent advancement in sensor technology has enabled the deployment of wireless 

sensors for surveillance and monitoring of phenomenon in diverse domains such as 

environment and health. Data generated by these sensors are typically high-dimensional 

and therefore difficult to analyze and comprehend. Additionally, high level phenomenon 

that humans commonly recognize, such as storms, fire, traffic jams are often complex and 

multivariate which individual univariate sensors are incapable of detecting. This thesis 

describes the Event Oriented approach, which addresses these challenges by providing a 

way to reduce dimensionality of space-time series and a way to integrate multivariate 

data over space and/or time for the purpose of detecting and exploring high level events. 

The proposed Event Oriented approach is implemented using space-time series data from 

the Gulf of Maine Ocean Observation System (GOMOOS). GOMOOS is a long standing 

network of wireless sensors in the Gulf of Maine monitoring the high energy ocean 

environment. As a case study, high level storm events are detected and classified using 

the Event Oriented approach. A domain-independent ontology for detecting high level 
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composite events called a General Composite Event Ontology is presented and used as a 

basis of the Storm Event Ontology. Primitive events are detected from univariate sensors 

and assembled into Composite Storm Events using the Storm Event Ontology. To 

evaluate the effectiveness of the Event Oriented approach, the resulting candidate storm 

events are compared with an independent historic Storm Events Database from the 

National Climatic Data Center (NCDC) indicating that the Event Oriented approach 

detected about 92% of the storms recorded by the NCDC. 

The Event Oriented approach facilitates classification of high level composite event. In 

the case study, candidate storms were classified based on their spatial progression and 

profile. Since ontological knowledge is used for constructing high level event ontology, 

detection of candidate high level events could help refine existing ontological knowledge 

about them. 

In summary, this thesis demonstrates the Event Oriented approach to reduce 

dimensionality in complex space-time series sensor data and the facility to integrate ime 

series data over space for detecting high level phenomenon. 
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Chapter 1 

INTRODUCTION 

 

Time series are a common form of data sequences found in signal processing, 

econometrics, mathematical finance, and environmental and health monitoring. With the 

advent of numerous and widely deployed sensor monitoring systems and particularly 

wireless sensor networks (WSN), time series are becoming increasingly common and 

with the added characteristic that they are spatially distributed. Wireless Sensor Networks 

are generating large and unprecedented volumes of spatio-temporal data at fine temporal 

granularities. Space-time series refers to time series having spatial and temporal 

components. For example, each node in a sensor network typically generates a localized 

view of space in the form of time series with different locations. The space-time series 

data can provide benefits for scientific investigation of phenomena but also create new 

challenges. Generating large volumes of data presents the problem of converting data into 

meaningful and understandable information, which can effectively contribute to scientific 

investigation, problem solving, and decision making. Spatio-temporal data is typically 

high-dimensional and can be difficult to analyze and comprehend. New approaches are 

needed to cope with these growing volumes of data and convert them into understandable 

information. This thesis presents an Event Oriented (EO) approach that seeks to make 

large volumes of times series data more understandable by abstracting the time series 

data to events and making events the primary unit of analysis. 



2 
 

Standard time series analysis methods address the detection of patterns in time series 

where patterns consist of an identifiable set of systematic components and random noise 

or error. The systematic components can include trend, seasonal, and cyclical 

components and "classic" methods that decompose time series and Census methods have 

been around since the 1920s (Makridakis, Wheelwright, & McGee, Forecasting, 1983; 

Makridakis & Wheelwright, Forecasting methods for management, 1989). The EO 

approach differs from the traditional time series methods because the focus is more on the 

transient signals in the times series than on the systematic signals. The transient signals, 

assuming they can be distinguished from noise, are a potential phenomenon of interest 

which has not been routinely addressed. 

Various approaches particularly in the field of Data Mining and Knowledge Discovery 

(DMKD) have also focused on converting high dimensional, complex data such as time 

series into understandable information (Ultsch, A method for temporal knowledge 

conversion, 1999; Hoppner, Discovery of core episodes from sequences, 2002). 

Knowledge Discovery (KDD) has been loosely described as ‗methods and techniques for 

making sense of data‟  (Fayyad, Piatetsky, & Padhraic, 1996), and so by definition, 

results of KDD are expected to be ‗more compact..., more abstract..., or more useful and 

understandable‘. The EO approach is a form of KDD, as resulting events have the 

characteristics of more compact, more abstract, and potentially more useful and 

understandable forms of information.  

We demonstrate the workings of the EO approach in the context of detecting high-level 

storm events from sensor data streams collected by the Gulf of Maine Ocean Observing 
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System. This chapter contains the overall outline for the work, motivation, problem 

statement, definition of terms, and research objectives. 

 

1.1 Motivation 

Recent advancements in sensor technology have made sensors suitable for applications 

involving monitoring, detection, and surveillance. Sensor devices monitor the 

environment by producing a measurable response to changes in the physical 

surroundings. Monitoring of multiple physical quantities, i.e., parameters in the 

environment, produce multivariate data. Use of WSNs and their spatio-temporal aspects 

thus add dimensionality to the data. Sensors are deployed mainly in two ways: 1) far from 

actual phenomenon e.g., remote sensing, and 2) very close or embedded in the monitored 

phenomenon (Intanagonwiwat, Govindan, & Estrin, 2000; Akyildiz, Su, 

Sankarasubramaniam, & Cayirci, 2002). In both cases, sensors monitor an activity 

phenomena or identify target occurrences within some spatial setting. 

Data collected over time using sensors are most often represented as a time series. 

Mining time series for interesting occurrences has been a major area of research for 

several years across many disciplines (Allan, Papka, & Lavrenko, 1998; Guralnik & 

Srivastava, 1999; Padmanabhan & Tuzhilin, 1996). Most data mining techniques focus 

on analyzing time series with the goal of predicting future interesting occurrences in 

univariate (Weigend & Gershenfeld, 1994; Fawcett & Provost, 1999) and multivariate 

time series (Hoppner, Learning dependencies in multivariate time series, 2002; Morchen, 

Time series feature extraction for data mining using DWT and DFT, 2003). However, a 

gap exists between high-level cognitive events which humans can recognize and the 
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events detectable from sensor time series. In this work, we will refer to the events that 

humans can cognitively identify as high-level events, whereas the low-level or primitive 

events refer to constructs closer to the parent sensor time series with one or two levels of 

processing or aggregation. Low level events are referred to as primitive events in the 

reminder of this thesis and these terms are developed further in subsequent chapters. 

High-level phenomena that humans commonly recognize as events are often complex 

multivariate phenomena that individual univariate sensors are incapable of detecting. 

Humans, through their accumulated knowledge, are adept at recognizing events such as 

storms, fires, disease outbreaks or traffic congestion. In general, individual sensors will 

not be able to detect such high-level and multivariate events as they evolve through time 

and space. However, they can detect components (spatial, temporal or thematic parts) of 

these events, and with sufficient domain knowledge, information from separate univariate 

sensors can be integrated spatially and temporally to identify high-level events of interest. 

Knowledge discovery methods described in the literature address some aspects of this 

problem by using techniques such as time series segmentation or time series clustering 

and classification. Few, however, address the problem of considering multiple time series 

over space. Moreover, these types of data mining methods are typically directed towards 

discovery of unknown patterns in the data. Therefore, existing methods in the literature 

are not yet sufficient to effectively integrate and synthesize multivariate data for 

identification and characterization of high-level events.  

Claramunt and Theriault (Claramunt & Theriault, 1995) have suggested that a temporal 

GIS needs to be capable in ways that support monitoring and analysis of successive states 

of spatial entities. The EO approach provides a model for such successive states through 
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primitive events and assembly of these into composite events. The proposed EO approach 

provides a method for reducing dimensionality in data while providing building blocks of 

observable system states and facilitating integration of temporal states over space. The 

EO approach is illustrated using GOMOOS data to detect storm events as an example of 

high-level events. A storm event is a meteorological event that humans cognitively 

recognize using their knowledge and senses. To attain the goals of the EO approach, this 

thesis takes a two tier approach. First, simple patterns or states are identified within 

individual time series in a manner similar to many other time series data mining and 

feature detection methods. The second step identifies and assembles high-level events 

from the primitive events based on specification of a high-level event ontology. A high-

level event ontology is a conceptual representation of the high-level event that specifies   

its structure in terms of primitive events. 

 

1.2 Problem Statement 

In general, the problem addressed by this thesis is a spatio-temporal data mining problem. 

The specific objective is to identify and characterize a high-level event such as a storm 

from a set of sensor time series distributed in space. A typical characteristic of this setting 

is that temporal resolution is high and spatial resolution is relatively coarse. The problem 

has analogies to spatial feature extraction from images and temporal feature extraction 

from time series. The feature of interest in this context is an event with spatial properties 

(e.g. spatial extent) that is evolving over time. The setting includes sets of sensor nodes 

distributed in space with each observing one or more parameters on regular time 

intervals. Any one sensor node location may see partial evidence of the high-level event 
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but not a complete picture. Two approaches might be considered for this problem. One is 

to monitor each time series separately and check for high-level event signals at each 

location. The other is to combine and process a collection of signals synoptically. Several 

methods exist to monitor time series and detect events, some of which are parallel and 

some consensus based, but as Neill (Neill, 2009), indicates, these methods do not account 

for the spatial context of the event detection problem. The time series either have no 

relevant spatial location (e.g., financial) or are processed independently of space (e.g., 

industrial process time series). 

Machine learning approaches have used one or more time series from a single location 

but do not typically address the discovery of spatio-temporal features over time series 

from multiple locations. Spatio-temporal scan statistics detect events by searching for 

spatio–temporal clustering of a single type of event e.g., an Emergency Department visit 

(Kulldorff, 1997; Neill, 2009). The approach developed in this thesis is to first define sets 

of domain independent primitive events which describe basic states or changes in the 

state of a parameter and serve as building blocks for assembling high-level events. We 

assume that a posteriori knowledge exists for the high-level event, that it has 

characteristics that are detectable using available sensors, and that its constituent 

components are expressible in an ontology. Ontologies, were chosen because of their 

ability to formaly express concepts, relations and rules of the high-level event. 

We chose to detect storms because a posteriori knowledge about temporal patterns and 

the role of low pressure system in formation of storms is well documented within the 

domain of meteorology. For example, the National Weather Service glossary defines a 

cyclone as large scale circulation of winds around a central region of low atmospheric 



7 
 

pressure. It has been well understood by meteorologists that formation of a low pressure 

point within the atmospheric system causes wind flow resulting in storms. Since 

barometric pressure is a vital indicator of storm dynamics, we call it a marker parameter. 

In this thesis, the term marker parameter indicates a sensor-readable parameter that is 

sensitive to the advent, progress and termination of a high-level event. 

Given a set of multivariate sensor nodes generating time series that cover a region, the 

steps involved in the EO approach are as follows. 

1. Specify an ontology for the high-level event in terms of composition of 

primitive events 

2. Detect constituent primitive events from univariate time series using 

abstraction functions. 

3. Assemble constituent primitive events into composite events according to 

event-event relationships specified by the high-level event ontology. 

The resulting high-level composite events could be compared to an independent source, 

thereby evaluating the effectiveness of the approach. The high-level composite events 

could be further processed to classify them in various ways, e.g., on the basis of 

constituent primitive events and their characteristics. After detecting storms, presented as 

a case-study in the later part of the thesis, they are classified into several classes. 

Ideally, an outcome of this approach is new ontological knowledge about the high-level 

event creating a feedback loop. Figure 1.1 shows such a feedback loop in which available 

ontological knowledge about the high-level event may be refined by using the 

abstractions of sensor data in the EO approach as evidence. 
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Figure 1.1 Refinement of posterior event knowledge expressed in an ontology 

through new empirical data obtained from sensors 

 

1.3 Data Formats, Terms and Definitions 

To set the scene for this approach, this section introduces key terms and concepts that 

will be used throughout the thesis. To describe abstraction of high-level concepts from 

time series data, this thesis makes use of Shahar‘s temporal abstraction framework 

(Shahar, 1997). 

 

1.3.1 Time Series 

According to Tufte, “The time-series plot is the most frequently used form of graphic 

design. With one dimension marching along to the regular rhythm of seconds, minutes, 

High-level Event 

Ontology 

Knowledgebase 
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Sensor 

Data 
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hours, days, weeks, months, years, or millennia, the natural ordering of the time scale 

gives this design a strength and efficiency of interpretation found in no other graphic 

arrangement.” (Tufte, 1983) 

The Engineering Statistics Handbook describes time series as an ordered sequence of 

values of a parameter at equally spaced time intervals. A parameter is a measurable 

aspect of a phenomenon e.g., wind speed, barometric pressure, air temperature etc., 

obtainable from a sensor. In this thesis, a time series is the output from a sensor observing 

a parameter in a specified spatial setting at regular time interval where each observed 

value of the parameter is associated with a time stamp. A sensor platform is assumed to 

have a fixed location and thus the generated time series are associated with fixed three 

dimensional locations. Multiple time series may be collected on the same parameter at 

different locations in the same time frame. For example Figure 1.2 shows several time 

series plots of the parameter, barometric pressure, obtained from moored ocean buoys 

deployed at different locations. Each buoy generates a different time series for the 

parameter based on a common time interval. Additionally multiple time series may be 

collected on different parameter at the same locations in the same time frame (e.g. air 

temperature and wind speed and barometric pressure are each collected at the same 

location). 

There are two types of time series: discrete and continuous. A time series is said to be 

‗discrete‘ when observations are taken only at specific times and ‗continuous‘ when 

observations are continuous in time. This thesis deals exclusively with discrete time 

series. The interval on which an observation is made defines the granularity of the time 

series. Integration of time series with multiple granularities is beyond the scope of this 
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thesis. This thesis assumes time series of the same granularity although this is not a 

constraint on the approach. From previous literature on time series analysis, two main 

purposes can be identified: (i) understanding and modeling the stochastic mechanisms 

that give rise to the observed series and (ii) predicting the future values of a series based 

on the history and other related series or factors. We assume that the time series is 

stochastic; that is the future may only be partially dependent on past behavior. The scope 

of this thesis is limited to explaining and describing behavior of the observed stochastic 

mechanisms; through detection and classification of events embedded in the time series. 

 

Figure 1.2 Time series plots of barometric air pressure at certain buoy locations 

between date-time interval [03-28-2005 00:00] to [03-31-2005 00:00] 
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1.3.2 Events 

In this thesis, events are basic spatio-temporal entities and the basis for the EO approach. 

It is therefore important to note that this definition of event may differ from other 

definitions found in the literature such as Chakravarthy where events correspond to 

database operations (Chakravarthy, Krishnaprasad, Anwar, & Kim, 1994); in Grenon and 

Smith where events are purely instantaneous temporal entities (Grenon & Smith, 2004) or 

Shahar (Shahar, 1997) who defines an event purely in terms of external volitional action. 

The Basic Formal Ontology (BFO), a widely accepted theory of the basic structures of 

reality, endorses a view of the world containing Occurrents and Processes (Bittner & 

Smith, 2003). According to this view, Occurrents are bound in time whereas Processes 

persist (perdure) in time. The BFO describes events as entities which exhaust themselves 

in single instances of time.  

In this thesis, events can be instantaneous or have duration. Therefore, they are 

conceptually similar to Occurrents in the BFO. We consider two distinct sets of events: 

high-level events called composite events and low-level events called primitive events. A 

primitive event is an abstraction from a univariate time series indicating a change in one 

parameter as observed by a time series. A ‗rise in wind speed‘ is an example of a 

primitive event as it represents a change in a single parameter. High-level events may 

have two conceptualizations; one as a gestalt view in which the whole pattern of a 

physical, biological, or psychological phenomena is so integrated as to constitute a 

functional unit with properties not derivable by summation of its parts, versus a partitive 

view in which the high-level event is derived by composition from component parts and 

its individual factors are understood as contributing to an understanding of the 
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phenomena. From a partitive view, high-level events such as storms, forest fires, traffic 

congestion etc., can be seen as assemblies of primitive events. In this thesis, a composite 

event is assumed to be formed from several primitive events of the same type and 

parameter or more commonly from primitive events of different types and parameters. 

 

1.3.3 Primitive Events 

Primitive events are univariate entities and the first level of abstraction from sensor time 

series. A primitive event can be seen as a qualitatively significant change in the behavior 

of a dynamic phenomenon (Guralnik & Srivastava, 1999) or as representative of a 

particular state of a phenomenon. In this thesis, a primitive event represents an 

observable state of a parameter, where a parameter has several possible observable 

states. Time series are converted into these states S; where each such state represents a 

property that holds true during an temporal interval [t1, t2] defined by a beginning and 

ending time stamp. Shahar describes the process of abstraction of time series in terms of 

abstraction functions, unary or multi-argument functions from one or more parameters 

into a sequence of abstract states (Shahar, 1997). These abstract states correspond to 

primitive events as defined in this thesis. Primitive events as outputs of abstraction 

functions, are characterized by abstraction types e.g. value state, gradient, or rate. For 

example, a primitive event, obtained from a time series on the parameter barometric 

pressure might be: significant barometric pressure fall below 15 millibars. This primitive 

event has a value state: lower than 15 millibars, a gradient: fall, referring to the sign of 

the derivative of the parameter‘s value and a rate: significant as set by a threshold. 
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Different methods corresponding to Shahar‘s abstraction functions such as wavelet 

analysis, change point detection (Basseville & Nikiforov, 1993; Bakshi, 1999), and time 

series segmentation (Keogh, Chu, Hart, & Pazzani, 2003) can be used for identifying 

qualitatively significant change from time series data (Beard, Deese, & Pettigrew, 2007). 

We use statistically-derived or user defined thresholds to abstract time series into 

primitive events. Fuzzy thresholds may also be used to extract primitive events with 

fuzzy boundaries to accommodate uncertainty in primitive event definitions. The 

abstraction function or primitive event detection process determines the start and end 

time of the primitive event and additionally may generate statistical information such as 

an average magnitude for a primitive event. The location of the primitive event is 

inherited as the location of the sensor platform from which the generating time series was 

obtained. Primitive event detection and storage are presented in Chapters Three and Four. 

 

1.3.4 Composite Events 

In this thesis, a composite event is an aggregate of primitive events. Primitive events 

constituting a composite event are organized into temporally structured initiating, body 

and terminating event sets based on available ontological knowledge about the high-level 

event. Therefore, composite events are assembled from primitive events using a 

posteriori domain knowledge about a high-level event. In the context of this thesis 

composite events are derived indirectly from univariate or multivariate, multi-location 

sensor data streams through primitive events. For example, primitive events may be 

observed at multiple locations and aggregated to represent a spatially extensive 

composite event in a common timeframe. Composite events are composed from one or 
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more types of primitive events. For example, a typical storm is known to have barometric 

pressure drop as an ‗initiating primitive event‘ followed by a set of other primitive events 

which may involve combinations of change in wind direction, variation in wind speed or 

wind gusts and followed by a ‗terminating primitive event‘ such as barometric pressure 

recovery. Based on the available knowledge about the high-level event, a composite 

event ontology specifies how a composite event is formed from primitive events. This 

process will be illustrated using storms as the example high-level composite event. 

 

1.3.5 Composite Event Validation 

To assess the EO approach, high-level composite events detected using the EO approach 

are compared to an independent data source. In our case study, we use the National 

Climatic Data Center (NCDC) storm events database, to validate the storm events 

discovered through the EO approach. Type I and II error information is stored with each 

composite event record and can be utilized during further processing such as event 

classification. 

 

1.3.6 Composite Event Classification 

Composite event classification quantifies the degree of similarity and difference between 

discovered composite events based on a set of classification criteria. Classification of 

composite events may be based on various themes: magnitude, temporal and spatial 

sequencing of a primitive event type or a combination thereof. For the storm event 

detection case study, we use classification based on barometric pressure recovery 
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characteristics along with spatial sequencing and uniformity in spatial behavior among 

primitive events to summarize and classify storms.  

 

1.4 Objectives, Scope and Hypothesis 

The objective of this thesis is to propose, describe and implement a data abstraction 

approach named as the EO approach. The EO approach differs from existing approaches 

because: (1) it facilitates data integration from low-level sensor time series extracts to 

high-level occurrences, and (2) facilitates extraction of transient or non-systematic 

components from time series. The scope of the work is limited to proposing and 

implementing the EO approach, followed by validation of results using an independent 

data source.  

The hypothesis tested in this thesis is: High-level, spatio-temporal occurrences can be 

detected using low-level sensor measurements. 

As an outcome of the stated hypothesis, we might be able to answer questions such as: 

 To what degree can high-level composite events be detected by combining 

univariate primitive events based on a posteriori knowledge of the composite 

event? 

 To what degree can spatial location of primitive events be used to infer spatial 

properties of composite events? Thus, how well can the spatial extent and 

movement of a high-level and multivariate occurrence be determined from 

univariate spatially distributed primitive events? 
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 What new information can be derived from detection and classification of 

primitive events? 

 

1.5 Organization of Remaining Chapters 

The following chapters are organized to describe the EO approach in detail. The next 

chapter provides background and review of similar approaches and supporting literature. 

Chapter Three provides a detailed specification for primitive events through a primitive 

event ontology and the specification of composite events through a composite event 

ontology. A case study for storm detection using Gulf of Maine Ocean Observation 

System data is presented in Chapter Four and Five along with a description of the 

implementation and results. Classification methods for composite events based on 

primitive event characteristics are presented in Chapter Six. Chapter Seven provides 

conclusions and describes future work. 
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Chapter 2 

LITERATURE REVIEW 

 

This chapter reviews areas of research related to the Event Oriented approach. The work 

derives from various fields such as time series analysis and data mining, temporal 

abstractions, and anomaly detection. As event detection and composition are key 

components of the approach, this chapter reviews related literature on these topics. 

Literature particularly relevant to event detection, classification and validation are 

presented. Related approaches to similar problems are also summarized. We start with the 

general domain of our work, followed by related work on temporal abstractions, other 

event based approaches, and general methods for primitive event detection and event 

composition. 

 

2.1 Data Mining and Knowledge Discovery 

The approach utilized in this thesis can generally be categorized under the field of Data 

Mining and Knowledge Discovery (DMKD). The terms data mining and knowledge 

discovery are not mutually exclusive terms and at times have been used as synonyms. 

The topic Knowledge Discovery and Databases (KDD) provides an apt description of this 

work. On an abstract level, KDD can loosely be described as ‗development of methods 

and techniques for making sense of data‟. Thus, by definition, results of KDD have to be 

‗more compact..., more abstract.., or more useful and understandable. Data mining is 

defined as the application of specific algorithms for extracting patterns from data. We 

adopt the above stated definitions over all the other definitions available in literature. 
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Knowledge discovery has also been defined as „mining of previously unknown rules...‟ 

(Morchen & Ultsch, Optimizing time series discretization for knowledge discovery, 

2005), but this thesis uses considers knowledge discovery in a broader context. Our 

objective is to develop an approach to detect a high-level occurrence using time series 

data. A posteriori knowledge about the relationships between time series parameters that 

form a high-level occurrence is assumed to be available. Validation of the detected high-

level occurrence by comparison with an independent source will lead to revision or 

addition to the a posteriori knowledge about the occurrence. 

Detection of interesting patterns from data has been one of the standard problems of the 

data mining community. Data mining typically requires transformation of the data to new 

representational forms that can simplify pattern detection and detection of patterns at 

different scales. Many time series based data mining methods reduce time series to a few 

important features. These features can be the coefficients of Discrete Fast Fourier (DFF) 

transforms, Discrete Wavelet transforms (DWT), or principal components Analysis 

(PCA). In the context of the Event Oriented approach in this thesis, the features extracted 

from time series are primitive events. Some approaches to primitive event detection will 

be mentioned in section 2.3. 

Once features have been isolated, various classification and clustering methods are 

typically applied. Classification methods include regression trees, decision trees, and 

clustering methods include K-means, etc. In this thesis the primitive events form building 

blocks that can be composed into high-level forms of events. Related work on event 

composition is described in Section 2.4. 
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2.2 The Event Oriented Approach 

The thesis uses what we call an Event Oriented approach. Earlier work has used similar 

terms and this section described other event approaches and how the thesis research 

relates to these approaches.  

The term ‗event‘ has been used with different meanings in computing, mathematics, data 

mining, philosophy, and other domains. In computing, an event is usually referred to a 

software message indicating that something has happened, such as a mouse click or 

keystroke. In probability theory, the term event may mean one element from a set of 

outcomes. In philosophy, several theories exist about events. Jaegwon Kim proposed a 

‗Property-Exemplification Account of Events‘ and theorized that events are structures of 

three things: object(s), a property, and time or a time interval (Kim, 1969). Lewis (Lewis, 

1973) theorized that events are merely spatiotemporal regions and properties (i.e. 

membership of a class). He defines an event as ‗a class of spatiotemporal regions, both 

this worldly and otherworldly‘. The only problem with this definition is that it only tells 

us what an event could be, but does not define a unique event. 

Nagel (Nagel, 1979) describes events as follows: 

In formal language, an event Y at the time T is caused by a preceding event X, if and only 

if Y is deducible from X with the aid of the laws LT known at the time T.  

…all that is important here is the recognition insisted upon by Hume that natural events 

(e.g., explosions, cell division, etc.) which are causally related are logically independent 

of one another. In natural sciences, events have a formal structure of a deductive 
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argument, in which the explicandum is a logically necessary consequence of the 

explanatory premises […] 

These statements highlight the ambiguity associated with events as described in the 

literature. A simple definition of an event can be broadly defined as ‗a segment of time at 

a given location that is conceived by an observer as having a beginning and an end‘. 

Quine (Quine, 1985) describes events as units that can be localized in space and time, 

broken into sub-parts, and arranged in a taxonomical hierarchy. Peuquet (Peuquet, 2001) 

describes an event as a change in some location(s) or object(s). Chen and Jiang (Chen & 

Jiang, 1998) define an event as an application-driven concept that supports a cognitive 

interpretation of a significant pattern of change. Another definition is provided by 

Guralnik and Srivastava (Guralnik & Srivastava, 1999) as ‗a qualitatively significant 

change in the behavior of some dynamic phenomenon‘. 

Zacks and Tversky (Zacks & Tversky, 2001) describe the generalized definition and 

structure of events and describe the object-oriented treatment of events. Their view 

supports the concepts of partology, taxonomy and causality with respect to events. This 

thesis takes an object-oriented approach to events, similar to Worboys and Hornsbys 

(Worboys & Hornsby, 2004) except from an object oriented perspective they distinguish 

two types of primary classes: objects and events.  

A common theme among many of these definitions is that events are associated with 

change and localized in space and time. In this work, we consider events as change units. 

Primitive events are change units extracted from space-time data by a number of methods 

(regression models, Fourier analysis, wavelets) and typically with statistically similar 

change properties (e.g. a linearly increasing trend, convexly decreasing trend, a change in 
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direction). Primitive events represent low-level change units obtainable from individual 

sensor data streams (e.g. single univariate time series). Recent work in the Wireless 

Sensor Network community takes a similar view of events (Kapitanova & Son, 2009; 

Jiao, Son, & Stankovic, 2005; Li, Lin, Son, Stankovic, & Wei, 2004; Yin & Gaber, 

2008). Composite events are aggregates of primitive events from single or multiple 

sensor data streams (Beard, Deese, & Pettigrew, 2007). 

We define events as spatio-temporal entities related to quantifiable change units as 

suggested by Guralnik and Srivastava (Guralnik & Srivastava, 1999). Primitive events 

are statistically derived entities from temporal data stream(s), which usually have a 

spatiotemporal component. 

 

2.2.1 Events as Objects 

Humans use multiple sources of information in perceiving events, namely, partonomic 

relations, and perceptual event boundaries. Research by Zacks and Tversky (Zacks & 

Tversky, 2001) shows that humans use objective features of object-actor motion, 

perceptual causal properties, statistical patterns of occurrence and goal relations for 

indentifying events. Our choice of approach of identifying primitive events and 

partonomically constructing composite events closely follows human perception to 

understanding event occurrence. 

Events can be regarded as objects as suggested by Zacks and Tversky (Zacks & Tversky, 

2001) and Quine (Quine, 1985). Objects have boundaries in space (Michotte, 1963) and 

time. For example, the object pen takes up space, which can be perceptually identified. 
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The event of ‗picking up a pen‘ has a start and an end time along with an associated place 

giving a spatiotemporal dimension to the event. In their work, Worboys and Hornsby 

(Worboys & Hornsby, 2004) define the GEM model which models events and objects in 

an information system on the basis of their structural similarities, while noting their 

differences.  

As humans are known to perceive events by causal relationships, we briefly discuss the 

concepts of partonomy and taxonomy of events. This supports the rationale for taking the 

EO approach to multivariate time series integration. Partonomy captures the hierarchical 

relationship between parts and subparts (Miller & Johnson-Laird, 1976; Tversky & 

Hemenway, 1984). Partonomical relationships give rise to distinctive spatial 

configurations that can be useful in categorizing objects. Events, according to Rosch 

(Rosch, 1978), may also be classified on the basis of their shape. 

Another common form of hierarchical structure is taxonomical structure, based on ‗kind-

of‘ relationship. The kind-of or is-A relationship exemplified by the statement, ‗Eagle is a 

kind of bird,‘ creates a taxonomical hierarchy between objects (or events). Experimental 

results have demonstrated that humans perceive events as partonomically organized 

(Barker & Wring, 1954) as well as being capable of hierarchical organization. In 

psychological experiments; given an activity, people show good agreement on what 

constitutes a scene within an activity (Bower, Black, & Turner, 1979). Further, when 

people are presented with subordinate-level actions, people tend to make inferences up to 

the scene level. However, when presented with information at scene level, they are 

relatively unlikely to make downward inferences to the subordinate level (Abbott, Black, 

& Smith, 1985). This previous experimental work supports the EO approach to time 
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series abstraction and integration e.g., construction of composite events from primitive 

events, without explicitly supporting the reverse. 

The important advantages of an object-event paradigm are: 

 Events become distinct information objects directly available for query and 

analysis. 

 Events founded on a common data model can facilitate integration, better 

qualitative information retention during abstraction and are suitable to be 

analyzed in contrast to available abstraction methods for disparate information 

arising directly from sensor data streams. 

 Event level objects provide a closer match with scientific models. 

 

2.3 Primitive Event Detection 

This section presents literature related to discovery of primitive events from time series 

data. First, the section presents methods of time series representation and pre-processing 

before describing primitive event detection methods. Second, methods for identifying 

subsequences of interest from a time series sequence are presented. 

Representation and pre-processing of time series data has been a challenging problem 

because of the difficulties in direct manipulation of continuous, high dimensional time 

series. Antunes and Oliveira (Antunes & Oliveira, 2001) presents a survey of methods for 

pre-processing and representing time series before data mining e.g., primitive event 

detection can be undertaken. Four types of time series representation are discussed: (1) 

Time-domain Continuous representation (involving minimal transformation of time 
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series), (2) Transformation based representation (involving transformation of time series 

from time to another domain), (3) Discretization based representation (involving 

translation of time series into sequence of alphabetic symbols) and (4) Generative models 

(involving use of statistical or deterministic models to obtain data). In this thesis, only 

Time-domain Continuous representation and Discretization based representations are 

used. The Time-domain continuous representation of time series is the only 

representation used for primitive event detection. Discretization based representation of 

time series is used for composite event detection and the construct Spatial Progression 

String (SPS), which are introduced in later chapters. 

Primitive event detection is similar to the problem of discovery of subsequences within a 

large sequence based on constraints. A common method of finding constraint qualifying 

subsequences from a sequence is to use a sliding window to traverse the length of the 

sequence to find qualifying subsequences within the large sequence (Faloutsos, 

Ranganathan, & Manolopoulos, 1994). Shahar (Shahar, 1997) describes the use of 

abstraction functions e.g., thresholds, to abstract time series into parameter intervals e.g., 

primitive events. Ultsch (Ultsch, Unification-based Temporal Grammar, 2004) uses the 

term succession to refer to a primitive event like construct, which mainly serves as a 

qualitative descriptor of the time series. 
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2.4 Composite Events 

In the literature, many approaches to time series data mining focus on compression of 

univariate time series into a few temporal features. There are a few works namely 

Guimaraes and Ultsch, (Guimaraes & Ultsch, 1999); Morchen and Ultsch (Morchen & 

Ultsch, Discovering temporal knowledge in multivariate time series, 2005); Höppner 

(Hoppner, Learning dependencies in multivariate time series, 2002) which focus on 

mining multivariate data. Although these methods work with multivariate data, 

Guimaraes and Ultsch (Guimaraes & Ultsch, 1999) focus on generating understandable 

linguistic descriptions of complex multivariate patterns; Morchen and Ultsch (Morchen & 

Ultsch, Discovering temporal knowledge in multivariate time series, 2005) focus on 

generating semiotic descriptions of multivariate patterns; Höppner (Hoppner, Discovery 

of core episodes from sequences, 2002) focuses on finding previously unknown but 

frequently occurring dependencies in multivariate data. However, most of this and other 

previous work focuses on searching previously unknown but frequently occurring 

patterns and rules. Most rule generation approaches search for rules which describe an 

unknown pattern, predicting a predefined event (Povinelli, 2001; Agrawal, Psaila, 

Wimmers, & Zait, 1995).  

The proposed EO approach supports integration based on knowledge about causality of 

events, allowing us to take a top-down/ bottom-up approach to event composition. 

Causality is the key feature for definition of composite event structure. Physical causality 

is governed by the phenomenon of amplification of motion, supporting the composite 

event construction approach (Michotte, 1963). More information on Generative models 
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can be found in Antunes and Oliveira (Antunes & Oliveira, 2001). Some of the closely 

related approaches on event composition are discussed further. 

The Unification-based Temporal Grammar (UTG) is a rule language developed 

especially for the description of patterns in multivariate time series (Ultsch, Unification-

based Temporal Grammar, 2004). UTG uses first order logic and offers a hierarchical 

description of temporal concepts. It presents an abstraction hierarchy that starts with 

primitive patterns extracted from raw data, followed by Successions, Events, Sequences 

and the final rules called Temporal Patterns, as illustrated in Figure 2.1. At each level of 

abstraction, the grammar consists of semiotic triples: unique symbol, grammatical rule 

and user-defined labels.  

 

Figure 2.1 Abstraction levels in Unification-based Temporal Grammar (UTG) (Source: 

(Ultsch, Unification-based Temporal Grammar, 2004)) 

As a first step of UTG, a time series is abstracted into symbol labels to form ‗primitive 

patterns‘. A primitive pattern is the assignment of a single point in time to one of a 

number of the possible states (Ultsch, Unification-based Temporal Grammar, 2004). 
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Such abstraction is limiting because as the user must is forced to assign symbols for each 

time step for a qualitative classification of time series. The increase in symbol classes 

increases the complexity for in further abstraction. In UTG, ‗successions‘ introduce the 

temporal concepts of duration and persistence. Successions are derived from similar 

adjacent primitive patterns. The disadvantage of this method is that when missing data of 

short duration is present between successions, two successions will be shown instead of 

one. UTG uses the term ‗Events‘ for representing the temporal concept of synchronicity 

in sequences. If two or more successions occur simultaneously, they form an Event. An 

Event in UTG is therefore, a univariate symbolic Event series formed from multivariate 

successions. Since multivariate successions are unified into one symbol representing an 

Event, each succession has the same weight within the combined event symbol. This is a 

disadvantage in comparison to EO approach which allows one or more parameters to be 

‗marker parameters‘ having different or maximum weight. Unlike the EO approach, UTG 

approach makes isolating patterns based on trends difficult. The interested reader can 

refer to Ultsch (Ultsch, Unification-based Temporal Grammar, 2004) for further study of 

UTG. 

Another related method of composite event construction was described by Höppner 

(Hoppner, Discovery of core episodes from sequences, 2002). Höppner‘s approach 

segments time series into sequences of labeled intervals. Magnitude or other quantitative 

descriptors of a segment are lost in Höppner‘s method during abstraction. The labels 

denote qualitative only aspects of the signal in the respective intervals as shown in Figure 

2.2. These sequences of labeled intervals are used to discover rules such that premise and 
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conclusion consist of temporal patterns. The rule discovery method used by Höppner is 

between a sequence of two intervals as shown in Figure 2.3. 

 

Figure 2.2 Conversion of time series into qualitative segments called state intervals. 

(Source: (Hoppner, Knowledge discovery from sequential data, 2003)) 

 

Figure 2.3 Rule discovery between labeled interval sequences 

using Relationship Matrix.  

(Source: (Hoppner & Klawonn, Finding informative rules in interval sequences, 2002)) 

A limitation in Höppner‘s method is that it depends completely on Allen‘s intervals 

relationships (Allen & Ferguson, 1994) for rule discovery in subsequences abstracted 

from time series. As discussed in Morchen and Ultsch (Morchen & Ultsch, Efficient 
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mining of understandable patterns from multivariate interval time series, 2007), patterns 

from noisy interval data expressed in Allen‘s interval relations are not robust, 

unambiguous, or easily comprehensible. This view is supported by Batal et. al. (Batal, 

Sacchi, Bellazzi, & Hauskrecht, 2009) who only use before and overlaps relationships 

due to imprecision in the event extraction. In comparison to Höppner‘s method, the main 

advantage of the EO approach is the ability to construct composite events based on the 

duration of overlap, instead of using the interval relationships. When applied to the storm 

events detection case study, Höppner‘s method could not be used to much advantage 

since inter-event temporal overlaps are more important than inter-event relationships. For 

example, the number of hours in temporal overlap between events ‗significant fall in 

barometric pressure‘ and ‗high wind speed‘ was more important than other Allen‘s 

relationship between them such as whether one started or terminated the other. Therefore, 

the EO approach is not strictly reliant on temporal relationships but employs additional 

semantic relationships as specified by a domain specific ontology.  

 

2.4.1 Ontologies for Composite Events 

The term ‗ontology‘ has different interpretations and meanings across several fields of 

study that has changed over time. Aristotle first attempted a complete ontology of reality 

stating it as ‗all species of being qua being and the attributes which belong to it qua 

being‘ (Ross, 1924). The modern day Oxford English Dictionary describes ontology as 

‗science or study of being‘. Our definition of ontology is adopted from Audi (Audi, 1995) 

which states: ontology is a study of explaining reality by breaking it down into concepts, 

relations and rules. We share our view of events as expressed by Allen and Fergusson 
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(Allen & Ferguson, 1994), where „...events are primarily linguistic or cognitive in 

nature‘. According to this view, the world does not really contain events. Rather, events 

are the way by which agents classify certain useful and relevant patterns of change. This 

view additionally supports our view that events can be regarded as objects and therefore, 

can be expressed in ontology. 

Ontologies have been used as a means of knowledge sharing across disciplines and 

improving interoperability among different geographic databases (Smith & Mark, 1998; 

Fonseca, Egenhofer, Agouris, & Camara, 2002). In the domain of information systems, 

ontologies have been described as dynamic, object-oriented structures that can be 

navigated (Fonseca, Egenhofer, Agouris, & Camara, 2002). Gruber (Gruber, 1991) 

described ontology as an explicit specification of a conceptualization. Ontology-driven 

information systems have been shown to act as system integrator, independent of the 

model of representation used in Fonseca et al. (Fonseca, Egenhofer, Agouris, & Camara, 

2002). Sowa (Sowa, 1999) provided a domain-specific, user-dependant view of ontology 

as ‗the method to extract a catalogue of things or entities (E) that exist in a domain (D) 

from the perspective of a person who uses a certain language (L) to describe it‘. 

 There are several types of event ontologies available on the web. Each differs in its 

definition of events with temporal extents ranging from instantaneous, having duration or 

both. An upper-level event ontology developed by Center for Digital Music, University 

of London takes a purely linguistic and cognitive view stating that: event is ‗an arbitrary 

classification of a space-time region by a cognitive agent‘. Another available ontology, 

the Semantic Web for Earth and Environmental Terminology (SWEET) provides an 
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upper ontology for Earth system science in OWL language. SWEET contains an ‗Event‘ 

class which is an ‗Occurrence‘ and a ‗Temporal entity‘. 

The domain for the Storm event ontology is restricted to atmospheric events that are 

detectable using wireless sensors and represented in time series. The Storm ontology is 

domain specific and low-level. It will be used to specify the structure of initialization, 

continuance and termination of a high-level event. 

 

2.5 Storm Detection 

This thesis uses storms as a case study event type. This section describes related work on 

storm detection that is pertinent to our approach. Detection of severe climatic events from 

multivariate data has been a subject of much interest to climatologists since the early 

1980s. Many methods initially tried to sort weather maps into a discrete number of 

weather types based on analysis of the atmospheric parameters (Muller, 1977; Brazel & 

Nickling, 1986). These attempts mostly dealt with reducing dimensionality of the dataset 

statistically into discrete classes. Notably, Davis and Rogers (Davis & Rogers, 1992) 

attempt developing a synoptic climatology for severe storms using Principal Component 

Analysis (PCA) with 21 years of multivariate weather data. PCA was used to reduce the 

high dimensionality into a smaller and manageable dataset of entirely uncorrelated 

parameters. The resulting orthogonal parameters are then clustered into homogenous 

groups so that each cluster represents a distinct meteorological situation, thus identifying 

storms. 
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Although as demonstrated in Davis and Rogers (Davis & Rogers, 1992), PCA is capable 

of identifying clusters of multivariate data which show statistically similar properties, 

there is no way to search complex events based on available ontological knowledge about 

them using PCA. For example, in the composite event ‗forest fire‘, ontological 

knowledge such as the initiation by primitive event ‗spark‘ and ‗rise in air temperature‘ 

followed by ‗smoke‘ and termination by ‗drop in air temperature‘ and ‗drop in smoke‘ 

cannot be included in searching for the composite event in PCA. 

 

2.6 Summary 

This chapter discussed literature and background of the EO approach. The concept of 

events including primitive and composite event detection and its relationship to other 

works is presented. Existing high-level ontologies were briefly discussed, and provide 

background for the presentation of ontologies in the next chapter. 
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Chapter 3 

PRIMITIVE AND COMPOSITE EVENT ONTOLOGIES 

 

Swartout et al. (Swartout, Patil, Knight, & Russ, 1997) describes an ontology as a 

hierarchically structured set of terms for describing a domain that can be used as a 

skeletal foundation for a knowledge base i.e., objects, concepts or entities. This chapter 

describes ontologies for primitive and composite events along with a storm ontology. As 

introduced in Chapter One, primitive events are the first level of abstraction of time 

series, whereas composite events are assemblies of primitive events. The primitive event 

ontology presented in Section 3.1 explicitly states and describes the concepts in 

abstracting primitive events from time series data. These primitive events are domain-

independent building blocks for composite events. Challenges imposed by missing data 

and uncertainties introduced during primitive event detection are also presented. Section 

3.2 presents the general composite event ontology, which can be applied for assembling 

high-level composite events in many domains. For detecting storms from time series data, 

Section 3.3 presents the Storm Event Ontology, which is a specialized high-level 

composite event ontology specific to the domain of meteorology. 

An ‗Event ontology‘, from Raimond and Abdallah (Raimond & Abdallah, 2007) 

illustrated in Figure 3.1 provides the basic specification for an event. 
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Figure 3.1 Event ontology 

(Source: (Raimond & Abdallah, 2007)) 

As shown in Figure 3.1, an event may have a location, time, active agents, factors and 

products. This concept of an event aligns with the Basic Formal Ontology (BFO) 

described by Grenon and Smith (Grenon & Smith, 2004). Both primitive and composite 

event ontologies developed in this thesis align with the basic spatial and temporal 

constructs of these event ontologies. 

We use the ontology editor and knowledge acquisition system Protégé-OWL to develop 

the ontology for primitive and composite events. OWL or Web Ontology Language is a 

standard knowledge representation language for authoring ontologies. Protégé supports 

the creation, visualization and manipulation of ontologies in formats such as Resource 

Description Framework (RDF), the Web Ontology Language (OWL) and Extensible 

Markup Language (XML). 
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3.1 Primitive Event Ontology 

The main purpose of the primitive event ontology is to enable common understanding of 

the structure of information and to explicitly state the concept of a primitive event. 

Additionally, it also describes pertinent relationships and sub-concepts of primitive event. 

Since primitive events are temporal abstractions from time series, Section 3.1.1 sets up 

definitions for key temporal concepts. Section 3.1.2 describes time series concepts before 

abstraction, followed by Section 3.1.3 which describes AbstractionFunctions as the 

concept for detection of primitive events from time series. 

 

3.1.1 Temporal Concepts 

This thesis borrows several time concepts from Shahar‘s (Shahar, 1997) Knowledge 

Based Temporal Abstraction (KBTA) framework and from OWL-Time. OWL-Time is an 

ontology that provides vocabulary for expressing facts about topological relations among 

instants and intervals, together with information about durations and date-time (Pan & 

Hobbs, 2005).  

KBTA defines time stamps as structures (e.g., dates) that can be mapped by a time-

standardization function into an integer amount of any element from a set of predefined 

temporal granularity units (Gi). Temporal granularity units are standard (e.g. minutes, 

days, hours) or domain defined (e.g. tidal cycle) units of time. A time measure is a finite 

negative or positive integer amount expressed in a Gi unit (e.g. 20 minutes, 3 days). 

According to Shahar, a domain must have a time granularity G0 corresponding to the 
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finest granularity (e.g. seconds) into which integer amounts of other granularity units can 

be mapped. 

OWL-Time‘s date-time corresponds to KBTA‘s timestamp. A zero-point is a time stamp 

which is grounded in each domain to different absolute ‗real-word‘ time points (e.g. the 

beginning date of a sensor deployment). KBTA defines a time-interval as an ordered pair 

of time stamps representing the interval‘s start and end points. An interval may have 

more than one duration description given in different temporal granularity units (e.g. 

year, month, day, hours, minutes or seconds). All primitive events have an associated 

time interval given by time stamps which define the beginning and end of the time 

interval. OWL-Time uses Allen‘s calculus of binary interval relations to represent the 

qualitative temporal relationships between time intervals (Allen & Ferguson, 1994). 

As pointed out in Section 2.4, only two relationships—‗before‘ and „overlaps‘—from the 

Allen‘s interval relationships are used. This is due to the imprecision in primitive event 

start and end times and the small probability of such end times coinciding. 

 

3.1.2 Primitive Event Ontology Concepts 

This section describes concepts that play a role in describing a primitive event. As 

mentioned before, primitive events are obtained from time series. 

As shown in Figure 3.2, the essential classes of the primitive event ontology are: 

Parameter, Value, MeasurementUnit, MeasurementScale, TimeSeries, TimeStamp, 

AbstractionFunction, Threshold, AbstractionType and PrimitiveEvent. All the concepts 

except PrimitiveEvent, Threshold and Event are as defined by  (Shahar, 1997). We build 
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on these existing concepts to suit our purpose of specifying the domain independent 

primitive event ontology. 

A Parameter is defined as a measurable aspect of a describable state of the world (e.g. 

salinity) and has properties that include MeasurementUnit, a domain of Values, and 

MeasurementScale (Shahar, 1997). The domain of Values can be symbolic or numeric. 

MeasurementUnits are the basic units of measure (e.g., meter for length, second for time 

etc.) or derived units (e.g., cubic meters for volume, degrees for angles etc.). The 

MeasurementScale defines the level of measurement (e.g., nominal, ordinal, interval or 

ratio) used in observing a parameter. A nominal MeasurementScale is one which applies 

categories (e.g., North, South, East, West) to represent direction. 

The TimeSeries is a series of observations taken on a parameter over a period of time. 

Each observed value of the parameter is associated with a TimeStamp. Thus a time series 

is an ordered sequence of tuples (Value, TimeStamp) ordered according to the timestamp 

values. Another important property of a time series, in the context of this thesis is the 

location at which it is observed. A time series denoted as TS is indexed by its parameter 

(p) and location (x) and is represented as TS
p

x. 

A primitive event is a subsequence of a time series for which a particular property of the 

parameter holds. In the primitive event ontology, the primitive event is connected to its 

source time series and by extension, to the time series parameter and location.  

An AbstractionFunction is a function that converts a time series into a sequence of 

primitive events. There are many different possible subsequences to consider that could 

form primitive events depending on the interests of a researcher and thus a number of 

possible AbstractionFunctions. Simple AbstractionFunctions apply appropriate user 
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defined thresholds, for example to obtain subsequences that exceed or fall below some 

parameter value. Different types of thresholds that apply to the parameter value directly 

(e.g., State threshold) or to the derivative of the value (e.g. Gradient threshold and Rate 

threshold) create different AbstractionTypes. An AbstractionType is one of several 

possible abstract states generated by applying an AbstractionFunction to a time series. 

AbstractionTypes are represented by an alphabet, A of symbols, one for each possible 

state of a parameter. An AbstractionType can be a value type corresponding to 

classification of a parameter‘s value (e.g. high, medium, low) or a trend type 

corresponding to the derivative of the parameter‘s value. A trend type can have 

subtypes—gradient and rate—that correspond respectively to the sign and magnitude of 

the derivative of the parameter. 

Thus a primitive event and an associated AbstractionType are the result of applying an 

AbstractionFunction to a time series. Shahar‘s ‗abstract parameters‘ correspond to the 

primitive events in this work. 
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Figure 3.2 Primitive event ontology 
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3.1.3 Primitive Event Detection Using AbstractionFunction 

As specified in the primitive event ontology, primitive events are generated by applying 

an AbstractionFunction to a time series. We denote a time series collected on a parameter 

at several locations in space by TS
p

x indexed by parameter (p) and location (x). When an 

AbstractionFunction is applied, it is applied to all time series for the parameter and all 

locations at which the parameter is measured. The AbstractionFunction establishes the 

time interval (begin time, end time) of a primitive event as well as the AbstractionType as 

described above. A primitive event and its time interval are denoted as PE[b,e]. All 

primitive events obtained by one AbstractionFunction share a parameter and 

AbstractionType denoted by two upper case letters representing the parameter (e.g. WS 

for Wind speed or BP for barometric pressure) and a symbol from some alphabet A that 

defines AbstractionTypes (e.g. A={rise, fall, steady}). When referring to a specific type 

of primitive event, we use this parameter_AbstractionType combination (e.g BP_fall to 

designate a falling barometric pressure primitive event). An instance of a primitive event 

of type given by parameter_AbstractionType has a time interval specific to a location and 

is denoted by PE[bx,ex]. The remainder of this section describes a set of 

AbstractionFunctions used in this thesis to obtain primitive events. 

Any of the four types of time series representations mentioned in Section 2.3 could be 

used for primitive event detection but in this thesis, only time domain continuous is used 

for primitive event detection. Time domain continuous representation of time series is 

suitable for threshold conditions such as ‗less-than‘, ‗more than‘ or within threshold. Use 

of thresholds to abstract time series into primitive events using AbstractionFunctions is 

described in detail in the following sections. 
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Throughout the thesis, we employ a standard notation for addressing a particular row of a 

matrix (e.g., structure matrix shown in Figure 4.3). We use the notation 

‗[matrix_name].[row_name]‘. The ‗row_name‘ corresponds to a predefined row label in 

the matrix and is usually a two letter label. For example, TS.jd refers to the row 

corresponding to the Julian dates of the matrices stored with the label ‗jd‘. Similarly, 

other ‗row names‘ of TS correspond to other parameters detected by the sensor, such as 

‗at‘ for the row storing air temperature and so forth. In case where the row of the matrix 

is arbitrary, we use the convention ‗.xx‘ to denote the arbitrary row. The primitive event 

PE[b,e] can be formally represented by the following expression, hereby denoted as 

Expression 3.1:  

 

The ‗condition‘ used for identifying the primitive event depends on the 

AbstractionFunction used and will be discussed next. 

 

3.1.3.1 Threshold Based Abstraction Functions for Primitive Event 

Detection 

This section describes three types of threshold conditions: State, Gradient and Rate, 

which are used by the AbstractionFunction for detecting primitive events from time 

series data. Descriptions of each threshold type, their concept and formal expression are 
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presented. This section describes fuzzy thresholds but use of thresholds in this thesis is 

limited to ‗hard‘ thresholds only. 

 

3.1.3.1.1 State Threshold 

State thresholds are numerically explicit bounds applied to the value of the time series 

parameter. State thresholds can either be statistically-derived or manually set to include 

certain specific characteristics thought to be important to the user. Manual threshold 

setting may be performed in case of poor data quality or for making thresholds suitably 

conservative. A state threshold applies a constraint on the ‗state‘ of the parameter and 

yields primitive event types such as ‗high wind speed‘, ‗cold air temperature‘, ‗north-east 

wind direction‘, ‗high wave height‘. This section discusses the AbstractionFunctions 

using the three sub-types of state thresholds i.e., line, band and fuzzy state thresholds. 

 

 

Figure 3.3 State threshold types in primitive event detection 
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3.1.3.1.1.1 Line State Threshold 

A line state threshold is a simple AbstractionFunction that generates value abstraction 

types such as ‗greater than‘ or ‗less than‘. It can be an upper or lower bound semi-open 

threshold as shown in Figure 3.3 (b) and (c). Upper bound semi-open thresholds specify 

an upper bound and no lower bound. Lower bound semi-open thresholds specify a lower 

bound and no upper bound. For the primitive event PE[b,e] extracted from the time series 

TSx
p
 (written simply as TS) the ‗condition‘ used in the Expression 3.1 for: 

Above line state threshold is TS.xx[n] ≥ h 

Below line state threshold is TS.xx[n] ≤ h 

where, 

n= index of the array, h=threshold value. 

For these two cases, the alphabet for AbstractionType is logically A={low for p h and 

high for p h}. 

 

3.1.3.1.1.2 Band State Threshold 

A band threshold is a combination of two line state thresholds: greater-than and less-

than. Types of band conditions could be: outside a band or inside a band. The band 

threshold is conceptually similar to the closed threshold shown in Figure 3.3 (a). Closed 

thresholds are bounded by both sides and represent conditions like ‗more than x but less 

than y‘. They capture sequences that fall within specific ranges of parameter values, for 
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example, ‗a South-East wind direction‘ primitive event has wind direction observations 

between 112.5 and157.5 degrees. 

An outside a band threshold bound by magnitudes hu (denoting upper threshold in band) 

and hl (denoting lower threshold in band) is given by: 

TS.xx[n] ≤ hl 

∧ 

TS.xx[n] ≥ hu 

Similarly, the condition for inside a band event threshold is given by: 

hl ≤ TS.xx[n] ≤ hu 

 

3.1.3.1.1.3 Fuzzy State Threshold 

Use of a unit value, hard threshold creates a crisp boundary that ignores the ‗borderline‘ 

cases that just miss qualifying a threshold. The EO approach can address the uncertainty 

in primitive event detection by use of fuzzy thresholds. Fuzzy thresholds are conceptually 

similar to the open bound threshold as shown in Figure 3.3 (d). The open bounded fuzzy 

threshold condition involves fuzzy thresholds. Every observation is included in the 

definition of the fuzzy event because each observation is given a membership function 

with respect to the threshold. Thus a hard threshold is also required on the membership 

function of the fuzzy boundary. 

Uncertainty in fuzzy primitive events is discussed in Section 3.1.4., but implementing 

fuzzy thresholds is beyond the scope of the thesis. 
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3.1.3.1.2 Gradient Threshold 

The gradient threshold is an AbstractionFunction that generates a trend AbstractionType 

primitive event corresponding to Shahar‘s (Shahar, 1997) gradient abstraction type which 

indicates the sign of the derivative of the parameter‘s value. Primitive event detection 

using constraints on gradient involves the transformation of time series into first 

difference sequences, denoted by D.xx. From first difference sequences, we extract 

primitive events with particular change characteristics such as change in direction or 

magnitude. Examples of primitive events extracted using first difference derivative are 

‗barometric pressure fall‘ (or rise), ‗fall in wind speed‘, ‗cold spike in water temperature‘, 

or ‗change in wind direction‘.  

Formal expressions for extracting trend AbstractionType primitive events are: 

PE[b,e]=  

The ―condition‖ for Rising primitive event is given by: 

D.xx[n] ≥ 0 

and Falling primitive event is given by: 

D.xx[n] ≤ 0 

where, D.xx[n]=TS.xx[n+1]-TS.xx[n] 

and |D.xx|+1=|TS.xx| 
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3.1.3.1.3 Rate Threshold 

The test condition for a rate threshold is the magnitude of the derivative of the 

parameter‘s value. For example, the AbstractionFunction to detect primitive event 

‗significant barometric pressure fall‘ requires a gradient threshold to detect a fall 

gradient, followed by a rate threshold to test the ‗significance‘ of the condition. If a fall of 

more than 10 barometric pressure units was considered to be ‗significant‘, then it is the 

rate threshold. The rate of gradient is calculated over the duration of the interval as 

follows: 

Mmax  

S = (Mmax – )/ (length PE[b,e]) 

where, 

b and e= begin and end time of primitive event PE[b,e] 

Duration of PE[b,e]= (e-b+1), if 1 hour is the granularity 

Mmax  and Mmin  = Maximum and minimum magnitude for event PE[b,e]respectively 

S = Gradient of event PE[b,e]. 

The rate of the gradient within the interval of the primitive event can be compared against 

the user-defined or statistical rate threshold to determine if the event meets the rate 

threshold. 
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3.1.3.1.4 Combination of State, Gradient and Rate Thresholds 

In this thesis, generally a combination of state, gradient and rate thresholds is used to 

detect primitive events. These threshold conditions are generally applied in steps to get 

the desired primitive event. For example, a ‗significantly falling low barometric pressure 

event‘ first involves application of a state threshold to test the ‗low‘ condition followed 

by the gradient threshold to test the ‗fall‘ condition, followed by the rate threshold to test 

the ‗significant‘ condition. 

 

3.1.4 Uncertainty and Fuzzy Primitive Events 

Vagueness is the presence of border line cases (Russell, 1923). Vagueness in primitive 

events can be dealt with by use of fuzzy logic, which provides a method to assign a fuzzy 

membership function to time series observations according to their position with respect 

to the hard threshold. We use fuzzy set theory to introduce fuzzy thresholds for detection 

of fuzzy primitive events. Fuzzy thresholds assign a continuum of ‗grades of 

membership‘ between the interval [0, 1] to every observation in a time series. Thus, an 

observation nearer the threshold gets a higher grade of membership (Zadeh, 1965). 

Observations clearly meeting the threshold are given a grade of membership of 1. As we 

move farther from the threshold, the grade of membership decreases (See Figure 3.4). 

Thus, each observation has a grade of membership with respect to its distance from the 

threshold. The user can assign a ‗non-trivial threshold‘ on the grade of membership, 

assigning the level at which the grade of membership be considered non-trivial. In 

general, a ‗non-trivial threshold‘ of 0.4 is used. 



48 
 

 

 

 

 

 

 

 

 

Figure 3.4 Assignments of degree of membership while definition of fuzzy events 

Events extracted using fuzzy thresholds are called fuzzy events, because they have a 

fuzzy boundary defined by membership values. 
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3.1.5 Missing Data Events 

Missing data is a common problem in sensor systems. Missing data may indicate several 

states of data, such as ‗sensor failure‘, ‗don‘t know‘, ‗refused‘, ‗unintelligible‘, ‗noisy‘ 

etc. (Schafer & Graham, 2002). There have been several attempts to reduce missing data 

values through efficient system design (Stann & Heidemann, 2003). However, missing 

data is a frequent problem in sensor systems, as sensors may be subjected to harsh 

conditions in high energy systems and design limitations. Some statistical treatments are 

not possible in the presence of missing data. Missing data is integral while changing the 

granularity of data e.g. when data is grouped, aggregated, rounded, censored, truncated or 

processed for noise (Heitjan & Rubin, 1991). Rubin proved that while making inferences 

like sampling distribution, direct likelihood or Bayesian inferences about the data, ‗it is 

appropriate to ignore the process that causes missing data, if the missing data are 

‗missing at random‟‟ (Rubin, 1976).  

Rubin defined data to be missing at random if: ‗for each possible value of the parameter 

p, the conditional probability of the observed pattern of missing data, given the missing 

data and the value of the observed data, is the same for all possible values of the missing 

data‟. 

Most sensor data cannot be guaranteed to be ‗missing at random‘. In the event approach, 

missing data sequences are treated like other primitive events. They correspond to a 

subset of a time series with start and end time stamps denoting the beginning and end of 

the missing data sequence. Like any other primitive event, they have an associated 

parameter and a location that corresponds to the sensor location. The next section 
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describes how the primitive events form building blocks for assembling composite events 

in various domains. 

 

3.2 General Composite Event Ontology 

A composite event is a temporally ordered sequence of primitive events. A general 

composite event ontology describes the structural organization of a composite event in 

terms of primitive events. The general composite event ontology is centered on the notion 

that any high-level composite event has three components: initiating, body, and 

terminating components made up of primitive events, as shown in Figure 3.5. This 

structure can be used to describe a wide range of high-level events such as storms, rain 

events, snowfall, flooding, forest fires, or traffic jams. The common theme among these 

high-level events is that they are spatio-temporal events which have distinct low-level 

initiating and terminating behaviors that are sensor-detectable. Some domain knowledge 

about the high-level event, in terms of initiating and terminating behavior of low-level 

parameters is assumed to be available. For example, extreme weather events i.e., storm, 

rain or snowfall, are typically initiated by a significant fall in barometric pressure and 

terminated by a barometric pressure recovery. River flooding events may have ‗rapidly 

increasing water-levels‘ exceeding a threshold as an initiating primitive event and 

‗recovery to normal water-level‘ as a terminating event. A high-level event ‗forest fire‘ 

may have an initiating low-level event ‗spark‘ or ‗rise in air temperature/smoke‘ followed 

by ‗recovery to normal air temperature/smoke‘ as a terminating event. Similarly a high-

level event ‗traffic jam‘ may have an initiating low-level event such as a ‗rise in exhaust‘ 
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or ‗stalled traffic‘ and terminating events such as ‗reduction in exhaust/normal traffic 

speed‘. 

The composite event ontology has two key classes: primitive event and composite event. 

The class composite event has properties: hasInitiatingCondition, hasBodyCondition, 

hasTerminatingCondition. A first requirement is that the primitive events that initialize 

and terminate a composite event must be disjoint. More than one type of primitive event 

may initiate or terminate a composite event. The required ordering of primitive events in 

a composition are specified using Allen‘s intervals (Allen J. F., 1984). 

As an event, a composite event has start and end timestamps. These are determined by 

the timestamps of the initiating and terminating primitive events. The location of a 

composite event is more complex as it is composed from the spatial locations of the 

constituent primitive events. 

 

 

 

 

 

 

Figure 3.5 General composite event ontology 
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3.2.1 Composite Event Assembly 

Composite event assembly starts with identifying the domain knowledge about the high-

level composite event. This knowledge may be present in the a priori or a posteriori 

form. The conceptual flow diagram shown in Figure 3.6 presents the process of 

assembling composite events from primitive events using ontologies. The primitive event 

ontology (described in Section 3.1.2) defines a primitive event as an abstraction from a 

time series. The general composite event ontology provides the general structure by 

which primitive events are assembled to form composite events. Its specifies the 

primitive events that initiate, form the body of and terminate a composite event. This 

general composite ontology can then be specialized to a domain-specific high-level 

ontology. In this thesis, the Storm ontology is an example of a domain-specific, high-

level composite event ontology. The storm event ontology specifies specific types of 

primitive events that initiate, form the body of and terminate a storm event.  

 

Figure 3.6 Conceptual flow for composite event assembly 
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The general sequence of steps for composite event assembly is described as follows: 

1. Identify available a priori or a posteriori domain knowledge about the high-level 

composite event. 

2. Identify marker parameters and conditions for a composite event. Identify temporal 

ordering for primitive events. This will enable us to identify initializing and terminating 

primitive events. 

3. Use ontology to explicitly state relationship between initializing, body and terminating 

primitive events to form a composite event. 

4. Algorithm for implementing assembly of primitive event into high-level composite 

event. 

A marker parameter refers to a sensor measured parameter that signals the onset of a 

high-level event. An initiating primitive event is one obtained from the marker parameter 

time series that captures the relevant initiating behavior of the parameter (e.g. rapidly 

falling traffic speed/volume for a traffic jam event). An initiating primitive event set may 

consist of a single element for a case where there is a single primitive event at a single 

location that initiates the composite event. More often the initiating set will be a spatial 

set, a set of initiating primitive events from the set of observation or sensor locations. In 

general we would expect this initiating set to be temporally clustered or occurring within 

some short time lag of each other. Characteristics of a particular type of composite event 

will dictate the temporal pattern for the initiating set. We denote the initiating primitive 

event set as PEI
p
[bx,ex] where p refers to one or more marker parameters and x indicates 
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the 1,…m locations and bx, and ex refer respectively to the begin time and end time for an 

initiating primitive event at location x.  

The marker parameter that indicates the initiating primitive event set often serves as the 

marker parameter for the terminating primitive event set. In other words, the recovery of 

the marker parameter to a normal or steady state condition typically signals a termination 

of the composite event. As in the initiating case, the terminating primitive event set may 

consist of a single element or it can be a spatial set composed of the terminating primitive 

events from the set of observation locations. We denote the terminating primitive event 

set as PET
p
[bx,ex] where p refers to one or more terminating marker parameters and x 

indicates the 1,…m locations and bx, and ex refer respectively to the begin time and end 

time for a terminating primitive event at location x. 

The temporal duration of a composite event is determined from the start and end times of 

the initiating and terminating primitive event sets. We denote composite event as 

CE[bc,ec] where bc and ec indicate begin and end times for the composite event and bc 

and ec are functions of the time intervals of the initiating and terminating primitive event 

sets: 

bc=min(PEI[bx]) 

ec=max(PET[ex]) 

Body primitive events are any set of primitive events on parameters of interest that occur 

during the composite event interval, CE[bc,ec]. 

A formal expression for the temporal ordering of primitive events as initiating, body and 

terminating subsets of events is given as follows: 
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I[i, m], B[n,o], T[p,j] ⊆ C[i,j]:  

 

I[i,m], B[n,o], T[p,j]  }: Iim  Bno  Bno =  

where, 

Iim = Set of primitive event/s that initiate a composite event. Start and end time of the set 

is represented by ‗i‘ and ‗m‘ respectively. 

Bno = Set of primitive event/s that form body of composite event. Start and end time of 

the set is represented by ‗n‘ and ‗o‘ respectively. 

Tpj = Set of primitive event/s that terminate a composite event. Start and end time of the 

set is represented by ‗p‘ and ‗j‘ respectively. 

Pk = Primitive event set with ‗k‘ events 

Allen‘s interval relationships are abstracted into temporal concepts, as described by 

Morchen (Morchen, Time Series Knowledge Mining, 2006). As discussed in Section 2.4, 

amongst the thirteen of Allen‘s interval relationships, only before and overlaps were 

implemented for storm detection in this thesis. Using these two temporal relationships, 

the ontology explicitly states the event-event relationship among the primitive events. As 

an example, given two events A and B with intervals [b1 e1] and [b2 e2] where, b1, b2 

are start times and e1, e2 are end times of event A and B respectively: 

A before B iif e1<=b2 

A overlaps B iif b1 <= b2 and e1 > s2 
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The restriction on the length of gap between e1 and b2 is imposed by a threshold gapTh 

(detailed later in Step 6 of Algorithm 5.1).  

 

3.3 Storm Event Ontology 

This section describes specialization of the general composite event ontology for a 

specific type of high-level event, the Storm Event, as presented in Figure 3.7. 

The main competency questions (Gruninger & Fox, 1995) that we aim to answer using 

this ontology are: 

 What are the requirements for identifying storm event using time series data?  

 What is the relationship between primitive and composite events in storm events? 

 Does a storm have spatial, temporal or spatio-temporal aspects? How are these 

dimensions related to each other? 

Related domain-level ontologies for the concept of storm events include SWEET 

(Semantic Web for Earth and Environmental Terminology) which comprehensively 

covers the earth and environmental domain. It contains a Storm class, which is a child of 

Precipitation class. Some interesting subclasses of class Storm are HailStorm, IceStorm, 

LocalStorm, Monsoon, NortheastStorm, Squall, Thunderstorm and Tornado. 

Interestingly, some sibling classes of class Storm were Drizzle, FreezingRain, Hail, Mist, 

Rainfall, Sleet and class Snowfall. Although the SWEET ontology is comprehensive in 

terms of stating the class hierarchies amongst the MetereologicalPhenomenon class, it 

does not serve our purpose of explicitly characterizing a storm by its primitive event 

parts. 
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The domain of the storm event ontology is restricted to detection of storm events using 

sensor generated time series which monitor atmospheric parameters. The key initiating 

and terminating primitive events are extracted from a marker parameter. For storm 

detection, barometric pressure is chosen as the marker parameter, because of its 

sensitivity to disturbance in the atmosphere and the relationship of low pressure dynamics 

to storm formation. The scope of this thesis is limited to implementing storm detection 

using barometric pressure as the single marker parameter. The primitive event 

‗significant barometric pressure fall‘ event i.e., BP_Fall initiates the Storm event, 

whereas the ‗significant barometric pressure rise‘ event i.e. BP_Rise terminates it. The 

logical assumption in the ontology is that the primitive event that ‗initializes‘ occurs 

before the primitive event that ‗terminates‘ the composite event.  

  

Figure 3.7 Storm ontology 
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3.4 Summary 

This chapter presented the general process of data abstraction from time series to 

primitive events to composite events. The primitive event ontology specifies the concept 

of primitive event as used in this thesis and how primitive events are obtained from time 

series through AbstractionFunctions. Types of thresholds and ways to deal with 

uncertainty due to hard thresholds were discussed. A general composite event ontology 

for detecting a wide range of high-level events in several domains was presented 

followed by the storm event ontology specific to the domain of meteorology. 
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Chapter 4 

PRIMITIVE EVENT DETECTION FROM GOMOOS 

TIME SERIES DATA 

Based on the primitive event ontology and detection methodology as described in 

Chapter Three, this chapter describes the application of the primitive event detection 

methods to sensor time series data collected from the Gulf of Maine Ocean Observation 

System (GOMOOS). This chapter presents descriptions of the GOMOOS system, the 

time series datasets and several data quality issues. The selected parameters and the 

primitive event detection methods are geared toward capture of storms in the form of 

high-level composite event.  

 

4.1 Gulf of Maine Ocean Observation System 

The Gulf of Maine Ocean Observation System (GOMOOS) is a regional ocean 

observation system utilizing a network of buoys deployed in the Gulf of Maine (GOM) to 

obtain sustained, year-round and real-time observations of the ocean environment. The 

GOM covers approximately 94,000 km
2
 in area and has ocean-depths ranging from 4 to 

500 meters. The GOMOOS buoy system is capable of accommodating on the order of 

100 surface and subsurface sensors. Sensors are deployed on moored buoys and each has 

a data logger. Figure 4.1 shows the extent of the Gulf of Maine and the location of the 

moored buoys. Each buoy carries sensors at multiple depths. The data logger collects, and 

on a regular schedule (usually hourly), transmits the data measurements via cellular 

telephone, iridium phone, or through NOAA‘s Geo-stationary Satellite Server (GOES) 
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satellite system. Data processing and preliminary quality control checks are performed by 

the Physical Oceanography Group (PHOG) at the University of Maine and data are then 

transferred to the GOMOOS website (GOMOOS, 2002; Wallinga, Pettigrew, & Irish, 

2003). 

 

4.2 Description of the GOMOOS Dataset 

Sensor networks are deployed in the real world for measurement, detection and 

surveillance applications (Bonnet, Gehrke, & Seshadri, 2001). Sensors transform physical 

phenomena such as heat, light, sound, pressure, magnetism or motion into measurements 

using signal processing functions. Oceanic buoys carrying sensors form a fixed sensor 

network in GOM. This network generates data which are archived in a time series 

database. Each time series is associated with a sensor, location, parameter and depth. 

Table 4.1 shows a list of atmospheric, oceanographic and spatial parameters that sensors 

on each buoy record. The frequency of data collection i.e. temporal granularity varies by 

parameter but is similar (or processed to be uniform) for a parameter across all buoys. 

This thesis uses only atmospheric parameters: air temperature, wind speed, barometric 

pressure and wind direction which are collected by instruments placed at 3 m and 4 m 

above the sea surface. Other parameters such as wave height could be additional 

indicators of a storm event but were not used for this study.  
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Figure 4.1 Position of buoys in the Gulf of Maine 

Atmospheric 

parameters 

Oceanic parameters 

Spatial 

parameters 

Air temperature, 

visibility, wind 

direction, wind 

speed, wind stress, 

wind gust, 

barometric 

pressure and 

pressure tendency 

Water: Water temperatures, salinity, 

sigmaT, dissolved oxygen, percent oxygen, 

oxygen saturation, conductivity, density, 

transmissivity. 

Current: Current speed, current direction, 

Waves: Dominant wave period, sign wave. 

Buoy: 

latitude, 

longitude, 

sensor depth 

location 

Table 4.1: List of parameters measured by GOMOOS sensor network 
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4.2.1 Physical Data Architecture 

Data collection methods and quality of the data are important to understand in preparing 

the data for processing and data mining. This section describes the process of data 

collection and storage in MATLAB structures, which facilitates event detection. 

 

4.2.1.1  Data Collection 

Data collected by sensors deployed on buoys are telemetered to a computer system 

maintained by PHOG at the University of Maine, Orono (Pettigrew, Roesler, Neville, & 

Deese, 2008). The computer system appends the incoming data to a file specific to the 

buoy that initiated the data transmission. These files are then parsed into constituent data 

streams according to the instruments that produced them. Processing algorithms are then 

run on raw data streams, and the data parameters are appended to time series NetCDF 

files, which are used to update the time series database. Figure 4.2 shows the overall 

process of data collection and processing. 
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Figure 4.2 Data collection and pre-processing 

 

The moored buoys are each referred to by a location/deployment code (e.g. A01, B01, 

C02). For this study, time series data were obtained for 10 buoys: A, B, C, E, F, I , J, L, 

M and N. Parameters selected for each buoy included barometric pressure, air 

temperature, wind speed and wind direction. Thus, there were 4 time series collected for 

each of ten locations for a total of 40 time series. For this study the full deployment time 

series was subset to cover 32 months between the years 2004 and 2007. The temporal 

granularity for each of the selected parameters is one hour. The time stamps on these time 

series were recorded initially as yyyy/mm/dd: hh in GMT and converted to Julian dates. 

The units used for expressing values of parameter barometric pressure is millibars (mb), 

wind speed is meters per second (m/s), air temperature is degree Celsius and wind 

direction is degrees from North. Each of the parameters has an associated quality code 

Satellite 

Data processing 

at PHOG, 

University of 

Maine 

Time 

series 

database 

Data 

transfer 

Sensor 

deployment 

Quality Assurance 

and Control 

Cell phone 



64 
 

with values: 0b, 1b, 2b, 3b indicating respectively "quality_good, out_of_range, 

sensor_nonfunctional, questionable‖. 

 

4.2.1.2  Data Structures in Matlab
®
 

Data structures are a way of storing data to facilitate use and efficient processing. To 

maintain and manage the temporal indexing, the Matlab
®
 programming language was 

used to create structure arrays for each time series. Matlab
®
 structures store the time 

series by buoy location and sub-domain (i.e., Air, Water, Current, Waves), according to 

the following format: 

buoy_subDomain {‗field1‘, values1, ‗field2‘, values2,…….} 

For example, 

a01_air {‗jd‘, jd_array1, ‗at‘, at_array, ‗bp‘, ‗bp_array‘,…}, a01air is a structure that can 

be visualized as shown in Figure 4.3. 

 

Figure 4.3 Visualization of a structure 

a01air 

 jd_array1      

‘jd’ 53460.000 53460.0417 53460.083 53460.125 53460.167  

       

 at_array      

‘at’ 1.062 0.900 1.210 1.646 2.555  

       
 bp_array      

‘bp’ 1021.5 1020.8 1019.5 1018.2 1017.0  
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The structure a01air stores time series belonging to buoy A01 for the sub-domain Air 

which corresponds to the times series data on air temperature and barometric pressure 

collected by meteorological sensors. The time series are stored in one-dimensional arrays, 

the first representing Julian day values referenced by the field name „jd‟ and stored in 

jd_array1. The array jd_array1 stores time stamps shared commonly by corresponding 

values in the array at_array for air temperature and the array bp_array for barometric 

pressure. Therefore, the lengths of arrays jd_array1, at_array and bp_array are same. 

Sensors measuring a parameter at the same location but different depths are stored by 

separate field names. 

 

4.2.1.3  Primitive Event Detection Process Flow Diagram 

Figure 4.4 shows the process flow diagram for detecting primitive events from sensor 

data. Matlab
®
 scripts were used to extract crisp and fuzzy primitive events from Matlab

®
 

structures. Matlab
®
 was chosen due to its computational strengths, ability to handle high-

dimensional data and robust support for structures. Primitive events extracted from the 

time series can either be stored in the primitive events database or in simple Matlab
®

 two-

dimensional arrays. Primitive event files, stored as two-dimensional arrays, support 

further processing for composite event assembly using algorithms and through clustering 

and filtering. Matlab
®

 structures are used for intermediate results (e.g. first difference, 

smoothed time series). The values stored in a structure can be numeric or symbolic. 
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Figure 4.4 Process flow diagram for primitive event detection 

 

4.2.2 Data Quality of GOMOOS Dataset 

We evaluate the GOMOOS dataset for data quality as suggested by Pipino et al. (Pipino, 

Lee, & Wang, 2002). The GOMOOS dataset is accessible online for academic use under 

the Open Source license. Data is available from the year 2001 to present. As with any 

similar long term project, there have been practical and operational difficulties that need 

to be considered when using the data for knowledge discovery. 

Missing values are present within the data during several intervals of time for various 

reasons, which range from faulty sensors, noise, or removal during preprocessing. 

Varying temporal granularities occur over the period of deployment either due to 

updating of sensor capabilities or removal of some buoys. Parameters are recorded at 

different temporal resolution depending upon the type of parameter. For example, wind 

direction is measured every 15 minute. We account for differences in temporal 

granularity in data by abstraction of time series with granularity less than an hour into 

one-hour granularity by averaging. One hour is the common coarsest level of granularity 

for most parameters. The data format and representation of parameters depends on 

parameter type, but is consistent across all buoys by parameter type. Every observation is 
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recorded with a consistent corresponding time stamp across all buoys. The data are 

generally assumed to be free of instrumental errors. Noise is removed during data 

preprocessing. Parameter values undergo range checks and the accuracy of the dataset 

post-processing is considered to be good and logically consistent. The relevancy of the 

collected GOMOOS data to the objective of storm discovery is high, as GOMOOS 

measures the following atmospheric parameters that are highly relevant to storm 

discovery: barometric pressure, wind speed, wind gust, wind direction, wave height, and 

current speed. Data collected is considered timely and current. GOMOOS dataset has 

much value since it provides unprecedented oceanic observations of the Gulf of Maine, 

enabling researchers to study ocean systems at fine temporal scales. The completeness of 

the dataset is evaluated in the next section on missing values. 

 

4.2.2.1  Missing Data and Chosen Timeframe in GOMOOS Dataset 

As mentioned in Section 3.1.5, missing data is a common problem in sensor surveillance 

systems. The performance of statistical analysis and inference depends largely on both 

the amount and pattern of missing data, which affects the quality of the resulting 

products. The number of missing values varies by parameter, sensor, buoy and is due to a 

number of reasons, including bad weather, sensor settings, service lags and so forth. The 

GOMOOS system collects data in a highly dynamic, high energy ocean environment, and 

as such, missing data in such a harsh environment is quite common. Moreover, not all 

buoys and sensors were deployed at the same time. To minimize missing values due to 

different buoy deployment periods, a common timeframe across all buoys and parameters 

was chosen for all further analysis and implementation of the EO approach. The common 
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timeframe is: 01-Oct-2004 22:00 to 04-Jul-2007 00:00 and will hence forth, be referred to 

as the ‗chosen time frame‘. The chosen timeframe included observed data for ten buoys 

and the duration of the timeframe, i.e., 32 months, was considered sufficient for storm 

detection.  

Figure 4.5 shows a bar chart comparing missing and non-missing observations at each 

buoy for each of the parameters: barometric pressure (BP), wind speed (WS), air 

temperature (AT) and wind direction (WD). It can be seen that the presence of missing 

observations varies by parameter. Parameter AT shows the least number of missing 

observations, followed by the storm marker parameter BP. The parameters WS and WD 

tend to have more missing observations, which may be due to various reasons ranging 

from limitations of the sensors or behavior of the parameter. Since the average percentage 

of missing observations for the marker parameter BP across all buoys was found to be 

7.91%, we consider the marker parameter data quality to be good. 

Figure 4.6 shows a comparative plot for buoy locations showing non-missing 

observations of parameters BP, AT, WS and WD. The x-axis shows time, whereas the y-

axis shows buoy labels. Each buoy has four corresponding line-plots indicating the 

parameters in different colors: BP in blue, AT in green, WS in red, and WD in black 

color. Discontinuity in the line-plots indicates presence of missing data for that 

parameter. We observed that generally WS and WD sensors record missing observations 

at the same times. The high number of missing observations of wind speed and wind 

direction parameters, as seen in Figure 4.5, is attributed to service related issues and not 

due to faulty sensor observations. 
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Figure 4.5 Comparison of missing and non-missing observations 

for the chosen time frame [01-Oct-2004 22:00 to 04-Jul-2007 00:00] 
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Figure 4.6 Comparative buoy data plot for parameters (discontinuity in lines indicates missing data) 
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4.3 Primitive Event Detection Method 

In this thesis, primitive event detection only uses time series in Time-domain Continuous 

representation (See Section 2.3 for details). This representation requires minimal 

transformation from its time-stamped-values form. Primitive event detection using 

gradient thresholds requires a first difference transform, however this does not qualify as 

a Transformation-based representation because the first difference array still maintains 

time stamps and the time domain of the parent time series. The following sections discuss 

both the algorithms that implement primitive event detection from the time series data 

using various threshold types, and the results obtained.  

 

4.3.1 Global Thresholds in the GOMOOS Dataset 

Two methods were used to determine thresholds: statistical and user-defined. Statistically 

derived thresholds require much less decision-making on the part of the user. However, 

since thresholds are statistically derived, they are data dependant and sensitive to noise in 

the data, such as outliers. User-defined thresholds are data independent and may be 

determined with the assistance of data statistics. We combine statistically-derived and 

user-defined thresholds for primitive event extraction from the marker parameter BP in 

the ‗chosen timeframe‘.  

Table 4.2 presents the mean and standard deviations for the parameters barometric 

pressure, wind speed, wind gust, air temperature and wind direction. The term ‗global 

average‘ refers to an average of the time series for all available buoys. For the line 

threshold abstraction function applied to barometric pressure, we use a threshold of 1015 
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mb units (half standard deviation below the mean, as shown in Table 4.2). There are 

seasonal differences in the means of these parameters which need to be taken into 

consideration in setting thresholds in some cases of event detection. 

Figure 4.7 illustrates a primitive event detected using a combination of line state and 

gradient thresholds. The abstracted primitive events are referred to as ‗BP_Fall‘ events 

and are stored in the primitive events database as a record as shown in Figure 4.8, along 

with the metadata. 
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 Statistic A01 B01 C02 D01 E01 F01 I01 J02 K01 L01 M01 N01 

Global 

Average 

BP 

Mean 1014.6 1014.5 1014.6 -- 1013.9 1014.0 1014.3 1014.3 -- 1013.8 1014 1014.5 1014.21 

Std. Dev. 8.7 8.8 8.9 -- 9.1 9.1 9.1 9.3 -- 9.0 9.16 8.8 9.02 

W

S 

Mean 5.85 5.64 5.48 3.8 5.64 5.11 5.75 4.5 4.95 6.3 6.65 6.33 5.5 

Std. Dev. 3.10 3.10 3.1 2.3 3.3 3.04 3.49 2.9 3.13 3.65 3.5 3.37 3.16 

W

G 

Mean 7.32 7.07 6.84 5.16 7.04 6.42 7.18 6.16 6.61 7.74 8.2 7.94 6.97 

Std. Dev. 3.85 3.81 3.74 3.19 4.04 3.68 4.33 3.82 3.92 4.46 4.37 4.19 3.95 

AT 

Mean 9.29 8.28 7.93 4.98 7.79 6.97 6.59 6.28 6.48 6.68 8.4 8.4 7.34 

Std. Dev. 7.66 7.78 7.86 7.82 7.25 7.61 6.24 7.59 7.69 5.87 7.01 6.22 7.22 

Table 4.2 Statistics on atmospheric parameters across all buoys for calculation of global averages 

  

7
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Figure 4.7 Visualization of primitive event detection using combined line and gradient threshold 
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Figure 4.8 Primitive event data stored in a file along with metadata 

 

Events Transform Temporal Filter 

Thresholds 

State Gradient Rate 

‗Significant BP fall‘ 

primitive event 

First 

difference 

Min event duration 6 hour; Min 

events disjoin 3 hours 

1015 fall 

4 

mb 

‗Significant BP rise‘ 

primitive event 

First 

difference 

Min event duration 6 hour; Min 

events disjoin 3 hours 

1015 rise 

3 

mb 

Table 4.3 Threshold criteria for primitive event detection in GOMOOS 

 

4.3.2 Primitive Event Detection Algorithm 

This section presents the implementation of the primitive event detection approach 

discussed in Section 3.1. As stated in the storm event ontology (see Section 3.3), a storm 

MetaData 

Buoy:  A01 

Measurand: Barometric Pressure 

Unit:  millibars 

Depth:  3 meters 

eventType: BP_Fall 

 

Event Records 

EventNo.                 Start Time End Time  Value 

1  02-12-06 10:00 02-12-06 23:00 998.0 

..  ..  ..  .. 
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event is initiated by the ‗significant BP fall‘ and terminated by the ‗significant BP rise‘ 

primitive events. These primitive events are described next. 

The ‗significant BP fall and BP rise‘ primitive events are abstracted subsequences of time 

series which satisfy state, gradient, rate and temporal thresholds. The rate and temporal 

thresholds used in detecting primitive events vary. Table 4.3 summaries thresholds and 

filters used for barometric pressure primitive events. The rate threshold for a ‗significant 

BP fall‘ is 4 mb and 3 mb over the primitive event duration, to qualify as a ‗significant 

BP rise‘ primitive event. The minimum temporal filters as indicated in Table 4.3 are 6 

hours for ‗significant BP fall‘ and 3 hours for ‗significant BP rise‘. This is because 

recovery in BP tends to occur at a lower rate as compared to the fall. These temporal 

threshold values were determined from visual evaluation of the time series data. The least 

temporal distance between two storm candidates was set to 30 hours. 

The primitive event detection algorithm processes data in four steps. Inputs to the 

algorithm (see Figure 4.9) are time series in the form of a one-dimensional time stamped 

array called varArray. varArray corresponds to the array described in section 4.2.1.2 (e.g. 

air01). The thresholds include a value threshold (varLowMagTh), rate threshold (rateTh), 

and temporal filters (minDurTh and minEvent_Event_Dur) examples of which appear in 

Table 4.3. The varLowMagTh represents the threshold value below which a parameter 

value is considered to be ‗low‘. The threshold rateTh represents the overall gradient, that 

is, the fall or rise within the total duration of the primitive event. This is calculated as the 

total range difference within the primitive event. The temporal filter minDurTh represents 

the minimum duration of a primitive event. A primitive event with duration less than this 

threshold is considered too short to qualify. For example, if the value of the threshold 
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minDurTh was 3 hours, then a primitive event qualifying on all other thresholds but 

lasting only two hours would be ignored. The second temporal filter, 

minEvent_Event_Dur, represents the minimum temporal gap between two qualifying 

primitive events of the same type that determines whether they are considered as one or 

as separate primitive events. If two qualifying primitive events have a temporal gap less 

than this threshold, they are considered as one primitive event. 

The expected output of the algorithm is a two dimensional array with start and end times 

(or corresponding indexes) for intervals in which parameter values meet the thresholds 

specified in the inputs. 

The first step of the algorithm loops though the varArray to check if the gradient 

condition is met using first difference of adjacent values. If the condition is met, the 

index (time stamp) is stored in a new array (named indexGradient). The second step 

applies the state threshold (1015 mb for BP state threshold, as noted in Figure 4.7) 

condition on the indexGradient array to create another new array of qualifying indexes 

(named indexGradient_LowMagTh). The third step loops through 

indexGradient_LowMagTh and picks start and end points for candidate primitive events 

meeting temporal separation constraints. In the last step, the algorithm applies the 

temporal filters minDurTh on the candidate primitive events detected in step 3 to 

generate the final set of primitive events as the output result. 

Results of the implementation of this algorithm for detecting ‗significant BP fall and rise‘ 

events using thresholds as specified in Table 4.3 are presented in the next section. 
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Input: varArray, varLowMagTh, rateTh, minEvent_Event_Dur, minDurTh 

Output: eventMatrix (i.e, BP_Fall if gradientFeature is Fall; BP_Rise 

  if gradientFeature is Rise) 

 

Step 1) Extract indexes with desired ‗gradientFeature‘ in varArray 

indexGradientempty 

firstdiffArray first difference transform (varArray.bp) 

FOR each j in firstdiffArray 

 IF firstdiffArray(j) > ‗fallgradient‘ THEN  

//Comment: where, fallgradient  0 to find negative firstdiffArray values  

//for „fall‟ and positive //firstdiffArray values for „rise‟ 

Add j to indexGradient  

END IF 

END LOOP 

 

Step 2) Apply line threshold on value of parameter i.e., varLowMagTh 

indexGradient_LowMagThempty 

FOR each j in indexGradient 

 IF varArray.bp(j) <= varLowMagTh THEN 

  Add j to indexGradient_LowMagTh 

END IF 

END LOOP 

 

Step 3) Detect primitive events from indexGradient_LowMagTh 

//Comment: Detect Start Points 

EventCount1 

EventStartempty  

Add indexGradient_LowMagTh(1) to EventStart 

FOR each k in indexGradient_LowMagTh 

 IF indexGradient_LowMagTh(k+1)-indexGradient_LowMagTh(k)> 

minEvent_Event_Dur THEN 

 

  EventCount  EventCount + 1 

  Add indexGradient_LowMagTh(k+1) to EventStart 

END IF 

END LOOP 

//Comment: Detect End Points 

EventCount0 

EventEndempty  

FOR each k in indexGradient_LowMagTh 

 IF indexGradient_LowMagTh(k+1)-indexGradient_LowMagTh(k)> 

minEvent_Event_Dur THEN  EventCountEventCount + 1 

 

Figure 4.9 Pseudo code for gradient type primitive event detection 
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Figure 4.9 continued  

 

Add indexGradient_LowMagTh(k) to EventEnd 

END IF 

END LOOP 

 

Step 4) Filter out events less than duration ‗minDurTh‘ and rate less than  

‗rateTh‘ units 

//Comment: Check for length (eventStart) = length (eventEnd) 

countMatxIndex0 

startTimeempty 

endTimeempty 

 

FOR i 1 to length (eventStart) 

 IF eventEnd(i) – eventStart (i) > minDurTh THEN 

  qualifyIndex= eventStart(i): eventEnd(i) 

  IF RANGE (varArray(qualifyIndex) >= rateTh THEN 

   countMatxIndex countMatxIndex + 1 

   startTime(countMatxIndex) eventStart(i) 

   endTime(countMatxIndex) eventEnd(i) 

  END IF 

END IF 

END LOOP 

VerticalConcatenate startTime, endTime INTO ARRAY eventMatrix 

RETURN eventMatrix 

 

4.4 Results of Primitive Event Detection 

Table 4.4 summarizes the results of the primitive event detection using the algorithm and 

thresholds as indicated in Figure 4.9 and Table 4.3 for each event-type.  

A comparison of the detected primitive event numbers with the plot in Figure 4.5 

showing missing and non-missing observations indicates that for parameter BP, primitive 

events detected at a buoy depend on the number of non-missing observations at that 

buoy. C02 has the most number of missing observations and also the least number of 

‗significant BP fall or rise‘ events in comparison to all other buoys. Buoy E01 detected 



80 
 

the highest number of ‗significant BP fall‘ and ‗significant BP rise‘ events and also had 

the least number of missing observations. Therefore, it appears that the number of BP 

primitive events detected is closely tied to data quality of the BP parameter. Notice that 

the numbers of ‗significant BP rise‘ events are higher than ‗significant BP fall‘. This is 

most likely due to the difference in threshold values. 

Buoy N01 has the least number of cold spike events in air temperature. However, this is 

not due to missing data. One possibility for the low number of cold spike primitive events 

may be due to the spatial location of the buoy N01 in the farthest South-East or its 

location as farthest out in the sea (see Figure 4.1). However, the mean for AT 

observations at buoy N01 is not significantly different from other buoys such as L01 and 

M01. 

Another interesting finding is that the number of high wind speed primitive events is 

highest for J02, closely followed by F01. This is not due to longer data records (low 

number of missing values) at these buoys. The data statistics in Table 4.2 do not indicate 

higher mean WS values in buoys J02 and F01 in comparison to other buoys. The high 

number of primitive events therefore is not attributable to any clear reason. 

Higher numbers of ‗sustained NE wind direction‘ primitive events were found at Buoys 

F01, B01, I01 and A01 respectively. Interestingly, buoy F01 has more missing WS 

observations compared to other buoy locations. Buoy B01 does not have many missing 

observations. Buoys A01 and I01 have about the same number of missing observations. It 

appears that the number of primitive events of event type ‗sustained wind direction‘ does 

not show much correlation with the number of missing observations. 
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Parameter\Buoy A01 B01 C02 E01 F01 I01 J02 L01 M01 N01 

Number of ‗Significant 

Barometric Pressure- Fall‘ events 

162 165 151 173 164 168 169 158 171 163 

Number of ‗Significant 

Barometric Pressure- Rise‘ events 

199 207 176 216 196 208 204 188 217 201 

Number of ‗Air Temperature - 

Cold Spike (below -4°C)‘ events 

104 134 139 141 211 155 205 80 97 26 

Number of ‗High Wind Speed 

(above 10 m/s)‘ events 

55 52 90 72 139 83 192 29 20 17 

Number of ‗Sustained Wind 

Direction (North-East i.e., 0-100 

degree from magnetic north)‘ 

events 

567 623 511 539 737 563 486 263 334 197 

Table 4.4 Results of primitive events detected 

In conclusion, the number of primitive events detected for the marker parameter BP 

shows good correlation to the number of non-missing observations. The number of 

primitive events, ‗Cold Spike in AT‘, ‗High WS‘ and ‗sustained NE wind direction‘, did 

not show correlation with the presence of non-missing values. There could be seasonal or 

other reasons associated with the numbers of primitive events that were found in these 

parameters. However, an analysis of the discrepancy is beyond the scope of this thesis. 

 

  



82 
 

4.5 Summary 

This chapter presented primitive event detection using the GOMOOS moored buoy time 

series for meteorological parameters. First, information on the GOMOOS system and 

data limitations was presented. Description of the data and data structures for event 

detection was presented, followed by data quality considerations taken into account. 

Further, this chapter presented the algorithm for primitive event detection along with the 

reasoning behind the choice of particular threshold values. Lastly, results of primitive 

event detection were presented and discussed in Section 4.4. 

The next chapter presents implementation of composite event assembly for discovering 

storm events using primitive events in the GOMOOS dataset. 
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Chapter 5 

STORM COMPOSITE EVENT ASSEMBLY FROM GOMOOS DATA 

PRIMITIVE EVENTS 

 

This chapter describes composite event assembly from primitive events. General methods 

of composite event assembly were mentioned in Chapter Three. An algorithm for 

assembly of candidate storms by integrating primitive events from the GOMOOS dataset 

is presented here. The chapter concludes with a validation of candidate storms by 

comparison to an independent data source, in this case the NCDC storm events database. 

 

5.1 Composite Event Assembly 

Primitive events are the building blocks which are assembled to form a composite event. 

Detection of primitive events from time series was presented in Section 3.1. The key to 

high-level composite event assembly is the discovery of initiating and terminating 

conditions, as specified in the composite event ontology. The Storm Event ontology, 

presented in Section 3.3, specifies the initiating and terminating primitive events for the 

high-level composite storm event to be changes in the marker parameter, barometric 

pressure. Allen‘s temporal relationships before and overlaps were used to order initiating 

and terminating primitive event sets for candidate storm events. The algorithm 

implementing the process of composite storm event assembly from primitive events is 

discussed next. 
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5.2 Algorithm for Composite Event Assembly 

Wireless sensor networks contain many nodes and GOMOOS, while not a wireless 

sensor network, has several deployed buoy locations where time series are collected on 

various parameters. The detected primitive events indicate types of change in a parameter 

as observed in time series from individual locations (buoy or node). The assembly of a 

composite event needs to consider the spatial arrangement and temporal order of 

initiating primitive event detected at these locations. For the example, in high-level storm 

events, we would expect the initiating primitive events to occur nearly simultaneously or 

in some spatio-temporal order across the buoy locations. Thus the first step in the 

assembly is to use spatio-temporal clustering on primitive events. Primitive events are 

spatio-temporally clustered using a string construct called a Spatial Progression String 

(SPS). The SPS is a string of time-stamped, comma-separated substrings made up of 

symbols representing the location and some qualitative property of the primitive event 

(typically the AbstractionType). The SPS construct is domain-independent and could be 

applied to the assembly of other types of high-level events in sensor network settings. 

The SPS construct works well with data which is spatially sparse but temporally dense. In 

sensor networks, if the sensor node locations are more than 26 (in case of letters of an 

alphabet representing sensor node location) the SPS construct will become complex and 

therefore difficult to manage. 

In constructing the storm SPS for the GOMOOS case-study, the string symbols are letters 

of the alphabet representing the buoy location at which the primitive event was observed 

and the gradient abstraction type of that primitive event. Since GOMOOS names buoys 

by letters A01, B01, C02 etc., these letters were adopted. Gradient abstraction type ‗fall‘ 
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is represented by an upper case buoy letter, whereas ‗rise‘ is represented by the lower 

case buoy letter. For example, a ‗fall‘ primitive event extracted from buoy A01 would be 

represented in SPS as the letter ‗A‘, whereas a rise primitive event from the same location 

is represented as ‗a‘. These letters are called BuoyTags, and in this context but could be 

considered location tags in a more general sensor network setting. The BuoyTags are 

symbols that represent both a gradient primitive event and a buoy location at the 

particular time of observation. Generation of the SPS facilitates spatio-temporal 

clustering of primitive events and serves as an intermediate step to identifying candidate 

storms. Once the candidate storms are identified, they can be further classified using the 

SPS. This process of storm event detection is presented next. 

As specified in the Storm Event (SE) ontology in Section 3.3, the primitive event type 

‗Significant barometric pressure fall‘ initiates a candidate storm event and the primitive 

event type ‗Significant barometric pressure rise‘ terminates a candidate storm event. 

These primitive events are extracted as described in Section 4.3. For storm detection, 

these two primitive event types are loaded into two-dimensional date-string arrays, 

BP_Fall and BP_Rise respectively. These two arrays then serve as input to an algorithm 

that creates the SPS, as outlined in Figure 5.1. The format of the primitive event arrays 

BP_Fall and BP_Rise is: [Starttime, Endtime, BuoyTag], where ‗Starttime‘ and 

‗Endtime‘ are time stamps when the primitive event starts and ends. The example array 

tuple, [01-15-2004 00:00, 02-16-2004 00:00, A] indicates a ‗fall‘ primitive event starting 

at 01-15-2004 00:00 and ending at 02-16-2004 00:00, if month day shouldn‘t second 

number be 01-16-2004 observed at buoy A01. Alternatively, a BuoyTag of c in the 

example would indicate a ‗rise‘ in the parameter, indicated by the lower case, with the 
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letter c indicating buoy location C02. A tuple from either the BP_Fall or BP_Rise array 

(e.g., [01-15-2004 00:00, 02-16-2004 00:00, A]) thus captures the primitive event type, 

time of occurrence, and location.  

To identify composite events spread over several locations but clustered in time, we 

create the SPS from these arrays which contain the spatio-temporal information for a 

candidate storm. A candidate storm appears as a temporal cluster in the SPS and these 

clusters contain the spatio-temporal information for a candidate storm.  

Figure 5.1 illustrates the generation of SPS from the BP_Fall and BP_Rise arrays. The 

two matrices are concatenated vertically to form a one-dimensional array of SPS values 

which are the appended set of BuoyTags ordered by temporal indexes. A temporal cluster 

in the resulting SPS indicates the gradient of the barometric pressure parameter over all 

available locations, and as each BuoyTag has a unique time stamp, their combination 

equals the total duration of the candidate storm. 

As illustrated in Figure 5.1, the start and end indexes of temporal clusters in the SPS 

indicate the start and end timestamps of storm candidates. The SPS cells corresponding to 

indexes 1 and 2 are empty. Index 3 which contains a BuoyTag (in this case indicating an 

initiating primitive event) signals the start of the temporal cluster. So index 3 is chosen as 

the start index. Similarly index 14 contains the last BuoyTag (last meaning it is followed 

by a blank cell at index 15). Thus, index 14 is chosen as the end index for this example 

temporal cluster in the SPS cell array. 
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Figure 5.1 Visual illustration of SPS formation and identification of candidate storms 

 

A flowchart explaining the algorithm used to create the SPS is presented in Figure 5.2. 

The inputs to the algorithm are BP_Fall and BP_Rise arrays which are vertically 

concatenated to form a new matrix, BP_Matx. The one dimensional time stamped cell 

array ‗SPS‘ is initialized to the length of the time period of the chosen timeframe (i.e., 

[01-Oct-2004 22:00 to 04-Jul-2007 00:00]) in hours. A loop is run over the total duration of 
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the time period to check and append BuoyTags to the corresponding SPS cell strings. The 

output of the algorithm in Figure 5.2 is the SPS cell array. 

INPUTS: Arrays of primitive initiating and terminating events: BP_Fall, BP_Rise, tfs=[01-Oct-

2004 22:00] – temporal index for start of the chosen timeframe, tfe=[04-Jul-2007 00:00]- 

temporal index for end of the chosen time frame 

OUTPUT: SPS in MATLAB cell array format 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Flow chart for constructing SPS 
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Further, identification of the candidate storm‘s start and end times is carried out using the 

SPS created as an output of the algorithm presented in Figure 5.2. Initially, two arrays, 

strmC_St and strmC_End, are initialized as empty arrays of length one. A loop is created 

to check for empty and non-empty cells in SPS that identify the temporal clusters and 

coincidently the start and end times of candidate storms. The output of this algorithm as 

illustrated in Figure 5.3 is a strmC_Matx, which is a two-dimensional array storing start, 

end, and storm_SPS (the subset of SPS corresponding to the candidate storm) for each 

storm candidate. 

Preliminary classification of candidate storms was done based on the presence of BP 

primitive events within the candidate storms. The first set of storms called setFR contains 

both BP_fall and BP_rise primitive events which is the ideal case as it matches the 

expected conditions for a candidate storm as specified by the ontology. The temporal 

clusters however may contain other cases in which only BP_fall primitive events are 

present or only BP_rise primitive events are present. Thus a second set of candidate 

storms denoted by setFO contain only BP_fall primitive events. The third set of candidate 

storms, denoted by setRO, contain only BP_rise primitive events. The classification 

algorithm is displayed as a flowchart in Figure 5.4. It uses a nested for loop to identify 

the presence of rising, falling or both types of primitive events within the storm 

candidate. Figure 5.4 uses the symbols ‗‡‘ and ‗‽‘ to establish continuity between the 

algorithm flow charts on separate pages. The outermost for loop runs from 1 to the total 

number of candidate storms, which equals the number of rows in strmC_Matx in our 

arrays. The inner two for loops run for the number of rows in BP_Rise and BP_Fall, 
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indicating the number of primitive events. The results of these algorithms are presented in 

the next section. 

INPUT: SPS in MATALB cell array format, tfs=[01-Oct-2004 22:00] – temporal index for start 

of the chosen timeframe, tfe=[04-Jul-2007 00:00]- temporal index for end of the chosen time 

frame 

OUTPUT: Candidate storms stored as a two-dimensional array ‗strmC_Matx‘ 
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INPUT: Candidate storms stored as a two-dimensional array ‗strmC_Matx‘ 

OUTPUT: Three classes of candidate storms containing BP_fall followed by BP_rise as ‗setFR‘, 

containing fall only as ‗setFO‘, and containing rise only as ‗setRO‘  

Sort candidate storms into sets: setFR (containing BP_Fall followed by BP_Rise), setFO 

(containing only BP_Fall events) and setRO (containing only BP_Rise events) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.4 Flow chart for candidate storm classification based on primitive events  
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Figure 5.4 continued 

 

 

  

k=1 

IF strmC_St(i) <= BP_Fall(k,1) 
AND 

strmC_End(i) >= BP_Rise(k,2) 
AND 

Flag_Flag =0 

‡ 

ii+1 

kk+1 

No 

Yes 

Yes 

No 

No 

Yes Yes Yes 

IF k <= ROWS OF 
BP_Fall 

Flag_Fall1 

IF Flag_Fall = 
1 AND 

Flag_Rise=1 

IF Flag_Fall 
= 1 AND 

Flag_Rise=0 

IF Flag_Fall = 1 
AND 

Flag_Rise=0 

setFO APPEND 

strmC_St(i) AND 

strmC_End(i) 

setRO APPEND 

strmC_St(i) AND 

strmC_End(i) 

setFR APPEND 

strmC_St(i) AND 

strmC_End(i) 

Flag_Fall0, 

Flag_Rise0 

‽ 

No 



93 
 

5.3 Candidate Storms in GOMOOS Dataset 

This section examines candidate storms generated from the composite event assembly of 

primitive events extracted from the GOMOOS datasets and within the chosen timeframe. 

As described in Section 4.2.1.2, a Julian date corresponding to each observation is stored 

within the MATLAB structure, which can be referenced using an index. The output of the 

algorithm illustrated in Figure 5.4 includes the following sets: setFR (composite event 

containing both BP_Fall and BP_Rise primitive events), setFO (composite event 

containing BP_Fall primitive events only) and setRO (composite event containing 

BP_Rise primitive events only). These two-dimensional arrays contain indexes for start 

and end times of candidate storm events. Table 5.1 presents the results of the algorithm 

presented in Figure 5.4 for the GOMOOS dataset. It is noteworthy that setFO and setRO 

have negligible number of candidate storms as compared to setFR. One example from 

each set of candidate storms is presented to illustrate the types of conditions which lead 

to the different outcomes. A complete list of candidate storms can be found in Appendix 

A. 

Set setFR setFO setRO 

Number of candidate storms 113 10 10 

Table 5.1 Summary of candidate storms from the GOMOOS dataset (10-01-2004 to 

07-09-2007) See Appendix A for the complete setFR 

A plot of marker parameter and primitive events BP_Rise and BP_Fall along with time 

for the candidate storm belonging to set setFR, is shown in Figure 5.5(a). It starts at 

2005-12-19 23:00 and ends at 2005-01-21 12:00. For visual representation, a time series 
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from all buoys for the duration of the candidate storm are ploted in yellow color. The 

BP_Fall and BP_Rise primitive events initiating and terminating the candidate storm are 

shown in red and green color respectively. The rectangle highlights the boundary of the 

candidate storm for visualization within the time series. As one can see, there are several 

BP_Fall and BP_Rise events that form the candidate storm event. The Spatial 

Progression String (SPS) for this candidate storm (referred to as candidate storm #20) is 

represented as: ‗1B,4ABE,1AB,2ABN,2ABFN,1BFN,1Fa,3Fab,2F,1,1f,15abf,3bf,1f‘. In 

this storm SPS, the comma-separated substrings contain letters that designate a buoy 

location and the upper and lower case designate the initiating and terminating primitive 

event types. The first few substrings contain predominantly uppercase letters, whereas in 

the middle, some letters within a substring change to lower case. At the end of the SPS, 

all the letters are lower case. This pattern of upper case letters indicates a falling gradient 

followed by lower case letters indicating a rising gradient in the barometric pressure 

parameter. This pattern is also evident from the graphic representation of the times series 

and candidate storm #20 as shown in Figure 5.5(a), The time series indicates all the 

buoys observing a falling barometric pressure followed by a period where some buoys 

see a rise whereas others see a fall, which in turn is followed by a period of sustained rise 

in barometric pressure across all buoys. Thus, the SPS represents the spatio-temporal 

behavior of the marker parameter during the storm. Figure 5.5(a) presents visualization of 

candidate storms #20 (from set setFR) and #1 (from setFO). Candidate storm #20 starts 

from 01-19-2005 and ends at 01-21-2005 12:00. Candidate storm #1 from set setFO starts 

at 01-22-2005 23:00 and ends at 01-23-2005 09:00. It can be seen that storm #20 contains 

both BP_Fall and BP_Rise events, whereas #1 contains only BP_Fall events. It can be 
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noted that candidate storm #1 ends with missing values. In case there were no missing 

values, there could have been a barometric pressure rise associated with the fall. The SPS 

of candidate storm #1 from set setFO is: '2A,1AB,2B,4BN,2N‘. 

Figure 5.5(b) shows a candidate storm from the set setRO. This candidate storm was 

selected because the observations from some buoys satisfied the thresholds for a short 

time. Since the duration of this event is only 2 hours, we filter these events out. The SPS 

for candidate storm #1 from setRO shown in Figure 5.5(b) is: ‗3f‘. 

 

setFR [20     01-19-2005 23:00    01-21-2005 12:00]; setFO [1      01-22-2005 23:00   01-23-2005 09:00] 

 

Figure 5.5 Time series plot of candidate storms from classification sets 

 a) Candidate storm #20 from the set setFR and #1 from set setFO 

  

Candidate 
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Candidate 

storm #1 
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Figure 5.5 continued 

]  

b) Candidate storm #1 from the set setRO 

 

The setFO and setRO candidate storms are typically artifacts of missing data and can be 

analyzed further to determine if they might be valid storm candidates. However, for the 

remainder of this analysis however, these potential candidate storms are ignored.  

In order to evaluate the effectiveness of storm detection using the EO approach, we 

compare the candidate storms to an independent source of historic weather data. The next 

section presents the validation of the candidate storms comparing them to National 

Climatic Data Center (NCDC) storm events. 
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5.4 Validation of Candidate Storms 

This section presents validation of candidate storms detected using the EO approach. The 

validation data set is an independent historic data source maintained by the National 

Climatic Data Center (NCDC, 2011). This database contains information about storm 

events that includes start and end times, location and other observations on the intensity 

and direction of low pressure movement. There are semantic differences between the 

terms used to describe a storm between NOAA‘s National Weather Service (NWS, 2011) 

and the National Climatic Data Center (NCDC). Since we are interested in validating the 

candidate storms assembled from primitive events into composite events, we compare the 

EO derived candidate storm with the storms found in NCDC Storm Events database and 

NWS. The EO approach identifies just a single category of potential storms based on 

barometric pressure. NCDC, however, recognizes several different types of storms, 

whereas NWS uses a broader definition of storm. In order to get a reasonable 

comparison, all relevant storm types needed to be selected from the NCDC database. 

  

5.4.1 Range of NCDC and NWS storm definitions  

The NWS glossary defines a storm as a ‗disturbed state of the atmosphere, especially 

affecting Earth‟s surface and strongly implying destructive and otherwise unpleasant 

weather‟. A ‗storm‟ „warning‟ is defined as „warning of sustained surface winds, or frequent 

gusts, in the range of 48 knots (55 mph) to 63 knots (73 mph) inclusive, either predicted or 

occurring, and not directly associated with a tropical cyclone‟. ‗Snow squall‘ is defined as 

„intense, but limited duration, period of moderate to heavy snowfall, accompanied by 

strong, gusty surface winds and possibly lightning‟. The term ‗High Wind‟ is defined as 
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„sustained wind speeds of 40 mph or greater lasting for 1 hour or longer, or winds of 58 

mph or greater for any duration‟. ‗Thunderstorm‟ is defined as a „local storm produced 

by a cumulonimbus cloud and accompanied by lightning and thunder‟. ‗Hail‟ is defined 

as „showery precipitation in the form of irregular pellets or balls of ice more than 5 mm 

in diameter, falling from a cumulonimbus cloud‟. And ‗Rain‟ is defined as‘ precipitation 

that falls to earth in drops more than 0.5 mm in diameter‟. 

Terms related to storms are identified by NCDC and NWS but are not identical in 

definition. The NCDC storms database contains events that include Thunderstorm wind, 

Hail, Lightning, Rain, Flood, High/Strong wind, Heavy Snow, Winter Storm and Storm 

Surge. However, the term Winter Storm and Snow Storm cannot be found in the NWS 

glossary. Since there are semantic differences in the use of these terms, to allow 

comparison, we re-categorize related storm events into weather event definitions derived 

from the NWS glossary as follows. 

Figure 5.6 illustrates a classification tree of storm event types which explicitly specifies 

the hierarchical relationship between storm events. For the purpose of validation, we state 

the meaning and scope of each term. 

Storm is the highest class of event. Subclasses of Storm are Snow Storm, Thunderstorm 

and Rain Storm. The definition of Snow Storm is similar to Snow Squall in the NWS 

glossary. Winter Storm is regarded as a synonym of Snow Storm in this work, since most 

records of Winter Storm in NCDC Storm Events database mention snowfall. The 

definition of Thunderstorm is similar to the NWS glossary. NCDC records of 

Thunderstorm winds and Lightning are considered subclasses, having a ‗partOf‘ 

relationship to Thunderstorm. Similarly, Hail and Flood are subclasses with a ‗partOf‟ 
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relationship with class Rain Storm. The definition of Rain Storm includes precipitation in 

the form of hail, sleet or water. 

 

Figure 5.6 Classification tree for storm terminology used for validation 

Based on the above definitions and hierarchy of NCDC storm events, we match the date 

of candidate storms with NCDC storms of the types summarized above.  When there is a 

date match, the EO candidate storm is assigned the storm category assigned by NCDC. 

The results of validation are presented in Table 5.3. In this table, the numbers are storms 

seen by each database i.e., NCDC and the algorithms of the EO approach. The ‗+‘ and ‗-‗ 

sign represents whether corresponding records were found or  not found within the data 

sources respectively. 
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 NCDC+ NCDC-  

EO+ 74 39 113 

EO- 9   

 80   

Table 5.2 Summary of results of candidate storm validation 

 

Event Type 

Snow 

Storm 

Thunderstorm 

Rain 

Storm 

Strong 

Wind 

Unidentified Total 

Event 

Numbers 

25 14 23 12 39 113 

Table 5.3 Results of validation of candidate storms using NCDC storm event types 

 

Table 5.2 shows that out of the total 113 candidate storm events detected through EO 

approach, 39 had no match in the NCDC Storm Events database. This means that no 

corresponding storm events were found for 39 candidate storms when compared to the 

NCDC Storm Events database for the chosen timeframe. There were 9 cases in which 

NCDC identified a storm during the chosen timeframe but the algorithm identified no 

corresponding storm. Table 5.3 indicates that out of the events validated, most were of 

event type Snow Storm and Rain Storm. Out of the 9 storms seen by NCDC but not seen 
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by the algorithm in the chosen timeframe, 2 were Snow Storms, 6 were categorized as 

Rain storms and one was categorized as a Strong Wind event (see Table 5.4). 

Rain 

Strong Wind Snow Storm 

Flood Thunderstorm Wind Hail 

6 1 2 

 

Table 5.4 Type of NCDC events not detected by algorithm 

 

Sixty-four percent of the candidate storms were validated by events from the NCDC 

Storm Events database. About thirty four percent (i.e., 34.5% =39/113) of the candidate 

storms are not validated in NCDC database. Importantly, only nine (i.e., 11.2% = 9/80 of 

NCDC storms) of the storms recorded by NCDC are not found by the algorithm 

implementing the EO approach. 

During validation, it was found that typically, more than one NCDC Storm Event 

matched the time of a candidate storm identified by the algorithm. There are two reasons 

for this. First, the NCDC database contains multiple entries for one storm event observed 

at more than one location. For example, NCDC Storm Events database may contain two 

records for a single Snow Storm event observed at spatially close but different locations, 

say Bangor, and Ellsworth. Thus, several storms which are close in time (less than 12 

hour temporal difference) could be assumed to belong to a single storm. 
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The high number of identified false positives (34.5%=39/113) candidate storms for which 

no NCDC counterpart storm was identified may be a result of NCDC manually recording 

only significant Storm Events. In comparison, the EO candidate storms identify any 

disturbance in the atmosphere based on significant barometric pressure drop followed by 

a rise. Thus there is a potential for larger numbers of EO candidate storms than NCDC 

recognized storms. Another reason for the difference may be that the offshore GOMOOS 

buoy locations are picking up offshore storms that were not identified by the terrestrial 

stations used to identify the NCDC storms. 

 

5.5 Summary 

This chapter presented composite event assembly and assembly methodology and 

algorithms for implementing the EO approach using primitive events from the GOMOOS 

dataset. Results of the storm event detection, the candidate storms, were presented and 

discussed in Section 5.3. Validation of detected candidate storms was presented in 

Section 5.4. Although most storm events in the NCDC Storm Events database for the 

chosen timeframe were detected by the algorithm (92.5%=74/80), we also saw a 

significant number of false positive candidate storms. This means that the algorithm is 

picking up atmospheric disturbances other than those recognized in the NCDC Storm 

Events database. The next chapter delves into classifying the candidate storms with the 

goal of finding new information about storm events. New ontological knowledge found 

after further processing the candidate storms is presented and discussed. 
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Chapter 6 

COMPOSITE EVENT CHARACTERIZATION AND 

CLASSIFICATION 

 

This chapter presents a methodology for classifying composite events based on 

constituent primitive events. The methodology is illustrated using the composite storm 

events. The chapter presents a methodology for characterizing and classifying composite 

events to explore their structure and facilitate the discovery of new knowledge. The goal 

is to characterize the substructure of composite events based on the primitive events. 

Composite events are characterized based on key (i.e., initiating and terminating) 

primitive event behaviors. The approach is illustrated using the candidate storms 

identified in the previous chapter. 

The first section of this chapter describes classification of composite events based on the 

initiating and terminating events, the spatial sequencing of their onset and termination, 

and the temporal relationships between key primitive events and non-key primitive 

events. In order to discover new knowledge, classification of candidate storms based on 

spatial behavior of the marker parameter is presented in the later part of the chapter. 

Some statistical observations on behavior of wind speed, air temperature and wind 

direction are presented. 
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6.1 Classification of Composite Events Based on Initiating and 

Terminating Events  

There are several ways for classifying high-level events depending on the interest of the 

user. Composite events can be characterized by the types of their constituent primitive 

events, particularly the initiating and terminating primitive events. The spatial and 

temporal ordering of the initiating and terminating events (i.e. how similar are starting 

position and spatial sequences of primitive events), and their relationship to non-key 

primitive events provide information for characterizing the composite event. The two 

methods for classifying composite events used in this thesis are profile based and SPS 

based classifications. These are discussed in detail in the next two sections. 

 

6.1.1 Profile Based Composite Event Classification  

The term ‗profile‘ refers to the qualitative and temporal behavior of key primitive events 

(those that define the initiating and terminating conditions for the composite event). The 

criterion for profile based composite event classification is the overall pattern of key 

primitive events within the candidate composite event interval. Given the primitive event 

types there are several possible shape patterns which can occur. Similar to Agrawal et al. 

(1995), who employed shape descriptors; a form of shape descriptor can be applied to the 

primitive event sequences of a composite event and assigned a symbol. If the initiating 

primitive event is a rising trend and the terminating primitive event is declining trend, the 

profile shape is a peak. In the reverse case, the profile is a valley or a V shape. Sequences 

of the basic profile shape can create compound shapes. For a set of AbstractionType,s 
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A={fall, steady rise} the following set of basic pair-wise profiles shapes are possible, as 

illustrated in Figure 6.1. 

 

 

fall steady steady rise rise steady steady fall fall rise rise fall 

Figure 6.1 Basic pair-wise profile shapes 

These primitive event profile sequences represent a particular sequence of phenomena 

states or trends that can be used to classify composite events. 

 

6.1.2 Spatial Progression Based Classification 

The Spatial Progression Strings provide another basis for classification of composite 

events. A SPS, as described in Section 5.2, represents both primitive event type and the 

order in which locations detect initiating and terminating primitive events. Therefore an 

SPS can be used to represent the spatial progression of a high-level event in detail. SPS 

based classification can group high-level events by similarity in spatial direction of 

detection, progression or termination. As an example, assume a regular grid of sensor 

locations as shown in Fig 6.2. 
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Figure 6.2 Illustration of regular grid of sensor locations 

One pattern of SPS might be ‗G,E,C,g,e,c‘. Such a pattern indicates a progression of the 

initiating condition from the lower left corner to the upper right followed by a 

progression of the terminating condition on the same path. It also indicates a small spatial 

footprint for the event, In other words, it traces a narrow path through the set of node 

locations. Another SPS pattern might be ‗ADG,ADGBEH,BEHCFI,CFI‘. Such a pattern 

represents more of a frontal behavior i.e., the event moves as a front from left to right. An 

SPS pattern could also indicate a situation in which all locations see the initiation of the 

composite event simultaneously, e.g., the first SPS cell contains all locations 

(ABCDEFGHI). The SPS can thus be used to classify composite events on direction of 

movement as well as some basic patterns (e.g., path, front, or synoptic event). 

Classification of storms using the Spatial Progression String is presented in Section 6.2.2. 

 

6.2 Classification of Candidate Storms 

For the candidate storms, we explore how patterns in behavior of the marker parameter 

primitive events (i.e., barometric pressure) relate to the type of storm and non-marker 

A B C 

D E F 

G H I 
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primitive events. We also explore the relationship between the spatial progression string 

of a storm and seasonal associations. The next section presents the methodology to 

classify candidate storms based on marker parameter profiles. 

 

6.2.1 Profile Based Storm Classification 

The general profile of a storm may be described as a significant and continuous fall in 

barometric pressure followed by a rise. From the GOMOOS dataset, BP_fall and BP_rise 

primitive events were obtained and assembled into candidate storms as summarized in 

section 5.3. Candidate storms were identified in setFR i.e., as temporally clustered 

intervals of barometric pressure fall primitive events followed by barometric pressure rise 

primitive events. These candidate storms can now be classified based on these constituent 

primitive events. The first criterion for profile based classification classifies candidate 

storms into Tiers I & II Storms. Tier I Storms are storms which show a barometric 

pressure fall followed-by a rise, such that the rise forms a recovery. Recovery is 

determined by checking if the highest value of barometric pressure in BP_Rise events 

participating in a storm candidate satisfies a line threshold, (varLowMagTh). Tier II 

Storms contain candidate storms having barometric pressure fall and rise, but the rise 

does not recover, meaning that it does not meet the recovery threshold. The algorithm 

shown in Appendix A presents the method of classification of candidate storms into Tier 

I & II Storms. A buffer (2 millibars, in our case) on the hard line threshold is used to 

include candidate storms that do not strictly meet the line threshold requirement. Matrix 

setFR, which stores storm candidates containing both fall and rise events as output from 

algorithm in Figure 5.4, is the input for this classification step. Since the classification is 
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based on whether a barometric pressure recovers or not, we use only BP_Rise events, 

which are output from the algorithm in Figure 4.9. The algorithm in Figure 5.4 first 

checks for a temporal overlap within the time intervals of setFR and BP_Rise, and 

attaches BP_Rise primitive events to respective candidate storms. Second, it finds the 

maximum barometric pressure value in BP_Rise within each candidate storm, followed 

by using a recovery threshold condition to find candidate storms that meet the recovery 

condition and storing them into a new array. 

Summary of results of the algorithm (see Figure 5.4) for classifying candidate storms 

detected in the GOMOOS dataset is shown in Table 6.1. Out of the total of 113 candidate 

storms containing fall and rise barometric pressure primitive events (summarized in 

Figure 5.2) 110 storms were classified as Tier I storms and 3 storms as Tier II. It is 

possible to process fall only and rise only i.e., candidate setFO and setRO events further 

with increasingly relaxed time thresholds. Since our main interest is limited to the 

candidate storms showing the typical pattern of barometric pressure fall followed by a 

rise we do not consider events from setFO and setRO in any further processing. 
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stormC_Tier I (Contains Fall and 

Rise- such that Rise constitutes a 

recovery) 

stormC_Tier II (Contains Fall and 

Rise but Rise does not constitute a 

recovery) 

Number of 

candidate 

storms 

110 3 

 

Table 6.1 Results of candidate storm classification 

 

The temporal clustering and temporal thresholds for storm detection can create situations 

in which more than one set of initiating and terminating primitive event sequences can be 

included within a candidate storm interval. The storm definition requires at least one 

BP_Fall primitive event followed by a BP_Rise primitive event but there may be 

additional sets leading to the following set of profile shape options: V, Whalf, W and 

Complex. Shape ‗V‟ contains a pattern where there is one fall subset followed by one rise 

subset. Shape W contains two falls and two rises. Shape Whalf contains either two falls 

and a rise or one fall and two rises. The shape Complex contains combinations of more 

than two falls and rises. 

Implementation of the storm classification into shapes V, Whalf, W and Complex, as 

described above, is shown in the algorithm in Appendix B. Outputs of the algorithm are 

the sets: setV, setW, setWhalf and setComplex; each of which are two dimensional matrices 
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that store start and end time of candidate storms. Figure 6.3 presents time series 

visualization of an example candidate storm from each of these classes. Lines plotted in 

yellow color are barometric pressure observations at all buoy locations for the time 

interval of the candidate storm. The lines in red show BP_Fall primitive events and the 

lines in green show BP_Rise primitive events associated with the candidate storm. The 

width of the rectangle in the plot is derived from the start and end time of the candidate 

storm. The height of the rectangle is derived from the range of the marker parameter 

value i.e., barometric pressure. 

Association of the shape symbols with the visual profile pattern is apparent. To identify 

the shapes within a pattern, the algorithm divides the BP_Fall and BP_Rise primitive 

events into temporal subsets and creates the profile type based on the number of subsets 

found within a candidate storm.  

As an example, a candidate storm from setV (Figure 6.3-a) has a V shaped pattern. The 

values of barometric pressure at all buoy locations clearly recover from a significant fall. 

Thus, the condition used for classification of a storm candidate in class setV is that it has 

one distinct fall subset followed by one rise subset. Figure 6.3-b shows an example of a 

significant fall followed by a significant rise and another significant fall in barometric 

pressure. The rise after the last fall was left out of the candidate storm because it did not 

meet the rate threshold. Within the candidate storm, notice that there is a temporal gap 

after the rise event subset and before the fall event subset. A threshold value on the 

temporal separation of two clusters of similar event subsets (12 hours in our case) is used 

to determine if two subsets are sufficiently close to be included in the same candidate 

storm. Thus, the classifying condition for a candidate storm for the half W profile class is 
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to have either two fall subsets and a rise subset or one fall and two rise subsets. 

Therefore, the setWhalf includes those candidate storms with either an extended V shaped 

pattern or those which could have been W shaped, but the algorithm did not recognize 

either initiating or terminating events due to threshold values. 

Figure 6.3-c shows an example of a candidate storm with a W shape profile. A significant 

fall in barometric pressure is followed by a significant rise, which is followed by another 

fall and rise. Thus, a ‗W‘ shape is formed by two distinct subsets of rises and falls. Some 

flexibility in variations due to spatial observation can be built into the algorithm. Lastly, 

Figure 6.3-d shows a complex pattern containing more than two subsets of significant 

barometric pressure falls and rises. These patterns may indicate two or more storms 

following in very quick succession or a more complex storm structure. 
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a) setV: Candidate Storm with time interval [11-24-2004 

19:00 to 11-26-2004 21:00] 

 

b) setWhalf: Candidate Storm with time interval [05-07-2005 

10:00 to 05-12-2005 17:00] 

 

c) setW: Candidate Storm with time interval [11-21-2005 

03:00 to 11-25-2005 17:00] 

 

d) setComplex: Candidate Storm with time interval [10-14-

2005 18:00 to 10-27-2005 16:00]

 

 

Figure 6.3 Time series visualization of setV, setWhalf, setW and setComplex
1
 

  

                                                           
1
 Significant barometric pressure fall and rise events at all locations are plot in red and green resp. Non-

qualifying data are plot in yellow. 
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 Tier I storms 

Total 

Profile V Whalf W Complex 

Number of members 44 18 17 31 110 

Table 6.2 Summary of profile based storm classification 

Table 6.2 shows a summary of the profile based storm classification on Tier I candidate 

storms. It can be seen that most storms were classified as having profile shape V (44 out 

of 110) and Complex (31 out of 110). Profile shapes Whalf and W have 18 and 17 

candidate storm members respectively. 

Summary of candidate storms by profile and storm event type is shown in Table 6.3. The 

storm event type is derived from the validation step described in Section 5.4. It can be 

seen that the number of NCDC non-validated storms contain fewer storms in the 

Complex profile class. This is likely because storms with a Complex shape profile tend be 

severe and prolonged, increasing the chances of being recorded in the NCDC storms 

database. Since the profile is complex, it could also include more than one NCDC storm 

event occurrence, thereby increasing its chances of validation. 

The second noteworthy observation from Table 6.3 is that higher numbers of Snow 

Storms (13 out of 31) tend to be associated with Profile Complex. A reason for this may 

be that snow storms are often associated with severe weather which may contain high 

wind, extreme wind chill and/or rain. The NCDC strong wind events are least often 

associated with the complex shape type. The most frequent of the unidentified (no 
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matching NCDC storm) are associated with shape V. The V shape storms have the 

shortest durations which may have some bearing on their being detected less often. 

Threshold values used in the process of detecting primitive and composite events have a 

bearing on the resulting candidate storms. Discrepancy in classification due to threshold 

values and other factors is also an issue and discussed in the next section. 

  Storm Type  

 

 

Snow 

Storms 

Thunderstorms 

Rain 

Storms 

Strong 

Wind 

Unidentified 

Profile 

Type Total 

Profile 

Type 

V 8 4 8 4 20 44 

Whalf 4 3 4 0 7 18 

W 0 3 3 3 8 17 

Complex 13 4 8 2 4 31 

 Storm Type 

Total 

25 14 23 9 39 110 

 

Table 6.3 Profile based classes and validated storm event types 
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6.2.1.1  Discrepancy in Profile Based Storm Classification 

There are some limitations that lead to discrepancies associated with profile based 

classification. Thresholds and the presence of missing data values can have an effect on 

the resulting candidate storm classification. Figure 6.4 presents some time series plots 

that show discrepancies found during profile based classification due to choice of 

thresholds. 

Figure 6.4-a shows a Tier I candidate storm having a profile BP_Rise primitive event 

followed by BP_Fall event which could possibly have been a candidate storm. However, 

since the pattern of interest is fall (i.e., BP_Fall) followed by rise (i.e., BP_Rise), the 

pattern is not included as a candidate storm. A missing data section can be seen just 

preceding the BP_Rise event, which may have included the target pattern but we do not 

know for sure. Due to missing observations, potential candidate storms like these are not 

included in the analysis.  

Figure 6.4-b shows an example storm profile visually shaped like a W, but the algorithm 

classified it as shape Complex. This discrepancy could be considered as a limitation of 

our methodology for detecting such patterns and could be overcome using another 

approach such as curve fitting before classification of shape. This is however beyond the 

scope of this thesis. 

Figure 6.4-c shows a rectangle-bound candidate storm classified as shape V starting at 

04-19-2006 00:55 and ending at 04-21-2006 06:00. However, it can be seen that before 

the detected storm, there is a barometric pressure fall -rise pattern in which the rise does 

not show a complete recovery. The term ‗complete recovery‘ is used when the highest 

barometric pressure in BP_Rise primitive events within a candidate storm event meets the 
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recovery threshold i.e., varLowMagTh. The candidate starts at 04-14-2006 04:00 and 

ends at 04-17-2006 15:00. The difference between the two patterns is approximately 34 

hours. Since there is more than a 12 hour separation, these were considered as separate 

patterns. The non-recovery pattern was classified as Tier II and not considered any 

further. Therefore, threshold values can contribute to discrepancies in classification and 

need to be carefully evaluated. 

Figure 6.4-d shows a plot of BP_Fall and BP_Rise events such that the difference 

between fall and rise clusters of events is more than 12 hours. This separation interval 

leads to ignoring the fall and rise clusters in classification altogether. 

Thus, it can be seen that thresholds and missing values can affect the clustering process, 

thereby affecting classification and candidate storm detection. The next section presents 

storm classification based on the spatial progression strings for candidate storms. 
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a) Discrepancy due to missing information 

 

 

b) setComplex that should have been W 

 

 

c) setV that should have been setW 

 

 

d) setFO and setRO , that should have been setW 

 

 

 

Figure 6.4 Discrepancy in storm classification by profile  

Time Time 
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6.2.2 Classification Based on Storm Spatial Progression Strings 

SPS described in Section 5.2, represents the order in which sensor locations detect the 

initiating and terminating primitive events. In this section we show how the SPS can be 

used to classify storms. Another alternative is to derive SPS based on primitive events 

such as significant barometric pressure fall and rise. However, in order to include 

locations which may detect the high-level event in non-significant levels, according to the 

thresholds, we derive SPS using first differences in barometric pressure values. 

Table 6.4 shows a summary of candidate storms based on first sighting location as 

indicated by the SPS and the season of occurrence. Within the study data set, most 

candidate storms are detected first by buoys A01, B01 and C01. The total number of 

candidate storms is more than 110 because a candidate storm could be detected 

simultaneously by more than one buoy. The fewest number of storms are detected first by 

buoys L01, M01, I01. The spatial location of these buoys, shown in Figure 4.1, may 

provide the reasons for this. Buoy L01 is in the eastern Gulf of Maine, and fewer storms 

tend to enter the Gulf of Maine from the Eastern direction. Only 4 candidate storms were 

first detected by buoy M01which might be due to the location of the buoy close to the 

centre of the Gulf of Maine. Fewer storms are detected by buoy I01 first which may be 

due to its Northern location, and few storms arriving from inland and a northerly 

direction. 
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Seasons A01 B01 C02 E01 F01 I01 J02 L01 M01 N01 

Total 

Storms 

Fall 14 5 2 0 1 0 6 0 1 4 33 

Winter 13 13 10 10 6 1 0 0 0 1 54 

Spring 9 4 2 3 3 3 4 1 1 6 36 

Summer 2 8 8 0 3 3 2 0 2 3 31 

Total 

Events 

38 30 22 13 13 7 12 1 4 14 154 

Table 6.4 Summary of storms by location of first detection and season 

 

The SPS of storms detected first by buoys L01, M01 and I01 could be examined more 

closely for further information on the spatial progression of these storms. For example, 

let us take a look at one of the candidate storms having an SPS: ‗ILMN, 1EIJLMN, 

14ABCEIJLMN, 1ABCEILMN, 1ABCEIMNj, 1ABCEjl, 1ABijlmn, 1ceijlmn, 22abceijlmn, 

2abceilmn, 1eln, 2ln, 6n‘. From this SPS, we can see that this storm was detected first by 

buoys L01, I01, M01 and N01. The sequence provides information on the general 

progression of the storm from North-East moving towards the South-West. Further, we 

can deduce from the SPS that this storm, #62 exited the GOM in the South-East direction 

i.e., buoy N01 was the last to record recovery of the barometric pressure. Thus, 

classification based on spatial ordering using SPS provides a unique way to represent 
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important information about the storm. The reasoning behind use of SPS and its efficacy 

in describing a candidate storm is presented further with the Patriot‘s Day storm example. 

The Patriot‘s Day storm of 2007 was recorded by NOAA (NWSFO, 2007) on 15
th

 April 

2007. The EO approach algorithm in Figure 5.3 detected a candidate storm starting at 04-

12-2007 17:00 and ending at 04-20-2007 15:00. The time series plot and the rectangle 

highlighting the candidate storm interval is shown in Figure 6.5. It was classified as Tier I 

storm with a complex shape. NOAA‘s record of the storm on 15
th

 April aligns with the 

second significant drop in barometric pressure. 

 

 

Figure 6.5 Candidate storm for Patriot‘s Day Storm of 2007 

Consider the Patriot‘s Day Storm on 15
th

 April 2007, described by NOAA:  

“An area of low pressure intensified rapidly as it moved slowly from the southeastern 

United States on the morning of Sunday, April 15th to near New York City by the 

morning of Monday, April 16th. The intense low over New York City, in combination with 
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high pressure over eastern Canada, produced a tight pressure gradient across the area 

which resulted in strong east to northeast winds...” 

Now consider the National Climatic Data Center (NCDC) description of the same storm: 

“An area of low pressure rapidly intensified while tracking from the southeastern states 

to the southern New England coast from the 15th to the 16th. A tight pressure gradient 

developed between the low and high pressure centered over eastern Canada which also 

blocked the northern movement of the low. The intense low slowly drifted east from the 

16th through the 19th while high pressure remained across eastern Canada….” 

The common observation by both NOAA and NCDC are that the low pressure moved 

from South-East towards the North-East. The Patriot‘s Day storm was detected by the EO 

approach over the time interval [04-12-2007 17:00 to 04-20-2007 15:00]. The Spatial 

Progression String (SPS) for this candidate storm is represented by: 

„1BC,1BCEF,1BCEFM,8BCEFILMN,1CEFILMN,1EFILMN,1FILMNc,1FILMce,1ILcen,

1Lcefmn,4Lcefimn,1cefimn,1cefilmn,1acefilmn,3abcfilmn,7abcefilmn,1efilmn,2efilm,1cefi

lm,16abcefilmn,1abefilmn,2ln,1n,11,2A,2AB,1ABC,1ABCE,3ABCEF,1ABCEFM,1ABCE

FIM,6ABCEFILMN,3ABCEFILN,3ABEFILN,1BFILN,1FILNa,1FILNab,1FILNabce,1IL

Nabce,4Labcef,5Nabcef,2Nabc,5Na,2N,1Ncl,1Nbcel,1abcel,4abceflmn,6abcefilmn,4abcef

ilm,1abceflm,3abceflmn,15abcefilmn,1abceflmn,2bceln,1bcen,2bcn,1bcln,5bclmn,1clmn,

6lmn,8flmn,5lmn,2ln,6n‟ 

As described in Section 5.3, upper case letters in substrings of the SPS indicate primitive 

events with fall gradient in parameter and lower case letters indicate rise gradient. The 

number in front of each substring represents the number of times adjacent substrings 
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were repeated in SPS. The SPS shown above is datetime stamped such that each 

substring has a unique datetime stamp. The datetime stamp of the first substring is 04-12-

2007 17:00 and the last substring is 04-20-2007 15:00. Since the granularity is uniform 

and known for all SPS strings i.e., 1 hour in our case, datetime stamp of any intermediate 

substring can be calculated if required. 

The above SPS shows that the low pressure is detected first by buoy B01and C02 in the 

first hour, followed by additional detection at buoys E01 and F01 in the next hour and so 

forth. The NOAA and NCDC observations (i.e., low pressure moved from South-East 

towards North-East) are supported by the SPS, because buoys B01 and C02 are in the 

South-Eastern part of the Gulf of Maine, whereas buoys E01 and F01 are North-East of 

buoys B01 and C02. The SPS also provides further information on retreat behavior of the 

storm. In the previous example, the storm was last seen in retreat by buoy N01 indicating 

that the storm retreated in the South-East direction. 

Effect of seasons on spatial detection of candidate storms is presented in Table 6.4. It 

appears that a higher number of storms i.e., 54 in number, are detected in the Winter. 

This finding is consistent with the observations in Table 6.3, that there are higher number 

of storm type Snow Storms (#25), which are known to occur in the Winter season. The 

number of candidate storms detected in the seasons of Summer, Fall and Spring appear to 

be closer in range i.e., 31, 33 and 36. The next section describes segmentation of 

candidate storms and discovery of new information from them. 
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6.3 Discovery of New Knowledge from Candidate Storms 

This section examines the relationship of non-key parameter primitive events, namely 

wind speed, wind direction and air temperature within candidate storms. For this 

approach, candidate storms are segmented by uniform spatial behavior on the marker 

parameter. In other words, if all locations (i.e., buoys) show similar behavior (i.e, fall for 

an interval within the candidate storm); we consider the behavior of the parameter at that 

time to be spatially ‗falling‘. For example, we explore the relationship between spatial 

behavior of wind direction when barometric pressure is uniformly falling in a candidate 

storm. Temporal continuity in the spatial behavior of the parameter constitutes a 

‗segment‘ of the candidate storm. Therefore, a ‗fall segment‘ refers to a time interval 

within the candidate storm when all buoys uniformly exhibit a falling behavior. A time 

interval when some buoys observed a fall whereas others observed a rise is called a ‗fuzzy 

segment‘. Similarly, a time interval when all buoys exhibit a rise is called ‗rise segment‘. 

Discussion on the behavior of variance in an example candidate storm is presented next. 

 

6.3.1 Segmentation and Variance in Candidate Storms 

In this section, we present an example candidate storm and some observations on the 

spatial variance characteristics that will guide our approach to segmentation of the storm 

interval. In our discussion, spatial variance refers to the calculation of variance at a unit 

time, using observations across all available spatial locations. For example, spatial 

variance v at time t is calculated for values of a parameter at locations 1, through n. Only 
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locations with non-missing values of parameters at time t are included in calculating the 

variance. 

A plot for comparing barometric pressure observations with spatial variance in wind 

direction, wind speed and air temperature for a candidate storm with time interval [11-24-

2004 19:00 to 11-26-2004 21:00] is shown in Figure 6.6-a, b and c respectively. 

 

 

(a) Variance in Wind Direction 

Figure 6.6 Comparative plot of barometric pressure and variance in Wind Direction, 

Wind speed and Air Temperature for Storm Candidate with time  

Interval [11-24-2004 19:00 11-26-2004 21:00]  
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Figure 6.6 Continued 

 

(b) Variance in Wind Speed 

 

 

(c) Variance in Air Temperature 
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There are several observations that can be made from Figure 6.6. It can be observed that 

spatial variance in wind direction is highest near the time when barometric pressure fall 

changes to barometric pressure rise. This behavior raises several questions that can be 

explored: Is this a common storm signature, particular to certain type of storm or severity 

of the storm? Does this occur due to the low barometric pressure or the high spatial 

variance in barometric pressure? 

Similarly, it can be observed in Figure 6.6-b that the highest spatial variance in wind 

speed appears to coincide with the time when barometric pressure begins to recover at 

one location. This might be due to several possibilities, such as change of barometric fall 

to rise or spatial variation of barometric pressure across buoys or low barometric 

pressure. 

In Figure 6.6-c, spatial variance in air temperature appears to be highest immediately 

after barometric pressure starts to recover. 

We aim to explore some of these questions through segmentation of the candidate storm 

according to the spatial behavior of the marker parameter and calculating variance 

statistics. Methodology for segmentation is presented in the next section. 

 

6.3.2 Methodology of Storm Candidate Segmentation 

As mentioned in the introduction of this section, the goal of segmentation is to divide the 

candidate storm interval into sub-intervals corresponding to fall, rise and fuzzy behavior 

based on barometric pressure changes across buoy locations. The SPS is used to generate 

sub-segments within the candidate storm interval. Segmentation of candidate storms is 
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implemented using algorithm in Appendix C. Only candidate storms from Tier I were 

processed for segmentation. 

The SPS of candidate storms is utilized for segmentation of candidate storms into fall 

(denoted by F), rise (denoted by R) and fuzzy (denoted by Z) segments. The algorithm 

evaluates each sub-string of SPS by determining if the tag indicates a capital or small 

letter, thereby creating a distinct string with F, R and Z tags. The length of the new string 

is the same as the length of the candidate storm in time, because each SPS sub-string 

generates one tag. Further, the new tag-string is evaluated for continuity to generate start 

and end times of F, R and Z segments. 

 

6.3.3 Results of Storm Candidate Segmentation 

Mean durations of segments F, R, and Z for candidate storms are presented in Table 6.5. 

It can be seen that generally, the fall (F) and rise (R) segment durations are longer than Z 

segment. This finding is consistent with the notion that locations closely placed in space 

will record similar behavior of a parameter due to their spatial proximity. 
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Hours 

Average duration of 'F' segments 38.6 

Average duration of 'Z' segments 8.9 

Average duration of 'R' segments 49.6 

Missing observations/# of storm Candidates in Tier I 16.2 

Average duration of storm Candidates in Tier I 113.3 

Table 6.5 Duration statistic of storm segments 

 

Further, we explore the relationship of high spatial variance in wind direction, air 

temperature and wind speeds with spatial variance in barometric pressure. After 

segmenting candidate storm events into F, Z and R segments, we establish thresholds to 

determine high variance in air temperature and wind direction. High wind speed 

threshold is also used to determine its occurrence in segments. Threshold values of 0.5 

for high wind direction variance, 0.6 for high air temperature variance, and a High wind 

speed threshold of 12 m/s were used. These threshold values were determined empirically 

and are the same for processing all candidate storms. 

To determine statistics on distribution of spatial variance between segments, a simple 

looping algorithm counts total observations across all buoys for high wind direction 

variance (HWDVar), high air temperature variance (HATVar) and high wind speed 
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(HWS_Counts). A summary of results of the counts for all 110 candidate storms is 

presented in Table 6.6.  

 High wind direction 

spatial variance, 

HWDVar (counts per 

hour) 

High air temperature 

spatial variance, 

HATVar (counts per 

hour) 

High wind speed counts, 

HWS_Counts (counts 

per hour) 

F 

segment 

0.08 0.85 0.40 

Z 

segment 

0.11 0.91 0.39 

R 

segment 

0.06 0.88 0.34 

 

Table 6.6 Storm segment parameter statistics 
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Figure 6.7 Storm segment statistic plot 

 

The first finding from segmentation, as shown in Figure 6.7, is that high circular spatial 

variance in wind direction (i.e., HWDVar) is highest in the fuzzy segment. Because fuzzy 

segments occur mostly when there occurs an interchange from spatially uniform falling 

(i.e., F segment) to spatially uniform rising (i.e., R segment) or vice versa. This finding is 

consistent with the notion that the eye of the storm is preceded and followed by a 

sustained wind direction along with a reversal in wind direction. 

The second finding from segmentation is that high air temperature variance occurs in the 

fuzzy i.e. Z segment. This finding may be of interest to meteorologists studying storm 

behavior. 
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The last finding is that wind speed tends to be highest in the initiating phase of the storm, 

when the barometric pressure is uniformly falling across all locations. The high wind 

speed in the fuzzy segment is comparable to the F segment, albeit slightly less than it. 

Finally, high wind speeds are least in the R segment when the barometric pressure is 

uniformly rising in space. 

Thus, spatio-temporal behavior of non-key parameters with the marker parameter can be 

studied, thereby generating new knowledge about the high-level event using the proposed 

Event Oriented approach. 

 

6.4 Summary 

This chapter presented classification of candidate storms using two different approaches: 

profile based and SPS based classification. Results of both types of classification are 

helpful in providing more information about spatial and thematic behavior of the storm. 

Seasonal occurrence with respect to resulting storm classes was presented and discussed. 

Segmentation of candidate storms and variance statistics on air temperature, wind speed 

and wind direction were presented. 

The next chapter presents the overall summary of this research in the light of the research 

questions that were posed in Chapter One. Conclusions and further work is discussed. 
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Chapter 7 

CONCLUSIONS AND FURTHER WORK 

 

In this chapter, major research contributions of the thesis are summarized, major 

contributions are highlighted, and some possible extensions of this research are presented 

as topics of further work. 

 

7.1 Summary of the Thesis 

This thesis presents a novel time series data abstraction approach, called the Event 

Oriented (EO) approach, which facilitates integration of information for detection of 

high-level spatio-temporal events from sensor data. As a case-study, detection of storms 

using the EO approach is implemented using sensor data from the Gulf of Maine Ocean 

Observation System. Validation of the detected storms using an independent historic data 

source (NCDC, in our case) is conducted to evaluate the EO approach. Classification of 

detected storms to yield new and additional information about them is illustrated. The EO 

approach could be applied in diverse domains. It could be useful to a traffic data analyst, 

for example, in finding a high-level event such as traffic congestion from traffic sensor 

data. 

The EO approach takes an object view of events, which is consistent with existing event 

models such as the Geospatial Event Model (Worboys and Hornsby, 2004). A primitive 

event ontology was developed to specify primitive events and their abstraction from 

sensor time series. A domain level storm event ontology was developed to specify the 
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structure of initialization, continuance and termination of a composite event using 

primitive events. The storm event ontology is consistent with other domain-level 

ontologies such as SWEET (http://sweet.jpl.nasa.gov/ontology) and upper-level ontology 

such as the Event ontology (http://motools.sourceforge.net/event/event.html). 

The thesis provides a formal description of the EO approach that includes threshold-

based primitive event detection methods and construction of composite events. For 

implementing the EO approach to detect storms in GOMOOS data, Matlab
®
 

programming language has been used. Matlab
®

 was chosen for its strong support for 

structures and computability. 

Use of thresholds at several levels during the event detection process to detect and 

construct the high-level event is illustrated in the algorithms. Temporal concepts of 

overlap and before/after are used to find clusters of primitive events in the pattern of 

interest. Candidate storm events detected using the EO approach are validated against 

NCDC Storm Events database. A statistic on validation and an analysis of discrepancies 

is presented. Further, two methods of classification: Profile based and Spatial Progression 

String based were presented and evaluated. 

Validation provided a way to understand the efficacy of the EO approach in detecting 

storms in GOMOOS data. Classification of candidate storms using Spatial Progression 

Strings provided a way to understand and represent the spatial progression of storms in 

the Gulf of Maine. Segmentation of candidate storms facilitated understanding the 

general relationship of barometric pressure with other variables such as wind speed, air 

temperature and wind direction. 
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The EO approach thus reduces dimensionality of sensor data, provides building blocks of 

observable system states, and facilitates information integration over different 

measurement protocols. 

 

7.2 Major Results 

An overall contribution of this thesis is the development, implementation and evaluation 

of the EO approach. Detection of a high-level storm event using univariate sensor data is 

illustrated. The EO approach could be applied to various other fields to identify high-

level events such as forest fires, traffic jams etc. using sensor data. 

The second major result is the evaluation of the results of storm event detection in 

GOMOOS data using the EO approach. It was found that the EO approach detected 

92.5% of true positive storms and missed only 11.2% of NCDC storm records. This 

finding confirms the important role played by barometric pressure in storm dynamics. It 

facilitates the study of other less understood factors within the storm dynamic and serves 

to highlight discrepancies between detection and validation. An advantage of threshold 

based event detection in EO approach is the flexibility for the user to fine-tune and 

customize event detection by relaxing or tightening the thresholds. 

The third result is the classification of candidate storms using profiles or spatial 

progression. Each type of classification provides unique ways to group and study storms 

further. Profile-based classification groups storms according to the complexity of 

behavior of barometric pressure. It was found that Snow storms are most commonly 

associated with complex type of profile in the marker variable barometric pressure. 
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Discrepancies in such classification were discussed to understand limitations of the 

method. The second type of classification method was based on the spatial progression of 

the storm. The resulting Spatial Progression String (SPS) provides an easy-to-read string, 

equal to the duration of the storm. It was found that a majority of the low pressure falls 

(therefore the storm) was first detected by buoys A01, B01 and C02, which are in the 

South-Western region of the Gulf of Maine. 

The fourth and final result was the new knowledge generated as a result of segmentation 

of the candidate storm interval into system states: uniformly falling barometric pressure 

across all buoys, mixed, or uniformly rising across all buoys. It was found that within the 

candidate storms, high air temperature spatial variance occurred during the uniformly 

rising barometric pressure system state. The wind direction spatial variance was similar 

in rising and falling segments, where as in the state when there was a mix of rising and 

falling barometric pressure, it was least. In candidate storms, high wind speed spatial 

variance was found to be highest in the rising barometric pressure system state followed 

by the segment in which it was falling. 

In the light of these findings, the hypothesis that ‗high-level, spatio-temporal occurrence 

can be detected using low-level sensor measurements‟ is not rejected. It should be noted 

however, that there were associated discrepancies in detection of the high-level spatio-

temporal occurrence. 
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7.3 Further Work 

This work had the limited scope of proposing the EO approach followed by a case study 

which included implementation of the EO approach for detection and validation of storms 

from GOMOOS sensor data. Immediate extensions that could be undertaken to this work 

are discussed in this section. 

In this thesis, high-level event detection involved a single marker variable because for 

storm detection, barometric pressure was the appropriate and distinct marker for 

indicating initiation, continuance and termination of a storm. Other high-level events, a 

‗forest-fire‘ for example, could have different initiating and terminating events, such as 

an initiating ‗spark‘ event and terminating ‗recovery to normal air temperature‘ event. 

Since EO approach facilitates integration over more than one variable and could be 

applied to other domains, such a study could be undertaken to study further 

improvements over EO approach. 

A comparative performance evaluation of EO approach to other approaches of high-level 

event detection using high dimensional data could be an important extension of this work. 

Particularly, comparison of EO approach to Unified Temporal Grammar (UTG) proposed 

by Ultsch (1996), an exciting prospect. 

Refinement of candidate storms detected using EO approach using other parameters such 

as wind speed, wind direction, wind gusts, air temperature could be an extension of 

interest. Since these variables are an important indication of extreme weather events, like 

storms, these could be included in adding more information to the candidate storms, 

thereby helping in reducing false positive candidate storms from the results. Study of 
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temporal relationship between these variables with barometric pressure system state 

could lead to a better understanding of the storm dynamic. 

Some additional topics of interest are methods to address missing values in composite 

event detection. The EO approach facilitates detection of missing events, patterns of 

which could be studied to improve performances in long standing sensor-based 

observation networks. Missing events could be included in high-level event detection 

using the Dempster-Shafer evidential theory to incorporate uncertainty into detection 

decision by sensors (Murphy, 1999). A confidence function could be generated which 

takes account of the missing data (Li, Lin, Son, Stankovic, & Wei, 2004). 

Adaption of the EO approach algorithm to work in a distributed fashion within a sensor 

network will be an interesting extension of this work. Since the EO approach can detect 

high-level composite events by assembling significant primitive events over a spatial 

domain, this can be used to clearly identify those sensor nodes with non-significant 

behavior, thereby monitoring the extent of spatial spread and progression of the high-

level event. 
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APPENDIX A 

CANDIDATE STORM CLASSIFITION INTO  

TIER I AND II 

 

Input: Buoy structure, matrix, BP_Rise (from output of Algorithm 4.1), setFR (from output of 

algorithm 5.1), varLowMagTh (same as input of algorithm 4.1) 

Output: storC_TierI, stormC_TierII 

bpBufferuser-defined value of threshold, we used 2mbs, strmC_TierIempty, 

strmC_TierIIempty, setFR_Risesempty 

 

Step 1) Attach BP_Rise events from all buoys falling within candidate storm to respective 

candidate storms 

FOR each j in (length of setFR) 

 FOR each i in (length of matrix BP_Rise) 

  IF BP_Rise(i) OVERLAPS setFR(j) 

   BP_Rise(i) setFR_Rises 

  END IF 

END LOOP 

END LOOP 

 

Step 2) Find and store maximum value of BP_Rise overlapping with each interval of setFR_Rises 

FOR each i in (length of setFR_Rises) 

NESTED LOOP through all buoys within interval of setFR_Rises to find 

maximum barometric pressure value and store it as fourth column value in each 

setFR_Rises 

END LOOP 

 

Step 3) Segregate Recovery and non_Recovery storms 

FOR each i in (length of setFR) 

 MaxBP_setFR Maximum(setFR_Rises) 

 IF MaxBP_setFR >= (varLowMagTh - bpBuffer) 

  stormC_TierIsetFR 

 ELSE 

  stormC_TierIIsetFR 

END LOOP 

 

RETURN stormC_TierI & stormC_TierII 
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APPENDIX B 

CANDIDATE STORM CLASSIFICATION INTO 

PROFILES V, Whalf, W AND Complex 

  

Input: stormC_TierI,  

Output: setV, setWhalf, setW, setComplex 

setVempty, setWhalfempty, setWempty, setComplex empty 

Step 1) Loop through stormC_TierI to find subsets of temporally clustered Fall or Rise events 

within a candidate storm. BP_Fall or BP_Rise events from several buoys are considered separate 

clusters if temporal distance between events is equal to or more than x hours (we set this value at 

12 hours). 

Step 2) Classify storms according the number of BP_Fall and BP_Rise subsets 

FOR each i in (length of stormCTierI) 

 IF (Number of subsets of BP_Fall AND BP_Rise events is 1) 

setV stormC_TierI(i) 

 ELSEIF (Number of subsets of BP_Fall AND BP_Rise events is 2) 

   setW stormC_TierI(i) 

ELSEIF (Number of subsets of BP_Fall is 1 AND BP_Rise events is 2) OR (Number of 

subsets of BP_Fall is 2 AND BP_Rise events is 1) 

setV stormC_TierI(i) 

 ELSE 

  setComplex strormC_TierI(i) 

END IF 

END LOOP 

RETURN setV, setWhalf, setW, setComplex 
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APPENDIX C 

SEGMENTATION OF CANDIDATE STORMS IN  

Fall (F), Rise (R) and Fuzzy (Z) SEGMENTS 

 

Input: strmC_TierI, str_AllBuoyCaps (String of all possible buoy tags in capital letters) i.e, 

‗ABCEFGHIJLMN‘ 

Output: event_F_segm, event_R_segm, event_Z_segm 

stormC_segmempty, stormC_segmHWDVarempty, stormC_segmLWDVarempty, 

stormC_segmHATVarempty, stormC_segmLATVarempty, stormC_segmWS(Number of 

candidate storms) empty 
 

Step 1) Fill stormC_segm with letter ‗F‘, ‗R‘ or ‗Z‘, using SPS for stormC_TierI i.e. SPS_TierI. 

Also calculate variance of parameters such as wind direction, air temperature, wind speed and 

store in appropriate matrices. 

FOR each i in (length of SPS_TierI) 

 FOR each j in (length of SPS_TierI(i)) 

IF SPS_TierI(i)(j) CONSISTS OF capital AND small case buoy tag 

   stormC_segm(i)(j) ‗Z‘ 

stormC_segmHWDVarcircular_Variance(non-NAN Wind-direction 

observations for all buoys) 

stormC_ segmATVarVariance(non-NAN Air-temperature 

observations for all buoys) 

stormC_ segmWSVarVariance(non-NAN Wind speed observations for 

all buoys) 

 ELSE IF SPS_TierI(i)(j) CONSISTS OF all capital letter buoy tags 

   stormC_segm(i)(j) ‗F‘ 

stormC_segmHWDVarcircular_Variance(non-NAN Wind direction 

observations for all buoys) 

stormC_segmATVarVariance(non-NAN Air-temperature 

observations for all buoys) 

stormC_segmWSVarVariance(non-NAN Wind speed observations for 

all buoys) 

  ELSE 

   stormC_segm(i)(j) ‗R‘ 

stormC_segmHWDVarcircular_Variance(non-NAN Wind-

direction observations for all buoys) 

stormC_segmATVarVariance(non-NAN Air-temperature observations 

for all buoys) 

stormC_segmWSVarVariance(non-NAN Wind speed observations 

for all buoys) 

END IF 

END LOOP 
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END LOOP 

 

Step 2) Find timestamps of all observations with segment tags: „F‟ (for fall), „R‟ (for rise) and ‗Z‘ 

(for fuzzy) 

stormC_segmentEvents (# of stormC_segm) empty,index_F, index_R, index_Z empty 

FOR each i in (length of SPS_TierI) 

 FOR each j in (length of SPS_TierI(i)) 

  IF stormC_segm(i)(j) = ‗F‘ 

   index_F Timestamp of SPS_TierI(j) 

  ELSE IF stormC_segm(i)(j) = ‗R‘ 

   index_R Timestamp of SPS_TierI(j) 

  ELSE IF stormC_segm(i)(j) = ‗Z‘ 

   index_Z Timestamp of SPS_TierI(j) 

END IF 

END LOOP 

END LOOP 

 

Step 3) Find start and end times of segment „F‟, ‗R‘ and ‗Z‘ 

// COMMENT: For fall segment i.e., ‗F‘ 

event_S_startindex_F(1) 

FOR each k in index_F 

 IF index_F(k+1) – index_F(k) > = 2 

  event_F_endindex_F(k) 

  event_F_startindex_F(k+1) 

END IF 

END LOOP 

//Comment: Similarly, find event_R_start, event_R_end and event_Z_start, event_Z_end 

event_F_segm concatenation of event_F_start and event_F_end 

//Comment: Similarly, concatenate event_F_segm, event_Z_segm 

RETURN event_F_segm, event_R_segm, event_Z_segm 
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