17,781 research outputs found

    DoSTra: Discovering common behaviors of objects using the duration of staying on each location of trajectories

    Full text link
    Since semantic trajectories can discover more semantic meanings of a user\u27s interests without geographic restrictions, research on semantic trajectories has attracted a lot of attentions in recent years. Most existing work discover the similar behavior of moving objects through analysis of their semantic trajectory pattern, that is, sequences of locations. However, this kind of trajectories without considering the duration of staying on a location limits wild applications. For example, Tom and Anne have a common pattern of Home→Restaurant → Company → Restaurant, but they are not similar, since Tom works at Restaurant, sends snack to someone at Company and return to Restaurant while Anne has breakfast at Restaurant, works at Company and has lunch at Restaurant. If we consider duration of staying on each location we can easily to differentiate their behaviors. In this paper, we propose a novel approach for discovering common behaviors by considering the duration of staying on each location of trajectories (DoSTra). Our approach can be used to detect the group that has similar lifestyle, habit or behavior patterns and predict the future locations of moving objects. We evaluate the experiment based on synthetic dataset, which demonstrates the high effectiveness and efficiency of the proposed method

    NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA

    Get PDF
    Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Corridor Detection from Large GPS Trajectories Datasets

    Get PDF
    Given the widespread use of mobile devices that track their geographical location, it has become increasingly easy to acquire information related to users' trips in real time. This availability has triggered several studies based on user's position, such as the analysis of flows of people in cities, and also new applications, such as route recommendation systems. Given a dataset of geographical trajectories in an urbanmetropolitan area,we propose a algorithmto detect corridors. Corridors can be defined as geographical paths, with a minimum length, that are commonly traversed by a minimum number of different users. We propose an efficient strategy based on the Apriori algorithm to extract frequent trajectory patterns from the geo-spatial dataset. By discretizing the data and adapting the roles of itemsets and baskets of this algorithm to our context, we find the longest corridors formed by cells shared by a minimum number of trajectories. After that, we refine the results obtained with a subsequent filtering step, by using a Radius Neighbors Graph. To illustrate the algorithm, the GeoLife dataset is analyzed by following the proposed method. Our approach is relevant for transportation analytics because it is the base to detect lacking lines in public transportation systems and also to recommend to private users which route to take when moving from one part of the city to another on the basis of behavior of the users who provided their logs

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account

    New directions in the analysis of movement patterns in space and time

    Get PDF

    Developing new approaches for the analysis of movement data : a sport-oriented application

    Get PDF
    corecore