302 research outputs found

    FE-CutS - Finite Elemente Modell für makroskopische Zerspanprozesse : Modellierung, Anaylse und Simulation

    Get PDF
    The resulting complex thermal and mechanical load pectrum in dry machining processes leads to temperature induced shape deviations of metallic orkpieces which changes its behavior for future use. Research projects try to compensate for manufacturing inaccuracies, resulting from the process, during the planning phase by using simulation-supported methods. The finite element method (FEM) is an appropriate tool to calculate thermomechanical behavior of workpieces by applying thermal and mechanical loads. This thesis describes the modeling and simulation of the thermal and mechanical behavior of workpieces considering material removal during the processes by FEM. In this case the FEM is linked to a dexel model to visualize the geometry change also in the FEM. During the mathematical modeling the heat equation is coupled to the quasi-stationary linear-elastic deformation equation on a time-dependent domain with changing boundaries. Heat fluxes and process forces are given from a process model and exist only during the tool-workpiece-interaction. These informations are project to the time-dependent bounds of the workpiece. Here a new visualization of material removal on unfitted meshes is presented. The mesh is divided into two time-dependent disjoint parts. One for the time-dependent workpiece and one for the removed material. The geometry of the workpiece is approximated on time changing bounds by adjusted adaptive methods. The analysis shows good results for the approximation with a controllable volume error. On thus time-dependent domain the thermal and mechanical workpiece behavior during machining processes could be simulated in a realistic case. During the processes the identification and compensation of shape deviations will be possible. The model can be extended for other processes with geometrically defined edges

    Wärmeübertragung durch überlagerte Strömungen an gestapelte Güter am Beispiel des Flachgeschirr-Brandes in Durchlauföfen

    Get PDF
    Der Wärmeübergang an gestapelte Güter spielt eine wesentliche Rolle bei der ökonomischen Auslegung von Thermoprozessanlagen. Gleichungen für die Wärmeübertragung an solch komplexe Geometrien sind aber nicht, bzw. nur in stark vereinfachter Form vorhanden. In der vorliegenden Arbeit wurde die Wärmeübertragung für die komplexe Geometrie "Tellerstapel" sowohl experimentell als auch mit Hilfe von Computersimulation bestimmt. Die Ergebnisse beider Methoden zeigen gute bis sehr gute Übereinstimmung. Des Weiteren wurde der Wärmeübergang durch Strahlung mit in die Simulation einbezogen und sein Verhältnis gegenüber dem konvektiven Wärmeübergang ermittelt. Für die Wärmeübergangsberechnung bei anderen Geometrien gestapelter Güter wurden mehrere Wege aufgezeigt und auf die zeit- und kostensparende Nutzung moderner Simulationsmethoden hingewiesen

    Untersuchungen zur Oberflächenchemie der Atomlagenabscheidung und deren Einfluss auf die Effizienz von Prozessen

    Get PDF
    In dieser Arbeit werden verschiedene Prozesse zur Atomlagenabscheidung (ALD) von TiO2 und HfO2 experimentell untersucht. Die Untersuchungen schließen eine experimentelle Charakterisierung des Schichtwachstums sowie eine massenspektrometrische Analyse der Reaktionsprodukte ein. Im Detail wurden der ALD-Prozess mit Cp*Ti(OMe)3 und Ozon zur Abscheidung von TiO2 sowie der ALD-Prozess mit TEMAHf und Ozon zur Abscheidung von HfO2 untersucht. Der theoretische Teil der Arbeit beginnt mit einer Methode zur Bestimmung des absoluten Haftkoeffizienten. Anschließend werden numerische Modelle entwickelt, welche die Adsorption von Präkursormolekülen durch strukturierte Substrate beschreiben. Diese Modelle enthalten die Substratstruktur und den absoluten Haftkoeffizienten. Es wird eine statistische numerische Methode entwickelt, mit der der Gastransport in dem ALD-Reaktor statistisch beschrieben wird. Die statistischen Größen, welche die Gasdynamik im Reaktor beschreiben, werden mit der Discrete Simulation Monte Carlo (DSMC) Methode bestimmt. Mit dieser Methode und den Modellen der Adsorption kann der komplette ALD-Prozess simuliert werden. Die neu entwickelte Methode wird verwendet um die Effizienz verschiedener ALD-Reaktoren in Abhängigkeit des absoluten Haftkoeffizienten, der Substratstruktur sowie der Prozessbedingungen zu untersuchen. Die Geometrie des Reaktors wird variiert und mit der Referenzgeometrie verglichen.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135This dissertation is divided into an experimental part and a theoretical part. The experimental part describes the atomic layer deposition (ALD) of TiO2 and HfO2. TDMAT and Cp*Ti(OMe)3 were used as titanium precursors, while TEMAHf was used as the hafnium precursor. Ozone was used as the oxygen source. The self limiting film growth and the temperature window of these ALD processes were investigated. The reaction by-products of the Cp*Ti(OMe)3/O3 process were identified by quadrupol mass spectrometry (QMS). The QMS analysis of the TEMAHf/O3 process revealed that water is formed during the metal precursor pulse. The theoretical part of this thesis describes the development of models and numerical methods to simulate the ALD as a whole. First of all, a model for the adsorption of precursor molecules by planar substrates was developed. This model was extended to describe the adsorption of precursor molecules inside a cylindrical hole with an aspect ratio of 20, 40 and 80. The adsorption of precursor molecules is dominated by the absolute sticking coefficient (SC), i.e., the reactivity of the precursor molecules. From the numerical model the saturation profiles along the wall of a cylindrical hole can be determined. From the comparison of the simulated profile with an experimentally determined thickness profile the SC can be determined. This method was used to determine the SC of the precursors examined in the experimental part. The SC of TEMAHf increases exponentially with the substrate temperature. A discrete particle method (DSMC) was used to derive a statistical description of the gas kinetics inside an ALD reactor. Combining the statistical description of the gas transport and the numerical models of the adsorption, it is possible to simulate the ALD for any combination of reactor, substrate and SC. It is possible to distinguish the contribution of the reactor geometry, the process parameters and the process chemistry (SC) to the process efficiency. Therefore, the ALD reactor geometry can be optimized independently of the process chemistry. This method was used to study a shower head ALD reactor. The reactor geometry, the composition of the gas at the inlet and the position of the inlet nozzles was varied in order to find more efficient ALD reactors. The efficiency of the reference geometry is limited by the inlet nozzles close to the exhaust and the decrease of the pressure on the substrate near the exhaust. The efficiency of ALD processes with different SCs was simulated for planar and structured substrates with a diameter of 300 mm and 450 mm.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 13

    Untersuchungen zur Oberflächenchemie der Atomlagenabscheidung und deren Einfluss auf die Effizienz von Prozessen

    Get PDF
    In dieser Arbeit werden verschiedene Prozesse zur Atomlagenabscheidung (ALD) von TiO2 und HfO2 experimentell untersucht. Die Untersuchungen schließen eine experimentelle Charakterisierung des Schichtwachstums sowie eine massenspektrometrische Analyse der Reaktionsprodukte ein. Im Detail wurden der ALD-Prozess mit Cp*Ti(OMe)3 und Ozon zur Abscheidung von TiO2 sowie der ALD-Prozess mit TEMAHf und Ozon zur Abscheidung von HfO2 untersucht. Der theoretische Teil der Arbeit beginnt mit einer Methode zur Bestimmung des absoluten Haftkoeffizienten. Anschließend werden numerische Modelle entwickelt, welche die Adsorption von Präkursormolekülen durch strukturierte Substrate beschreiben. Diese Modelle enthalten die Substratstruktur und den absoluten Haftkoeffizienten. Es wird eine statistische numerische Methode entwickelt, mit der der Gastransport in dem ALD-Reaktor statistisch beschrieben wird. Die statistischen Größen, welche die Gasdynamik im Reaktor beschreiben, werden mit der Discrete Simulation Monte Carlo (DSMC) Methode bestimmt. Mit dieser Methode und den Modellen der Adsorption kann der komplette ALD-Prozess simuliert werden. Die neu entwickelte Methode wird verwendet um die Effizienz verschiedener ALD-Reaktoren in Abhängigkeit des absoluten Haftkoeffizienten, der Substratstruktur sowie der Prozessbedingungen zu untersuchen. Die Geometrie des Reaktors wird variiert und mit der Referenzgeometrie verglichen.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135This dissertation is divided into an experimental part and a theoretical part. The experimental part describes the atomic layer deposition (ALD) of TiO2 and HfO2. TDMAT and Cp*Ti(OMe)3 were used as titanium precursors, while TEMAHf was used as the hafnium precursor. Ozone was used as the oxygen source. The self limiting film growth and the temperature window of these ALD processes were investigated. The reaction by-products of the Cp*Ti(OMe)3/O3 process were identified by quadrupol mass spectrometry (QMS). The QMS analysis of the TEMAHf/O3 process revealed that water is formed during the metal precursor pulse. The theoretical part of this thesis describes the development of models and numerical methods to simulate the ALD as a whole. First of all, a model for the adsorption of precursor molecules by planar substrates was developed. This model was extended to describe the adsorption of precursor molecules inside a cylindrical hole with an aspect ratio of 20, 40 and 80. The adsorption of precursor molecules is dominated by the absolute sticking coefficient (SC), i.e., the reactivity of the precursor molecules. From the numerical model the saturation profiles along the wall of a cylindrical hole can be determined. From the comparison of the simulated profile with an experimentally determined thickness profile the SC can be determined. This method was used to determine the SC of the precursors examined in the experimental part. The SC of TEMAHf increases exponentially with the substrate temperature. A discrete particle method (DSMC) was used to derive a statistical description of the gas kinetics inside an ALD reactor. Combining the statistical description of the gas transport and the numerical models of the adsorption, it is possible to simulate the ALD for any combination of reactor, substrate and SC. It is possible to distinguish the contribution of the reactor geometry, the process parameters and the process chemistry (SC) to the process efficiency. Therefore, the ALD reactor geometry can be optimized independently of the process chemistry. This method was used to study a shower head ALD reactor. The reactor geometry, the composition of the gas at the inlet and the position of the inlet nozzles was varied in order to find more efficient ALD reactors. The efficiency of the reference geometry is limited by the inlet nozzles close to the exhaust and the decrease of the pressure on the substrate near the exhaust. The efficiency of ALD processes with different SCs was simulated for planar and structured substrates with a diameter of 300 mm and 450 mm.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 13

    Ableitung von CH4 und N2O aus MIPAS-ENVISAT-Beobachtungen

    Get PDF
    Das Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) war ein Fernerkundungsinstrument, das auf dem Satelliten ENVISAT betrieben wurde. Es maß von 2002 bis 2012, wobei es die zwei Messperioden FR und RR gab, die sich in technischen Details unterscheiden. Vergangene Versionen von MIPAS-ENVISAT CH4 und N2O-Profilen haben einen positiven Bias im unteren Teil der Profile für beide MIPAS-Messperioden. Ein Ziel dieser Arbeit ist es, diesen Bias zu reduzieren. Dies geschieht unter Einsatz eines neueren spektroskopischen Datensatzes, der verbesserten Berücksichtigung von Kontinuumsbeiträgen, dem zusätzlichen Bestimmen von H2O und HNO3 während des Retrievals, sowie Anpassungen der Regularisierung und des spektralen Auswertebereichs. Durch diese physikalisch begründeten Änderungen verringern sich die Mischungsverhältnisse der Gase unterhalb von 20 km bei CH4 im Mittel um 0,1 ppmv in der MIPAS-FR-Periode und um 0,17 ppmv während der RR-Periode. Die mittleren N2O-Profile nehmen durch die Änderungen unterhalb von 20 km für die FR-Periode um 10 ppbv und für die RR-Periode um 27 ppbv ab. Mit diesen Maßnahmen wird ein globaler Datensatz abgeleitet. Im Rahmen einer Validierung werden die Profile mit verschiedenen Profilen, die von anderen satellitenbasierten Instrumenten gemessen wurden, verglichen. Dabei wurde darauf geachtet, Verfälschungen durch die unterschiedliche Verteilung der Messungen in Raum und Zeit sowie durch die verschiedenen vertikalen Auflösungen der Instrumente auszuschließen. Es wird eine insgesamt hohe Übereinstimmung zu den Vergleichsinstrumenten gefunden. Der Bias unterhalb von etwa 25 km wurde erheblich reduziert. Der verbliebene positive Bias beträgt für CH4 zwischen 3 und 13 % während der FR-Periode, während der RR-Periode liegt er in der Größenordnung von 10 %. Für N2O findet sich für die FR-Periode ein verbliebener Bias von 2 bis 5 % und für die RR-Periode von 3 bis 10 %. Neben dem Bias werden auch die Form der Profile, ihre Variabilität sowie die Fehlerabschätzungen verglichen und insgesamt eine gute Übereinstimmung zu den Referenzinstrumenten gefunden. In 14 km findet sich bei mittleren tropischen Profilen von CH4 und N2O ein Maximum im Bezug auf die Höhe. Es handelt sich dabei vermutlich um ein verbliebenes Artefakt in den Daten, das durch die im Rahmen dieser Arbeit entwickelten Verbesserungen nicht behoben werden konnte. Die Zeitreihen von CH4 und N2O werden im Hinblick auf lineare Änderungen (Trends), den Einfluss der Quasi-Zweijährigen Oszillation (QBO) und der El-Niño-Southern-Oscillation (ENSO), sowie von saisonalen und halbjährlichen Einflüssen in Abhängigkeit von der Höhe sowie der geographischen Breite untersucht. Dabei finden sich wesentliche Abhängigkeiten der Spurengasverteilungen von der QBO mit einem Maximum im Bereich des Äquators in etwa 40 km Höhe. Die ENSO-Signatur in den Daten ist sowohl höhen- als auch breitenabhängig; ihr größter Einfluss findet sich zwischen 35 und 50 km. Dabei werden Hinweise auf retardierte Effekte gefunden, das heißt die Variation der Mischungsverhältnisse ist phasenverschoben gegenüber den QBO- und ENSO-Zeitreihen. Auch für die Verschiebungen selbst findet sich eine Höhen- und Breitenabhängigkeit. Eine Nachweis, ob sich die Signatur des solaren 11-jährigen Sonnenzyklus in den Zeitreihen findet, scheitert aufgrund der zu kurzen Zeitreihe. Signifikante Trends für CH4 und N2O finden sich vor allem zwischen 20 und 40 km Höhe. Auch hier liegt eine hohe Höhen- und Breitenabhängigkeit vor. Dabei finden sich in der Südhemisphäre überwiegend positive Trends, auf der Nordhalbkugel finden sich in einem Band von etwa 32 bis 37 km in den Tropen bis in zu etwa 13 bis 24 km in den Polargebieten negative Trends. Die Beträge der Trends liegen in der Größenordnung von 10 % dec−1. Diese Trends lassen sich durch die von Stiller et al. (2017) gefundenen meridionalen Verschiebungen der Brewer-Dobson-Zirkulation erklären. Ferner werden Zeitreihen von globalem stratosphärischem Inhalt von CH4 und N2O untersucht. Dabei finden sich lediglich insignifikante Trends in der Größenordnung eines Prozents, obwohl die Mischungsverhältnisse am Boden im entsprechenden Zeitraum zunehmen. Der Verlauf der CH4 und N2O-Volumenmischungsverhältnisse gleichen Eintrittsdatums mit dem Luftalter ist ebenfalls Gegenstand der Arbeit und wird für die Profile der RR-Periode untersucht. Für beide Gase findet sich ein Verlauf, der ungefähr einer logistischen Funktion entspricht. Es werden Zeitreihen von stratosphärische Eintrittswerten, sowie mittlere, rein stratosphärische, Lebensdauern und lokale Änderungsraten in Abhängigkeit vom Luftalter bestimmt. Es wird die Summe aus 2∗[CH4]+[H2O] untersucht. Sie ist ab einem Luftalter von drei Jahren und darüber näherungsweise konstant. Eine Zeitreihe von 2∗[CH4]+[H2O] von 1992 bis 2009 wird aus den Daten abgeleitet. Insgesamt wird durch diese Arbeit klar, dass die Zeitreihen der Mischungsverhältnisse von CH4 und N2O in der Stratosphäre nicht immer direkt dem Verlauf am Boden folgen. Denn sie unterliegen lokal starken Trends, die ihre Ursache in den meridionalen Verschiebungen der Brewer-Dobson-Zirkulation haben. Die Beträge dieser Trends liegen deutlich über den am Boden beobachteten Änderungen. Der gesamte Gehalt der Spurengase in der Stratosphäre sowie ihr Eintrag in die Stratosphäre sind dagegen ungefähr konstant im betrachteten Zeitraum

    Parametrierung elektrischer Äquivalentschaltbilder von PEM Brennstoffzellen

    Get PDF
    In dieser Arbeit ist das statische und dynamische Klemmenspannungsverhalten von PEM Brennstoffzellen untersucht worden. Auf Grundlage der experimentellen Ergebnisse ist ein elektrisches Äquivalentschaltbild für statische und dynamische Zeitbereiche entwickelt und parametriert worden. &nbsp

    Untersuchung von Spulensystemen zur induktiven Energieübertragung von Elektrofahrzeugen. Vergleich von Topologien und Entwicklung einer Auslegungsmethodik

    Get PDF
    Die induktive Ladetechnik erleichtert den Ladevorgang für den Nutzer und leistet so einen wesentlichen Beitrag zur Akzeptanzsteigerung von Elektroautos. Um den komplexen Anforderungen eines marktreifen Energieübertragungssystems gerecht zu werden, ist eine Vielzahl von geometrischen Freiheitsgraden zu beachten. So wird zunächst eine geeignete Spulengeometrie für den jeweiligen Anwendungsfall ausgewählt. Anschließend kann die Topologie durch eine Auslegungsmethodik optimal dimensioniert werden

    Bedeutung des 99m Tc-Uptakes im Zielgewebe für die Planung einer Radioiodbehandlung bei benignen Schilddrüsenerkrankungen

    Get PDF
    Mit einer Radioiodtherapie können immunogene wie auch nicht-immunogene Formen der Hyperthyreose behandelt werden. Begründer der Therapie mit Hilfe von „Strahlen“ war 1906 Abbé, der die Schilddrüse mit Radium bestrahlte. In Deutschland wird die zur Therapie erforderliche Radioaktivitätsmenge anhand der in einem Radioiodtest gemessenen Daten meist mittels der Marinelli-Formel berechnet. Mit dem Ziel, den aufwendigen Radioiodtest durch die einfachere Messung des Technetium-Uptakes zu ersetzen, wurden in dieser retrospektiven Studie die Datensätze von 98 Patienten ausgewertet, bei denen eine Radioiodtherapie wegen funktioneller Autonomie durchgeführt worden war. Zunächst wurde die Beziehung zwischen dem Radioiod- und Technetium-Uptake untersucht, wobei sich ein Spearman-Korrelationskoeffizient von ρ=0,56 (RIU nach 4h) bzw. von ρ=0,45 (RIU nach 24h) zeigte. Als Ergebnis der Untersuchungen konnte festgehalten werden, dass keine ausreichend enge und für alle Adenome gültige Korrelation zwischen TcTU und dem RIU anzunehmen ist. Daher wurde mit Hilfe der multivariaten Regressionsanalyse ein neues Modell zur Berechnung der Therapieaktivität entwickelt, welches den RIU durch den TcTU ersetzt und anstatt der effektiven HWZ die gemessenen Werte von fT3, fT4 und TSH verwendet. In einem ersten Schritt wurde überprüft, ob sich bezogen auf einzelne Parameter auffallende Abweichungen ergaben. Hierauf aufbauend wurde geprüft, inwieweit die neu errechnete Aktivität mit der nach der Marinelli-Formel berechneten Therapieaktivität übereinstimmt. Der positive monotone Zusammenhang, der mit einem ρ=0,78 deutlich stärker als der ermittelte Zusammenhang zwischen TcTU und RIU ist, bestätigt die Eignung des neu entwickelten Modells. Allerdings tendiert dieses bei niedrigen Therapieaktivitäten zu einer Verschiebung zu höheren Werten, während bei höheren Therapieaktivitäten tendenziell geringere Werte als mit der Marinelli-Formel berechnet wurden. Des Weiteren ergaben sich trotz insgesamt guter Korrelation in 42% der Fälle erhebliche Abweichungen über 20%. Bezogen auf den Therapieerfolg wäre dieser bei Anwendung des TcTU-Modells aufgrund gleicher oder größerer Aktivität in mindestens 62,2% zu erwarten. Lässt man eine Unterschreitung von bis zu 10% zu, wäre ein Erfolg sogar in 76,8% der Fälle zu vermuten. Bei der Bewertung der möglichen, jedoch nicht gesicherten Misserfolge hätten möglicherweise zwei Patienten von einer Anwendung des neuen Modells und dessen in diesen Fällen höherer Aktivitätsmenge profitiert. Das neu entwickelte Modell zur Berechnung der Therapieradioaktivität zeichnet sich durch eine hohe Praxisfreundlichkeit aus, da es die Behandlungsplanung innerhalb eines Untersuchungstages und unter Nutzung des stets verfügbaren 99mTc-Pertechnetats zulässt. Hierdurch erlaubt es eine deutliche Vereinfachung der Therapieplanung; dies ist jedoch nur dann von Relevanz, wenn die bisherige Erfolgsrate nicht abnimmt. Eine valide Beurteilung ist daher nur anhand einer prospektiven und randomisierten Vergleichsstudie möglich

    Entwicklung von rangbasierten Kriterien und Methoden zur Optimierung der Normalisierung von Genexpressionsexperimenten am Beispiel membranbasierter cDNA-Arrays

    Get PDF
    Die Genexpressionsmessung mit DNA-Arrays ist eine sehr komplexe und dadurch fehleranfällige Methode. Jeder der notwendigen Einzelschritte der Messung beeinflußt das letztendliche Meßergebnis durch verschiedene Parameter in signifikanter Weise. Im Gegensatz zu herkömmlichen statistischen Daten mit vielen Messungen und wenig Meßparametern beinhalten die Arraydaten sehr viele Meßparameter und nur wenig Messungen. Der Normalisierung kommt damit eine zentrale Rolle in der Datenanalyse zu. Diese soll die Meßparameter berücksichtigen und die Meßdaten auf die zumessende Größe „Anzahl einer bestimmten mRNA-Spezies in einer definierten Probe“ zurückführen oder zumindestens eine weitgehende Vergleichbarkeit zwischen Experimenten herstellen. Im Rahmen dieser Arbeit wurde ein einfaches Hybridisierungsmodell entwickelt, um Einflüsse von Meßparametern auf die Signalfunktion abzuschätzen. Durch das Hybridisierungsmodell kann der zentrale Meßschritt der Hybridisierung der immoblisierten DNASonde mit der in Lösung befindlichen cDNA-Probe simuliert werden. Hiermit können die Art und Stärke der Haupteinflußgrößen abgeschätzt werden. Für quantitative Aussagen sind die dem Modell zugrunde liegenden Annahmen zu einfach und die verfügbaren Informationen zu unvollständig. Qualitative Vorhersagen sind dagegen möglich. So kann z.B. mengeninduzierte Kreuzhybridisierung auf Oligoarrays beschrieben und verstanden werden. Der zweite und Hauptteil dieser Arbeit beschäftigt sich mit der Normalisierung von cDNA-Filterarrays. Dazu wurde mehrere Skalierungsmethoden und eine nichtlineare adaptive Methode miteinander verglichen. Dabei konnte gezeigt werden, daß die vom Autor entwickelte Normalisierungsmethode des asymmetrisch gestutzten Mittels bei geeigneter Parametrisierung in Bezug auf Testdaten den geringsten Normalisierungsfehler verursacht. Für die Realdaten stellte sich ein leichter Vorteil der Normalisierung durch den Spezialfall des 2%igen oberen gestutzten Mittels heraus, da es damit möglich ist den Einfluß von Sättigungseffekten etc. auf den Skalierungsquotienten zu minimieren. Ausführlich wurden dabei die Grundlagen der rangbasierten Normalisierungsmethoden erörtert und der Fehlereinfluß der nichtlinearen Rangwertnormalisierung diskutiert. Für die Qualitätsbeurteilung und Normalisierungskontrolle erwiesen sich zwei rangbasierte Kriterien als sehr nützlich: die Rang-Intensitäts-Kurven und die davon abgeleitete relative Rang-Intensitäts-Standardabweichung. Beide Kriterien wurden dabei erstmals für die Genexpressionsanalyse angewandt. Ein weiterer Aspekt der zugehörigen Visualisierungen lieferte die Grundlage für die retrospektive Fehlerabschätzung aus realen Genexpressionsdaten. Es wurde gezeigt, daß die mittleren negativen Werte der Rang-Intensitäts-Verteilungen sich proportional zur Standardabweichung des statistischen Rauschanteils verhalten
    corecore