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Figure-ground modulation in awake primate thalamus 
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Abstract 

Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. 

Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher 

centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. 

Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing 

when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the 

receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both 

conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical 

activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is 

anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on 

the input driving it in an iterative process. 
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Classically, our percept of the world and the objects in it is considered to derive from a collation of 

information from the sensory periphery, relayed via the sensory thalamic nuclei to the cortex, where 

salient features are detected and integrated across spatial and modality domains to generate our ongoing 

perception. Thus, in vision, the retinal input to the visual thalamus is relayed to the visual cortex, where 

the cortical circuitry assembles the components of the input into configurations that detect feature 

orientation and direction of motion. Further processing in the cortical circuitry beyond the primary visual 

cortex then provides the integration to reflect objects and objects distinguished from the background. In 

figure-ground discrimination, our visual system reconstructs objects from the diverse components of early 

distributed processing by grouping image elements and segregating them from the background as a figure. 

In this view, the neural mechanisms of figure-ground detection are linked to processes operating in 

primary and higher visual cortical areas (1–6), and the assumption is that relatively inviolate information 

from the visual thalamus provides the raw substructure essential for the veracity of these higher-level 

abstractions. However, another feature of the organization of sensory systems and the visual system is 

that the feedforward pathways are paralleled by extensive feedback pathways (7–9). Moreover, this 

feedback is reflected all the way back to the sensory thalamic nuclei, and in the visual system, certainly, it 

is very fast (7). What does this serve? It might logically be conjectured to be just gain control, but various 

studies suggest there may be more to it (7, 9–16). The question is, what? It would seem surprising that the 

signature of the higher-level cortical process is reflected in the visual thalamus, but it needs to be tested. 

Here, we consider the possibility that the high-level representation of the signal distinguishing a figure 

from ground might, because of the feedback connections, be reflected in the activity seen in neurons in 

the lateral geniculate nucleus (LGN) of the visual thalamus. This has neither been previously tested nor 

reported, to our knowledge, and if it is true, it would change how we view the mechanisms underpinning 

some aspects of the higher-level integration. 

 

We have used the salient appearance of a figure defined by motion contrast, posited by 

neurocomputational models to depend on interactions among areas V5/MT, V2, and V1 (17, 18). These 

modeling approaches have proposed two complementary processes: one driven by detection of feature 

discontinuities establishing contour boundaries and the other a region filling-in mechanism that links the 

representation of the common features in the figure (1, 2, 5). These processes have previously been linked 

to mechanisms operating in primary and higher cortical areas and are suggested to involve feedback to 

amplify the neural response in the region representing the center of the figure (3, 4, 6, 19; but see ref. 20). 

The key to the tests in the experimental design, exploited here, and for earlier studies of cortical responses 

to figure-ground stimuli (3, 6, 21), is that the visual stimulation of the test receptive field (RF) and its near 

environs is identical across the “figure” and “ground” conditions, and that the figure condition is 

determined by a change remote to the LGN cell classical RF. Hence, any difference in LGN activation 

should be attributable to higher mechanisms integrating events over a larger spatial scale and feeding the 

information back down the system. This deduction is doubly warranted in our case, when the figure 

border is defined by motion contrast, and neural directional mechanisms in macaque monkey are 

generally accepted to be neither intrinsic to the retina nor LGN, but first developed in area V1 (22, 23) 

(although note ref. 24 and also see Results). 

Results 

The stimulus was a pattern of randomized drifting dots with the figure pop-out delineated by the 

opposite direction of motion of the dots within the figure and the ground (Fig. 1 A and B and Materials 

and Methods). Two macaque monkeys were trained to fixate centrally within a large 30° static random 

dot field. After a fixation period of at least 0.4 s, dot motion commenced to define a square figure at one 

of four pseudorandom screen locations, and the monkeys were trained to saccade to and refixate at the 

figure center within 500 ms of motion onset. Psychophysically, this is an exercise in exogenous (“bottom-

up”) attentional capture (25), for the monkeys had no cue and no means of predicting the figure location, 

which was equally frequent across the four sites. 
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Fig. 1. Enhancement of neuronal firing when the figure, as opposed to the ground component of the stimulus, was located over the 
RF. (A and B) Schematic depiction (not to scale) of the stimulus and behavioral paradigm. The full-screen random dot display was 

initially static, with a central, yellow fixation spot (A). After a minimum fixation period of 400 ms, motion was initiated. A single 

square figure, delineated solely by its opposite direction of dot motion, was visible at one of four possible locations (indicated here 
by green/blue squares) either centered over the RF (depicted by the red circle), as shown in the upper panel or at an alternative 

location as shown in the lower panel (B). Monkeys were rewarded for making a saccade (within 500 ms of motion onset) to the 

center of the figure target. (C–F) Responses of four example LGN neurons. Spike density functions (SDF) to ground (black) and 
figure (red) stimulus conditions (±1 SE). Inset schematics show the size of the RF relative to the figure size. Time epoch 

commences 50ms before stimulus motion onset and ends before saccade initiation. See also Fig. S1. 

Our results are based on recordings from 77 single-unit and 63 multiunit recordings. As similar 

response patterns were observed for both unit types, data for both are pooled. Our single-unit population 

sample largely comprised parvocellular cells, although we also obtained some recordings from 

koniocellular and magnocellular cells. Across the single-unit data, similar results were observed across 

the three cell groups (Fig. 2), and data for all cell types were therefore pooled. The RFs of parafoveal 

LGN cells were located centrally within the figure region for one of these figure locations, and remote 

from the figure border. The standard figure size was 3–4° (3 ± 0.82° SD; n = 140) but was made smaller 

for fields within 5° of the fovea (although never less than 2°; Materials and Methods). We routinely used 

all pairings of rightward and leftward dot motion between figure and ground thus (as noted earlier), 

exposing the RF to the identical set of local features across “figure” and “ground” trials (the latter being, 

necessarily, three times more frequent). Many LGN cells responded weakly or not at all to the ground 

stimulus (Figs. 1 C–F and 2), although some showed a small onset transient (see Fig. S2A for an 

example). This itself was surprising because it suggests there is at most a low input to the cortex from 
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these cells in this situation. Although it is consistent with previous work reporting the presence of strong 

surround suppressive effects in the LGN (11, 26⇓–28), it may also in part reflect a failure of the small 

LGN cell receptive fields to distinguish between the static and moving noise patterns because of ongoing 

motion secondary to residual eye movements. However, this lack of response contrasted with the fact that 

we observed a strong, long latency (median onset latency, 90 ± 2.26 ms SE; n = 140) increase in firing 

rate to the figure stimulus (Figs. 1 C–F and 2). To quantify this enhancement, we calculated a figure-

ground modulation index value (FGM) for each cell by taking the difference between the averaged 

responses to the figure and ground conditions normalized with respect to the sum of the averaged 

responses to the figure and ground (Materials and Methods). We adopted the same analysis strategies 

previously used in V1 (29) (where neurons commonly exhibit strongly orientation and direction selective 

responses) to ensure any potential confound arising from the weak directional biases previously reported 

for some macaque LGN cells (24) were controlled for (Materials and Methods). There was a marked 

figure-ground modulation of the response across our sample (median enhancement above ground, 56 ± 

6.07% SE; n = 140). We illustrate this by the average population responses (Fig. 2A and Fig. S3), the 

distribution of FGM values across our sample (Fig. 2B), and the comparison of responses evoked by 

ground versus figure stimuli (Fig. 2 C and D). Approximately 90% of cells (128 of 140) showed a FGM 

index of 20% or more. 

 
 

 
Fig. 2. Population summary data. (A) Averaged population responses to figure (red) and ground (black) stimulus conditions 
overlying the RF. Shading represents ±1 SE. Motion onset occurred at time 0 ms. Horizontal dotted line denotes background plus 

99% confidence limit. See Materials and Methods (last paragraph) for full details of the normalization procedure. (B) Bar group-

histogram plots the distribution of FGM (in percent) across our sample for multiunits (Mu, black), Parvocellular (P, red), 
Magnocellular (M, green), and koniocellular (K, blue) cells. The median FGM was 56 ± 6.07% SE; n = 140. The FGM values for 

each monkey were 60% (±5.69 SE; n = 91) and 45% (±12.84 SE; n = 49), respectively. There was no significant difference between 

the FGM values observed for the two monkeys for either the single unit data, the multiunit data, or combined single and multiunit 
data sets (P > 0.05 for each comparison, Wilcoxon matched pairs test). Our single unit population sample was largely comprised of 

parvocellular (P) cells (n = 60), although we also obtained some recordings from both koniocellular (K; n = 8) and magnocellular 

(M; n = 9) cells. Across our single unit data, there was no significant difference in either the magnitude of the FGM index (P = 
0.7172, Kruskal-Wallis ANOVA) or proportion of cells exhibiting the effect (P = 0.118, Freeman Halton extension of Fisher Exact 

Probability test) across the three cell groups. (C) Box-notch plots of figure (Left) and ground (Right) responses (in s/s after 

subtraction of background activity). The horizontal line in the middle of the box shows the median response, and the notch limits 
signify the 95% confidence interval around the median; box limits signify 25th and 75th percentiles of the data, and the extended 

whiskers show 1.5 times the interquartile range. Responses outside a range 1.5 times the width of the interquartile range from the 

median are shown as separate points (red crosses). The two notches do not overlap vertically; thus, the corresponding medians are 
different at the 5% level. (D) Distribution of ground responses versus figure responses [in spikes per second (s/s) after subtraction of 

background activity] across the cell sample. Dashed line denotes the diagonal representing equal responses to both stimuli. Negative 

values represent cases where responses to ground stimulation were reduced below the background firing rate (27). Color 
conventions as in B. 
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Having discovered such a pronounced response to the figure center, we wondered whether the 

response at the border might be further enhanced, as observed in V1 [albeit with a nonidentical behavioral 

paradigm and with a static, textural mode of figure-ground delineation (6)]; border detection is a key 

process in filling-in models of figural discrimination, essentially setting the topographic boundaries of a 

neural map filled in by the figural surface features (1, 2, 5). In a subset of cells (n = 37), we also checked 

the effect of displacing the figure location so that the border between the figure and ground components 

of the stimulus was located over the RF, interlacing figure, border, and ground trials in a pseudorandom 

sequence, as before. There was, however, no significant difference in either the magnitude or onset 

latency of the responses evoked by figure and border location stimuli (P = 0.379 and P = 0.795, 

respectively, Wilcoxon matched pairs test; n = 37; Fig. 3). There were actually two distinct borders in our 

stimulus configuration, where the opposite directions of dot motion were either perpendicular or parallel 

to the edge of the square-shaped figure; we tested both, but noted no qualitative differences and pooled 

the two conditions for the population average data in Fig. 3C. 

 
 

 
Fig. 3. Comparison of responses to figure and border stimuli located over the RF. (A and B) SDFs for two example LGN cells to 
conditions where the border (blue) or figure (red) was present over the RF. Conventions as in Fig. 1 C–F. (C) Population summary 

data plotting the averaged population responses to figure (red) and border (blue) stimulus conditions overlying the RF (n = 37). 

Horizontal dotted line denotes background plus 99% confidence limit. Conventions as in Fig. 2A. 

Our data clearly demonstrate that LGN neurons show differential spiking activity for figure compared 

with ground stimulation conditions in a manner analogous to the figure-ground modulation previously 

reported for cortical stages of the visual hierarchy. However, as the task design required the monkey to 

saccade to the figure, an alternative interpretation could be that a component of the neuronal enhancement 

in our behavioral paradigm reflected presaccadic activation. To explore this, we also recorded the 

responses of a number of LGN neurons whose RFs were located in very close proximity to the fovea. In 

these cases, a figure stimulus located over the RF also encompassed the fixation window and the monkeys 

were rewarded simply for maintaining fixation when the figure was located over the RF. Although the 

monkey did not make a saccade to the figure stimulus overlying the RF, we continued to observe the 

strong, long latency increase in firing rate to the figure stimulus (Fig. 4) with a marked figure-ground 

modulation of the response across the sample (median enhancement above ground, 59 ± 8.42% SE; n = 

20). 
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Fig. 4. Enhancement of neuronal firing to a figure located over the RF in the absence of saccades. (A and B) SDFs for two example 

LGN cells to ground (black) and figure (red) stimulus conditions overlying the RF. Diagrammatic conventions as in Fig. 1 C–F. As 
for our standard stimulus paradigm, the full-screen random dot display was initially static, with a central, yellow fixation spot. After 

a minimum fixation period of 400 ms, motion initiated and a single square figure, delineated solely by its opposite direction of dot 

motion, was visible at one of four possible locations. As the RFs of these cells were located very near the fovea, when the figure was 
centered over the RF, it encompassed the fixation window and the monkey was rewarded for maintaining fixation. When the 

stimulus was located at one of the three alternative locations displaced from the RF (and arranged in similar locations to those 

normally occupied by the nonreceptive field figure locations in our standard paradigm), monkeys were rewarded for making a 
saccade (within 500 ms of motion onset) to the center of the figure target as normal. (C) Population summary data plotting the 

averaged population responses to figure (red) and ground (black) stimulus conditions overlying the RF (n = 20). Horizontal dotted 

line denotes background plus 99% confidence limit. Conventions as in Fig. 2A. (D) Box-notch plots of figure (Left) and ground 
(Right) responses (in s/s after subtraction of background activity). The horizontal line in the middle of the box shows the median 

response and the notch limits signify the 95% confidence interval around the median; box limits signify 25th and 75th percentiles of 

the data, and the extended whiskers show 1.5 times the interquartile range. Responses outside a range 1.5 times the width of the 
interquartile range from the median are shown as separate points (red crosses). The two notches do not overlap vertically; thus, the 

corresponding medians are different at the 5% level. 

Discussion 

Our results show that the responses of LGN cells in awake behaving monkeys can be strongly 

modulated by a motion-defined figure-ground stimulus. In a sense, this is unexpected, given that it is 

generally accepted that neither contour orientation nor spatiotemporal direction of drift are explicitly 

represented at this level. Our results were observed with figure sizes notably larger (our standard figure 

sizes were 3–4°) than the LGN cells’ RF diameter (0.75 ± 0.79° SD; n = 140). Thus, the figure-ground 

modulation we saw was for RFs that were located centrally within the figure region and remote from the 

figure border. This is commensurate with the results from virtually all the studies in V1 and V2 (3, 6, 21), 

although one study in V1 (20) only observed a modulation when the border was close to the RF. The 

discrepancy in this latter case has been linked to task design (3, 6, 20, 21), so it is relevant to note that our 

task design closely mirrored that of the former studies, rather than the latter. We believe the effect we 

have observed closely matches the characteristics of figure-ground modulation in the cortex and reflects 

the influence of feedback circuitry integrating cortical and thalamic levels. The results thus suggest that 

the signature of a higher-order percept is fed back into the thalamus in a reentrant manner, changing the 
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information relayed to the cortex. This implies that this realignment of the sensory input from the 

thalamus, to reflect the percept initially integrated at higher cortical levels, is an important component of 

the neural logic to the process extracting and testing the ever-changing features of the visual world. This 

new observation argues for a reevaluation of the iterative neural mechanisms that represent and extract 

salient features of the visual world. 

 

A striking feature of our data is the magnitude of the modulation to the figure condition. It contrasted 

strongly with the minimal response shown by many of the cells to the motion of the background stimulus 

in isolation. We believe it is consistent with a system that relays minimal information to a “nonsalient 

stimulus” (7, 11) and that the “global” salience detected by higher-level feature detectors, sampling larger 

areas of visual space, is fed back and modulates the response to the underlying retinal excitatory input to 

the LGN cells by disinhibition and direct facilitation. A few cells (e.g., Fig. S2A) did give a transient 

response to the onset of stimulus motion, and these might serve to prime the cortex also, but the major 

point seems to be a feedback-driven “release” of excitatory drive initiated from retinotopic locations way 

beyond the LGN cell receptive field, with a most logical origin in MT. Feedback from MT has been 

shown to exert a strong influence on the earliest component of the response of V1 cells to both moving 

and flashing stimuli (19) and strong effects on LGN cell responses exerted from locations outside their 

receptive field (30). 

 

The modulatory effect reported here greatly exceeds that observed by us or any other group for 

modulation of LGN cell responses by classical, extraclassical, or remote stimuli (7, 16, 31–34). It has 

long been acknowledged that the responses of many neurons in the visual system can be influenced by 

stimuli remote from the classical RF (31). A variety of effects has been reported in anesthetized animals. 

These effects range from nonspecific inhibitory or facilitatory effects such as “shift” or “periphery” 

effects predominantly linked to retinal and geniculate cell responses, to direction and orientation selective 

contextual effects most commonly linked to V1 and higher cortical areas such as area MT (31, 35–38). 

These latter, stimulus-specific contextual modulatory effects have been extensively linked to a role in 

local–global comparisons and in the discrimination of figure from background (29, 31, 38). A range of 

studies in awake behaving monkey has linked mechanisms underlying figure-ground detection to 

processes operating in V1 and higher cortical areas (3, 6, 21, 29). However, our study is the first, to our 

knowledge, to demonstrate, in awake behaving monkey, the presence of differential spiking activity for 

figure compared with ground stimulation conditions in the LGN that are analogous to the figure-ground 

modulatory effects previously demonstrated only for cortical stages of the visual hierarchy (3, 6, 21, 29). 

As the magnitude of the effect we observed is substantially larger than that reported for any of the 

previous studies of contextual modulatory effects in the LGN (7, 16, 32–34), it suggests that it draws on 

processes that are enhanced or only enabled in the behaving preparation. 

 

As the speeded reaction time task design we deployed (39) required the monkey to saccade to the 

figure, an alternative interpretation for the differential effects we observed could be that a component of 

the neuronal enhancement in our behavioral paradigm reflected presaccadic activation. Although the 

current literature regarding perisaccadic modulatory effects in LGN would argue against the latter 

interpretation (40), we also obtained direct evidence against a motor-based, presaccadic interpretation by 

recording from cells with foveal or perifoveal fields. Robust FGM responses were still observed despite 

the monkey completing the task without making a saccade to the figure stimulus overlying the RF (Fig. 

4), a result that directly argues against the modulation being presaccadic in origin. We have also recorded 

preliminary data from a limited sample of neurons using an alternative approach to probe this issue. 

Essentially, we added a second, identical target figure to our standard figure-ground task and rewarded 

the monkey for making a saccade to the location of either figure. The monkey could thus choose to 

saccade to either target, as both were rewarded, but the natural preference was to select the target closer to 

the fixation point (41). By varying the position of the second target, this design allowed us to compare the 

response to an identical stimulus situated over the neuron's RF when it was or was not the target for a 

saccade. Although the FGM magnitude was significantly smaller when the figure overlying the RF was 

not the target for a saccade compared with when it was the saccade target (P = 0.005, Wilcoxon matched 

pairs test; n = 14), we nonetheless continued to observe a long latency increase in firing to the figure 

stimulus overlying the RF, even in this condition (Fig. S2B). There was a significant difference (P < 

https://www.pnas.org/content/112/22/7085.full#ref-7
https://www.pnas.org/content/112/22/7085.full#ref-11
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405162112/-/DCSupplemental/pnas.201405162SI.pdf?targetid=nameddest=SF2
https://www.pnas.org/content/112/22/7085.full#ref-19
https://www.pnas.org/content/112/22/7085.full#ref-30
https://www.pnas.org/content/112/22/7085.full#ref-7
https://www.pnas.org/content/112/22/7085.full#ref-16
https://www.pnas.org/content/112/22/7085.full#ref-31
https://www.pnas.org/content/112/22/7085.full#ref-34
https://www.pnas.org/content/112/22/7085.full#ref-31
https://www.pnas.org/content/112/22/7085.full#ref-31
https://www.pnas.org/content/112/22/7085.full#ref-35
https://www.pnas.org/content/112/22/7085.full#ref-38
https://www.pnas.org/content/112/22/7085.full#ref-29
https://www.pnas.org/content/112/22/7085.full#ref-31
https://www.pnas.org/content/112/22/7085.full#ref-38
https://www.pnas.org/content/112/22/7085.full#ref-3
https://www.pnas.org/content/112/22/7085.full#ref-6
https://www.pnas.org/content/112/22/7085.full#ref-21
https://www.pnas.org/content/112/22/7085.full#ref-29
https://www.pnas.org/content/112/22/7085.full#ref-3
https://www.pnas.org/content/112/22/7085.full#ref-6
https://www.pnas.org/content/112/22/7085.full#ref-21
https://www.pnas.org/content/112/22/7085.full#ref-29
https://www.pnas.org/content/112/22/7085.full#ref-7
https://www.pnas.org/content/112/22/7085.full#ref-16
https://www.pnas.org/content/112/22/7085.full#ref-32
https://www.pnas.org/content/112/22/7085.full#ref-34
https://www.pnas.org/content/112/22/7085.full#ref-39
https://www.pnas.org/content/112/22/7085.full#ref-40
https://www.pnas.org/content/112/22/7085.full#F4
https://www.pnas.org/content/112/22/7085.full#F4
https://www.pnas.org/content/112/22/7085.full#ref-41
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405162112/-/DCSupplemental/pnas.201405162SI.pdf?targetid=nameddest=SF2


0.001, Friedman ANOVA; n = 14) in the magnitude of the evoked responses to the different stimulus 

conditions, and the responses to the figure stimulus for both saccade conditions were significantly larger 

than those to the ground stimulus (P < 0.05, post hoc Wilcoxon tests using Bonferroni correction). Again, 

these data argue against the interpretation that the effects were wholly dependent on detecting and making 

a saccade to a target stimulus overlying the RF. 

 

It seems clear that the FGM effect we have observed must contribute to the salience of the figure 

because it amplifies the strength of the ongoing input from the LGN to the cortex for the figure. Given the 

magnitude of the effect, it might also index an attentional mechanism driven by feedback (42) (again, 

however, one that highlights salience), but this will require further examination, as our paradigm could 

not distinguish between exogenously captured attention directed toward the RF and figure-ground 

modulation. Studies in V1 have shown separate phases of activity relating to figure-ground separation and 

a subsequent attentional modulation. These have been timed at ∼60 and ∼140 ms, respectively, using a 

similar dot motion-defined figure (43). A psychophysical study of the tradeoff between dot speed and 

presentation time revealed that for human perception, there was a time constant an order of magnitude 

larger for detecting a figure defined by dot motion as opposed to luminance (44). The median latency we 

recorded in LGN, 90 ms, is benchmarked by the average saccadic RT of our monkeys (190 ms) and by 

the latency to motion onset in area V5/MT, which is contingent on dot speed, but estimated (under 

anesthesia) at 72 ms for our speed of 4
o
/s (45). Thus, we infer that reentry from V5/MT, via V1, is a 

plausible mechanism for motion-defined FGM in the LGN, further highlighting the potential for dynamic 

interplay between stations along the neuraxis of motion processing (7). Indeed, we have recently shown 

that feedback from V5/MT in the anesthetized monkey is able to influence the responses of LGN neurons 

to moving stimuli originating from spatial foci substantially beyond their classical RF (30), further 

underlining its potential role in mediating the motion-defined FGM we report here. Earlier work in 

anesthetized macaques has also demonstrated the potential contribution of corticogeniculate feedback 

from V1 to the LGN to extraclassical RF responses (11, 16), further underlining the likely role of 

feedback mechanisms to these effects. Again, the interesting difference with the current data is the 

magnitude of the effect we observed here. 

 

Although thalamic relay nuclei have traditionally been regarded as simple sensory relays to the 

primary sensory cortex, there is a large body of evidence that now suggests cortical feedback connections 

to the thalamus can influence the transmission of information through it in a functionally selective manner 

(7, 9, 14). These feedback connections allow for the abstract of the higher-level cortical processes to be 

fed back into the LGN, with a weighting linked to behavioral salience and attention. Probing these issues 

to reveal such influences requires a reappraisal of the response characteristics of LGN cells according to 

their responses to classes of visual stimuli and behavioral tasks more commonly linked to the analysis of 

higher-level visual function (30, 42). This we have attempted here, and we believe our observations 

underline the fact that the visual thalamus is essentially embedded in the cortical circuitry and should be 

seen thus, rather than as forming a distinct input stage serving only to relay information up the system. 

These new observations, together with other work in the field (7, 30, 42, 46, 47), also contain the 

implication that on a moment-by-moment basis, the input to the visual cortex from the thalamus is refined 

to reflect what the system as a whole (7, 9) considers to be the stimulus engaging its input, rather than 

simply what the component input channels would indicate in isolation. 

Materials and Methods 

All procedures were carried out in accordance with the Animals (Scientific Procedures) Act 1986 and 

were approved by the local ethical committee at University College London Institute of Ophthalmology 

and by the UK Home Office. Two naive male Macaca mulatta monkeys, each weighing 7–9 kg, were 

trained, using solely positive reinforcement techniques in accordance with the Prescott review 

recommendations, to voluntarily enter a Crist Instrument primate chair and were habituated to the 

laboratory environment. Surgical procedures and extracellular recording methods are described in SI 

Materials and Methods. 
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Visual Stimulation and Behavioral Tasks. Visual stimuli were generated in Matlab (Mathworks Inc.), 

using the Psychophysics toolbox running a custom stimulus generator 

(dx.doi.org/10.5281/zenodo.11080). See SI Materials and Methods for further details. Before any 

recording, animals were trained to the laboratory environment by sitting comfortably under head fixation. 

Next, animals were trained using fluid reward, in conjunction with fluid control where necessary, to view 

the monitor binocularly and to maintain fixation for 2–3 s within a 1° radius fixation window around a red 

fixation spot subtending 0.2° visual angle; eye position was monitored using an Eyelink 1000 infrared eye 

tracker (SR Research Ltd) recording at 250 Hz. During this fixation period, we presented a range of RF-

isolating stimuli (see following) parafoveally; this enabled us to locate and identify RFs of LGN cells for 

further study during experimental recording sessions. Animals were subsequently trained in the main 

figure-ground experimental task. Again, stimuli were presented under binocular viewing conditions and 

animals were trained to initiate fixation within a 1° radius fixation window around a yellow fixation spot 

presented against a static full-screen random dot display for at least 0.4 s (although in general the 

monkeys fixated much more precisely on the fixation spot; see Fig. S2C). Once the fixation criteria were 

met, motion was initiated, and both the figure and ground random dot stimuli moved in opposite 

directions. To complete the task successfully and receive a drop of preferred fruit juice, the animal had to 

saccade to the location of the figure within 500 ms of stimulus motion onset. Saccades were identified on 

the basis of their velocity and acceleration. 

 

During recording sessions, before running the figure-ground experimental task, we ran a battery of 

preliminary tests using a range of RF-isolating stimuli, including a range of contrast, chromatic, and 

opponent-defined stimuli to determine RF location and physiological response properties (11, 26, 30, 42). 

We used these RF characterizations (specifically size, opponency and chromaticity, and monocularity), 

along with stereotypical shifts in eye preference and classical retinotopic progression through penetration 

depth (48, 49) and the 3D chamber coordinate reconstructions of the MRI, to ensure our sampling was 

confined to the LGN. Cells were categorized as parvocellular, magnocellular, and koniocellular according 

to physiological response properties, electrode depth, and stereotypical shifts in eye preference (11, 26, 

30, 42). To ensure that one location of the figure stimulus was accurately located over the RF center, the 

location and extent of the RF was carefully assessed, using a range of stimuli including flashing spots (or 

bars) of light, drifting bars, and/or edges and patches of sinusoidal grating. In particular, we documented 

the location and spatial extent of the RF center by exploring the spatial distribution of locations from 

which a contrast-modulated patch or a patch of drifting grating elicited responses. A variety of patch sizes 

(0.5–1°) were normally used for this test. They were presented in a randomized sequence over a set of 

spatial locations defined in rectangular coordinates. The location giving the largest response was used to 

define the center location, and the coordinates of the spatial locations were adjusted to match. This 

involved several iterations with variations of patch size and stimulus coordinates to optimize both 

centering and assessment of spatial extent. We then assessed area-summation using flashing spots, or 

patches of drifting grating, varying in diameter and presented in a randomized, interleaved manner. A 

typical example is shown in Fig. S1. 

 

During the figure-ground task, the figure could appear in one of four equidistant positions away from 

the fixation spot; one of these positions was centered on the RF of the neuron or neurons under study. 

Figure locations were varied in a randomized interleaved sequence. Apart from opposite direction of 

motion, the figure and ground random dot stimuli shared identical parameters: dot size subtended 0.1°, 

dot speed was 4°/s (dots moved 2.29 pixels/frame), dot density was a constant 25 dots/°
2
/s, dot 

coherence/correlation was 100% (50). All dots were spatially and positionally antialiased (SI Materials 

and Methods). Between every trial, individual dot position was fully randomized so no two trials 

exhibited the same spatial per dot configuration. Each dot had a luminance chosen randomly on each trial 

from a uniform grayscale distribution between and inclusive of the darkest (0.02 cd/m
−2

) and brightest (65 

cd/m
−2

) luminance values generated by the calibrated monitor. Overall mean background luminance was 

32.4 cd/m
−2

. Dots were not limited lifetime (their kill rate was set to 0). Stimulus motion continued from 

motion onset until the monkey had successfully completed the task by making a saccade to and refixating 

at the figure center. To ensure we compared figure and ground conditions with identical stimulus 

parameters, we collected data for both directions of motion of the figure and ground for each location 

(four positions and two directions resulted in eight trials per block). Animals normally performed 20 
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repeated blocks. The monkeys performed the task at ∼80% accuracy overall compared with a random 

response performance expectation of 25% [79.8 ± 1.25% SE (n = 91) and 83.4 ± 2.43% SE (n = 49) for 

each monkey, respectively]. Figure size was normally set to 3° or 4° [in accordance with typical sizes 

used previously in V1 (38)] but was reduced in some cases to 2° or 2.5° to ensure the figure border was at 

least 1° away from the fixation point. This reduction in figure size did not affect the results; there was no 

significant correlation between FGM magnitude and stimulus size (P = 0.430; R = −0.067; Spearman 

Rank R test). 

Data Analysis. Responses were only analyzed for correct trials. For each stimulus condition, responses 

were compiled into an average response histogram, using a bin width of 10 ms. We used the onset of 

motion to mark time-zero and computed background activity from a 200-ms time epoch immediately 

before motion onset. For each cell, we computed the time to saccade initiation on a trial-by-trial basis and 

restricted our analysis window across all trials to spikes that preceded the earliest saccade initiation time. 

We defined the average response for each stimulus type as the mean firing rate of the neuron for the 

period between response onset and this earliest saccade initiation time and calculated evoked responses 

by subtracting background activity. The response onset latency was defined as the first sampling window 

after motion onset where the firing rate exceeded background discharge rates by more than the 99% 

bootstrapped confidence interval (bias corrected and accelerated percentile method; Matlab), provided it 

was followed immediately by at least two successive bins meeting this criterion. Cells were excluded 

from further analysis if neither the figure nor ground response, as defined earlier, exceeded the 99% 

bootstrapped confidence interval of the background activity level. Receptive fields were parafoveal, and 

all were located within 15° of the fovea, with >90% recorded within the central 10° (median eccentricity, 

7.0 ± 2.93° SD; n = 140). 

 

For each cell, we calculated a figure versus ground modulation index (FGM), calculated as: FGM = 

100 * [(Rfigure – Rground)/(Rfigure + Rground)], where R was the evoked response for the given condition. In 

accordance with previous work in V1 (3, 6, 38), we averaged the responses to both directions of motion 

before computing the FGM index. Thus, the figure and ground responses resulted from exposing the RF 

to the identical set of local features across trials (although “ground” trials were three times more 

frequent), ensuring our results were not influenced by any potential difference in the responses to the two 

directions of motion [because of the weak direction biases sometimes observed in macaque LGN cells 

(24)]. We regarded cells that showed an FGM value greater than 20% as showing evidence of figure-to-

ground response enhancement. 

 

A potential concern was that a variation in the incidence of microsaccadic eye movements between 

figure and ground stimulation conditions could lead to a difference in neural responses. To detect 

microsaccades, we used the velocity-based algorithm code from Engbert and Mergenthaler (51) (see SI 

Materials and Methods). For each unit, we counted the number of microsaccades in the time epoch 

spanning 200 ms before motion onset (our baseline time period) to the earliest saccade initiation time for 

both figure and ground stimulus conditions. We expressed the results as a ratio of the number of 

microsaccades per trial (to compensate for the difference in trial numbers for the two conditions). There 

was no significant difference (P = 0.145, Wilcoxon matched pairs test; n = 140) in the incidence of 

microsaccades between figure and ground stimulation conditions. There was also no significant 

correlation between FGM magnitude and microsaccade incidence (for either figure or ground stimuli) 

across our sample (P = 0.325, R = 0.085; and P = 0.677, R = 0.036, respectively for figure and ground 

conditions, Spearman Rank R test). 

 

To construct average population histograms, we first normalized the smoothed (at 1.5 times the bin 

width) peristimulus time histogram for individual neurons, after subtraction of background firing, to their 

maximum firing rate. Normalized responses of all neurons were then averaged. For individual data 

examples (e.g., Fig. 1), firing rate density functions were constructed by convolving the spike trains with 

a ±15-ms Gaussian smoothing kernel after exclusion of trials that included microsaccades occurring in the 

time epoch spanning from 200 ms before figure onset to the end of the analysis time window. Unless 

otherwise indicated, for population statistics, we used the median as a measure of central tendency and 
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nonparametric two-tailed tests for population data comparisons, as the data were not normally distributed 

(Shapiro-Wilk normality test). 
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