72 research outputs found

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    A bacterial foraging optimization and learning automata based feature selection for motor imagery EEG classification

    Get PDF
    Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds

    Effective EEG analysis for advanced AI-driven motor imagery BCI systems

    Get PDF
    Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets.Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets

    Application of Deep Neural Network in Healthcare data

    Get PDF
    Biomedical data analysis has been playing an important role in healthcare provision services. For decades, medical practitioners and researchers have been extracting and analyse biomedical data to derive different health-related information. Recently, there has been a significant rise in the amount of biomedical data collection. This is due to the availability of biomedical devices for the extraction of biomedical data which are more portable, easy to use and affordable, as an effect technology advancement. As the amount of biomedical data produced every day increases, the risk of human making analytical and diagnostic mistakes also increases. For example, there are approximately 40 million diagnostic errors involving medical imaging annually worldwide, hence rise a need for the development of fast, accurate, reliable and automatic means for analysis of biomedical data. Conventional machine learning has been used to assist in the analysis and interpretation of biomedical data automatically, but always limited with the need for feature extraction process to train the built models. To achieve this, three studies have been conducted. Two studies were conducted by using EEG signals and one study by using microscopic images of cancer cells. In the first study with EEG signals, our method managed to interpret motor imaginary activities from a 64 channels EEG device with 99% classification accuracy when all the 64 channels were used and 91.5% classification when the number of channels was selected to eight (8) channels. In a second study which involved steady-state visual evoked potential form of EEG signals, our method achieved an average of 94% classification accuracy by using two channels, skin like EEG sensor. In the third study for authentication of cancer cell lines by using microscopic images, our method managed to attain an average of 0.91 F1-score in the authentication of eight classes of cancer cell lines. Studies reported in this thesis, significantly shows that CNN can play a major role in the development of a computerised way in the analysis of biomedical data. Towards provision of better healthcare by using CNN in analysis of different formats of biomedical data, this thesis has three major contributions, i) introduction of a new method for EEG channels selection towards development of portable EEG sensors for real-life application, and ii) introduction of a method for cancer cell lines authentication in the laboratory environment towards development of anti-cancer drugs, and iii) Introduction of a method for authentication of isogenic cancer cell lines

    Dimension Reduction Using New Bond Graph Algorithm and Deep Learning Pooling on EEG Signals for BCI

    Get PDF
    One of the main challenges in studying brain signals is the large size of the data due to the use of many electrodes and the time-consuming sampling. Choosing the right dimensional reduction method can lead to a reduction in the data processing time. Evolutionary algorithms are one of the methods used to reduce the dimensions in the field of EEG brain signals, which have shown better performance than other common methods. In this article, (1) a new Bond Graph algorithm (BGA) is introduced that has demonstrated better performance on eight benchmark functions compared to genetic algorithm and particle swarm optimization. Our algorithm has fast convergence and does not get stuck in local optimums. (2) Reductions of features, electrodes, and the frequency range have been evaluated simultaneously for brain signals (left-handed and right-handed). BGA and other algorithms are used to reduce features. (3) Feature extraction and feature selection (with algorithms) for time domain, frequency domain, wavelet coefficients, and autoregression have been studied as well as electrode reduction and frequency interval reduction. (4) First, the features/properties (algorithms) are reduced, the electrodes are reduced, and the frequency range is reduced, which is followed by the construction of new signals based on the proposed formulas. Then, a Common Spatial Pattern is used to remove noise and feature extraction and is classified by a classifier. (5) A separate study with a deep sampling method has been implemented as feature selection in several layers with functions and different window sizes. This part is also associated with reducing the feature and reducing the frequency range. All items expressed in data set IIa from BCI competition IV (the left hand and right hand) have been evaluated between one and three channels, with better results for similar cases (in close proximity). Our method demonstrated an increased accuracy by 5 to 8% and an increased kappa by 5%

    EEG correlates and methods for learning in brain-computer interaction.

    Get PDF
    Motor Imagery (MI)-based Brain-Computer Interface (BCI) has emerged as a promising approach to provide an alternative means of communication, control and rehabilitation for people with severe motor impairments. However, the efficiency and efficacy of BCI systems remain to date rather limited, preventing their out-of-lab implementation. This thesis offers a few stepping stones towards more user-oriented BCI, shifting the focus to subject learning, neuroplasticity monitoring and the co-adaptation between the human and the ML BCI decoder. First, I seek to identify the electroencephalography (EEG) correlates of learning to drive a racing car, an example of complex motor skills. Additionally, I explore the role of anodal transcranial Direct Current Stimulation (tDCS) in enhancing race-driving training. My work determines that theta EEG rhythms and alpha-band effective functional connectivity between frontocentral and occipital cortical areas are salient neuromarkers of the acquisition of racing skills. I also discern a possible tDCS effect in accelerating the pace of learning. My thesis presents a novel feature selection method which combines the conventional data-driven approach with BCI expert knowledge through Fuzzy Logic. I show that my algorithm achieves statistically significant improvement in terms of classification accuracy, feature stability and class bias. The proposed method can promote subject learning during BCI training by keeping the selected features within a “learnable”, physiologically relevant manifold. One of the main motivations behind co-adaptative BCI has been the avoidance of boring and laborious open-loop calibration sessions, imposed at the beginning of user training to collect data for ML BCI model training. For BCI-based rehabilitation, these issues become pressing, demotivating for the patients and hard to fit logistically into a strict clinical schedule. Towards alleviating this issue, this thesis identifies different methods for calibration-free BCI-based rehabilitation. My results indicate that calibration-less BCI-based rehabilitation algorithms are possible without compromising performance. The proposed methods thus lift a major barrier currently obstructing the translation of BCI-based therapies

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc
    corecore