246 research outputs found

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Green Femtocell Based on UWB Technologies

    Get PDF

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    OFDMA Femtocells: A Roadmap on Interference Avoidance

    Get PDF
    [EN] OFDMA femtocells have been pointed Out by the industry as a good solution not only to overcome the indoor coverage problem but also to deal with the growth of traffic within macrocells. However, the deployment of a new femtocell layer may have an undesired impact on the performance of the macrocell layer. The allocation of spectrum resources and the avoidance of electromagnetic interference are some of the more Urgent challenges that operators face before femtocells become widely deployed. In this article a coverage and interference analysis based on a realistic OFDMA macro/femtocell scenario is provided, as well as some guidelines on how the spectrum allocation and interference mitigation problems can be approached in these networks. Special attention is paid to the use Of self-configuration and self-optimization techniques for the avoidance of interference.This work is supported by the EU FP6 RAN-PLAN-HEC project on 3G/4G Radio Access Network Design under grant number MEST-CT2005-020958.LĂłpez-PĂ©rez, D.; Valcarce, A.; De La Roche, G.; Zhang, J. (2009). OFDMA Femtocells: A Roadmap on Interference Avoidance. IEEE Communications Magazine. 47(9):41-48. https://doi.org/10.1109/MCOM.2009.5277454414847

    Femtocell Performance Over Non-SLA xDSL Access Network

    Get PDF
    Environmental medicin

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
    • …
    corecore