145 research outputs found

    Field emission characteristics of an oxidized porous polysilicon field emitter using the electrochemical oxidation process

    Get PDF
    The field emission characteristics of an oxidized porous polysilicon (OPPS) were investigated with Pt/Ti multilayer electrode using the electrochemical oxidation (ECO) process. A Pt/Ti multilayer electrode, using ECO, showed highly efficient and stable electron emission characteristics; moreover, it can be applied to large area of a glass substrate with a low temperature process. Electron emission characteristics were improved with O2 annealing at 600 °C after the ECO process. It was found that forming a high quality oxide layer from the ECO-formed SiO2 was crucial in improving electron emission characteristics. The Pt/Ti OPPS field emitter, which was annealed at 600 °C for 5 h, showed an efficiency of 3.81% at Vps = 14 V . © 2006 Elsevier Ltd. All rights reserved.1

    Vertically integrated transistors for field emission applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 101-105).Field emission devices have demonstrated several research and commercial applications in the areas of flat panel displays, microwave power devices, imaging sensors and electron sources. Recent work has shown the feasibility of using integrated MOSFETs to control and enhance field emission stability and operating characteristics. This research effort investigates the integration of vertical MOS transistors with field emitter arrays as a means to enhance field emission device capabilities and range of applications. Vertical MOSFET device modeling was performed using MEDICI, a commercially available electrostatic simulator. In addition, process modeling was conducted using SUPREM to optimize design and layout sequencing for device fabrication. Working devices were fabricated and tested in the Integrated Circuits Laboratory within the Microsystems and Technology Laboratory at MIT. Techniques to achieve high-density field emitter arrays necessary for integrated VMOS / FEA devices were also investigated. This study determined that it is feasible to integrate and control field emitter arrays with vertical MOSFET devices.by Paul Richard Herz.S.M

    Optical Properties of MacEtch-Fabricated Porous Silicon Nanowire Arrays

    Get PDF
    The increasing demand for complex devices that utilize unique, three-dimensional nanostructures has spurred the development of controllable and versatile semiconductor fabrication techniques. However, there exists a need to refine such methodologies to overcome existing processing constraints that compromise device performance and evolution. Conventional wet etching techniques (e.g., crystallographic KOH etching of Si) successfully generate textured Si structures with smooth sidewalls but lack the capabilities of controllably producing high aspectratio structures. Alternatively, dry etching techniques (e.g., reactive-ion etching), while highly controllable and capable of generating vertically aligned, high aspect-ratio structures for IC technologies, introduce considerable sidewall and lattice damage as a result of high-energy ion bombardment that may compromise device performance. Metal-assisted chemical etching (MacEtch) provides an alternative process that is capable of anisotropically generating high aspect-ratio micro and nanostructures using a room temperature, solution-based technique. This fabrication process employs an appropriate metal catalyst (e.g., Au, Ag, Pt, Pd) to induce etching in several semiconducting materials (e.g., Si, GaAs) submerged in a solution containing an oxidant and an etchant. The MacEtch process resembles a galvanic cell such that cathodic and anodic half reactions take place at the catalyst/solution interface and catalyst/substrate interface, respectively. At the cathode, the metal catalyzes the reduction of the oxidant resulting in the generation and accumulation of charge carriers (e.g., holes, h+) that are subsequently injected into the underlying substrate at the anode. This results in the formation of oxide species that are preferentially dissolved by the etchant. Thus, MacEtch provides a tunable, top-down, catalytic fabrication technique enabling greater process control and versatility for generating high aspect-ratio semiconductor structures. In this thesis, Au and Au/Pd catalyzed MacEtch is used to generate ultradeep Si micropillar structures, and porous SiNW (p-SiNW) arrays with enhanced optical properties. Using a combination of Au-MacEtch and a crystallographic KOH etch, Si micropillars with ~100 μm height were fabricated with up to 70 μm clearance between pillars to allow efficient fluid flow for optical detection of viral particles. Alternatively, porous SiNW arrays fabricated via AuPd- MacEtch demonstrated broadband absorption ≥ 90% from 200 – 900 nm and were shown to outperform RCWA-simulated SiNW arrays with similar morphologies. Additionally, photoluminescence (PL) spectra collected from as prepared p-SiNW showed significant enhancement in intensity centered near 650 nm as etch depth increased from 30 μm to 100 μm, attributed to an increase in the porous volume. Using atomic layer deposition (ALD) the p-SiNW were passivated using alumina (Al2O3) and hafnia (HfO2) thin films in addition to ITO thin films deposited via sputtering. PL intensity also increased after ALD passivation, attributed to a quenching effect on non-radiative SRH recombination sites on the NW surfaces, with a red shift in the peak wavelength as ALD film thickness increased from 10 nm to 50 nm, resulting from strain effects acting on the NW themselves. These results show promise in such micropillar and coated and uncoated p-SiNW structures towards applications in microfluidic devices, and indoor light-harvesting and outdoor solar-based technologies

    Micropillar Array Based Microchips for Electrospray Ionization Mass Spectrometry, Microreactors, and Liquid Chromatographic Separation

    Get PDF
    This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.Väitöskirjatyö käsittelee mikrofluidististen massaspektrometriaan liitettävien sähkösumutusmikrosirujen suunnittelua, valmistamista ja sovelluksia. Mikrosirut koostuvat mikropilarikkokanavasta ja terävästä sähkösumutuskärjestä. Hydrofiilisen mikropilarikkokanavan ansiosta mikrosiru täyttyy nesteillä kapillaarivoimien avulla. Kapillaari-ilmiön avulla nestemäinen näyte siirtyy passiivisesti täyttyen näytteen syöttökohdasta terävään sähkösumutuskärkeen, joka sumuttaa näytteen ioneiksi kaasufaasiin. Nämä molekyyli-ionit voidaan massaspektrometrisesti analysoida. Tämä menetelmä mahdollistaa näytteen syötön ilman pumppua tai erillistä jännitettä elektro-osmoottista virtausta varten. Mikrosirut toimivat korkeajännitteellä, jota voidaan hyödyntää myös sähköisenä venttiilinä mikrosirun ja massaspektrometrin välillä. Mikrosiruja voidaan käyttää useissa eri sovelluksissa, kuten esimerkiksi lääkeaineiden, proteiinien, peptidien tai metaboliittien herkissä ja nopeissa analyyseissä. Väitöskirjassa on selvitetty yksittäisten ja monikärkisten mikrosirujen toimintakykyä. Mikrosiruja on mahdollista käyttää myös mikroreaktoreina, joiden reaktiotuotteet voidaan välittömästi analysoida massaspektrometrisesti. Tätä ominaisuutta voidaan hyödyntää esimerkiksi proteiinien tunnistamisessa. Proteiinit voidaan pilkkoa entsymaattisesti mikrosirulla, ja reaktiotuotteet tunnistaa massaspektrometrisesto. Menetelmän etuna voidaan pitää sitä, että analyysissä tarvittavien proteiinien määriä voidaan pienentää, koska diffuusiorajoitteiset reaktiot tapahtuvat nopeammin mikroskaalassa pienempien diffuusiomatkojen ansiosta. Mikrosirut sopivat erityisen hyvin pinta-aktivoituihin reaktioihin, koska tiheällä mikropilarikolla on korkea pinta-ala-tilavuussuhde. Esimerkiksi mikrosiru, johon on valmistettu nanokerros titaanidioksidia mikropilarikon päälle liitettynä UV-säteilytykseen tuottaa fotokatalyyttisiä reaktioita, joita voidaan hyödyntää lääkeainemetabolian ennustamisessa. Nopea mikrosirupohjainen lääkeainemetabolian ennustaminen helpottaa mahdollisten myrkyllisten yhdisteiden tunnistamista jo lääkekehityskaaren prekliinisessä vaiheessa, ja siksi menetelmä voisi nopeuttaa uusien lääkeaineiden tutkimusta. Mikropilarikkosiruja voidaan hyödyntää myös nestekromatografisten kolonnien valmistuksessa. Tarkasti muodostunut mikropilarikko on hyvin homogeeninen kolonni, jossa tapahtuneet kromatografiset erotukset on voitu demonstroida sekä laser indusoidulla fluoresenssilla että massaspektrometrisesti. Pienien dimensioidensa ansiosta nestekromatografinen kolonni ja sähkösumutuskärki integroituna samalle mikrosirulle, toimii erityisen hyvin pienien näytemäärien kanssa

    Nanogap Device: Fabrication and Applications

    Get PDF
    A nanogap device as a platform for nanoscale electronic devices is presented. Integrated nanostructures on the platform have been used to functionalize the nanogap for biosensor and molecular electronics. Nanogap devices have great potential as a tool for investigating physical phenomena at the nanoscale in nanotechnology. In this dissertation, a laterally self-aligned nanogap device is presented and its feasibility is demonstrated with a nano ZnO dot light emitting diode (LED) and the growth of a metallic sharp tip forming a subnanometer gap suitable for single molecule attachment. For realizing a nanoscale device, a resolution of patterning is critical, and many studies have been performed to overcome this limitation. The creation of a sub nanoscale device is still a challenge. To surmount the challenge, novel processes including double layer etch mask and crystallographic axis alignment have been developed. The processes provide an effective way for making a suspended nanogap device consisting of two self-aligned sharp tips with conventional lithography and 3-D micromachining using anisotropic wet chemical Si etching. As conventional lithography is employed, the nanogap device is fabricated in a wafer scale and the processes assure the productivity and the repeatability. The anisotropic Si etching determines a final size of the nanogap, which is independent of the critical dimension of the lithography used. A nanoscale light emitting device is investigated. A nano ZnO dot is directly integrated on a silicon nanogap device by Zn thermal oxidation followed by Ni and Zn blanket evaporation instead of complex and time consuming processes for integrating nanostructure. The electrical properties of the fabricated LED device are analyzed for its current-voltage characteristic and metal-semiconductor-metal model. Furthermore, the electroluminescence spectrum of the emitted light is measured with a monochromator implemented with a CCD camera to understand the optical properties. The atomically sharp metallic tips are grown by metal ion migration induced by high electric field across a nanogap. To investigate the growth mechanism, in-situ TEM is conducted and the growing is monitored. The grown dendrite nanostructures show less than 1nm curvature of radius. These nanostructures may be compatible for studying the electrical properties of single molecule

    Selective thermal emitters based on photonic crystals

    Get PDF
    Un dels límits fonamentals que afecta l'eficiència de conversió en cèl·lules fotovoltaiques és la distribució espectral de la radiació solar. D'una banda, només els fotons amb energia superior al gap del semiconductor poden convertir-se en electricitat a la cèl·lula. Els fotons de baixa energia no generen parells electró-forat. D'altra banda, l'excés d'energia dels portadors generats per fotons de molt alta energia es perd ràpidament per termalització en el propi dispositiu. Aquests fotons d'alta energia no generen una major energia elèctrica, pel que l'excés d'energia òptica es perd. Per superar aquesta limitació, la investigació s'ha centrat majoritàriament en millorar la conversió directa de fotons d'alta i baixa energia a través de, per exemple, l'ús d'up- i down-converters. Una alternativa menys estudiada consisteix en adaptar la radiació solar al dispositiu com a pas previ a la conversió. Aquesta adaptació es realitza mitjançant l'ús d'emissors selectius òpticament adaptats al semiconductor. Un emissor selectiu és un material amb una emissió tèrmica que ocupa una banda espectral estreta, en comptes d'emetre en tot l'espectre freqüencial. Aquests emissors són una alternativa eficient per obtenir grans conversions, treballant a temperatures al voltant dels 1500 K, donat que un material calentat pel Sol, o una altra font d'energia, pot reemetre llum amb una distribució espectral molt més adequada al dispositiu fotovoltaic. Aquest mode d'operació es coneix com a conversió d'energia termofotovoltaica. A la natura existeixen materials capaços de comportar-se com emissors selectius. Els òxids de terres rares representen un interesant camp d'investigació. Aquests òxids tenen una emissió tèrmica molt baixa en tot l'espectre excepte a certes freqüències. Aquestes freqüències d'emissió són úniques i selectives i provenen de ressonàncies a l'estructura cristal·lina del material. El desavantatge en la seva utilització radica en què la posició espectral d'aquests pico d'emissió, propis del material i la seva estructura, no pot ser controlada. A més, aquestes bandes d'emissió són relativament estretes, generant una baixa densitat de potència radiada. Per tant, existeix la necessitat de treballar amb materials amb una banda d'emissió selectiva que pugui ser dissenyada i controlada convenientment. La solució és l'ús de cristalls fotònics (materials artificials amb propietats òptiques que no existeixen en la natura). Encara que la seva fabricació presenta molts reptes, aquests cristalls artificials permeten el control de l'emissió espontània, suprimint-la o potenciant-la a la banda freqüencial d'interès. Existeixen varies interaccions que permeten aquest control: l'efecte de banda prohibida, la interacció per plasmons o fonons, o l'efecte de microcavitat. Tots permeten modificar l'espectre d'emissió tèrmica d'un material. La present tesis doctoral està dedicada a l'estudi de les propietats d'emissió tèrmica, i estabilitat tèrmica, d'emissors selectius basats en cristalls fotònics. S'han analitzat varies estructures: cristalls fotònics basats en silici macroporós, quasi-cristalls fotònics i microcavitats metàl·liques. També, en col·laboració amb altres grups d'investigació, s'han analitzat les propietats tèrmiques de cristalls col·loïdals. En el present treball, es mostra que els cristalls i quasi-cristalls basats en silici macroporós poden inhibir eficientment la radiació tèrmica de manera controlable, sent a més estables a alta temperatura fins 1500 K. Respecte els cristalls metàl·lics, l'estudi realitzat mostra la seva alta selectivitat espectral, encara que aquests emissors han de treballar a temperatures inferiors a 1100 K per garantir la seva estabilitat estructural i òptica.One of the fundamental limits of conversion efficiency in photovoltaic cells is the broadband distribution of solar spectrum. On one hand, only photons with energy higher than the semiconductor's bandgap can be converted in the device, on the other hand, carriers generated by high energy photons rapidly loose their excess of energy by thermalization with the lattice. To overcome this limitation, and span the useful convertible region of solar spectrum, many approaches have focused on improving the direct photon to electron conversion by the development of up- and down-converters. A less studied alternative, however, is the use of spectrally narrow distributed emitters, optically matched with the gap energy of the photovoltaic cell, instead of direct sunlight. Indeed, a material heated by the sun, or another energy source as methane or hydrogen, can re-emit light with suitable spectral distribution and significant higher power density, improving conversion efficiencies in solar cells. This way of operation is known as thermophotovoltaic energy conversion. Several materials have been considered to be used as emitters in thermophotovoltaic systems. Silicon carbide is a common one, thanks to its high stability at temperatures up to >2000 K. However, its broadband spectral emission limits the conversion efficiency in the photovoltaic device and forces to work at elevated temperatures. Selective emitters, which stand for materials whose thermal emission occupies a narrow spectral region, are a promising alternative to reach elevated conversion efficiencies at lower temperatures. Natural selective emitters as rare earths have attracted considerable research interest as they present unique emission peaks with the highest emittance level. This approach, however, presents some drawbacks, the spectral position where strong emission appears is not controllable, and the width of the emission band is relatively narrow, leading to a low power density emitted by the source. An advantageous way to engineer the selective emission of a thermal source and control the spectral position and bandwidth of strong emission, is by making use of photonic crystals (articial materials engineered to show optical properties that may not be found in nature). The spectral control of the spontaneous emission in such materials is a unique feature of photonic crystals, although their fabrication, mainly in three-dimensions, is still challenging. Several interactions between photonic crystals and radiation have been reported: the photonic bandgap effect, surface plasmon polaritons, phonon polaritons, or the microcavity effect, to give some examples. All these approaches allow engineering the thermal emission of materials to match the energy band of the photovoltaic cell and benefit the optical to electrical conversion efficiency, although some limitations arise when utilized in high temperature thermophotovoltaic systems which will be analyzed during the realization of this thesis. This thesis is therefore devoted to the study of the thermal emission properties and thermal stability of photonic crystal based selective emitters. Various structures have been analyzed: macroporous silicon crystals, photonic quasi-crystals and metallic microcavities. A study in self-assembled colloidal crystals was also started and the preliminary results are presented in the appendix of the document. Here, it is demonstrated that macroporous silicon crystals and quasi-crystals can inhibit thermal radiation in a controllable manner with thermal stability up to 1500 K. The great selective emission properties of metallic microcavities is also demonstrated, although the working temperature of such structures is limited below 1100 K to prevent degradation of the metallic layer

    Carbon Nanotubes

    Get PDF
    Since their discovery in 1991, carbon nanotubes have been considered as one of the most promising materials for a wide range of applications, in virtue of their outstanding properties. During the last two decades, both single-walled and multi-walled CNTs probably represented the hottest research topic concerning materials science, equally from a fundamental and from an applicative point of view. There is a prevailing opinion among the research community that CNTs are now ready for application in everyday world. This book provides an (obviously not exhaustive) overview on some of the amazing possible applications of CNT-based materials in the near future

    Characteristics of UHF transistors using autoregistered structures

    Get PDF
    The basis of a novel bipolar transistor structure was proposed by Dr R. Aubusson of Middlesex Polytechnic in 1977. The novelty lies in replacing the conventional overlay transistor's P+ base grid with a refractory metal grid, in order (a) to lower the base resistance and (b) to autoregister the emitter. It was claimed that the linearity of the transistor would also be improved. A number of questions raised by this idea have been investigated, the methods and conclusions of which are presented here. Plausible structures, using the metal base grid, are proposed and compared with conventional structures. Some advantages are seen to be possible. The current understanding of distortion analysis applied to transistors is reviewed. The main ideas are presented in a unified manner and are extended to higher order. A number of the transistor's second order effects are analysed in a novel fashion. The metal base grid transistor is analysed and compared with conventional transistors, with favourable results. Practical aspects of fabricating the metal base grid transistor were investigated. A procedure for deposition has been determined and is presented here along with the film physical and electrical characteristics. Analysis of the tungsten-silicon interface shows the suitability of the metallization as a base grid. Suitable means of delineating the tungsten film have been assessed and a working procedure determined. Subsequent deposition of various insulators has been investigated and the problems associated with the readily oxidized tungsten film have been overcome. Formation of the emitter, requiring further high temperature processing, has been assessed in view of the limitations imposed by the preformed base metallization. In summary, it has been shown that the novel structure can be constructed and that significant performance improvement is to be expected, although a full realization was not possible within the resource constraints of the project

    Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers

    Full text link
    corecore