4,339 research outputs found

    Characterization of the HD 17156 planetary system

    Get PDF
    AIMS : To improve the parameters of the HD 17156 system (peculiar due to the eccentric and long orbital period of its transiting planet) and constrain the presence of stellar companions. METHODS : Photometric data were acquired for 4 transits, and high precision radial velocity measurements were simultaneously acquired with SARG@TNG for one transit. The template spectra of HD 17156 was used to derive effective temperature, gravity, and metallicity. A fit of the photometric and spectroscopic data was performed to measure the stellar and planetary radii, and the spin-orbit alignment. Planet orbital elements and ephemeris were derived from the fit. Near infrared adaptive optic images was acquired with ADOPT@TNG. RESULTS: We have found that the star has a radius of R_S = 1.43+/-0.03 R_sun and the planet R_P =1.02+/-0.08 R_jup. The transit ephemeris is T_c = 2454\756.73134+/-0.00020+N*21.21663+/-0.00045 BJD. The analysis of the Rossiter-Mclaughlin effect shows that the system is spin orbit aligned with an angle lambda = 4.8 +/- 5.3 deg. The analysis of high resolution images has not revealed any stellar companion with projected separation between 150 and 1000 AU from HD 17156.Comment: submitted to A&

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Seit 1984 veranstaltet die GI-Fachgruppe "Programmiersprachen und Rechenkonzepte", die aus den ehemaligen Fachgruppen 2.1.3 "Implementierung von Programmiersprachen" und 2.1.4 "Alternative Konzepte fĂŒr Sprachen und Rechner" hervorgegangen ist, regelmĂ€ĂŸig im FrĂŒhjahr einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kontakte

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Emergent Chiral Symmetry: Parity and Time Reversal Doubles

    Get PDF
    There are numerous examples of approximately degenerate states of opposite parity in molecular physics. Theory indicates that these doubles can occur in molecules that are reflection-asymmetric. Such parity doubles occur in nuclear physics as well, among nuclei with odd A ∌\sim 219-229. We have also suggested elsewhere that such doubles occur in particle physics for baryons made up of `cbu' and `cbd' quarks. In this article, we discuss the theoretical foundations of these doubles in detail, demonstrating their emergence as a surprisingly subtle consequence of the Born-Oppenheimer approximation, and emphasizing their bundle-theoretic and topological underpinnings. Starting with certain ``low energy'' effective theories in which classical symmetries like parity and time reversal are anomalously broken on quantization, we show how these symmetries can be restored by judicious inclusion of ``high-energy'' degrees of freedom. This mechanism of restoring the symmetry naturally leads to the aforementioned doublet structure. A novel by-product of this mechanism is the emergence of an approximate symmetry (corresponding to the approximate degeneracy of the doubles) at low energies which is not evident in the full Hamiltonian. We also discuss the implications of this mechanism for Skyrmion physics, monopoles, anomalies and quantum gravity.Comment: 32 pages, latex. minor changes in presentation and reference

    Doctor of Philosophy

    Get PDF
    dissertationCompilers are indispensable tools to developers. We expect them to be correct. However, compiler correctness is very hard to be reasoned about. This can be partly explained by the daunting complexity of compilers. In this dissertation, I will explain how we constructed a random program generator, Csmith, and used it to find hundreds of bugs in strong open source compilers such as the GNU Compiler Collection (GCC) and the LLVM Compiler Infrastructure (LLVM). The success of Csmith depends on its ability of being expressive and unambiguous at the same time. Csmith is composed of a code generator and a GTAV (Generation-Time Analysis and Validation) engine. They work interactively to produce expressive yet unambiguous random programs. The expressiveness of Csmith is attributed to the code generator, while the unambiguity is assured by GTAV. GTAV performs program analyses, such as points-to analysis and effect analysis, efficiently to avoid ambiguities caused by undefined behaviors or unspecifed behaviors. During our 4.25 years of testing, Csmith has found over 450 bugs in the GNU Compiler Collection (GCC) and the LLVM Compiler Infrastructure (LLVM). We analyzed the bugs by putting them into different categories, studying the root causes, finding their locations in compilers' source code, and evaluating their importance. We believe analysis results are useful to future random testers, as well as compiler writers/users

    Does one monetary policy fit all? the determinants of inflation in EMU countries

    Get PDF
    This chapter aims at assessing the long-run determinants and the short-run dynamics of inflation in each country belonging to the European Monetary Union (EMU). Our work complements the recent literature on this topic for the Euro Area as a whole. Detecting such determinants can be crucial in designing structural reforms acting as aside instruments of monetary policy in maintaining price stability. The empirical methodology consists of a reinterpretation of the structural cointegrating VAR approach, which allows for a structural long-run analysis of inflation determinants along with an accurate assessment of its short-run dynamics. The main conclusion emerging from the estimates is that not only the determinants of inflation differ in the countries belonging to the Euro Area, but also that cost-push factors have a considerable role in explaining inflation in most of the countries examined. As a policy implication, a tight monetary policy pursued in those countries whose inflation is mainly driven by costs would result in a contraction of economic activity without exerting relevant effects on price dynamics.Inflation, markup, EMU countries, long-run structural VARs, subset VEC models

    How quickly can anyons be braided? Or: How I learned to stop worrying about diabatic errors and love the anyon

    Full text link
    Topological phases of matter are a potential platform for the storage and processing of quantum information with intrinsic error rates that decrease exponentially with inverse temperature and with the length scales of the system, such as the distance between quasiparticles. However, it is less well-understood how error rates depend on the speed with which non-Abelian quasiparticles are braided. In general, diabatic corrections to the holonomy or Berry's matrix vanish at least inversely with the length of time for the braid, with faster decay occurring as the time-dependence is made smoother. We show that such corrections will not affect quantum information encoded in topological degrees of freedom, unless they involve the creation of topologically nontrivial quasiparticles. Moreover, we show how measurements that detect unintentionally created quasiparticles can be used to control this source of error.Comment: 33 pages, 18 figures, version 3: extended results to general anyon braidin
    • 

    corecore