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Abstract. The MARS (Modelling Autonomous Reasoning System) project
aims to develop a collaborative intelligent system combining the process-
ing powers and visualisation provided by machines with the interpretive
skills, insight and lateral thinking provided by human analysts. There is
an increasing volume of data generated by online systems, such as inter-
net logs, transaction records, communication records, transport network
monitors, sensor networks, etc. Typically, these logs contain multiple
overlapping sequences of events related to different entities. Information
that can be mined from these event sequences is an important resource in
understanding current behaviour, predicting future behaviour and identi-
fying non-standard patterns. In this paper, we describe a novel approach
to identifying and storing sequences of related events, with scope for ap-
proximate matching. The event sequences are represented in a compact
and expandable sequence pattern format, which allows the addition of
new event sequences as they are identified, and subtraction of sequences
that are no longer relevant. We present an algorithm enabling efficient
addition of a new sequence pattern. Examination of the sequences by hu-
man experts could further refine and modify general patterns of events.

1 Introduction

With the increasing volume of data generated by online systems (internet logs,
transaction records, communication records, transport networks, sensor net-
works, etc.) there is a clear requirement for machine assistance in filtering, fusing
and finding causal relations in data flows. Current AI approaches rely heavily on
statistical and machine learning algorithms which require large amounts of data
and rest on an assumption that the previous behaviour of a system is a good
guide to future behaviour.

The aim of the MARS1 (Modeling Autonomous Reasoning System) project
is to develop a collaborative intelligent system able to process real-time (or near
real-time) unstructured data feeds by combining the processing powers and vi-
sualisation provided by machines with the interpretive skills, insight and lateral
thinking provided by human analysts. The overall product of this research is
a cognitive software system that exhibits highly flexible and autonomous be-
haviour, and that can provide insights into the functioning of a broad range of

1 UK Technology Strategy Board Reference: 1110 CRD TI ICT 120182
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complex social-technical systems monitored by data flows. An early version of
MARS was successful in helping to combat cable theft2, leading to significant
savings for UK telecoms and rail networks.

A key aspect in the analysis of lower level data such as event logs is the identi-
fication of sequences of linked events. For example, internet logs, physical access
logs, transaction records, email and phone records contain multiple overlapping
sequences of events related to different users of a system. Information that can
be mined from these event sequences is an important resource in understand-
ing current behaviour, predicting future behaviour and identifying non-standard
patterns and possible security breaches.

An event sequence is a time-stamped series of observations or measurements
of a fixed set of attributes. An example could be a sequence of records containing:
access card no., date/time, building and entrance identifier, direction of access
(in/out), result (access granted / refused)
or
source IP address/port, destination IP address/port, date/time, amount of data
transferred.

Specific problems in extracting sequences of related events include determi-
nation of what makes events “related”, finding groups of “similar” sequences,
identification of typical sequences, and detection of sequences that deviate from
previous patterns. In this paper we describe a novel approach to identifying se-
quences of related events, with scope for assistance from human experts. The
event sequences are represented in a compact and expandable sequence pattern
format, which allows the addition of new event sequences as they are identi-
fied, and subtraction of sequences that are no longer relevant. Examination of
sequences can be used to refine and modify general patterns of events. The
specific focus of this short paper is the algorithm to incrementally add a new
sequence pattern.

2 Background

Humans are adept at acquiring knowledge of sequential patterns, even when the
knowledge is acquired and used in an implicit manner, i.e. without conscious
awareness [1]. In an effort to reproduce this learning behaviour in machines,
investigators have focused on statistical methods such as time-series analysis and
machine learning approaches. These are not ideally suited to the task, because
they generally require a large sample of data, usually represented as numerical
features, and because they typically seek to fit data to known distributions. There
is evidence that human behaviour sequences can differ significantly from such
distributions - for example, in sequences of asynchronous events such as sending
emails or exchanging messages. Barabasi [2] showed that many activities do not
obey Poisson statistics, and consist instead of short periods of intense activity
followed by longer periods in which there is no activity.

2 www.newscientist.com/article/dn21989-ai-system-helps-spot-signs-of-copper-cable-
theft.html
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A related problem is that statistical machine learning methods generally
require a significant number of examples to form meaningful models, able to make
predictions. Where we are looking for a new behaviour pattern (for example, in
network intrusion) it may be important to detect it quickly, before a statistically
significant number of incidents have been seen. A malicious agent may even
change the pattern before it can be detected. Finally, it is highly advantageous
to allow human experts to specify patterns. This is difficult or impossible with
data-driven methods.

2.1 Fuzzy Indiscernibility of Events

A fundamental aspect of human information processing and intelligence is the
ability to identify a group of entities e.g. physical objects, events, abstract ideas)
and subdivide them into smaller subgroups at an appropriate level of granularity
for the task at hand. Early humans needed to determine whether an animal was
dangerous or not; for the non-dangerous case, a second level of analysis might
distinguish between edible and non-edible (or uncatchable). From the perspective
of decision-making (stay or run, hunt or ignore), the precise identification of
different species is not relevant - there is no need for discernibility within the
broad sub-categories.

The concept of information granulation was introduced by Zadeh [3] to for-
malise the process of dividing a group of objects into sub-groups (granules) based
on “indistinguishability, similarity, proximity or functionality”. In this view, a
granule is a fuzzy set whose members are (to some degree) equivalent to each
other. In a similar manner, humans are good at dividing events into related
groups, both from the temporal perspective (event A occurred a few minutes
before event B but involves the same entities) and from the perspective of non-
temporal event properties (event C is very similar to event D because both
involve entities which are similar).

2.2 The X-Mu Approach to Fuzzy

Standard fuzzy approaches typically require modification of crisp algorithms to
allow set-valued variables. This is most apparent in fuzzifications of arithmetic,
where a single value is replaced by a (so-called) fuzzy number, which actually
represents an interval. For example, calculating the average age of four employ-
ees known to be 20, 30, 50 and 63 is inherently simpler than the same calculation
when the ages are given as young, quite young, middle-aged and approaching re-
tirement. In the latter case, we must handle interval arithmetic as well allowing
for membership grades. In a similar fashion, querying a database to find employ-
ees who are aged over 60 is simpler than finding employees who are approaching
retirement age.

In the classical fuzzy approach, for any predicate on a universe U, we intro-
duce a membership function

µ : U → [0, 1]
representing the degree to which each value in U satisfies the predicate; since
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there is generally a set of values which satisfy the predicate to some degree, we
must modify algorithms to handle sets of values rather than single values. These
sets represent equivalent values - that is, values which cannot be distinguished
from each other. In this work, we are dealing with events that are equivalent
because their attributes are indiscernible - however, these sets of events may
vary according to membership, interpreted as the degree to which elements can
be distinguished from each other.

The X − µ method [4] recasts the fuzzy approach as a mapping from mem-
bership to universe, allowing us to represent a set, interval or a single value
that varies with membership. An example of a single value is the mid-point of
an interval. This is a natural idea which is difficult to represent in standard
fuzzy theory, even though it arises in common aspects such as the cardinality
of a discrete fuzzy set or the number of answers returned in response to a fuzzy
query.

3 Algorithm for Converting a Stream of Events into a
Minimal Directed Graph

3.1 Directed Graph Representation of Event Sequences

For any sequence of events, we create a directed graph representation of the
events in which each edge represents a set of indiscernible events. Clearly for
reasons of storage and searching efficiency it is desirable to combine event se-
quences with common sub-sequences, as far as possible, whilst only storing event
sequences that have been observed. This problem is completely analogous to
dictionary storage, where we are dealing with single letters rather than sets of
events, and we can utilise efficient solutions that have been developed to store
dictionaries. In particular, we adopt the notion of a directed acyclic word graph,
or DAWG [5]. Words with common letters (or events) at the start and/or end
are identified and the common paths are merged to give a minimal graph, in the
sense that it has the smallest number of nodes for a DAWG representing the
set of words (event sequences). Several algorithms for creating minimal DAWGs
have been proposed. In the main, these have been applied to creation of dictio-
naries and word checking, efficient storage structure for lookup of key-value pairs
and in DNA sequencing (which can be viewed as a variant of dictionary storage).
Most methods (e.g. [6, 7] ) operate under the assumption that all words (letter
sequences) are available and can be presented to the algorithm in a specific or-
der. Sgarbas [5] developed an incremental algorithm which allowed additional
data to be added to a DAWG structure, preserving the minimality criterion (i.e.
assuming the initial DAWG represented the data in the most compact way, then
the extended DAWG is also in the most compact form).

We assume that the data is in a time-stamped tabular format (for example,
as comma separated values with one or more specified fields storing date and
time information) and that data arrives in a sequential manner, either row by
row or in larger groups which can be processed row-by-row. Each row represents



Approximately Similar Event Sequences 5

an event; there may be several unrelated event sequences within the data stream
but we assume events in a single sequence arrive in time order. It is not necessary
to store the data once it has been processed, unless required for later analysis.

Each column i in the table has a domain Di and a corresponding attribute
name Ai . There is a special domain O whose elements act as unique identifiers
(e.g. row number or event id).

Formally, the data can be represented by a function

f : O → D1 ×D2 × · · · ×Dn or a relation R ⊂ O ×D1 ×D2 × · · · ×Dn

where any given identifier oi ∈ O appears at most once. We use the notation
Ak(oi) to denote the value of the kth attribute for object oi. Our aim is to
find ordered sequences of events (and subsequently, groups of similar sequences,
where the grouping is based on indiscernibility of attributes).

3.2 Sequence-extending relations.

Event sequences obey

– each event is in at most one sequence
– events in a sequence are ordered by date and time
– an event and its successor are linked by relations between their attributes,

such as equivalence, tolerance, and other relations.

These are referred to as sequence-extending relations. Note that it is possible
to have different sequence-extending relations for different sequences; also it is
possible to change the sequence-extending relations dynamically. In the graph
structure described below, the sequence-extending relations are associated with
nodes in the graph. It is also possible to identify sequences when an event is
missing, although this is not covered here. Any event that is not part of an
existing sequence is the start of a new sequence. For any attribute Ai we can
define a tolerance relation Ri where

Ri : Di ×Di → [0, 1]

is a reflexive and symmetric fuzzy relation and ∀j : Ri (oj , oj) = 1 Then the
tolerance class of objects linked through attribute Ai is

T (Ai , om) = {oj/χmj |Ri (Ai (om) , Ai (oj)) = χmj }

Note that this set includes (with membership 1) all objects with the attribute
value Ai(om). The tolerance class can be expressed equivalently as a set of pairs.

Finally we requiref a total order relation PT , defined on a distinguished at-
tribute (or small subset of attributes) representing a timestamp. We can then
define sequences (in the obvious way) and projected sequences

∀i : PT (AT (oi) , AT (oi))
∀i 6= j : PT (AT (oi) , AT (oj)) > 0 → PT (AT (oj) , AT (oi)) = 0
Q (oi) = {oi/χti |PT (ot, oi) = χti }
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where AT is the timestamp attribute (or attributes) and the ordering of events
models the obvious temporal ordering. The time attribute ti obeys ti ≤ ti+1 for
all i. It is treated as a single attribute although it could be stored as more than
one (such as date, time of day). We assume that a number of sequence-extending
relations R1 . . . Rn are defined on appropriate domains.

Two events oi and oj are potentially linked in the same sequence if

min
(
QT (oi, oj) , min

m
Rm (oi, oj)

)
≥ µ

i.e. all required attributes satisfy the specified sequence-extending relations to a
degree greater than some threshold µ. We write

potential − link (oi , oj , µ)↔ min
(
QT (oi, oj) , min

m
Rm (oi, oj)

)
≥ µ

and

linked (oi , oj , µ)↔ potential − link (oi , oj , µ)
AND

@ok : potential − link (oi , ok , µ) AND potential − link (oki , oj , µ)

i.e. two events are linked if they satisfy the specified tolerance and equivalence
relations to a degree µ or greater, and there is no intermediate event.

3.3 Event Categorisation Relations

We also define equivalence classes on some of the domains, which are used to
compare and categorise events from different sequences. An equivalence class
on one or more domains is represented by a value from each domain - for
times denoted by day and hour values, we might define equivalence for week-
day rush hour ( day=Mon-Fri, hour=8,9,17,18 ), other-weekday ( day=Mon-Fri,
hour6=8,9,17,18 ) and weekend (day=Sat,Sun).

These can easily be extended to fuzzy equivalence classes. The important
feature is that the equivalence classes partition the objects - i.e. each object be-
longs to exactly one equivalence class for each domain considered. In the X − µ
fuzzy case, the equivalence classes can vary with membership but always parti-
tion the objects. Where necessary operations can be incrementally extended to
cover different memberships.

Formally, for a specified attribute Ai we define

S (Ai, om) = {oj |Ai (oj) = Ai (om)}

and the set of associated equivalence classes (also called elementary concepts) is

Ci = {S (Ai, om) |om ∈ O}

(as an example consider time or elapsed time below). In the propositional case
Ci contains just one set, whose elements are the objects for which attribute i
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is true. In the fuzzy case, elements are equivalent to some degree. Specifying a
membership threshold gives a nested set of equivalence relations, so that once
a membership threshold is known, we can proceed as in the crisp case. The
operation can be extended to multiple attributes.

We use the selected attributes to find the EventCategorisation. This is an
ordered set of equivalence classes from one or more attributes (or n−tuples of
attributes):

Bk ∈ {A1, . . . , An}
EventCategorisation (oi) = [Bk (oi) |k = 1, . . . , m ]

i.e. each Bk is an attribute, and the event categorisation of some object oi is
given by the equivalence classes corresponding to its attribute values. The result
is not dependent on the order in which the attributes are processed. This order
can be optimised to give fastest performance when deciding which edge to follow
from given node.

For any set of sequences, we create a minimal representation using a DASG
(directed acyclic sequence graph) as shown in Fig. 1. The graph is a deterministic
finite automaton, with no loops and a unique end node. Each event is represented
by a labelled edge. The edge label shows the equivalence classes applicable to
the event, referred to as the event categorisation. The source node S is a single
starting point for all sequences; to ensure we have a unique end node, F , we
append a dummy “end of sequence” (#END) event to all sequences.

3.4 Worked Example Based on the VAST Challenge 2009 Dataset

We illustrate the algorithm using a small subset (Table 1) of benchmark data
taken from mini-challenge 1 of the VAST 2009 dataset3. This gives swipecard
data showing employee movement into a building and in and out of a classified
area within the building. No data is provided on exiting the building. In this
data,

Emp = set of employee ids = {10, 11, 12}
Date,Time = date / time of event
Entry points = {B - building, C - classified section}
Access direction = {in, out}

We have selected three employees for illustration purposes; rows in the initial
table were ordered by date/time, but have been additionally sorted by employee
here to make the sequences obvious. We first define the sequence-extending rela-
tions, to detect candidate sequences. Here, for a candidate sequence of n events:

S1 = (o11, o12, o13, . . . , o1n)

we define the following computed quantities :

ElapsedT ime ∆Tij = Time (oij)− Time (oij−1)

with ∆Ti1 = Time (oi1)

3 http://hcil2.cs.umd.edu/newvarepository/benchmarks.php
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Table 1. Sample Data from the VAST 2009 MC1 Dataset

eventID Date Time Emp Entrance Direction

1 jan-2 7:30 10 b in
2 jan-2 13:30 10 b in
3 jan-2 14:10 10 c in
4 jan-2 14:40 10 c out
5 jan-2 9:30 11 b in
6 jan-2 10:20 11 c in
7 jan-2 13:20 11 c out
8 jan-2 14:10 11 c in
9 jan-2 15:00 11 c out
10 jan-3 9:20 10 b in
11 jan-3 10:40 10 c in
12 jan-3 14:00 10 c out
13 jan-3 14:40 10 c in
14 jan-3 16:50 10 c out
15 jan-3 9:00 12 b in
16 jan-3 10:20 12 c in
17 jan-3 13:00 12 c out
18 jan-3 14:30 12 c in
19 jan-3 15:10 12 c out

Table 2. Allowed Actions (row = first action, column = next action)

b,in c,in c,out

b,in x x
c.in x

c,out x x

and restrictions ( for j > 1) :

Date (oij) = Date (oij−1)

0 < Time (oij)− Time (oij−1) ≤ Tthresh
Emp (oij) = Emp (oij−1)

(Action (oij−1) , Action (oij)) ∈ AllowedActions
where Action (oij) = (Entrance (oij) , Direction (oij))

where the relation AllowedActions is specified in Table 2.
These constraints can be summarised as

– events in a single sequence refer to the same employee
– successive events in a single sequence conform to allowed transitions between

locations and are on the same day, within a specified time (Tthresh) of each
other

We choose a suitable threshold e.g. Tthresh = 8, ensuring anything more than
8 hours after the last event is a new sequence. We identify candidate sequences
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by applying the sequence-extending relations. Any sequence has either been seen
before or is a new sequence. In Table 1, candidate sequences are made up of the
events:
1− 2− 3− 4,
5− 6− 7− 8− 9,
10− 11− 12− 13− 14,
15− 16− 17− 18− 19

We also define the EventCategorisation equivalence classes used to compare
events in different sequences. Here,

EquivalentAction = IAction

For direction In, EquivalentEventT ime = {[7] , [8] , . . .}
For direction Out, EquivalentElapsedT ime = {[0] , [1] , [2] , . . .}

where I is the identity relation and the notation [7] represents the set of start
times from 7:00-7:59. With this definition, events 5 and 10 are equivalent since
both have Entrance=b, Direction=In and Time in 7:00-7:59. Formally,

EventCategorisation (o5) = ([b, in] , [7])
EventCategorisation (o10) = ([b, in] , [7])

Similarly, events 7 and 12 are equivalent, as both have Entrance =c, Direction
= Out and ElapsedTime in 3:00-3:59.
We represent each identified sequence as a path labelled by its event categori-
sations (Fig 1 left) and combine multiple sequences into a minimal DASG rep-
resenting all sequences seen so far (Fig 1 right). Nodes are labelled by unique
numbering; since the graph is deterministic, each outgoing edge is unique. An
edge can be specified by its start node and event categorisation. Below, we also
refer to an edge by its event categorisation if there is no ambiguity about its
start node.

Standard definitions are used for InDegree, OutDegree, IncomingEdges and
OutgoingEdges of a node, giving respectively the number of incoming and out-
going edges, the set of incoming edges and the set of outgoing edges. We also
apply functions Start and End to an edge, to find or set its start and end nodes
respectively and EdgeCategorisation to find its categorisation class.
Finally, let the function ExistsSimilarEdge(edge, endnode) return true when:

edge has end node endnode, event categorisation L and start node S1
AND

a second, distinct, edge has the same end node and event categorisation L
but a different start node S2
AND

S1 and S2 have OutgoingEdges(S1) == OutgoingEdges(S2)

If such an edge exists, its start node is returned by the function
StartOfSimilarEdge(edge, endnode)
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Fig. 1. (left) Event sequence 1-2-3-4 from Table 1. The label [(b,in)],[7] represents all
events whose entrance and direction is (b, in) and time is equivalent to 7 (at a given
membership). (right) DASG representing the 4 distinct sequences in Table 1

The function MergeNodes(Node1, Node2) deletes Node2 and merges its in-
coming and outgoing edges with those of Node1.

The function CreateNewNode(Incoming,Outgoing) creates a new node with
the specified sets of incoming and outgoing edges.

The graph can be used to identify sequences of events that have already
been seen. If a new sequence is observed (i.e. a sequence which differs from each
sequence in the graph by at least one event categorisation), it can be added to
the graph using the algorithm below.

The algorithm proceeds in three stages. In the first and second parts, we
move step-by-step through the event sequence and graph, beginning at the start
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Fig. 2. Extending a minimal graph by incremental addition of a sequence of edges
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node S. If an event categorisation matches an outgoing edge, we follow that edge
to the next node and move to the next event in the sequence. If the new node
has more than one incoming edge, we copy it; the copy takes the incoming edge
that was just followed, and the original node retains all other incoming edges.
Both copies have the same set of output edges. This part of the algorithm finds
other sequences with one or more common starting events.

If we reach a node where there is no outgoing edge matching the next event’s
categorisation, we create new edges and nodes for the remainder of the sequence,
eventually connecting to the end node F . As the sequence is new, we must reach
a point at which no outgoing edge matches the next event’s categorisation; if
this happens at the start node S then the first stage is (effectively) missed.

Finally, in the third stage, we search for sequences with one or more common
ending events. Where possible, the paths are merged. As shown in Sgarbas [5],
adding a new sequence using the incremental algorithm takes time roughly in
the order of |S|, the number of unique sequences stored.

4 Summary

The paper outlines a way of storing event sequences in a compact directed graph
format, and gives an efficient incremental algorithm to update the graph with an
unseen sequence. A human expert can easily add sequence patterns, even if these
have not been seen in the data yet. An algorithm to remove sequence patterns
has also been developed and will be presented in a future paper, together with
experimental results showing the efficiency and effectiveness of the approach.
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