580,694 research outputs found

    Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    Get PDF
    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG

    Neural Dynamics of 3-D Surface Perception: Figure-Ground Separation and Lightness Perception

    Full text link
    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional (2-D) pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding ligures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodaly completed, while the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Munker-White, Benary cross, and checkerboard percepts.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657

    Edge-region grouping in figure-ground organization and depth perception.

    Get PDF
    Edge-region grouping (ERG) is proposed as a unifying and previously unrecognized class of relational information that influences figure-ground organization and perceived depth across an edge. ERG occurs when the edge between two regions is differentially grouped with one region based on classic principles of similarity grouping. The ERG hypothesis predicts that the grouped side will tend to be perceived as the closer, figural region. Six experiments are reported that test the predictions of the ERG hypothesis for 6 similarity-based factors: common fate, blur similarity, color similarity, orientation similarity, proximity, and flicker synchrony. All 6 factors produce the predicted effects, although to different degrees. In a 7th experiment, the strengths of these figural/depth effects were found to correlate highly with the strength of explicit grouping ratings of the same visual displays. The relations of ERG to prior results in the literature are discussed, and possible reasons for ERG-based figural/depth effects are considered. We argue that grouping processes mediate at least some of the effects we report here, although ecological explanations are also likely to be relevant in the majority of cases

    Figure-Ground Perception: A Poem Proof

    Get PDF
    This is a proof, in poetic form, of a bit of real analysis, more specifically involving the topology of accumulation points, that exploits the human optical phenomenon of figure-ground perception. Sometimes it is not a change in content, but a snap shift in point of view that yields a proof

    Difficulties with Speech-in-Noise Perception Related to Fundamental Grouping Processes in Auditory Cortex

    Get PDF
    In our everyday lives, we are often required to follow a conversation when background noise is present ("speech-in-noise" [SPIN] perception). SPIN perception varies widely-and people who are worse at SPIN perception are also worse at fundamental auditory grouping, as assessed by figure-ground tasks. Here, we examined the cortical processes that link difficulties with SPIN perception to difficulties with figure-ground perception using functional magnetic resonance imaging. We found strong evidence that the earliest stages of the auditory cortical hierarchy (left core and belt areas) are similarly disinhibited when SPIN and figure-ground tasks are more difficult (i.e., at target-to-masker ratios corresponding to 60% rather than 90% performance)-consistent with increased cortical gain at lower levels of the auditory hierarchy. Overall, our results reveal a common neural substrate for these basic (figure-ground) and naturally relevant (SPIN) tasks-which provides a common computational basis for the link between SPIN perception and fundamental auditory grouping

    Spatial Heterogeneity in Bistable Figure-Ground Perception

    Get PDF
    The appearance of visual objects varies substantially across the visual field. Could such spatial heterogeneity be due to undersampling of the visual field by neurons selective for stimulus categories? Here, we show that which parts of a bistable vase-face image observers perceive as figure and ground depends on the retinal location where the image appears. The spatial patterns of these perceptual biases were similar regardless of whether the images were upright or inverted. Undersampling by neurons tuned to an object class (e.g., faces) or variability in general local versus global processing cannot readily explain this spatial heterogeneity. Rather, these biases could result from idiosyncrasies in low-level sensitivity across the visual field

    Perceptual representation and effectiveness of local figure–ground cues in natural contours

    Get PDF
    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases

    ‘Normal’ hearing thresholds and fundamental auditory grouping processes predict difficulties with speech-in-noise perception

    Get PDF
    Understanding speech when background noise is present is a critical everyday task that varies widely among people. A key challenge is to understand why some people struggle with speech-in-noise perception, despite having clinically normal hearing. Here, we developed new figure-ground tests that require participants to extract a coherent tone pattern from a stochastic background of tones. These tests dissociated variability in speech-in-noise perception related to mechanisms for detecting static (same-frequency) patterns and those for tracking patterns that change frequency over time. In addition, elevated hearing thresholds that are widely considered to be ‘normal’ explained significant variance in speech-in-noise perception, independent of figure-ground perception. Overall, our results demonstrate that successful speech-in-noise perception is related to audiometric thresholds, fundamental grouping of static acoustic patterns, and tracking of acoustic sources that change in frequency. Crucially, speech-in-noise deficits are better assessed by measuring central (grouping) processes alongside audiometric thresholds

    Figure-ground modulation in awake primate thalamus

    Get PDF
    [Abstract] Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.Biotechnology and Biological Sciences Research Council (United Kingdom); G022305/1Medical Research Council, (United Kingdom); G070153

    The role of eye movements in the figure perception

    Get PDF
    The figure-ground distinction is particularly interesting where the same stimulus can give rise to more than the one interpretation of figure. The work presented here examines the role of eye movements in such figure perception. The figure-ground dichotomy is first elaborated and stimuli which can give different figural interpretations are classified as reversible perspective or ambiguous figures. Theories which have been proposed to account for such figure perception are then reviewed and it is argued that a schematic map theory offers a plausible explanation. The parameters which have been studied with regard to these stimuli are then considered and it is argued that the role of eye movements has not been adequately investigated. Stimuli are then proposed to be composed of elements which are differentially weighted towards each figural aspect. Figure perception is largely a result of an observer selectively attending to these elements as determined by the schematic map. Eye movements function to move such attention about the stimulus. A series of afterimage experiments then examines the existence of such elements in a line drawing of Boring's ambiguous figure. The response of figure was found to be governed by the elements to which the subject could attend. Two free-viewing experiments are then reported which demonstrated that in a non- stabilised condition the immediate response of figure was determined by the elements present in the stimulus. No age-related effects of such elements were found when children served as subjects. Eye movement types and recording techniques are then reviewed and an inconspicuous recording method developed. Subjects' eye movements were then recorded as they viewed versions of the ambiguous figure. The results are interpreted as supporting a schematic map explanation. A model is finally developed to account for the role of eye movements in figure perception
    corecore