7,633 research outputs found

    Scalable Solutions for Automated Single Pulse Identification and Classification in Radio Astronomy

    Full text link
    Data collection for scientific applications is increasing exponentially and is forecasted to soon reach peta- and exabyte scales. Applications which process and analyze scientific data must be scalable and focus on execution performance to keep pace. In the field of radio astronomy, in addition to increasingly large datasets, tasks such as the identification of transient radio signals from extrasolar sources are computationally expensive. We present a scalable approach to radio pulsar detection written in Scala that parallelizes candidate identification to take advantage of in-memory task processing using Apache Spark on a YARN distributed system. Furthermore, we introduce a novel automated multiclass supervised machine learning technique that we combine with feature selection to reduce the time required for candidate classification. Experimental testing on a Beowulf cluster with 15 data nodes shows that the parallel implementation of the identification algorithm offers a speedup of up to 5X that of a similar multithreaded implementation. Further, we show that the combination of automated multiclass classification and feature selection speeds up the execution performance of the RandomForest machine learning algorithm by an average of 54% with less than a 2% average reduction in the algorithm's ability to correctly classify pulsars. The generalizability of these results is demonstrated by using two real-world radio astronomy data sets.Comment: In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 11, 11 page

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection

    Get PDF
    Multi-Verse Optimization (MVO) is one of the newest meta-heuristic optimization algorithms which imitates the theory of Multi-Verse in Physics and resembles the interaction among the various universes. In problem domains like feature selection, the solutions are often constrained to the binary values viz. 0 and 1. With regard to this, in this paper, binary versions of MVO algorithm have been proposed with two prime aims: firstly, to remove redundant and irrelevant features from the dataset and secondly, to achieve better classification accuracy. The proposed binary versions use the concept of transformation functions for the mapping of a continuous version of the MVO algorithm to its binary versions. For carrying out the experiments, 21 diverse datasets have been used to compare the Binary MVO (BMVO) with some binary versions of existing metaheuristic algorithms. It has been observed that the proposed BMVO approaches have outperformed in terms of a number of features selected and the accuracy of the classification process

    Evolutionary algorithm-based analysis of gravitational microlensing lightcurves

    Full text link
    A new algorithm developed to perform autonomous fitting of gravitational microlensing lightcurves is presented. The new algorithm is conceptually simple, versatile and robust, and parallelises trivially; it combines features of extant evolutionary algorithms with some novel ones, and fares well on the problem of fitting binary-lens microlensing lightcurves, as well as on a number of other difficult optimisation problems. Success rates in excess of 90% are achieved when fitting synthetic though noisy binary-lens lightcurves, allowing no more than 20 minutes per fit on a desktop computer; this success rate is shown to compare very favourably with that of both a conventional (iterated simplex) algorithm, and a more state-of-the-art, artificial neural network-based approach. As such, this work provides proof of concept for the use of an evolutionary algorithm as the basis for real-time, autonomous modelling of microlensing events. Further work is required to investigate how the algorithm will fare when faced with more complex and realistic microlensing modelling problems; it is, however, argued here that the use of parallel computing platforms, such as inexpensive graphics processing units, should allow fitting times to be constrained to under an hour, even when dealing with complicated microlensing models. In any event, it is hoped that this work might stimulate some interest in evolutionary algorithms, and that the algorithm described here might prove useful for solving microlensing and/or more general model-fitting problems.Comment: 14 pages, 3 figures; accepted for publication in MNRA

    An Efficient High-Dimensional Gene Selection Approach based on Binary Horse Herd Optimization Algorithm for Biological Data Classification

    Full text link
    The Horse Herd Optimization Algorithm (HOA) is a new meta-heuristic algorithm based on the behaviors of horses at different ages. The HOA was introduced recently to solve complex and high-dimensional problems. This paper proposes a binary version of the Horse Herd Optimization Algorithm (BHOA) in order to solve discrete problems and select prominent feature subsets. Moreover, this study provides a novel hybrid feature selection framework based on the BHOA and a minimum Redundancy Maximum Relevance (MRMR) filter method. This hybrid feature selection, which is more computationally efficient, produces a beneficial subset of relevant and informative features. Since feature selection is a binary problem, we have applied a new Transfer Function (TF), called X-shape TF, which transforms continuous problems into binary search spaces. Furthermore, the Support Vector Machine (SVM) is utilized to examine the efficiency of the proposed method on ten microarray datasets, namely Lymphoma, Prostate, Brain-1, DLBCL, SRBCT, Leukemia, Ovarian, Colon, Lung, and MLL. In comparison to other state-of-the-art, such as the Gray Wolf (GW), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), the proposed hybrid method (MRMR-BHOA) demonstrates superior performance in terms of accuracy and minimum selected features. Also, experimental results prove that the X-Shaped BHOA approach outperforms others methods
    • …
    corecore