
Research Article
A Slice-Based Change Impact Analysis for Regression Test Case
Prioritization of Object-Oriented Programs

S. Panda, D. Munjal, and D. P. Mohapatra

Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Sundergarh, Odisha 769008, India

Correspondence should be addressed to S. Panda; subhrakanta11@gmail.com

Received 28 September 2015; Revised 26 January 2016; Accepted 31 January 2016

Academic Editor: Xudong He

Copyright © 2016 S. Panda et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Test case prioritization focuses on finding a suitable order of execution of the test cases in a test suite to meet some performance
goals like detecting faults early. It is likely that some test cases execute the program parts that are more prone to errors and will
detect more errors if executed early during the testing process. Finding an optimal order of execution for the selected regression
test cases saves time and cost of retesting. This paper presents a static approach to prioritizing the test cases by computing the
affected component coupling (ACC) of the affected parts of object-oriented programs. We construct a graph named affected slice
graph (ASG) to represent these affected program parts. We determine the fault-proneness of the nodes of ASG by computing their
respective ACC values. We assign higher priority to those test cases that cover the nodes with higher ACC values. Our analysis
with mutation faults shows that the test cases executing the fault-prone program parts have a higher chance to reveal faults earlier
than other test cases in the test suite. The result obtained from seven case studies justifies that our approach is feasible and gives
acceptable performance in comparison to some existing techniques.

1. Introduction

In the software development life cycle, regression testing is
considered an important part. This is because it is essential
to validate the modification and to ensure that no other
parts of the program have been affected by the change [1].
Regression testing [2–6] is defined as the selective retesting of
a system or component to verify that modifications have not
caused unintended effects and that the system or component
still complies with its specified requirements [2]. Therefore,
this paper follows a selective approach [3–5] to identify and
retest only those parts of the program that are affected by
the change. Thus, it is even more important to improve the
effectiveness of regression testing and reduce the cost of test
case execution. Therefore, in this paper, we focus on test
case prioritization (TCP) of a given test suite 𝑇. Test case
prioritization problem is best described using the example
in Table 1. If the test cases are executed in the order {𝑇1, 𝑇2,
𝑇3, 𝑇4, 𝑇5, 𝑇6}, then we achieve 100% coverage of faults only
after the sixth test case is executed, whereas if the ordering of
the test case execution is changed to {𝑇6, 𝑇5, 𝑇4, 𝑇1, 𝑇3, 𝑇2},
then we achieve 100% coverage after the execution of

the fourth test case. Therefore, finding the order of test case
execution is essential to detect the faults [7–9] early during
regression testing. All the existing approaches target finding
an optimal ordering of the test cases based on the rate of
fault detection or rate of satisfiability of coverage criterion
under consideration. However, these existing techniques [3,
6, 10–13] were primarily developed to target procedural
programs. Very few existing works [14–18] focus on the test
case prioritization for object-oriented programs. This paper
presents a static approach of prioritizing the test cases of
object-oriented programs. It is reported that amodule having
high coupling value is more erroneous than other modules
[19, 20]. As a result, a test case that executes a module with
high coupling value will reveal more faults than other test
cases. Many techniques and metrics [21] exist to measure the
coupling value of the program segments [19] and establish
these values as an indicator of fault-proneness [20]. None
of the prioritization techniques available in the literature
have reported the use of coupling measure to prioritize the
test cases. Thus, this paper uses the coupling value of the
affected program parts for prioritizing the selected test cases
for regression testing.

Hindawi Publishing Corporation
Advances in Soware Engineering
Volume 2016, Article ID 7132404, 20 pages
http://dx.doi.org/10.1155/2016/7132404

2 Advances in Software Engineering

Table 1: A sample test case distribution and the faults detected by
them.

Test cases/faults 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6

𝑓1 X X X
𝑓2 X X X
𝑓3 X X X
𝑓4 X X
𝑓5 X X
𝑓6 X X
𝑓7 X
𝑓8 X
Number of faults 3 1 3 2 3 5

% of faults detected by two sample test case orderings
𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6 37.5 50 75.0 75.0 87.5 100

𝑇6, 𝑇5, 𝑇4, 𝑇1, 𝑇3, 𝑇2 62.5 75 87.5 100 100 100

Based on the above motivations, we propose an approach
to prioritize a selected test suite of an object-oriented pro-
gram using the coupling value of the affected program parts
covered by the test cases. For experimentation, we have taken
a sample Java program shown in Algorithm 1. A total of
twenty test cases (𝑇1–𝑇20) were taken along with their node
coverage information. All those test cases that covered the
affected nodes (with respect to a modification point) are
selected hierarchically. Finally, five test cases (𝑇6–𝑇10) are
selected for prioritization. For hierarchical regression test
case selection details interested readers are requested to refer
to [19]. In this approach, we propose a technique to prioritize
the selected test cases (𝑇6–𝑇10). Thus, we fix our research
objectives as follows:

(i) To identify and represent the affected program parts
and compute the coupling value of these affected
program parts.

(ii) To cluster the coupling values [22] into groups and
assign aweight to each groupbased on their criticality.

(iii) To prioritize the test cases by sorting them in the
decreasing order of their computed weights.

So, the contributions of this paper lies in the following:

(i) Proposing an algorithm for prioritizing the selected
test cases.

(ii) Implementing the proposed algorithm for the fifteen
experimental programs.

(iii) Carrying out mutation analysis.
(iv) Comparing the performance of our approach with an

existing work.

The rest of the paper is organized as follows: Section 2 intro-
duces the technique used in this paper for prioritizing the test
cases. We describe our proposed process of prioritization in
Section 3. We also discuss the working and complexity anal-
ysis of our algorithm in this section.The details of our imple-
mentation and experimental studies are given in Section 4.

Here, we present the experimental study settings, describe the
characteristics of the program samples taken for our exper-
imentation and mutation analysis, and analyze the results.
In Section 5, we discuss and compare our work with some
related work.We also highlight some of the limitations of our
approach in this section. We conclude the paper in Section 6
with some insights into probable extensions to our work.

2. Preliminary Study

In this section, we discuss the techniques that are used in this
work to accomplish our research objectives.

2.1. Program Slicing. This paper uses program slicing to iden-
tify the affected program parts for change impact analysis.
Program slicing was originally introduced by Weiser [23]
as a method for automatically decomposing programs by
analyzing their data flow and control flow starting from a
subset of a program’s behavior. Slicing reduces the program
to a minimal form that still produces the same behavior
as the original program. Program slicing is a method of
separating out the relevant parts of a program with respect to
a particular computation [24–27]. The input that the slicing
algorithm takes is usually an intermediate representation of
the program under consideration [28–31]. The first step in
slicing a program involves specifying a point of interest,
which is called the slicing criterion and is expressed as a tuple
(𝑠, V), where 𝑠 is the statement number and V is the variable
that is being used or defined at 𝑠.

Li et al. [25] proposed the concept of hierarchical slicing
that computes the slices at package, class, method, and
statement levels. Here, we adopt an approach of slicing that
is different from that given in [1, 25]. We name this slicing
approach hierarchical decomposition (HD) slicing. We first
construct a single intermediate graph of the program taking
into account the possible dependences among different pro-
gram elements. Then, we perform HD slicing to obtain the
affected programparts with respect to the changemade to the
program. The slice thus obtained is graphically represented
and named affected slice graph (ASG). The steps of HD slicing
are given in [32]. A comparison of hierarchical slicing [1]
versus HD slicing in terms of number of nodes selected and
computation time is shown inTable 2. At each level, we obtain
more accuracy in test case selection from a coarse-grain level
to a finer-grain level by discarding the test cases that are not
relevant.

2.2. Coupling in Object-Oriented Programming. Coupling
is defined as the degree of interdependence between two
modules. However, in an object-oriented programming envi-
ronment, coupling can exist not only at the level of methods
but also at the class level and package level. Therefore,
coupling represents the degree of interdependence between
methods, between classes, between packages, and so forth.
Many researchers have proposed different slicing based
mechanisms [19, 20, 32] to measure coupling in an object-
oriented framework. There are many factors, such as infor-
mation hiding, encapsulation, inheritance, message passing,

Advances in Software Engineering 3

(1) package pkg;

(2) importjava.util.∗;
(3) public class TestShape{

(4) public static void main(String[] args){

(5) String str;

(6) int a, b;

(7) Scanner sin = new Scanner(System.in);

(8) System.out.println("Enter the Color: ");

(9) str = sin.next();

(10) System.out.println("Enter the length and breadth: ");

(11) a = sin.nextInt();

(12) b = sin.nextInt();

(13) Shape s1 = new Rectangle(str, a, b);

(14) System.out.println(s1);

(15) System.out.println("Area is " + s1.getArea());

(16) System.out.println("Enter the Color: ");

(17) str = sin.next();

(18) System.out.println("Enter the length and breadth: ");

(19) a = sin.nextInt();

(20) b = sin.nextInt();

(21) Shape s2 = new Triangle(str, a, b);

(22) System.out.println(s2);

(23) System.out.println("Area is " + s2.getArea());}}

package pkg;

(24) public class Triangle <T> extends Shape{

(25) private T base;

(26) private T height;

(27) public Triangle(String color, T base, T height){

(28) super(color);

(29) this.base = base;

(30) this.height = height; }

(31) public String toString(){

(32) return "Triangle of base=" + base + " and height=" + height + ", subclass of " + super.toString(); }

(33) public T getArea(){

(34) return 0.5∗base∗height; }}

package pkg;

(35) public class Rectangle extends Shape{

(36) private int length;

(37) private int width;

(38) public Rectangle(String color, int length, int width){

(39) super(color);

(40) this.length = length;

(41) this.width = width; }

(42) public String toString(){

(43) return "Rectangle of length=" + length + " and width=" + width + ", subclass of " + super.toString(); }

(44) public double getArea(){

(45) return length∗width; }}

package pkg;

(46) public class Shape{

(47) private String color;

(48) public Shape (String color){

(49) this.color = color; }

(50) public String toString(){

(51) return "Shape of color=\"" + color + "\""; }

(52) public double getArea(){

(53) System.err.println("Shape unknown! Cannot compute area!");

(54) return 0; }}

Algorithm 1: An example Java program.

4 Advances in Software Engineering

Table 2: Comparison of hierarchical slicing [1] versus HD slicing.

Sl. number Program # nodes Hierarchical slicing HD slicing
selected nodes Time (ms) # selected nodes Time (ms)

1 Expt Prog. 89 35 16.6 33 15.52
2 Stack 157 66 19.87 63 18.56
3 Sorting 183 77 19.98 69 18.77
4 BST 185 74 19.98 71 18.79
5 Crc 331 148 23.37 142 21.83
6 DLL 377 183 23.96 171 22.16
7 ATM 543 241 24.81 237 24.08

and abstraction mechanisms, that contribute to coupling in
object-oriented programs. High coupling affects program
comprehension and analysis. As a result, it becomes very
difficult to maintain software systems. In an object-oriented
program, coupling can exist between any two components
due to message passing, polymorphism, and inheritance
mechanisms of object-oriented programs.These components
include packages, classes, methods, and statements. Two
statements 𝑠1 and 𝑠2 are said to be coupled if 𝑠1 has
some dependence (control, data, or type dependence) on
𝑠2. Methods in an object-oriented program belong to the
constituent classes. It implies that a method is coupled
either with a method in the same class or with another
method in a different class. If the methods of any two classes
are coupled, then the corresponding classes are said to be
coupled. Similarly, the container packages of the coupled
classes are also said to be coupled. The coupling mechanism
adopted in this paper is given in Section 3.

2.3. Regression Test Case Prioritization. Testing is an impor-
tant phase in the software life cycle.This phase incurs approx-
imately 60% of the total cost of the software. Therefore, it
becomes highly essential to devise proper testing techniques
in order to design test cases that tests the software to detect
early bugs. It becomes a big challenge to manage the retesting
process with respect to the time and cost, especially when the
test suite becomes too large. Therefore, selective retest tech-
nique attempts to identify those test cases that can exercise the
modified parts of the program and the parts that are affected
by themodification to reduce the cost of testing.However, test
case prioritization can complement selective retest technique
and faults can be detected early by prioritizing these selected
test cases.Thus, test case prioritization (TCP) problem, stated
by Rothermel et al. [6], is as follows, given that𝑇 is a test suite;
𝑃𝑇 is the set of permutations of 𝑇; 𝑓 is a function from 𝑃𝑇 to
the real numbers.

Problem. Find 𝑇󸀠 ∈ 𝑃𝑇 such that

(∀𝑇
󸀠󸀠
(𝑇
󸀠󸀠
∈ 𝑃𝑇) ∩ (𝑇

󸀠󸀠
̸= 𝑇
󸀠
) [𝑓 (𝑇

󸀠
) ⩾ (𝑇

󸀠󸀠
)]) , (1)

where 𝑃𝑇 is the set of all possible orderings of the test cases
in𝑇 and𝑓 is a function that maps the ordering with an award
value.

This prioritization approach can be usedwith the selective
retest technique to obtain a version specific prioritized test

suite [2]. Rothermel et al. [6] proposed a metric to ensure
the efficiency of any of the existing prioritizing techniques.
This metric is named as Average Percentage of Fault Detected
(APFD) and is used by many researchers to evaluate the
effectiveness of their proposed techniques. APFD measure is
calculated by taking the weighted average of the number of
faults detected during execution of a program with respect to
the percentage of test cases executed. Let 𝑇 be a test suite and
let 𝑇󸀠 be a permutation of 𝑇. The APFD for 𝑇󸀠 is defined as
follows:

APFD = 1 −
∑
𝑛−1

𝑖=1
𝐹
𝑖

𝑛 ∗ 𝑙
+
1

2𝑛
. (2)

Here, 𝑛 is the number of test cases in 𝑇, 𝑙 is the total number
of faults, and 𝐹

𝑖
is the position of the first test case that reveals

the fault 𝑖. The value of APFD can range from 0 to 100 (in
percentage). The higher the APFD value for any ordering of
the test cases in the test suite is, the higher the rate at which
software faults are discovered is.

3. Our Proposed Approach

In this section, we discuss our proposed approach to prior-
itize a given test suite based on the test cases selected for
regression testing. We consider the example Java program
shown in Algorithm 1 to discuss our proposed approach.This
program defines a class named Shape which is inherited by
the classes Rectangle and Triangle. The class TestShape con-
tains the main method and computes the area of a rectangle
and triangle, respectively, based on the user inputs given
through the console, and displays the result. Though this
program is very small in size, it represents all the important
features of a Java program and is helpful in explaining
the working of this approach. The prioritization steps are
summarized as follows.

Step 1. Construct the ASG and compute the coupling value of
each node of the ASG.

Step 2. Cluster the coupling values and assign weight to the
nodes of ASG.

Step 3. Compute the weights of test cases and prioritize.

3.1. ASG and Computation of Coupling Values. ASG is the
graphical representation of the slice that is computed with

Advances in Software Engineering 5

respect to some change made to the program. The point of
change is taken as the slicing criterion to compute the slice.
The slicing algorithm comprises both forward and backward
traversal to discover the affected program parts. The forward
traversal discovers the program parts affected by the change,
and the backward traversal discovers those parts that affect
the parts discovered in the forward traversal. The steps of
hierarchical decomposition (HD) slicing to compute the slice
and construct the ASG are given as follows:

(i) Traverse the EOOSDG in forward direction, starting
from the point of modification, that is, slicing crite-
rion, exceptmethod overridden edges.

(ii) Mark and Add each node of the EOOSDG that is
reached by the forward traversal to a worklist, 𝑄

1
.

(iii) Perform two-pass backward traversal for each 𝑞 ∈ 𝑄
1

as the starting point.

(1) Pass-1:

(a) Traverse backward from 𝑞 through the
corresponding edges, avoiding the follow-
ing edges: polymorphic call edge, inherited
membership edge, parameter out edge, and
generic out edge to extract all those nodes
on which node 𝑞 depends.

(b) Mark and Add every node 𝑛󸀠 reached dur-
ing backward traversal to a worklist, 𝑄

2
.

(2) Pass-2:

(a) Traverse backward from each 𝑞󸀠 ∈ 𝑄
2

avoiding the following edges parameter in
edge, generic in edge,and any edge traversed
in Pass-1.

(b) Mark and Add every node 𝑛󸀠󸀠 reached
during backward traversal to a worklist,𝑄

3
.

(iv) Compute final slice as the union of all the marked
nodes, 𝑄 = 𝑄

1
∪ 𝑄
2
∪ 𝑄
3
.

(v) To obtain the hierarchical slice, we do the following:

(a) Find 𝑃
1
= 𝑃 ∩ 𝑄, where 𝑃 is the set of packages

in the program and 𝑃
1
is the set of affected

packages.
(b) Update 𝑄 = 𝑄 − 𝑃

1
; now 𝑄 contains classes,

methods, and statements.
(c) Find 𝐶

1
= 𝐶∩𝑄, where 𝐶 is the set of classes in

the program and 𝐶
1
is the affected classes.

(d) Update 𝑄 = 𝑄 − 𝐶
1
; now 𝑄 contains only the

methods and statements.
(e) Find𝑀

1
= 𝑀∩𝑄, where𝑀 is the set ofmethods

in the program and𝑀
1
is the affected methods.

(f) Update 𝑄 = 𝑄 − 𝑀
1
; now 𝑄 contains only

affected statements.
(g) Set 𝑆

1
= 𝑄, where 𝑆

1
is the set of affected

statements.

This set of affected nodes and their dependences are then
modeled graphically to form the affected slice graph (ASG). To
avoid repetition of the concepts, details are not reproduced
here; interested readers are requested to refer to [32] for
details.

Algorithm 2 takes the ASG as input and calculates the
ACC of each node. We discuss the working of the proposed
Algorithm 2 in Section 3.4. In this approach, we use the
concept of information inflow and outflow for coupling
measurement. The ASG represents all forms of information
flow between any two nodes in the form of edges. Thus, our
proposed affected component coupling (ACC) for a given
node 𝑛 is computed as the normalized ratio of the sum of
inflow andoutflowof 𝑛with total nodes inASG.Thedirection
of couplings between any two nodes is given equal weight and
was not considered separately. This goes with the hypothesis
that a ripple change can propagate in any direction along a
coupling dimension. Below, we define the terms related to the
computation of affected component coupling (ACC) values.

Definition 1. To measure the coupling, we define a set
Inflow(𝑛) that comprises all those nodes on which 𝑛 depends.
For any node 𝑛 in ASG,

Inflow (𝑛)

= {𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑘
| ⟨𝑛
1
, 𝑛
2
⟩ , ⟨𝑛
2
, 𝑛
3
⟩ , . . . , ⟨𝑛

𝑘
, 𝑛⟩

∈ 𝐸
𝑎
∧ 𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑘
, 𝑛 ∈ 𝑁

𝑎
∧ 1 ≤ 𝑘 ≤

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1} .

(3)

The outflow of 𝑛 in ASG is defined as the set comprising
all those nodes that depends on 𝑛:

Outflow (𝑛)

= {𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑙
| ⟨𝑛, 𝑛

1
⟩ , ⟨𝑛
1
, 𝑛
2
⟩ , . . . , ⟨𝑛

𝑙−1
, 𝑛
𝑙
⟩

∈ 𝐸
𝑎
∧ 𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑙
, 𝑛 ∈ 𝑁

𝑎
∧ 1 ≤ 𝑙 ≤

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1} .

(4)

Thus, the dependence set 𝜓(𝑛) of each node is defined as the
union of all the Inflow(𝑛) and Outflow(𝑛):

𝜓 (𝑛) = Inflow (𝑛) ∪Outflow (𝑛) . (5)

Definition 2. Hence, affected coupling of a given node 𝑛 is
computed as the normalized ratio of dependence of 𝑛, 𝜓(𝑛),
to the total number of affected nodes in the ASG, |𝑁

𝑎
| − 1,

as the node under consideration is excluded. This coupling is
measured with respect to the change made to the program
that was taken as slicing criterion to generate ASG. This
coupling measure is given as

ACC (𝑛) =
󵄨󵄨󵄨󵄨𝜓 (𝑛)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

. (6)

Definition 3. The updated coupling of a method node𝑀 in
ASG 𝐺

𝑎
= (𝑁
𝑎
, 𝐸
𝑎
) is defined as the average of the coupling

values of all its elements (parameters and statements) along
with its own coupling measure. Let a method node𝑀 have 𝑗
number of elements, that is, 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑗
. Thus, coupling of

the method node𝑀 is given as

ACC (𝑀) =
ACC (𝑀) + ∑𝑗

𝑖=1
ACC (𝑛

𝑖
)

𝑗 + 1
. (7)

6 Advances in Software Engineering

Input: Affected Component Dependency Graph (ASG), total number of nodes 𝑛
Output: Weighted Export Coupling Factor (WACC) of each node
(1) for 𝑥 fl 𝑉

1
, 𝑉
2
, 𝑉
3
, . . . , 𝑉

𝑛
(Where 𝑥 is any node in ASG)

(2) Setstatus
𝑥
= FALSE

(3) outflowfl call FTraverse(ASG, 𝑥)
(4) inflowfl call BTraverse(ASG, 𝑥)

(5) ACC [𝑥] fl (𝑖 nodes + 𝑒 nodes)
𝑛 − 1

(6) End for (To update the coupling value of all the method, class and package nodes)
(7) for 𝑢 fl𝑀

1
,𝑀
2
,𝑀
3
, . . . ,𝑀

𝑚
(Where𝑚 is the number of method nodes in the graph)

(8) ACC [𝑢] :=
(ACC [𝑢] + ∑𝑗

𝑖=1
𝐴CC [𝑛

𝑖
])

(𝑗 + 1)
(𝑛
𝑖
is the statement/parameter node of method𝑀

𝑖
, 𝑗 is the total number of

statement/parameter nodes of each𝑀
𝑖
)

(9) End for
(10) for 𝑢 fl 𝐶

1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑐
(𝑐 is the total number of class nodes)

(11) ACC [𝑢] :=
(ACC [𝑢] + ∑𝑘

𝑖=1
𝐴CC [𝑛

𝑖
])

(𝑘 + 1)
(𝑛
𝑖
is the attribute/method node of class 𝐶

𝑖
, 𝑘 is the total number of attribute/

method nodes of each 𝐶
𝑖
)

(12) End for
(13) for 𝑢 fl 𝑃

1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑝
(𝑝 is the total number of package nodes)

(14) ACC [𝑢] :=
(ACC [𝑢] + ∑𝑙

𝑖=1
𝐴CC [𝑛

𝑖
])

(𝑙 + 1)
(𝑛
𝑖
is the subpackage/class node of package 𝑃

𝑖
, 𝑙 is the total number of

subpackage/class nodes of each 𝑃
𝑖
)

(15) End for

(16) ACC (𝑆) =
∑
|𝑁
𝑎
|

𝑖=1
𝐴CC (𝑛

𝑖
)

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨

(ACC(𝑆) represents the cohesion of slice 𝑆) (To assign a weight to each node of ASG)

(17) for 𝑢 fl 𝑉
1
, 𝑉
2
, 𝑉
3
, . . . , 𝑉

𝑛
(Where 𝑢 is any node in ASG)

(18) if ACC[𝑢] ≥ 0.7 and ACC[𝑢] ≤ 1.0
(19) WACC[𝑢] := 3
(20) End if
(21) else if ACC[𝑢] ≥ 0.6 and ACC[𝑢] < 0.7
(22) WACC[𝑢] := 2
(23) End else if
(24) else
(25) WACC[𝑢] fl 1
(26) End else
(27) Exit

Algorithm 2: findWACC(ASG, 𝑛).

Definition 4. The updated coupling of a class node 𝐶 in ASG
𝐺
𝑎
= (𝑁
𝑎
, 𝐸
𝑎
) is defined as the average of the coupling values

of all its elements (attributes and methods) along with its
own coupling measure. Let a class node 𝐶 have 𝑘 number
of elements, that is, 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
. Thus, cohesion of the class

node 𝐶 is given as

ACC (𝐶) =
ACC (𝐶) + ∑𝑘

𝑖=1
ACC (𝑛

𝑖
)

𝑘 + 1
. (8)

Definition 5. The updated coupling of a package node 𝑃 in
ASG 𝐺

𝑎
= (𝑁
𝑎
, 𝐸
𝑎
) is defined as the average of the coupling

values of all its elements (classes and subpackages) along
with its own coupling measure. Let a package node 𝑃 have
𝑙 number of elements, that is, 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑙
. Thus, coupling of

the package node 𝑃 is given as

ACC (𝑃) =
ACC (𝑃) + ∑𝑙

𝑖=1
ACC (𝑛

𝑖
)

𝑙 + 1
. (9)

The detail computation of ACC value for some of the
nodes is shown in Section 3.4.The reason for taking coupling
into consideration is that any node having higher ACC value
is an indicator that the node is likely to be more error-
prone [20]. This is because higher ACC value of a node
indicates more dependence of other nodes on this source of
information.

3.2. Clustering and Assigning Weights. Once the ACC values
of all the nodes have been computed, then the values are
clustered. Clustering [33] of the nodes is based on the notion
that not all the nodes of ASG are equally erroneous. Some
nodes aremore erroneous than others. So, we need to identify
the set of nodes that can be categorized into different levels
of fault-proneness. 𝑘-means clustering technique [22, 34] is
used here to cluster the ACC values. 𝑘-means clustering is
a technique of automatically partitioning a set of given data
into 𝑘 groups. The 𝑘 cluster centres are chosen randomly

Advances in Software Engineering 7

Input: Test Suite 𝑇 with coverage information, Weight of each node in ASG
Output: Prioritized Test Suite 𝑇󸀠
(1) Set 𝑇󸀠 = NULL
(2) for each test case 𝑡 ∈ 𝑇 do

(3) Wtc (𝑡) =
𝑗

∑

𝑖=1

Wt(𝑉
𝑐𝑖
(𝑡)) (Where 𝑉

𝑐𝑖
(𝑡) is the node covered by 𝑡 whose weight is 3, Wtc(𝑡) is the total weight of 𝑗 critical fault

prone nodes covered by 𝑡)

(4) Wtm (𝑡) =
𝑘

∑

𝑖=1

Wt(𝑉
𝑚𝑖
(𝑡)) (Where 𝑉

𝑚𝑖
(𝑡) is the node covered by 𝑡 whose weight is 2, Wtm(𝑡) is the total weight of 𝑘moderate

fault prone nodes covered by 𝑡)

(5) Wtw (𝑡) =
𝑙

∑

𝑖=1

Wt(𝑉
𝑤𝑖
(𝑡)) (Where 𝑉

𝑤𝑖
(𝑡) is the node covered by 𝑡 whose weight is 1, Wtw(𝑡) is the total weight of 𝑙 weak fault

prone nodes covered by 𝑡)
(6) Wt(𝑡) =Wtc(𝑡) +Wtm(𝑡) +Wtw(𝑡) (Where Wt(𝑡) is the total weight of 𝑡)
(7) End for (sort on the basis of Wt(𝑡))
(8) 𝑇󸀠 = sort(𝑇Wt(𝑡))

(9) if ∃ 𝑡
𝑖
, 𝑡
𝑗
∈ 𝑇
󸀠 s.t Wt(𝑡

𝑖
) =Wt(𝑡

𝑗
), 𝑖 ̸= 𝑗 (sort on the basis of Wtc(𝑡

𝑖
), Wtc(𝑡

𝑗
))

(10) 𝑇
󸀠
= sort (𝑇Wtc(𝑡

𝑖
,𝑡
𝑗
)
)

(11) if Wtc(𝑡
𝑖
) =Wtc(𝑡

𝑗
), 𝑖 ̸= 𝑗 (sort on the basis of Wtm(𝑡

𝑖
), Wtm(𝑡

𝑗
))

(12) 𝑇
󸀠
= sort (𝑇󸀠Wtm(𝑡

𝑖
,𝑡
𝑗
)
)

(13) if Wtm(𝑡
𝑖
) =Wtm(𝑡

𝑗
), 𝑖 ̸= 𝑗 (sort on the basis of Wtw(𝑡

𝑖
), Wtw(𝑡

𝑗
))

(14) 𝑇
󸀠
= sort (𝑇󸀠Wtw(𝑡

𝑖
,𝑡
𝑗
)
)

(15) Exit

Algorithm 3: H-PTCACC(𝑇, WACC).

from the data set. The value of 𝑘 for our approach is 3 as we
divide the coupling values into three categories as shown in
Figure 3.These three categories of fault association are critical
fault association, moderate fault association, and weak fault
association. The computed ACC values can belong to either
of these three categories. We propose an algorithm named
find Weighted Affected Component Coupling (findWACC). It
takes the ASG and its total number of nodes as input. It uses
the formula given in (6) to compute the ACC value of each
node in the ASG. It computes the outflow of a node at Line
(3) and inflow of a node at Line (4). Algorithm 2 computes
the ACC values of each node and then updates these values
for some specific nodes such as package nodes, class nodes,
method nodes, and method call nodes. It then assigns weight
to the nodes of ASG. Any value of weights can be chosen
to signify the faultiness of one set of nodes compared to
the other sets. However, in this paper, we use the following
weights: if the ACC value of a node 𝑥 belongs to the category
of critical fault association, that is, 0.7 ⩽ ACC(𝑥) < 1.0,
then 𝑥 is assigned a weight 3. Similarly, if ACC value of a
node 𝑥 belongs to the category of moderate fault association,
that is, 0.6 ⩽ ACC(𝑥) < 0.7, then 𝑥 is assigned a weight 2.
Otherwise, 𝑥 belongs to the category of weak fault association
and is assigned aweight 1.TheACCvalue of eachnode ofASG
and the correspondingweights assigned to them are shown in
Figure 2.

3.3. Computation of Test CaseWeights and Prioritization. The
program under consideration is executed with each selected

test case in a given test suite to find the coverage information
as shown in Table 3. The weight of a test case depends
upon the weight of the nodes that it covers. All the critical
and moderate nodes (nodes with weights 3 and 2, resp.)
are shown in bold in the nodes covered column of Table 3.
We propose Algorithm 3 namedHierarchical Prioritization of
Test Cases using Affected Component Coupling (H-PTCACC)
to compute the weights and prioritize the given test suite.
Algorithm 3 takes the selected test cases along with their
coverage information and ACC values of each node in the
ASG as its input. The output of the algorithm is a prioritized
set of test cases. For any test case 𝑡

𝑖
∈ 𝑇, Algorithm 3 first

computes its critical weight (Wtc), that is, the sum of the
weights of all the critical fault-prone nodes covered by 𝑡

𝑖
.

Similarly, Algorithm 3 computes themoderateweight (Wtm),
that is, the sum of the weights of all the moderate fault-prone
nodes covered by 𝑡

𝑖
. In the same way, Algorithm 3 computes

the weak weight (Wtw), that is, the sum of the weights of all
weak fault-prone nodes for each test case. Thus the weight
of test case is given as the sum of its critical weight (Wtc),
moderate weight (Wtm), and weak weight (Wtw). Table 4
shows the different weights computed for each of the test
cases 𝑇6, 𝑇7, 𝑇8, 𝑇9, and 𝑇10. Algorithm 3 assigns priority
to the test cases based on their different computed weights.
The test case having a higher total weight is given higher
priority in the test suite. If any of the two test cases have
the same total weight then their priority is decided based
on their critical weight. The test case with higher critical
weight is given higher priority. Similarly, if the critical weights

8 Advances in Software Engineering

Table 3: Test case coverage of fault-prone affected nodes.

Sl.
number

Test
case Nodes covered # nodes Test case weight

1 𝑇6 1, 2, 3, 4, 6, 7 6 17

2 𝑇7 1, 2, 21, 46, 27, f3, f4, 29, 30, f27 1 out, f27 2 out, 33, 34, f3 out, A3 out, 24, 25, 26, A5, A6 20 41

3 𝑇8 1, 2, 3, 4, 6, 7, 21, 46, 27, f3, f4, 29, 30, f27 1 out, f27 2 out, 19, 20, A5, A6, 25, 26 21 41

4 𝑇9 1, 2, 3, 4, 6, 7, 21, 46, 52, 27, f4, 33, 30, f3 out, 34, 24, A6 17 40

5 𝑇10 1, 2, 3, 4, 21, 23, A3 out, 46, 34, 33, f3 out, 24 12 31

Table 4: Distribution of test case weights on the basis of fault-prone impact.

Sl.
number

Test
case

Weight of critical
fault-prone nodes

covered

Weight of moderate
fault-prone nodes

covered

Weight of weak
fault-prone nodes

covered

Total weight of test
case

Priority (according to
the total wt. of test

case)
1 𝑇6 15 2 0 17 V
2 𝑇7 18 18 5 41 I
3 𝑇8 15 20 6 41 II
4 𝑇9 24 14 2 40 III
5 𝑇10 24 6 1 31 IV

are also the same then the moderate weights are taken into
consideration for prioritization. If the moderate weight of
the test cases is again the same then the weak weights are
considered for prioritization. If the weak weights are still the
same for any two test cases, then both of the test cases are
given equal priority. The last column in Table 4 shows the
final case, that is, if the weak weights are still the same for
any two test cases, then both of the test cases are given equal
priority.The last column in Table 4 shows the final prioritized
sequence of the selected test cases.

3.4. Working of the Algorithm. In this subsection, we discuss
the working of our proposed algorithms. Algorithm 2 uses
the formula given in (6) to compute the ACC value of each
node in the ASG. For example, we show the ACC calculation
for the class Triangle represented as node 24 in Figure 1.
Initially, ACC value of node 24 is computed as

ACC (24) = |outflow (24)| + |inflow (24)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
20 + 4

32

= 0.75.

(10)

Figure 4 shows the sets associated with the computation
of ACC of node 24. The inflow set for node 24 is shown
in Figure 4(a) and outflow set is shown in Figure 4(b).
Figure 4(c) shows the set in which node 24 is amember. Once
the computation of ACC of all member nodes of node 24,
shown in Figure 4(d), is complete then ACC(24) is updated.
Similarly, the ACC values of all the associated nodes (25, 26,
27, f3, f4, 29, 30, f27 1 out, f27 2 out, 33, f3 out, and 34) with
node 24 as shown in Figure 1 are computed as follows:

ACC (25) = |outflow (25)| + |inflow (25)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
3 + 14

32

= 0.5312,

ACC (26) = |outflow (26)| + |inflow (26)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
3 + 14

32

= 0.5312,

ACC (27) = |outflow (27)| + |inflow (27)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
12 + 7

32

= 0.5937,

ACC (f3) = |outflow (f3)| + |inflow (f3)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
13 + 12

32

= 0.7812,

ACC (f4) = |outflow (f4)| + |inflow (f4)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
13 + 12

32

= 0.7812,

ACC (29) = |outflow (29)| + |inflow (29)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
12 + 13

32

= 0.7812,

ACC (30) = |outflow (30)| + |inflow (30)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
12 + 13

32

= 0.7812,

ACC (f27 1 out)

=
|outflow (f27 1 out)| + |inflow (f27 1 out)|

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
10 + 14

32
= 0.75,

Advances in Software Engineering 9

2625

46

24

27

29 30

52

20

2

1

3

4

6 7 19 21

A21_1_outA5 A6
A21_2_out

33

34f3_out

23

A3_out

53

f6_out

54

f27_1_out f27_2_outf3 f4

Inheritance/implementation edge
Control dependency edge
Membership edge
Instantiation edge
Parameter passing edge
Data dependency edge
Package membership edge
Type dependency edge
Inherited membership edge
Method overridden edge
Read/write dependency
Polymorphic call edge
Summary edge
Generic edge
Has edge

f1: color = str_in
f2: color = str_in
f3: base = a1_in
f4: height = b1_in
f5: color = str_in
f6: length = a_in
f7: width = b_in
f1_out: c_out = color
f2_out: s2_out = s2_in + c_out
f3_out: a1_out = area
f4_out: s1_out = s1_in + c_out
f5_out: a2_out = area
f6_out: msg_out = msg_in

A1: str_in = str
A2: a_in = a
A3: b_in = b
A4: str_in = str
A5: a_in = a
A6: b_in = b
A1_out: sr_out = s1_out
A2_out: st_out = s2_out
A3_out: at_out = a1_out
A4_out: ar_out = a2_out

Figure 1: Affected slice graph (ASG) of the example Java program given in Algorithm 1.

10 Advances in Software Engineering

ACC (f27 2 out)

=
|outflow (f27 2 out)| + |inflow (f27 2 out)|

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
10 + 14

32
= 0.75,

ACC (33) = |outflow (33)| + |inflow (33)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
3 + 24

32

= 0.8437,

ACC (f3 out)

=
|outflow (f3 out)| + |inflow (f3 out)|

󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
1 + 28

32

= 0.9062,

ACC (34) = |outflow (34)| + |inflow (34)|󵄨󵄨󵄨󵄨𝑁𝑎
󵄨󵄨󵄨󵄨 − 1

=
2 + 27

32

= 0.9062.

(11)

Then, Algorithm 2 updates the ACC value of each node of
ASG. The reason behind this update is that, for any node
that represents a method, the statements contained inside
that method also contribute to the ACC of the method. Even
if a method does not have any statement inside it, still it
will have some ACC value as some other method may be
overriding it. Therefore, we have taken the average of all
the ACC values of all the statements and the ACC value of
the method under consideration, to compute the updated
ACC value of the method. For example, the ACC values
of nodes {24, 27, 33} are updated. The average ACC value
of node 27 along with the ACC values of all its member
nodes {f3, f4, 29, 30, f27 1 out, f27 2 out} are computed and
assigned to node 27; that is,

ACC (27)

=
ACC (27) + ACC (f3) + ACC (f4) + ACC (29)

7

+
ACC (30) + ACC (f27 1 out) + ACC (f27 2 out)

7

=
0.5937 + 0.7812 + 0.7812 + 0.7812

7

+
0.7812 + 0.75 + 0.75

7
= 0.7455.

(12)

Similarly, ACC values of node 33 and node 24 are updated as
follows:

ACC (33) = ACC (33) + ACC (f3 out) + ACC (34)
3

=
0.84375 + 0.90625 + 0.90625

3
= 0.88542,

Figure 2: The calculated ACC values of different nodes of the ASG
in Figure 1 and their weights.

0 3 6 9 12 15 18 21 24 27 30 33
Node Sl. number

AC
C

va
lu

es

Low faulty
Faulty
No faulty

Centroid2 = 0.777716

Centroid3 = 0.895573

Centroid1 = 0.634821

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Figure 3: 𝑘-means clustering of the ACC values of the nodes.

ACC (24)

=
ACC (24) + ACC (25) + ACC (26) + ACC (27)

5

+
ACC (33)
5

=
0.75 + 0.5312 + 0.5312 + 0.7455 + 0.88542

5

= 0.688664.

(13)

Therefore, ACC value of class Triangle in Algorithm 1 repre-
sented as node 24 in Figure 1 is found to be 0.68866. Similar
procedure is followed to update the ACC values of all the
nodes representing the classes and packages in the ASG.

Algorithm 3 computes the critical fault-prone weight
Wtc(𝑡

𝑖
), moderate fault-prone weight Wtm(𝑡

𝑖
), weak fault-

prone weight Wtw(𝑡
𝑖
), and the total weight Wt(𝑡

𝑖
) for each

Advances in Software Engineering 11

2

1 46 3

24

(a) Inflow set for node 24

24

25 26 33 27 52

34 f3_out f4 f27_1_out 29 f27_2_out f3 30 53 54

A3_out A21_1_out A21_2_out f6_out

23

(b) Outflow set for node 24

1 46 3

24

(c) The set to which node 24 is a member

24

33 27 26 52 25

(d) The members of node 24

Figure 4: ACC computation of nodes of ASG in Figure 1.

test case 𝑡
𝑖
∈ 𝑇. For example, the nodes covered by test case

𝑇8 as given in the second column of Table 3 are {1, 2, 3, 4,
6, 7, 21, 46, 27, f3, f4, 29, 30, f27 1 out, f27 2 out, 19, 20,A5,
A6, 25, 26}. The critical fault-prone nodes covered by 𝑇8 are
{1, 2, 3, 6, 7}. So, critical fault-prone weight of𝑇8 is calculated
as Wtc(𝑇8) = Wt(1) + Wt(2) + Wt(3) + Wt(6) + Wt(7) =
3+3+3+3+3 = 15.Themoderate fault-prone nodes covered
by 𝑇8 are {4, 21, 46, 27, f3, f4, 29, 30, f27 1 out, f27 2 out}.
So, moderate fault-prone weight of 𝑇8 is calculated as
Wtm(𝑇8) = Wt(4) +Wt(21) +Wt(46) +Wt(27) +Wt(f3) +
Wt(f4)+Wt(29)+Wt(30) + Wt(f27 1 out)+Wt(f27 1 out) =
2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 20. Similarly, the
weak fault-prone nodes covered by 𝑇8 are {25, 26, 29, 30}
and the weak fault-prone weight of 𝑇8 is calculated as
Wtw(𝑇8) =Wt(19) +Wt(20) +Wt(A5) +Wt(A6) +Wt(25) +
Wt(26) = 1 + 1 + 1 + 1 + 1 + 1 = 6. Therefore, total weight
of the test case 𝑇8 is calculated as Wt(𝑇8) = Wtc(𝑇8) +
Wtm(𝑇8) +Wtw(𝑇8) = 15 + 20 + 6 = 41.

Then, the algorithm sorts the test cases in the decreasing
order of their total weights Wt(𝑡

𝑖
). If there exist some test

cases 𝑡
𝑖
, 𝑡
𝑗
such thatWt(𝑡

𝑖
) =Wt(𝑡

𝑗
), then the algorithm sorts

𝑡
𝑖
and 𝑡
𝑗
based on their critical fault-prone weights Wtc(𝑡

𝑖
)

and Wtc(𝑡
𝑗
). If for some test cases Wtc(𝑡

𝑖
) = Wtc(𝑡

𝑗
), then 𝑡

𝑖

and 𝑡
𝑗
are sorted based on their moderate fault-prone weights

Wtm(𝑡
𝑖
) andWtm(𝑡

𝑗
). If, again,Wtm(𝑡

𝑖
) =Wtm(𝑡

𝑗
), then test

cases are sorted by their weak fault-prone weights Wtw(𝑡
𝑖
)

and Wtw(𝑡
𝑗
). In a very unlikely case, if the weak fault-prone

weights are still identical, that is, Wtw(𝑡
𝑖
) = Wtw(𝑡

𝑗
), then

the test cases are given equal priority. The prioritized order
of the test cases 𝑇6–𝑇10 based on their respective weights is
obtained as {𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇6}.

3.5. Complexity Analysis of the Algorithms. The complexity
analysis of the proposed algorithms is given as follows.

3.5.1. Space Complexity. Let the computed slice represented
as ASG have 𝑛 nodes. Each node in the ASG corresponds to
each statement of the computed slice along with the actual
and formal arguments present. Hence, the space requirement
is given as 𝑂(𝑛). Each node may have dependences on other
nodes. These dependences on other nodes are represented as
edges. Since each node can be dependent on maximum (𝑛 −
1) other nodes, the space requirement for the edges is 𝑂(𝑛2).
Hence, the total space requirement for the algorithm is𝑂(𝑛2+
𝑛) ≡ 𝑂(𝑛

2
).

3.5.2. Time Complexity. Let 𝑛 be the set of nodes in the
ASG. To compute the inflow to the input node, each node
is traversed only once, so the time complexity is 𝑂(𝑛). If the
time spent in each recursive call is ignored, then each node 𝑢
can be processed in𝑂(1+pred[𝑢]), where pred[𝑢] represents
the set of predecessor nodes of 𝑢. If each node has every other
node in the graph as its predecessor node, then each node has
(𝑛 − 1) predecessor nodes. So, the time complexity to process
each node is 𝑂(1 + (𝑛 − 1)) ≈ 𝑂(𝑛). Similarly, to compute

12 Advances in Software Engineering

the outflow from the input node the time complexity is
calculated as 𝑂(𝑛). Then, the total time required to compute
the coupling values of all the nodes is calculated as 𝑂(𝑁2).

Let 𝑚, 𝑐, and 𝑝 be the number of method nodes, class
nodes, and package nodes, respectively, whose ACC values
need to be updated. If each method node has 𝑗 member
nodes, then the time required to update 𝑚 method nodes is
𝑂(𝑚𝑗𝑛

2
). Since 𝑚 and 𝑗 are small bounded positive integers,

the time complexity is calculated as 𝑂(𝑛2). Similarly, if each
class node has 𝑘 member nodes and each package node has
𝑙 member nodes, then the respective time complexities for 𝑐
class nodes and 𝑝 package nodes are 𝑂(𝑐𝑘𝑛2) and 𝑂(𝑝𝑙𝑛2).
Since 𝑐, 𝑘, 𝑝, and 𝑙 are small bounded positive integers,
the time complexities are calculated as 𝑂(𝑛2) and 𝑂(𝑛2),
respectively, for the class and package nodes. As 𝑛 nodes are
there with 𝑛 ACC values, so the time required to assign a
weight to each of the 𝑛 nodes depending on their respective
ACC value is 𝑂(𝑛). Therefore, the worst-case run-time of the
findWACC algorithm is calculated as𝑂(𝑛2+𝑛2+𝑛2+𝑛2+𝑛) ≡
𝑂(𝑛
2
).
Let 𝑡 be the number of test cases to be prioritized in the

given test suite𝑇. Suppose a test case covers atmost 𝑛 number
of nodes. Let 𝑗, 𝑘, and 𝑙 be the critical, moderate, and weak
fault-prone nodes, respectively, covered by a test case, such
that 𝑛 = 𝑗 + 𝑘 + 𝑙. So, the time complexity to compute the
weight of each test case is calculated as 𝑂(𝑗 + 𝑘 + 𝑙) ≡ 𝑂(𝑛).
As a result, the total time complexity to compute the weight
of 𝑡 test cases in the given test suite 𝑇 is 𝑂(𝑡𝑛). Assuming 𝑡 ≡
𝑛, the time complexity to compute the weights is calculated
as 𝑂(𝑛2). The time complexity to sort the 𝑡 ≡ 𝑛 test cases is
calculated as𝑂(𝑛2).Therefore, the worst-case run-time of the
H-PTCACC algorithm is calculated as 𝑂(𝑛2 + 𝑛2) ≡ 𝑂(𝑛2).

4. Implementation

In this section, we briefly describe the implementation of
our work. We implemented our code and all the algorithms
using Java and Eclipse v3.4 IDE on a standard Windows 7
desktop.The proposed approach of change impact analysis is
completely based on the intermediate graph of the modified
program. The identification of the dependences to construct
the intermediate graph follows the build-on-build approach;
that is, we use the existing APIs and tools to build the graph
instead of developing the source code parser from scratch.
Source code instrumentation and generation of the inter-
mediate graph are implemented by using XPath parser on
srcML (SouRce Code Markup Language) representation of
the input Java program. Thus, srcML is the XML (eXtended
Markup Language) representation of the input Java program.
The input program is converted to srcML using src2srcml
tool. This srcML representation is then used to extract the
dependences between program parts by using the XPath
parser. The details of the program conversion and fact extra-
ction process can be referred to in [26, 35]. Many other APIs
and tools (such as Document Object Model (DOM) and
Simple API for XML (SAX)) can be used to extract facts from
the srcML representation. In this paper, the fact and depen-
dence extraction is done using XPath. XPath is a language

support used by XSLT (extensible stylesheet language) parser
[36] to address specific part(s) of the entire XML document.
The choice of using XPath is because of its simplicity and
easy extraction by direct tracing to the location of the
information. This also works on both visioXML and srcML
formats of XML. The XPath expression “U function [name =
“getArea”],” directly traces to the function definitionwith the
name “getArea.” The source code is first instrumented and
then dependences in the program are identified and extracted
into the program dictionary to construct the intermediate
graph. The modified statement (instrumented number) is
taken as input along with the intermediate graph, to slice
the affected nodes. Most of the dependences at package level,
class level, andmethod level are extracted from the Imagix4D
XML data. Imagix4D is a static analysis tool that gives the
graphical representation of most of these dependences. The
statement level dependences such as control dependence
and data dependence [35] are extracted from the srcML
representation of the program.Theprogramdictionary stores
the following information:

(i) Set of all packages in the program.

(ii) Set of all classes in the program.

(iii) Set of all methods in the program.

(iv) Set of all statements in the program.

(v) Sets of each dependence type.

A change set is maintained that refers to the set of concur-
rent changes carried out on the program. 𝑘-means algorithm
is implemented in Matlab for clustering the coupling value.

4.1. Experimental Program Structure. To implement our
technique and show its effectiveness, we have taken total
fifteen programs of different specifications as shown in
Table 5. Out of these fifteen programs, ten benchmark pro-
grams (Stack, Sorting, BST, CrC,DLL, Elevator spl, Email spl,
GPL spl, Jtopas, and Nanoxml) are taken from Software-
Artifact Infrastructure Repository (SIR) [37] and other five
programs are developed as academic assignments. These
smaller programs are chosen to ascertain the correctness and
accuracy of the approach, keeping inmind that they represent
a variety of Java features and applications, the test cases
are available and otherwise easily developed, and coverage
information can be computed.

The smallest program has 54 LOC, and the largest prog-
ram has 7646 LOC.The total LOC for all the fifteen programs
is 19369 and the average LOC per program are 1291. The total
number of classes in all the fifteen programs is 185 with an
average of 12 classes per program. Our example program in
Algorithm 1 has smallest number of classes and GPL spl has
the highest, 111 number of classes. The total number of meth-
ods in all the programs is 2048with an average of 137methods
per program. We have constructed a total of 150 ASGs for
all the programs. The smallest ASG has 33 nodes, and the
largest has 5233 nodes. The total number of affected nodes in
all the fifteen programs is 28452, and the average number of
nodes affected per each change made to the programs is 152.

Advances in Software Engineering 13

Table 5: Result obtained for regression testing of different programs.

Sl. number Programs Lines of code # classes # methods Total # test
cases # mutants

selected test
cases for
regression
testing

Time for
prioritization

(sec)

1 Expt. Program 54 4 10 20 14 5 1.3
2 Calculator 75 4 24 15 42 7 1.8
3 Elevator 90 6 64 25 27 10 2.59
4 Stack 114 5 24 22 35 9 2.27
5 Sorting 130 1 15 16 43 5 1.65
6 BST 130 4 23 20 51 12 3.21
7 CrC 261 4 34 18 46 6 1.64
8 DLL 277 1 32 24 47 6 1.78
9 Notepad 300 12 68 17 17 8 2.07
10 ATM 900 24 321 33 39 12 3.87
11 Elevator spl 1046 17 51 15 53 10 2.63
12 Email spl 1233 17 68 18 18 11 2.89
13 GPL spl 1713 111 432 22 22 14 3.7
14 Jtopas 5400 50 748 16 28 9 2.36
15 Nanoxml 7646 24 134 14 32 7 1.72

Similarly, the total number of test cases considered for all
the programs is 295 with a mean of 20 test cases per program.
Only those test cases that had a coverage value of more than
90% were chosen for each of the experimental programs.
The coverage of the test cases were found using JaBUTi, a
coverage analysis tool for Java programs. The total number
of test cases selected for prioritization using our approach for
all the fifteen programs is 131.The smallest number of selected
test cases for prioritization is 5 for the our example program
in Algorithm 1 and the highest is 14 for GPL spl program.

4.2. Mutation Analysis. To generate the mutants for the input
program, we used an Eclipse plugin of MuJava known as
MuClipse [38]. Fault mutants are considered to be good rep-
resentative of real faults [37, 39, 40]. MuClipse supports both
the traditional and object-oriented operators for mutation
analysis. Table 6 gives an overview of the mutation operators
considered in the experimental study. A brief description of
the operators is given for every operator in Table 6. The first
five operators are the traditional operators. The remaining
23 operators relate to the faults in object-oriented programs.
Out of which JTD, JSC, JID, and JDC are specific to Java
features that are not available in all object-oriented languages.
Apart from this, there are some other operators, such as EOA,
EOC,EAM, andEMM, that reflect the typical codingmistakes
common during development of an object-oriented software.
The mutant generator generates the mutants for the sliced
program (representing the affected program parts) according
to the operators selected by the testers. Very large number of
mutants are generated. The location of these mutants in the
source code is visualized through mutant viewer. It allows a
tester to select appropriate number of mutants and design
test cases to kill the mutants. As the number of generated
mutants are too large, we randomly selected a less number
of mutants for our experimental programs. This process was

repeated for 10 times and the rate of fault detection for
the prioritized test suite was computed. The average number
of mutants selected for every program is shown in Table 5.
The test cases are written in a specific format such that each
test case is in a form of invoking a method in the class under
test.The testmethod has no parameters and returns the result
in the form of a string. The mutant is said to be killed if the
obtained output does not match the output of the original
program. The test cases for the input program are generated
using JUnit Eclipse plugin as the JUnit test cases closelymatch
the required format. The total number of fault mutants for
all the fifteen programs is 514, and the average number of
mutants per program is 34.

4.3. Results. Figure 5 shows the boxplots of the results of
our mutation analysis for all the experimental programs.
Figure 5(a) shows the presence of mutants in percentage in
the affected parts of the programs.The presence ofmutants in
the affected parts of the programs ranges from aminimum of
12% (DLL program) to amaximumof 94% (Sorting program).
The affected program parts in five programs have more than
90% of the mutants and four programs have little more
than 10% mutants. The result shows that an average of 47%
of mutants are scattered in the affected program parts of
the sample programs. Figure 5(b) shows the percentage of
mutants killed in each of the experimental programs. The
percentage of mutants killed by the prioritized test cases
varies from 70% to 95%. The average percentage of mutants
killed by the prioritized test suite is 85%. This shows that our
prioritized test cases are efficient in revealing the faults.

The average percentage of affected nodes covered by the
prioritized test cases using the approach of Panigrahi and
Mall and our approach is shown in Figures 6 and 7, respec-
tively, for the experimental program given in Algorithm 1.
From Figures 6 and 7, it may be observed that the average

14 Advances in Software Engineering

0
10
20
30
40
50
60
70
80
90

100
(%

)
Mutant present

Ex
pt

. p
ro

gr
am

Ca
lc

ul
at

or
El

ev
at

or
St

ac
k

So
rt

in
g

BS
T

Cr
C

D
LL

N
ot

ep
ad

AT
M

El
ev

at
or

_s
pl

Em
ai

l_
sp

l
G

PL
_s

pl
Jto

pa
s

N
an

ox
m

l

(a) Box-plot of the % of fault mutants present in affected parts of the
programs

0
10
20
30
40
50
60
70
80
90

100

(%
)

Mutants killed

Ex
pt

. p
ro

gr
am

Ca
lc

ul
at

or
El

ev
at

or
St

ac
k

So
rt

in
g

BS
T

Cr
C

D
LL

N
ot

ep
ad

AT
M

El
ev

at
or

_s
pl

Em
ai

l_
sp

l
G

PL
_s

pl
Jto

pa
s

N
an

ox
m

l

(b) Box-plot of the % of mutants killed in affected parts of the
programs

Figure 5: Mutation analysis of programs.

Table 6: Overview of mutation operators.

Operator Description
Traditional operators

ABS Absolute value insertion
AOR Arithmetic operator replacement
LCR Logical connector replacement
ROR Relational operator replacement
UOI Unary operator insertion

Java Interclass operators
IHD Hiding variable deletion
IHI Hiding variable insertion
IOD Overriding method deletion
IOP Overridden method calling position change
IOR Overridden method rename
ISK Super keyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC New method call with child class type
PMD Instance variable declaration with parent class type
PPD Parameter variable declaration with child class type
PRV Reference assignment with other compatible types
OMR Overloading method contents change
OMD Overloading method deletion
OAO Argument order change
OAN Argument number change
JTD This keyword deletion
JSC Static modifier change
JID Member variable initialization deletion
JDC Java-supported default constructor creation
EOA Reference and content assignment replacement
EOC Reference and content comparison replacement
EAM Accessor method change
EMM Modifier method change

percentage of nodes covered (APNC) using the approach of
Panigrahi and Mall [18] is 77.2%, whereas the APNC value
using our approach is 80.6%.Thus, there is an increase of 3.4%

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

A
ffe

ct
ed

 n
od

es
 co

ve
re

d
(%

)

Test suite fraction

Affected node coverage (ANC)

APNC = 77.2%

Figure 6: Average percentage of affected nodes covered by the
prioritized test cases using the approach of Panigrahi and Mall [18].

in APNC measure by our approach. Hence, our approach
detects faults better than the approach of Panigrahi and Mall
[18] as our approach covers more number of fault-prone
nodes. We evaluated the effectiveness of our approach by
using APFDmetric. We named Panigrahi andMall approach
[18] as Affected Node Coverage (ANC) and our approach as
Fault-Prone Affected Node Coverage (FPANC) in Figure 8.
The comparison of APFD values for these fifteen different
programs obtained using ANC and FPANC approaches
is shown in Figure 8. The results show that our FPANC
approach achieves approximately 8% increase in the APFD
metric value over ANC approach.

The experimental results show that the performance of
our approach varies significantly with program attributes,
change attributes, test suite characteristics, and their interac-
tion. To assume that a higher APFD implies a better tech-
nique, independent of cost factors, is an oversimplification
that may lead to inaccurate choices among prioritization
techniques. For a given testing scenario, cost models for
prioritization can be used to determine the amount of
difference inAPFD thatmay yield desirable practical benefits,
by associating APFD differences with measurable attributes
such as prioritization time. A prioritization technique would
be acceptable provided the time taken is within acceptable

Advances in Software Engineering 15

0
20
40
60
80

100
120

0 0.2 0.4 0.6 0.8 1

Fa
ul

t-p
ro

ne
 aff

ec
te

d
no

de
s c

ov
er

ed
 (%

)

Test suite fraction

Fault-prone affected node coverage (FPANC)

APNC = 80.6%

Figure 7: Average percentage of fault-prone affected nodes covered
by the prioritized test cases using our approach.

0
10
20
30
40
50
60
70
80
90

100

Ca
lc

ul
at

or
El

ev
at

or
St

ac
k

So
rt

in
g

BS
T

Cr
C

D
LL

N
ot

ep
ad

AT
M

El
ev

at
or

_s
pl

Em
ai

l_
sp

l
G

PL
_s

pl
Jto

pa
s

N
an

ox
m

l

A
PF

D
 v

al
ue

s

Programs

ANC
FPANC

Ex
pt

. p
ro

gr
am

Figure 8: Comparison of APFD values for different programs.

limits, which also reflects the cost of retesting. Korel et al. [41]
have also focused on less time of execution to decrease the
overhead of prioritization process. However, the acceptable
time limit greatly depends upon the testing time available
with the tester. An empirical analysis on the prioritization
time is outside the scope of this paper and is kept for our
future work. We have reported the prioritization time of our
approach to indicate the time taken to prioritize the test
cases when the precomputed test coverage information and
the ASG are available with the tester. The last column of
Table 5 shows the time taken for prioritizing the selected test
cases. The prioritization time varies from a minimum of 1.3
seconds to a maximum of 3.87 seconds for the experimental
programs. The total time taken to prioritize the test cases of
all the programs is 35.48 seconds and the average time for
prioritizing the test cases is 2.4 seconds. The prioritization
time includes the time for computing the weights of the test
cases and the time taken to order the test cases in decreasing
order of their weights.

5. Comparison with Related Work

In this section, we give a comparative analysis of our work
with some other related works.

Elbaumet al. [42] performed an empirical investigation to
find out the testing scenarios where a particular prioritization
approach will prove to be efficient. They analyzed the rate
of fault detection that resulted from several prioritization
techniques such as total function coverage, additional func-
tion coverage, total binary-diff function coverage, and addi-
tional binary-diff function coverage. The authors considered
eight C programs for their experimentation. They used the
documentation on the programs and the parameters and
special effects that they determined to construct a suite of
test cases that exercise each parameter, special effect, and
erroneous condition affecting program behavior. Then they
augmented those test suites with additional test cases to
increase code coverage at the statement level. The regression
fault analysis was done on the faults inserted by the graduate
and undergraduate students with more than two years of
coding experience. The experimental results show that the
performance of test case prioritization techniques varies
significantly with program attributes, change attributes, test
suite characteristics, and their interaction. Our results also
confirm similar findings. However, our approach concerns
Java programs. We have considered the dependencies caused
by the object-oriented features in our proposed intermediate
graph. Our approach targets the coverage of those affected
nodes that have a high potential of exposing faults; hence, it
is more change-based than the approach in [42].

Korel et al. [41] proposed a model based test prioriti-
zation approach. The approach is based on the assumption
that execution of the model is inexpensive as compared to
execution of the system; therefore the overhead associated
with test prioritization is relatively small. This approach is
based on the EFSM systemmodels.The original EFSMmodel
is compared with the modified EFSM model to identify the
changes. After the changes are identified, the EFSM model is
executed with the test cases to collect different information
that are used for prioritization. The authors propose two
types of prioritization: selective test prioritization and model
dependence-based test prioritization. The selective test pri-
oritization approach assigns higher priority to the test cases
that execute the modified transitions. Model dependence-
based test prioritization mechanism carries out dependency
analysis between the modified transitions and other parts
of the model and uses this information to assign higher
priorities to the test cases. EFSMmodels consist of two types
of dependences: control and data dependences. The results
show that model dependence-based test prioritization (con-
sidering only two types of dependences) gives improvement
in the effectiveness of test prioritization. The corresponding
system for each model was implemented in C language. In
another work, Korel et al. [43] compared the effectiveness
of different prioritization heuristics. The results show that
model based prioritization alongwith heuristic 5 gave the best
performance. Heuristic 5 states that each modified transition
should have the same opportunity of getting executed by
the test cases. Korel et al. [44] proposed another approach
of prioritization using the heuristics discussed in [43]. In
this new approach, they considered the changes made in the
source code and identified the elements of the model that
are related to these changes to prioritize the test cases. In

16 Advances in Software Engineering

our approach, we have considered the object-oriented pro-
grams in Java. The program is represented by our proposed
intermediate graph. The graph is constructed by considering
many more dependences that exist among the program parts
in addition to control and data dependences, giving a clear
visualization of the dependences. Then, we identify the effect
of modifications and represent the affected program parts
in another graph. Our representation is more adaptable to
the frequent changes of the software and our approach relies
on the execution of these affected program parts. Thus, our
prioritization approach is based on both the coverage of the
affected program parts and the fault exposing potential of the
test cases.

Jeffrey andGupta [45] proposed a prioritization approach
using the relevant slices. They also aimed for early detection
of faults during regression testing process. This approach
considers the execution of the modified statements for
prioritizing the test cases. The assumption is that if any
modification results in some faulty output for a test case, then
it must affect some computation in the relevant slice of that
test case. Therefore, the test case having higher number of
statements is given higher priority assuming that they have
a better potential to expose the faults. However, intuitively,
not all statements depending upon some modification will
have the same level of fault-proneness. It may so happen
that a test case executing less number of statements will
detect more faults than another test case that executed more
number of statements. The level of fault-proneness of the
statements executed by the test cases affects the fault exposing
potential of that test case. Therefore, in our approach, we
computed the coupling values of the affected program parts
to identify the probable fault-proneness of these programs
parts. Our approach assigns a higher priority to that test
case which executes maximum number of high fault-prone
statements. Further, unlike our hierarchical decomposition
slicing approach, relevant slicing depends upon the execution
trace of the test cases and is proposed to work on C programs.
Even though execution trace based slicing would result in
slices of smaller sizes, the computational overhead is very
high. The efficiency of our slicing approach is shown in
Table 2. We have also shown the time requirement of our
prioritization approach in Table 5.

The performance goal of the prioritization approach pro-
posed by Kayes [11] is based on how quickly the dependences
among the faults are identified in the regression testing
process. An early detection of the fault dependences would
enable faster debugging of the faults. The paper assumes that
the knowledge of the fault presence is extracted from the pre-
vious executions of the test cases. A fault dependence graph
is constructed using this information. However, one major
limitation of this approach is that regression testing aims
at discovering new faults introduced by the changes made
to the software. But the prioritization approach proposed in
this paper only enhances the chances of finding the faults
which have already been revealed and are present in the fault
dependence graph. New faults if any cannot be discovered.
Further, this approach does not take into account the fault-
proneness of the statements. However, our approach relies on
the dependence of the affected program parts represented as

affected slice graph (ASG), so that error propagation because
of the change is better visualized and analyzed. We compute
the fault-proneness of the statements by computing their
coupling values as coupling measures are proven to be good
indicator of fault-proneness.Thus, our approach has a higher
probability of exposing new faults, if any, in the software.

Mei et al. [15] proposed a static prioritization technique
to prioritize the JUnit test cases.This prioritization technique
is independent of the coverage information of the test cases.
It works on the analysis of the static call graphs of JUnit
test cases and the program under test to estimate the ability
of each test case to achieve code coverage. The test cases
are scheduled based on these estimates. The experiments
are carried out on 19 versions of four Java programs of
considerable size considering their method and class level
JUnit test cases. The heuristic to prioritize the test cases in
this approach is to cover system components (in terms of
total components covered or components newly covered).
The coverage of the system components acts as a proxy for
evaluating a test cases true potential of exposing faults. If
any two test cases carry the same heuristic value then the
approach randomly decides on the test case to be given higher
priority. Though this is a scalable approach as it works at
coarse granularity level and incurs less computational cost, it
suffers from many limitations. The prioritization techniques
that work at a finer granularity level give better performances
(in terms of fault exposing potential) as compared to the
techniques that work at coarse granularity level [42]. This
approach ignores the faults caused by many object-oriented
features such as inheritance, polymorphism, and dynamic
binding and focuses only on the static call relationships of the
methods in the form of a call graph. Static call relationships
are more to procedure-oriented programs. Interaction and
communication between methods in the form of message
passing is highly important in object-oriented programs. A
singlemethod is invoked by different objects and the behavior
of the method also differs accordingly. Any prioritization
technique is efficient if it is based on the characteristics of
the program to be tested. Therefore, considering the object-
oriented features is essential. Java supports encapsulation and
provides four access levels (private, public, protected, and
default) to access the data members and member methods.
Any misinterpretation of these access levels forms a rich
source of faults. Java supports a feature named “super” to have
access to the base class constructor from the derived class
constructor. This additional dependence between construc-
tors of the derived class and the bases class needs attention of
the testers.Method overriding allows amethod in the derived
class to have the same function signature as the method
in its parent. If invocation to such methods is not resolved
correctly, then it can cause some serious faults. Another
powerful feature and a potential source of fault is variable
hiding. It allows declaration of a variable with the same name
and type in the derived class as it is in the base class and
allows both variables to reside in the derived class. Problem
arises when an incorrect variable is accessed. Inheritance is
a powerful feature but sometimes unintentional misuse of
this feature can result in serious faults. Polymorphism in Java
exists for both attributes and methods and both use dynamic

Advances in Software Engineering 17

binding. An object of its class type can access an attribute
or method of its subclass type. The subclass object can also
access the same attributes and methods. These attributes
and methods behave differently depending upon the kind of
object that is referring it. Such polymorphic dependences if
not resolved can cause faults. Interested readers are requested
to refer to [46–49] for more number of faults introduced
by the misuse of the object-oriented features. Therefore, any
prioritization technique with a performance goal of revealing
more faultsmust consider the object-oriented features as they
can induce many kinds of faults in the system. Our approach
considers all the object-oriented features in the form of
intermediate graph. This intermediate graph is constructed
by identifying the dependences that can exist among various
program parts and are given in [32]. Our approach works at
a finer granularity level and therefore may not be as scalable
as [15] but has better fault exposing potential.

Fang et al. [14] have proposed similarity based prioriti-
zation technique. The authors have taken five Java programs
from Software artifacts Infrastructure Repository (SIR) [37]
to validate their approach. The prioritization process is
based on the ordered sequence of the program entities.
They propose two algorithms farthest-first ordered sequence
(FOS) and greed-aided clustering ordered sequence (GOS).
The FOS approach first selects the test case having largest
statement coverage. The next test case that is selected is the
one that is farthest in distance from the already selected test
case. It computes two types of distances: a pairwise distance
between the test cases and distance between a candidate test
case and the already selected ones. GOS approach consists of
clusters of test cases in which initially each cluster consists of
only one test case. Then the clusters are merged depending
upon the minimum distance between any two clusters. This
process of merging the clusters is repeated until the size of
the cluster set is less than some given 𝑛. Then, the algorithm
iteratively chooses one test case from each cluster and adds
to the prioritized test suite until all the clusters are empty.
The experimental results in this study show that statement
coverage is most efficient and preferred for prioritization.
When the size of the test suite is large, then additional
measures are taken to reduce the cost of prioritization. This
approach gives equal importance to all the test cases assuming
that all the test cases have equal potential of exposing
the faults. Intuitively, a test case executing less number of
statements can expose more faults provided that the covered
statements have high proneness to faults. It also does not
consider the object-oriented features and the faults generated
by these features. Unlike Fang et al. [14], we consider the
fault inducing capability of the object-oriented features based
on which we detect the affected program parts. We propose
to prioritize a set of change-based selected test cases that are
relevant to validate the change under regression testing. We
compute the fault-proneness of the affected statements and
then prioritize the test cases based on the coverage of these
high fault-prone statements (represented as nodes in our
proposed graph).

Lou et al. [16] proposed a mutation-based prioritization
technique. In this approach, they compared the two versions

of the same software to find themodification.Then, they gen-
erate the mutants only for the modified code. They selected
only those test cases of the original version that worked on
the new version of the software for prioritization. The test
case that killed more mutants was given higher priority. The
authors used a mutation generation tool, named Javalanche.
Unlike our approach, Lou et al. [16] do not take into consid-
eration the object-oriented features and the faults likely to
occur because of these features. It is also silent on the type
of mutation operators (faults) considered for their experi-
mentation. Like Lou et al. [16], we generate mutants only for
the sliced program (representing the affected program parts).
However, we used MuClipse (an eclipse version of MuJava)
to generate the mutation faults. We use coupling measure
of the affected program parts as a surrogate to imply fault-
proneness. Our hypothesis assumes that the test cases that
execute the nodes with high coupling value have a higher
chance of detecting faults early during regression testing. We
used mutation analysis only to validate our hypothesis.

The detail survey conducted on available coverage based
prioritization techniques [11, 14–16, 41–45] reveals that these
techniques have not considered the object-oriented features.
The presence of many faults arising due to different object-
oriented features is inherent to object-oriented programs
and hence must be considered. Therefore, we find that the
approaches contributed to by Panigrahi and Mall [17, 18]
relate closely to our approach for an experimental compar-
ison. Panigrahi and Mall proposed a version specific priori-
tization technique [17] to prioritize the test cases of object-
oriented programs. Their technique prioritizes the selected
regression test cases. The test cases are prioritized based on
the coverage of affectednodes of an intermediate graphmodel
of the program under consideration. The affected nodes
are determined due to the dependences arising on account
of the object relations in addition to the data and control
dependences. The effectiveness of their approach is shown in
form of improved APFD measure achieved for the test cases.
In another work, Panigrahi and Mall [18] have improved
their earlier work [17] by achieving a better APFD value.
In this technique, the affected nodes are initially assigned a
weight of 1. The weight is decreased by 0.5, whenever that
node is covered by previous execution of the test cases. In
both approaches [17, 18], they have assumed that all the test
cases have equal cost, and all faults have the same severity.
The assumption is also that all the affected nodes have a
uniformdistribution of faults. As a result, a test case executing
more number of affected nodes will detect more faults and,
therefore, has a higher priority. The average percentage of
affected nodes covered by this approach is shown in Figure 7.
Unlike the approach in [18] that is based on node coverage
only, our proposed approach is based on the fact that some
nodes are more fault-prone than other nodes. We used an
intermediate graph that represents only those nodes that are
affected by themodificationmade to the program to compute
the fault-proneness of the nodes. The coupling factor of each
node in the ASG is computed to predict its level of fault-
proneness. The test cases are then prioritized based on the
fault-prone nodes that they execute. Unlike [18], a test case

18 Advances in Software Engineering

executing more number of fault-prone nodes has a higher
computed weight and gets a higher priority in our approach.

5.1. Threats to Validity. It is obvious for any new proposed
work to be associated with some threat to its validity, and
it is likely for this work as well. Our approach is capable of
measuring the coupling value of a class in the presence of
many object-oriented features such as inheritance, interfaces,
polymorphism, and templates. The coupling of classes in a
subclass-superclass relationship can have a different impact on
softwaremaintainability and fault-proneness compared to the
coupling of classes that are not in such relationship.Therefore,
it is essential to make a distinction between coupling within
an inheritance hierarchy and coupling across inheritance
hierarchies. Similarly, whether the presence of Java interfaces
(that usually do not contain actual implementations) con-
tributes to the coupling measurement or not is a matter of
study that is not included in this paper. The impact of inclu-
sion/exclusion of any of the object-oriented features on the
coupling measurement has not been empirically investigated
in this paper. We believe that a detailed empirical research on
such relationships and their impact on the proposed coupling
analysis is essential and is left for future study. Another threat
to the validity of this work is that the fault prediction can
be improved when both coupling and cohesion metrics are
considered together [20], but this approach focuses only on
coupling measure. Slicing techniques based on intermediate
graphs are always limited by the scalability issues of the graph
for larger program. This approach is tested to work well
with programs having nearly 1 Lakh line of code. For larger
programs it may raise some memory issues. However, it will
work fine for bigger programs if the graph is restricted to
method level analysis only. The limited size and complexity
of the experimental programs are considered a threat to
the validity of this approach. Our approach considers only
the primary mutants. It does not consider the secondary
mutants which are also important. Our approach of mutation
analysis may be extended to handle secondary mutants. The
use of mutation analysis for the fault manipulation of these
programs may not represent the actual fault occurrence in
the complex industrial programs and hence is considered a
threat to this approach. Though the proposed prioritization
approach is efficient in detecting the faults, it may not be so in
terms of time requirement. However, the time requirement is
within acceptable limit if applied to the test cases selected for
regression testing, and the coverage information is available.
An empirical study of the impact of prioritization time on the
choice of selection of the prioritization techniques would be
interesting and may be carried out in future.

6. Conclusion and Future Work

In this paper, we proposed a couplingmetric based technique
to improve the effectiveness of test case prioritization in
regression testing. Analysis is done to show that prioritized
test cases are more effective in exposing the faults early in the
regression test cycle. We performed hierarchical decomposi-
tion slicing on the intermediate graph of the input program.
The affected component coupling (ACC) value of each node

of the ASG is calculated as a measure to predict its fault-
proneness. In this technique, weight is assigned to each node
of ASG based on its ACC value. The weight of a test case in a
given test suite is then calculated by adding the weights of all
the nodes covered by it. The test cases are prioritized based
on their coverage of fault-prone affected nodes.Thus, the test
case with a higher weight is given higher priority in the test
suite. The results show that our FPANC approach achieves
approximately 8% of increase in the APFD metric value
over ANC approach. In the future, we aim to prioritize the
test cases for more complex object-oriented (OO) programs
such as concurrent and distributed OO programs. We would
also like to incorporate different other coupling measures
and metrics to predict the fault-proneness of modules and
prioritize the test cases based on their coverage weights. We
as well aim to compute the cohesion values of the program
elements and use them along with their coupling values for a
better fault prediction analysis and prioritization.

Competing Interests

The authors declare that they have no competing interests.

References

[1] X. Sun, B. Li, S. Zhang, and C. Tao, “HSM-based change impact
analysis of object-oriented java programs,” Chinese Journal of
Electronics, vol. 20, no. 2, pp. 247–251, 2011.

[2] R. Gupta,M. J. Harrold, andM. L. Soffa, “Program slicing-based
regression testing techniques,” Software Testing, Verification and
Reliability, vol. 6, no. 2, pp. 83–111, 1996.

[3] S. Yoo andM.Harman, “Regression testingminimization, selec-
tion and prioritization: a survey,” Software Testing Verification
and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[4] C. Tao, B. Li, X. Sun, and C. Zhang, “An approach to regression
test selection based on hierarchical slicing technique,” in Pro-
ceedings of the 34th Annual Computer Software and Applications
Conference Workshops (COMPSACW ’10), pp. 347–352, IEEE,
Seoul, South Korea, July 2010.

[5] A. Pravin and S. Srinivasan, “Effective test case selection
and prioritization in regression testing,” Journal of Computer
Science, vol. 9, no. 5, pp. 654–659, 2013.

[6] G. Rothermel, R. H. Untcn, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEETransactions
on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[7] J. Kasurinen, O. Taipale, and K. Smolander, “Software test
automation in practice: empirical observations,” Advances in
Software Engineering, vol. 2010, Article ID 620836, 18 pages,
2010.

[8] H. He, D. Zhang, M. Liu, W. Zhang, and D. Gao, “A coverage
and slicing dependencies analysis for seeking software security
defects,” The Scientific World Journal, vol. 2014, Article ID
463912, 10 pages, 2014.

[9] L. L. Chaves, “A cost effective and preventive approach to
avoid integration faults caused by mistakes in distribution of
software components,” Advances in Software Engineering, vol.
2014, Article ID 439462, 15 pages, 2014.

[10] D. Jeffrey and N. Gupta, “Test case prioritization using relevant
slices,” inProceedings of the 30th Annual International Computer

Advances in Software Engineering 19

Software and Applications Conference (COMPSAC ’06), pp. 411–
418, IEEE, Chicago, Ill, USA, September 2006.

[11] M. I. Kayes, “Test case prioritization for regression testing based
on fault dependency,” in Proceedings of the 3rd International
Conference on Electronics Computer Technology (ICECT ’11), pp.
48–52, Kanyakumari, India, April 2011.

[12] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE Transactions
on Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[13] H. Srikanth, S. Banerjee, L. Williams, and J. Osborne, “Towards
the prioritization of system test cases,” Software Testing Verifica-
tion and Reliability, vol. 24, no. 4, pp. 320–337, 2014.

[14] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test
case prioritization using ordered sequences of program enti-
ties,” Software Quality Journal, vol. 22, no. 2, pp. 335–361, 2014.

[15] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel,
“A static approach to prioritizing JUnit test cases,” IEEE Trans-
actions on Software Engineering, vol. 38, no. 6, pp. 1258–1275,
2012.

[16] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prior-
itization in software evolution,” in Proceedings of the IEEE 26th
International Symposium on Software Reliability Engineering
(ISSRE ’15), pp. 46–57, IEEE, Gaithersburg, Md, USA, Novem-
ber 2015.

[17] C. R. Panigrahi and R. Mall, “An approach to prioritize the
regression test cases of object-oriented programs,” CSI Trans-
actions on ICT, vol. 1, no. 2, pp. 159–173, 2013.

[18] C. R. Panigrahi and R. Mall, “A heuristic-based regression
test case prioritization approach for object-oriented programs,”
Innovations in Systems and Software Engineering, vol. 10, no. 3,
pp. 155–163, 2014.

[19] X. B. Li, “A hierarchical slice-based framework for object-
oriented coupling measurement,” Tech. Rep. 415, Turku Centre
for Computer Science TUCS, 2001.

[20] J. Al Dallal, “Object-oriented class maintainability prediction
using internal quality attributes,” Information and Software
Technology, vol. 55, no. 11, pp. 2028–2048, 2013.

[21] M. Staron and W. Meding, “MetricsCloud: scaling-up metrics
dissemination in large organizations,” Advances in Software
Engineering, vol. 2014, Article ID 905431, 12 pages, 2014.

[22] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained
K-means clustering with background knowledge,” in Proceed-
ings of the Eighteenth International Conference on Machine
Learning (ICML ’01), pp. 577–584, 2001.

[23] M. Weiser, “Program slicing,” in Proceedings of the 5th Interna-
tional Conference on Software, pp. 439–449, San Diego, Calif,
USA, 1981.

[24] Á. Beszédes, “Global dynamic slicing for the C language,” Acta
Polytechnica Hungarica, vol. 12, no. 1, pp. 117–136, 2015.

[25] X. B. Li, C. X. Fan, J. Pang, and J. J. Zhao, “A model for slicing
JAVA programs hierarchically,” Journal of Computer Science and
Technology, vol. 19, no. 6, pp. 848–858, 2004.

[26] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and
O. Meqdadi, “srcSlice: very efficient and scalable forward static
slicing,” Journal of Software: Evolution and Process, vol. 26, no.
11, pp. 931–961, 2014.

[27] J. Silva, “A vocabulary of program slicing-based techniques,”
ACM Computing Surveys, vol. 44, no. 3, article 12, 2012.

[28] P. D. Mohapatra, R. Mall, and R. Kumar, “An edge marking
technique for dynamic slicing of object-oriented programs,” in

Proceedings of the Computer Software and Applications Confer-
ence (COMPSAC ’04), pp. 60–65, IEEEComputer Society, Hong
Kong, 2004.

[29] N. Walkinshaw, M. Roper, and M. Wood, “The java system
dependence graph,” in Proceedings of 3rd IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 55–
64, September 2003.

[30] D. P. Mohapatra, R. Mall, and R. Kumar, “An overview of slicing
techniques for object-oriented programs,” Informatica, vol. 30,
no. 2, pp. 253–277, 2006.

[31] D. P. Mohapatra, M. Sahu, R. Kumar, and R. Mall, “Dynamic
slicing of aspect-oriented programs,” Informatica, vol. 32, no. 3,
pp. 261–274, 2008.

[32] S. Panda and D. P. Mohapatra, “ACCo: a novel approach to
measure cohesion using hierarchical slicing of Java programs,”
Innovations in Systems and Software Engineering, vol. 11, no. 4,
pp. 243–260, 2015.

[33] M. Shtern and V. Tzerpos, “Clustering methodologies for
software engineering,” Advances in Software Engineering, vol.
2012, Article ID 792024, 18 pages, 2012.

[34] R. K. Y. Chang, C. K. Loo, and M. V. C. Rao, “A global k-means
approach for autonomous cluster initialization of probabilistic
neural network,” Informatica, vol. 32, no. 2, pp. 219–225, 2008.

[35] N. Lossing, P. Guillou, M. Amini, and F. Irigoin, “From data
to effects dependence graphs: source-to-source transformations
for C,” in Proceedings of the 18th International Workshop on
Compilers for Parallel Computing (CPC ’15), London, UK,
January 2015.

[36] J. Dvokov, “Automatic streaming processing of XSLT transfor-
mations based on tree transducers,” Informatica, vol. 32, no. 1,
pp. 373–382, 2008.

[37] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: an infrastructure and
its potential impact,” Empirical Software Engineering, vol. 10, no.
4, pp. 405–435, 2005.

[38] H. B. Smith and L. Williams, “An empirical evaluation of the
mujava mutation operators,” in Proceedings of the Academic
and Industrial Conference Practice and Research Techniques
(AICPART-MUTATION ’07), pp. 193–202, IEEE, 2007.

[39] K. Kapoor, “Mutant hierarchies support selective mutation,”
Informatica, vol. 35, no. 3, pp. 331–342, 2011.

[40] M. Sarma, “Mutation analysis approach to develop reliable
object-oriented software,” Advances in Software Engineering,
vol. 2014, Article ID 197983, 16 pages, 2014.

[41] B. Korel, L. H. Tahat, andM. Harman, “Test prioritization using
system models,” in Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM ’05), pp. 559–568,
September 2005.

[42] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Software Quality Journal, vol. 12, no. 3, pp. 185–210, 2004.

[43] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Model-based
test prioritization heuristic methods and their evaluation,” in
Proceedings of the 3rd International Workshop on Advances in
Model-based Testing (A-MOST ’07), pp. 34–43, ACM, Septem-
ber 2007.

[44] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Application of
system models in regression test suite prioritization,” in Pro-
ceedings of the 24th IEEE International Conference on Software
Maintenance (ICSM ’08), pp. 247–256, IEEE, Beijing, China,
October 2008.

20 Advances in Software Engineering

[45] D. Jeffrey and N. Gupta, “Test case prioritization using relevant
slices,” inProceedings of the 30thAnnual International Computer
Software and Applications Conference (COMPSAC ’06), pp. 411–
420, Chicago, Ill, USA, September 2006.

[46] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson,
“A fault model for subtype inheritance and polymorphism,” in
Proceedings of the 12th International Symposium on Software
Reliability Engineering (ISSRE ’01), pp. 84–93, November 2001.

[47] S. Kim, J. Clark, and J. McDermid, “Assessing test set adequacy
for object-oriented programs using class mutation,” in Proceed-
ings of the 3rd Symposium on Software Technology (SoST ’99),
Buenos Aires, Argentina, September 1999.

[48] S. Kim, J. A. Clark, and J. A. McDermid, “Class mutation:
mutation testing for object-oriented programs,” in Proceedings
of the Conference on Object-Oriented Software Systems, pp. 9–12,
Erfurt, Germany, 2000.

[49] P. Chevalley, “Applying mutation analysis for object-oriented
programs using a reective approach,” in Proceedings of the 8th
Asia-Pacific Software Engineering Conference (APSEC ’01), pp.
267–270, IEEE, Macau, China, December 2001.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

