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Abstract: One of the main challenges in studying brain signals is the large size of the data due to the
use of many electrodes and the time-consuming sampling. Choosing the right dimensional reduction
method can lead to a reduction in the data processing time. Evolutionary algorithms are one of the
methods used to reduce the dimensions in the field of EEG brain signals, which have shown better
performance than other common methods. In this article, (1) a new Bond Graph algorithm (BGA) is
introduced that has demonstrated better performance on eight benchmark functions compared to
genetic algorithm and particle swarm optimization. Our algorithm has fast convergence and does
not get stuck in local optimums. (2) Reductions of features, electrodes, and the frequency range have
been evaluated simultaneously for brain signals (left-handed and right-handed). BGA and other
algorithms are used to reduce features. (3) Feature extraction and feature selection (with algorithms)
for time domain, frequency domain, wavelet coefficients, and autoregression have been studied
as well as electrode reduction and frequency interval reduction. (4) First, the features/properties
(algorithms) are reduced, the electrodes are reduced, and the frequency range is reduced, which
is followed by the construction of new signals based on the proposed formulas. Then, a Common
Spatial Pattern is used to remove noise and feature extraction and is classified by a classifier. (5) A
separate study with a deep sampling method has been implemented as feature selection in several
layers with functions and different window sizes. This part is also associated with reducing the
feature and reducing the frequency range. All items expressed in data set IIa from BCI competition
IV (the left hand and right hand) have been evaluated between one and three channels, with better
results for similar cases (in close proximity). Our method demonstrated an increased accuracy by 5
to 8% and an increased kappa by 5%.

Keywords: bond graph methodology; algorithms; dimension reduction; feature selection; electrode
selection; frequency selection; common spatial pattern (CSP); time domain and frequency domain;
frequency bands or filter bank (FB)

1. Introduction

Today, the EEG is used as a non-invasive system to record brain signals from electrodes
on the scalp for brain activity. Brain signals aim to control systems for sick and healthy
people, playing an essential role in various programs in different fields [1–7]. The primary
advantage of processing brain signals is to discover information for prediction and classi-
fication. Brain signals have some general information-processing steps: filtering, feature
extraction, feature selection, and classification. Most researchers have focused on feature
selection for finding new suitable methods and algorithms for improvement [8–14].

Feature selection can appear in three possible methods.

• In the first method, feature selection (one-dimensional and more) after data prepro-
cessing (e.g., filtering) and before feature extraction (if used). If the feature extraction
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is not used, the selected features will be sent directly to the classifiers for classification
after reducing the dimensions.

• In the second method, the following steps are performed respectively: (1) feature
extraction, (2) feature selection, and (3) classification.

• In the third method, after reducing the dimensions of the features (i.e., feature selec-
tion), the following steps are performed, respectively: (1) feature extraction, (2) feature
selection, and (3) classification.

In some studies, using the first and third methods, a dimensional reduction is used to
reduce features, reduce electrodes, or both.

In all of the methods mentioned above, the features from a larger set (including
channels, etc.) are converted into better and smaller feature sets by removing the less
effective features. In most cases, a certain frequency range (8–30 Hz for the brain signal) is
processed for specific purposes (such as left and right-hand imaging). In most studies, all
the features along with specific channels or whole channels have been considered [15–20].
In addition, in some studies, one-dimensional or two-dimensional reduction methods are
performed for reducing features and the electrodes. However, none of the previous studies
examined reducing the frequency range from one to three electrodes.

In some articles, certain frequency ranges have been used. In other words, feature
reduction is used by reducing the frequency range with a single electrode. Given that
human brain signals are generally a combination of different domains, examining them as
a single domain is challenging and has been studied in many previous studies [20–32]. In
this study, we propose a new optimization algorithm based on the concept of Bond Graph,
which is the modeling and simulation language for multi-domain systems. We examined
and analyzed the reduction of frequency intervals of brain signals.

The main contributions of this paper are as follows:

1. Introduction of the Bond Graph algorithm (BGA), which demonstrated a good per-
formance compared to the genetic algorithm (GA) and particle swarm optimization
(PSO) in the benchmark functions. The assessment was performed by testing on eight
benchmarks and EEG brain signals of right and left-hand perception (two classes).
Important features of our proposed algorithm (i.e., BGA) include fast convergence
and no trapping in the local optimization.

2. The reduction of features, reduction of electrodes, and frequency range have been
evaluated simultaneously.

3. Feature extraction and feature selection for time domain, frequency domain, wavelet
coefficients, and autoregression have been investigated as feature reduction, electrode
reduction, and frequency range reduction.

4. Initially, the features, electrodes, and frequency are reduced, and then, new signals
are made based on them using special formulas for each row. Then, a common spatial
pattern (CSP) is performed to remove noise and feature extraction, which is followed
by classification.

5. A separate study with a deep learning sampling method has been implemented as
feature selection in several layers with different functions and different window sizes.
This part also includes feature and frequency reduction.

In cases 1 to 4, the proposed BGA, GA, PSO, and Quantum Genetic Algorithm (QGA)
are used for evaluation. In case 5, no algorithm was required, but simple computational
functions were used.

The main objective of this study is dimension reduction in single and multi-domain
brain signals. For this purpose, five general models (seven model scenarios) have been
implemented for testing:

1. One filter bank and single channel from a set of two filter banks (i.e., 2 and 5) with
two channels (i.e., right and left hemispheres of the brain) have been investigated
by four main algorithms, i.e., BGA, GA, PSO, and QGA. The two channels’ features
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are selected from the right and left hemispheres. The reduction of features for two
channels is considered separately for each channel.

2. A combination of filter banks with a single channel from a set of four filter banks
(i.e., 2, 5, 6, and 9) and two channels (i.e., right and left hemispheres of the brain)
have been investigated with the same algorithms. The reduction of features for two
channels is considered separately for each channel.

3. Four general methods, including time domain, frequency domain, wavelet coefficients,
and autoregression have been used for feature extraction from a combination of two
filter banks (i.e., 2 and 5) as a new signal with a single channel (i.e., right or left
hemispheres of the brain), two channels (i.e., right and left hemispheres of the brain),
or three channels (i.e., right and left hemispheres and center of the brain). Then,
feature selection is done by BGA, GA, PSO, and QGA separately.

4. Feature selection was done by four main algorithms on a combination of filter banks
(from filter banks 2, 5, and 6) and two (i.e., right and left hemispheres of the brain) or
three channels (i.e., right and left hemispheres and center of the brain). Then, using
special formulas, new signals were formed, which were used as input for CSP. Finally,
the ELM classifier classified the extracted features from CSP.

5. Feature selection was performed by deep learning sampling with five general func-
tions on all filter banks together or each filter bank individually with all channels in
three sampling models. In the first sampling model, each filter bank with the same
functions was used in all layers. In the second sampling model, the functions were
the same selected for all layers and all filter banks. In the third sampling model, the
functions were randomly selected for each layer.

The rest of the article is organized as follows: In the Section 2, a summary of previous
work on the dimensionality in all items is provided for brain signals. Then, in the Section 3,
we review the previous related work and define the Bond Graph and how to implement
the proposed algorithm and use it to reduce the dimension in brain signals and reduce the
dimension by sampling. The configuration of the experiments and the data set used in this
article are described in the Section 4. Finally, in the Section 5, the results of the experiments
and beads are analyzed and examined. The last part presents the conclusion.

2. Previous Work

In the article [10], Adham et al. implemented specific individual and specific masks
working with the CAR method, standard resource methods, and ELM. The method was
a two-dimensional reduction of features and electrodes, which has achieved accuracy in
the range of 15 to 32%. In the article [33], Jing Luo et al. performed the feature extraction
method by analyzing the wavelet components for two channels (each channel separately)
in two modes, first with a dynamic frequency feature selection method and second with a
full frequency range (without frequency range selection). They obtained accuracy results of
68% and 67% for the two modes, respectively. So, the feature selection had improved their
accuracy. In their work, feature selection was performed after feature extraction, which
reduced the channels from 22 to two channels. Liu et al. [34] used the glow algorithm
to select the features. First, feature extraction is performed by CSP for all channels and
three important and specific channels individually (channels are left hemisphere, right
hemisphere, and center of the brain). The GA, PSO, and a Firefly Algorithm obtained
59.85%, 60%, and 70.20% accuracies, respectively. In the article [35], Bashar Awwad used
the sixth-order autoregression method with a sample window shift. They reduced the
features to 20 features (characteristics) with PCA and then classified them with LDA. They
obtained accuracy results between 46.8% and 59% for one channel and between 48% and
62% for two channels. They reported the average of the best accuracies in different non-
identical channels as 59.67%. In the article [36], Adham et al. designed an individual and
specific work mask that has been shared between individuals, so that part of the data is
trained for subjects and tested for the untrained subjects. Features reduction and channel
reduction were up to 90%, and the average accuracy was between 73.5% and 74.5%. In
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the article [37], Nakisa et al. used frequency-temporal and temporal-frequency feature
extraction. They implemented five channels with ACO, DE, GA, SA, and PSO algorithms
along with the PNN classifier to select the features. The best result in this study was 65% for
four classes. Peterson [38] used the MNE and Infomax preprocessing methods along with
feature extraction with spectral power by selecting the feature by GA and SVM classifier.
In this paper, for two classes, the number of channels has been reduced from 32 to two. The
accuracy range of the subject is between 55% and 67%. By changing the method of the CSP
with SVM classifier, Mahnaz Arvandeh [39] obtained 70.90% accuracy for three channels,
79.07% for four to 14 channels, and 81.63% accuracy for nine to 19 channels, while the total
accuracy for the standard CSP is 79.23%.

Yang et al. [40] used the time domain parameter method to extract the feature and the
time-space optimizer to select the optimal channels along with the Fischer analysis classifier.
When three channels were selected from 118 channels with BP and TDPS, average results
of 71% and 72% were obtained, respectively. When using all the channels, the accuracy
was 76%. While in their proposed model, they could increase the accuracy up to 78%.
Chen et al. [41] used the method of extracting features from nine filter banks (bands) using
the CSP for each filter bank. After feature selection from features collected from all the
filter banks, the NBW classifier is used for classification. In their model, the reduction
of channels was three or 13 out of 22 channels. The average accuracy was 75% for three
specific channels and 87% for 13 channels. In the article [42] by Izabela Rejer, the BSS and
PCA methods were used to select the feature. Three channels and 12 filter banks (bands)
were used. However, in this study, only one person was examined. For different modes,
the accuracy was between 55% and 80% for FSS and between 52% and 87% for PCA. Eslahi
et al. [43] have implemented a modified feature extraction method with wavelet subbands
and feature selection by GA with four classifiers. A person with three channels was used
for the experiment. Results between 68% and 84% were obtained for different classifiers.
Wang [44] used the method of the Warp Laser Space Group. The feature extraction is based
on the statistical time domain, spectral power, autoregression, and wavelet coefficients
in their study. The Warp Laser space group with strategy autoregression model has been
used to select channels and features. The total results of the dataset were 83.37%, which
reduced the number of channels to 17 and 18 channels, resulting in an accuracy of 84.7%.
Kuman [45] used noise elimination cases, cross-correlation normalization by selecting
effective channels (from the left and right nipples), and the calculation of data statistics
along with ANN and SVM classifiers. Data are collected by a sensory headset device to
imagine left and right finger movements. With 14 channels and 420 features, they obtained
an average accuracy of 95%. With 10 features and 14 channels, they obtained an average
accuracy of 96.69%. With three features and 14 channels, they obtained an average accuracy
of 97.34%. In the article by Kasun Amarasinghe [46], where the sensing headset collected
the data, the feature selection method was used in addition to the SVM, ANN, and NB
classifiers. With 14 channels and 11 features selected for three classes and one person for
NB, the accuracy was 82.97% for ANN 83.07% and 83.26% for SVM.

Chin [47] used the channel analysis method to select channels for filtering banks.
Three to 14 channels were selected for filtering banks, and feature extraction was done
by CSP. Channel reduction was made based on the accuracy of its valid crossover, and
the feature reduction was not performed. The total average between 13 and 14 channels
is 84.51%, and for three channels, it is 75%. Ang et al. [48] used feature selection from
the filter bank common spatial pattern (FBCSP) method with the NBPW classifier. With
the original filter bank of CSP (oFBCSP), kappa was 60.7%. With the S filter bank of CSP
(sFBCSP), kappa was 61.9%. With the E filter bank of CSP (eFBCSP), kappa was 63.5%.

Wang et al. [49] applied the FDCSP frequency amplitude method. The accuracy results
obtained for CSP, FDCSP, SCSP, TRCSP, WTRCSP, and FBCSP were 78%, 82.94%, 81.63%,
78.79%, 78.47%, and 79.30% respectively. Finally, Tang et al. [50] used the neural network
model to extract features with five layers of CNN, with different classifiers including Power
+ SVM, CSP + SVM, and Power + SVM. They achieved accuracy of 81.25%, 82.61%, and
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77.17%, respectively, for each classifier, and the average of the proposed method for the
two subjects was 86.41%.

We summarize the advantage and disadvantages of the previous methods that we
presented above:

Advantages:

• Most of them use heuristic algorithms, which achieved good performance related to
their works.

• The heuristic algorithms are suitable for selecting features with or without extracting
features using conventional methods.

• In all of them, two general models are used that include (1) feature selection on
preprocessed data before the final classification, (2) feature selection after feature
extraction on preprocessed data followed by the final classification. It has been
demonstrated that the second method is more efficient.

• Most of them used continuous frequency domain for processing.
• All of the previous works only used conventional algorithms for the EEG area.

Disadvantages:

• The heuristic algorithms fail to converge very fast.
• All of them only used a large frequency domain (8 to 30 Hz) that is not effective

enough for feature extraction.
• Even though the conventional algorithms are well established, there is still a need for

new methods with higher performance and accuracy for processing the EEG data.
• A combination of two general models is not studied.
• Smaller continuous domains reduce the noise and distinctive features between classes

and, as a result, reduce the accuracy. Whereas larger continuous domains increase the
noise and distinctive features between classes and, as a result, reduce the accuracy.
However, a combination of small and large frequency domains to reduce the noise
and increase the distinctive features between classes is not studied.

3. Material and Methods
3.1. Bond Graph Introduction

Bond Graph presents a graphical representation of the dynamic behavior of indepen-
dent domains from physicals systems [51–53]. A graphical representation of the Bond
Graph is similar to a flow chart diagram with a different meaning for analyzing the systems.
The Bond Graph represents the state of space as a dialogue and interaction inside, outside,
and between the systems. The Bond Graph uses a graphical model to show and explain
details of the system and the relationship of subsystems and elements. This relationship
shows the implementation of the calculation of the system for solving problems. Similar to
the block diagram, it uses a single-current graph and also represents one-way information.
The Bond Graph can integrate multiple domains in the best possible way.

The basis of the Bond Graph relies on bands. These bands connect a single port (port),
a double port, and several ports of the elements. A band is a line connection between
two and more elements, and the port is the connection point between an element and a
band. The band provides energy and power in real time. Power variables consist of pairs
of variables distinguished by the band’s current (power is calculated based on flow and
effort). These variables are flow and effect variables. For example, the variables of flow and
effort are electric current and electric voltage in electrical systems, respectively. Meanwhile,
the variables of flow and effort are velocity and force in mechanical systems, respectively.
Figure 1 shows an example of a Bond Graph architecture for the mechanical field.
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Figure 1. The following figure shows the structure of a mechanical model on the left and the Bond
Graph model on the right.

The connection model of the sub-models determines the priority and superiority in
the direction of computing the bands. Calculations of the port variables will be determined.
The structure of the formula calculation is determined based on the connection model,
which contributes to solving the problem. Bond Graphs can be combined with diagram
block ports. Bond Graph models can be used as power ports, signal ports, and output
signals. In the physical domain, the concept of a band (energy (electric potential) or current
(electric current)) can be used to support modeling processes.

For example, in electrical networks, port variables are moved through the Bond Graph
elements, the electrical voltage is moved across the element port, and the electric current is
moved through the port. A port is an interface from one element to another (connecting
points of bands). Power is obtained from the potential multiplication relation of the flow,
which is always changing. Power is changed by the system port. A power band connection
means that the band notes that the energy changes between the elements. A band is the
design of the edges with the elements and notes the direction of the bands in a positive
direction from the energy flow. We have a flow source that delivers power to the system,
and other elements absorb power.

The Bond Graph consists of two connections.
Connection 1: The flow (current) through all connection bands is the same (the

algebraic sum of the currents at the input and output nodes is zero). It means that the
algebraic sum of effort (voltage) differences along one closed loop is zero (Kirchhoff’s
voltage law).

Connection 0: The input effort (voltage) of the connection of all elements is the same.
The effort (voltage) across all the band connections is the same, which means that the
algebraic sum of the current is zero (Kirchhoff’s current law).

The variables of flow and effort are electric current and electric voltage in electrical
systems, respectively. Figure 1 shows an example of a Bond Graph architecture for a
mechanical field.

Table 1 describes several domains for the Bond Graph methodology that show the
flow and effort variables in the various domains associated with them. The most basic
variables of each domain are introduced as flow and effort variables that can be understood
in different domains.

Table 1. Define flow and effect variables in different domains.

Energy Domain f(t) e(t)

Generalized
Name Generalized flow Generalized effort

Symbol f (t) e(t)

Linear mechanical
Name Velocity Force

Symbol v(t) F(t)

Electromagnetic
Name Current Voltage

Symbol i(t) V(t)

Hydraulic pneumatic
Name Volume flow rate Pressure

Symbol ϕ(t) P(t)
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We briefly describe the graph structure of the Bond Graph below.
To produce a graph-band model, we start with an ideal physical model. In fact, there

is a systematic method that we present here as a method or procedure. This procedure
generally consists of identifying the basic domains and elements, generating the connection
structure (called the connection structure), placing the elements, and possibly simplifying
the diagram. This method is different for mechanical domains compared to other domains.
These differences are expressed between the parentheses. This is because elements must be
linked to different variables or between global variables. Effort variables in non-mechanical
domains and velocities (flow variables) in mechanical domains are the global variables
we need.

The Bond Graph includes the following steps. Steps 1 and 2 are about identifying
domains and elements. Steps 3 to 5 describe the production of a connection structure,
which is called a connection structure.

1. Determine which physical domains exist in the system and identify all the basic
elements such as C or C-elements (storage elements such as a capacitor or spring), I or
I-elements (storage elements such as an inductor or mass), R or R-elements (dissipate
free energy such as resistors), SE (sources effort such as motors), SF (sources flow such
as motors), TF (transformer, within the same domain (toothed wheel) or between
different domains (electromotor)), and GY (gyrator such as an electromotor, a pump,
or a turbine). For this purpose, each element is assigned a unique name to distinguish
it from the other.

2. Specify a reference source in the ideal physical model for each domain, given that
only resources are directed in the mechanical realm.

3. Identify other variables (mechanical domains: speed) and assign unique names
to them.

4. Graphically design these effort variables (mechanical: velocities) rather than the
source, zero connection (connection 0), and connection mechanics (connection one).

5. Identify all the effort variables (mechanical: speed difference (=current)) required for
the ports of all the elements listed in step 1 of the junction structure.

3.2. Bond Graph Optimization and Algorithm

The optimization algorithm proposed in this paper is based on the bond graph method-
ology. Our proposed algorithm leads to the good convergence and performance of these
models. The main structure of this optimizer model and some steps that have been taken
to design our algorithm are presented below:

1. Determining the number and type of the physical domains (models): In our model,
four specific domains with different formulas for each domain (type of domains)
are introduced.

2. Combination of subdomain details: The subdomains are small linear algebraic equa-
tions that form bigger algebraic formulas (by addition of them) for calculating the
changes in features. Since the small formulas are linear, they lead to the formation
of bigger linear formulas. Variables of the small algebraic formulas are effective
element attributes.

3. Identifying the basic elements: In our method, the best general element or best local
element, the worst general element or any local element, and the average public
element or average local element are introduced as basic elements.

4. Identifying all the influencers and naming them: Different combination formulas
that are specific to each domain (model) are connected based on ports, and the most
influential combinations are determined. Each linear algebraic addition forms a port
in our model.

5. Determining the algebraic sum of coefficient of each domain: the algebraic sum of the
coefficient of each domain is set to zero or one.

6. Calculation of power based on current or energy: Finally, the power is calculated
based on the values obtained multiplied by random numbers. Firstly, values obtained
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from formula(s) are multiplied by one random number. Secondly, new element values
are calculated by adding the powers of each element and its old element value.

In our algorithm, the Bond Graph concepts are partially used with some modifications.
This algorithm can be used similarly to other algorithms to optimize problems in all
areas. However, unlike other algorithms, the same or different formula can be used for
each dimension. Our algorithm can be customized by modification of the base formulas,
domain, and effective elements for other optimization problems.

Our four domains are given below with their formulas and combinations:
All coefficients are calculated as follows.

α = α1 + α2 + α3 + α4; α = 0 or α = 1 (1)

where α1, α2, α3, and α4 are the coefficients used in the four models.
The values of the coefficients are obtained from the distance of the identified elements

or the current element, which is as follows:

α1 = xce − xgb (2)

α2 = xce − xglb (3)

α3 = xce − xnlb (4)

α4 = xce − xgw (5)

αall = α1 + α2 + α3 + α4, i f α = 1 (6)

α1 = α1/αall , α2 = α2/αall , α3 = α3/αall , α4 = α4/αall (7)

αall = αi + αj + αk; i, j, k = 1 . . . 4 , i#j#k, i f α = 0 (8)

αd = −αall , d = 1 . . . 4, d #i#j#k. (9)
xce, xgb, xglb, xgw, and xnlb are variables for the current element, global best, global–local
best, global worst element, and normal local best. These variables are calculated in a similar
way as in the PSO algorithm, but for normal local best (nlb), near to the average of them
is selected.

In this section, four domains are considered to introduce one formula or set of formulas
for updating each domain. For each domain, the combination of models is considered
different. If the calculation formula for a domain is more than one, the calculation for new
elements is divided between formulas, respectively. The following ranges and formulas
are stated in 4, 5, 6, and 7, which are:

∆EModel_1 = α1 ×
(

xce − xgb

)
+ α2 ×

(
xce − xglb

)
+ α3 × (xce − xnlb) + α4 ×

(
xce − xgw

)
(10)

∆EModel_2_1 = α1 ×
(

xce − xgb

)
+ α2 ×

(
xce − xglb

)
+ α3 × (xce − xnlb) (11)

∆EModel_2_2 = α1 ×
(

xce − xgb

)
+ α2 ×

(
xce − xglb

)
+ α4 ×

(
xce − xgw

)
(12)

∆EModel_2_3 = α1 ×
(

xce − xgb

)
+ α3 × (xce − xnlb) + α4 ×

(
xce − xgw

)
(13)

∆EModel_2_4 = α2 ×
(

xce − xglb

)
+ α3 × (xce − xnlb) + α4 ×

(
xce − xgw

)
(14)

∆EModel_3_1 = α1 ×
(

xce − xgb

)
+ α2 ×

(
xce − xglb

)
(15)

∆EModel_3_2 = α1 ×
(

xce − xgb

)
+ α3 × (xce − xnlb) (16)

∆EModel_3_3 = α1 ×
(

xce − xgb

)
+ α4 ×

(
xce − xgw

)
(17)

∆EModel_4_1 = α1 ×
(

xce − xgb

)
(18)

∆EModel_4_2 = α2 ×
(

xce − xglb

)
(19)

∆EModel_4_3 = α3 × (xce − xnlb) (20)

∆EModel_4_4 = α4 ×
(
xce − xgw

)
(21)

∆EModel_x = ∆EModel_x × rand, x = 1 . . . 4 (22)

xNew_Elements = xOld_Elements + ∆EModel_x. (23)
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In each domain, the number of formulas depends on your design and the model you
implement. In this case, one formula for the first domain, three formulas for the second
domain, and four formulas for the third and fourth domains are used to change the values
of the elements. When more than one formula is used, the distribution of elements is done
randomly. It is possible to distribute all of the elements to one formula in each iteration.
However, in fact, the elements distribute between different formulas. Different modes
of this model can be used: (1) Using the same formulas (same range) to optimize more
dimensions at runtime; (2) Using different formulas (different domains) to optimize more
dimensions at runtime; and (3) Using all different formulas (different domains) to optimize
more dimensions at runtime. Due to the high complexity of this algorithm, in this article,
the first part of the tests is reviewed.

The pseudo-code of the Bond Graph algorithm is defined as follows (Figure 2):

(1) Define algorithm parameters (algorithm variables, elements, element properties, etc.).
(2) Initialize the defined parameters (initialize the properties of the elements and some

fixed parameters such as selecting the domain as a constant).
(3) Calculate the cost function based on the proposed functions (evaluating the perfor-

mance of the algorithm).
(4) Find the best, worst, and average variables locally and globally.
(5) For the calculation of changes, the elements are divided between the formulas if there

are different formulas. It is up to the user to determine the model of division of the
number of elements and the order of division (the order of division is not random but
in order). Finally, they are multiplied by a fixed value or random changes to make the
changes a little more moderate.

(6) These changes are applied to the values of the old elements, and new elements
are obtained.

(7) Calculate the cost function based on the proposed functions (evaluate the
algorithm’s performance).

(8) Find the variables of best, worst, and average locally and globally.
(9) Check whether the best element is general and better than the predicted value or not?
(10) If it is better, go to step 11 and if not, go to step 5.
(11) Execution is completed, because the best general element is the best answer to solve

the problem.

We explain the differences between BGA and PSO in the following:

• Structure of main formula for calculation: In PSO, only the difference between the
current particle and the local best particle and global best particle is calculated in
each iteration. The coefficients are two fixed random numbers. However, in BGA,
for example, in model three, three formulas are used for updating and improving
the values of features. The first formula calculates the difference between the current
element and the global best and global–local best, and the coefficients α1 and α2 are
calculated separately for each iteration. The second formula calculates the difference
of the current element from the global best and global worst, and the coefficients α1
and α4 are calculated separately for each iteration. The third formula calculates the
difference between the current element and the normal local best and global worst,
and the coefficients α3 and α4 are calculated separately for each iteration.

• Comparing of main formula for calculation: In the PSO, only one formula for calcu-
lating velocity is used. In BGA, for different elements, different formulas are used
to calculate the element attribute values. The formulas are randomly chosen for the
calculation of each element.
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Figure 2. Overview of the Bond Graph algorithm.

3.3. Common Spatial Pattern (CSP)

The common spatial pattern algorithm (CSP) [41,47,48] is known as an efficient and
effective EEG signal class analyzer. In other words, it is a feature extraction method
that gives signals from several channels below the mapping space, which can maximize
the difference between classes and minimize their similarities. This is accomplished by
maximizing the variance of one class by minimizing the variance of another class.

The CSP calculation is done as follows

C = EE′/trace(EE′) (24)

where C is the covariance of the normalized space of data input E, which provides raw
data from a single imaging period. E is an N × T matrix. T is the number of electrodes
or channels, and N is the number of samples in the channel. Trace (.) is defined to be
the sum of the elements on the main diagonal of matrix A. The apostrophe represents the
transposition operator. Trace is also a set of diagonal elements of x.

The covariance matrix of both classes C1 and C2 is calculated by the average of several
imaging periods of the EEG data, and the covariance of the combined space Cc is calculated
as follows:

Cc = C1 + C2 (25)

where Cc is real and symmetric and can be defined as follows:
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Cc = ucλcu′c (26)

where uc is a matrix of special vectors and λc is the diameter of the matrix of eigenvalues.
p is whitening transformation:

p =
√

λ−1u′c. (27)
The variances in space are equalized by u′c, and all eigenvalues of pcL pprime are equal

to 1.
SL = pcL p′ (28)

SR = pcR p′ (29)
SL and SR are matrix covariance with eigenvector and eigenvalue, provided that if

SL = BλLB′ (30)

SR = BλRB′ (31)
λL + λR = I, (32)

I is the identity matrix.
Eigenvalues are arranged in descending order, and the projection matrix is defined

as W:
W = UT P. (33)

The reflection matrix of each training is as follows:
Z = W × i (34)

where N rows are selected to represent each period of conception WP(p = 1, 2, . . . , N)
and the covariance P of Z, P components of the feature vectors are calculated for the nth
instruction. Normalized variance is used as the algorithm:

fp = log
(

Var
(
Zp
)
/ ∑ Var(Zp)

)
. (35)

3.4. Spatial and Temporal Frequency Domains

This section deals with the formulas of time-domain, frequency-domain, autoregres-
sion, and wavelet coefficients because most of the articles explain these methods in detail.
In our paper, the formulas are used from papers [28,44]. In the following, we explain the
formulas briefly.

These extracting features formulas from 36 to 53 and 54 to 57 belong to the time-
domain and frequency-domain, and other formulas that belong to other methods are
mentioned above. For wavelet coefficients, the MATLAB function is used. Based on
algorithms, features are selecting from different formulas. Using algorithms, the features
of some formulas are selected, and the rest are not selected.

Absolute values sum =
N

∑
i=1
|xi| (36)

Mean absolute Value, MAV =
1
N

N

∑
i=1
|xi| (37)

Modi f ied mean absolute value type 1, MAVType 1 = 1
N

N
∑

i=1
wi|xi|

wi =

{
1 , i f 0.25N ≤ i ≤ 0.75N

0.5,

(38)

modi f ied mean absolute value type 2, MAVType 2 = 1
N

N
∑

i=1
wi|xi|

wi =


1, i f 0.25N ≤ i ≤ 0.75N

4i
N , slsei f i < 0.25N

4(i−N)
N

(39)

Simple square integral, SSI =
N

∑
i=1

x2
i (40)
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Variance, Var =
1

N − 1

N

∑
i=1

x2
i (41)

The absolute value of the 3rd, 4th, and 5th temporal moment

TM3 =

∣∣∣∣ 1
N ∑N

i=1 xd
i

∣∣∣∣, d = 1, 23. (42)

Root mean square, RMS =

√√√√ 1
N

N

∑
i=1

x2
i (43)

Wave f orm length, WL =
N−1

∑
i=1
|xi+1 − xi| (44)

Average amplitude change, AAC =
1
N

N−1

∑
i=1
|xi+1 − xi| (45)

Di f f erence absolute standard deviation value,

DASDV =

√
1

N−1

N−1
∑

I=1
(xi+1 − xi)

2 (46)

Maximum value, Max = max(xi), i = 1, 2, . . . , N (47)

Minimum value, Min = min(xi), i = 1, 2, . . . , N (48)

Standard deviation, SD = sd(xi), i = 1, 2, . . . , N (49)

Mean f requance, MDF =
1
2

M

∑
j=1

pj (50)

Peak f requance , RKF = max
(

Pj
)

(51)

Mean power, MNP =
M

∑
j=1

Pj

M
(52)

Total power, TTP =
M

∑
j=1

pj (53)

Autoregressive coe f icients, xi =
p

∑
i=1

apxi−p + wi, p is order o f AR (54)

Power Spectrum SAA( f ) =
FFT(A) ∗ FFT′(A)

N
(55)

ps[m] =
N

∑
n=1

rxx[n]e−j×2πimnN, m = 0, 1, 2, . . . , N (56)

rxx(t) and rxx(n) are autocorrelation functions.

Coe f f icient Wavelet φj+1,2i+1(x) = 1√
2Nj+1

(
2Nj−1

∑
s=0

φj,s

(
(2l+1)π

2Nj

)
φj.s(x)−

2Nj−1

∑
s=0

φj.l

(
(s)π
Nj

)
Ψj,s(x)

)
,

l = 0, 1, . . . , 2Nj−1

(57)

3.5. Reduce and Extract Features of Brain Signals with Filter Banks and Bands (FBs)

In some studies, feature and electrode reduction methods have been used in com-
bination or separately to process information to reduce data volume. GA and PSO or
some other algorithms have been implemented for each person or individual to reduce
the dimensions before extracting the features or selecting the features after extracting the
features or as the classifiers for classification separately. In this paper, our proposed method
is inspired by different methods to reduce the dimensions, while the proposed method is
somewhat different from the methods presented in some articles. In a way, it has partial
similarities with the items mentioned in the previous. First, in all our models, bandwidth
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reduction (filter bank) has been used to extract the feature. Second, in some cases, the
reduction of features and electrodes has also been used. Third, selecting the feature is done
after extracting the features. For this purpose, we implemented different models, which
support all items. These models (five general models) are as follows:

(1) The selection of features is made through a filter bank with a specific channel. Two
filter banks and two channels are used for the purpose (separately for individuals by
selecting two filters and two specific channels).

(2) The selection of features is made through a hybrid filter bank with a specific channel,
and a new signal from two filter banks along the channel is used for this purpose.
(Separately for a person with a combined signal and two specific channels).

(3) Reduction of features for two channels with two filter banks (in the range of 8 Hz)
is intended for frequency reduction. We have a 63% reduction in the frequency
range; i.e., from the whole frequency domain, which is 8 to 30 Hz, we have used a
combination of smaller frequency ranges. For example, 8 to 12 Hz and 20 to 24 Hz
represent a combination of filter banks 2 and 5. Then, we create a signal matrix with
dimensions of 10 × 100 for each imaging period (approximately 1.33% of the value of
imaging period characteristics for a channel) that is used as input to CSP to filter and
extract features. This is followed by a classification of features.

(4) Features reduction for three channels and three bank or band filters (12 Hz interval)
has been used to reduce the frequency. From the 22 Hz range (8–30 Hz), the 12 Hz
range is selected (45% reduction in the frequency range). Then, a signal matrix of
18 × 100 is created for each imaging period (generally generated for all imaging
periods), which is 2.4% of one channel. The total features are generally slightly
more than two channels. Then, the extracted properties are used as two-dimensional
matrices as input to the CSP to filter and extract the properties. After extracting the
features, classification is done on them.

(5) Feature extraction from 1 to 3 channels is done separately (for each channel, feature ex-
traction and feature selection are made separately). Time domain, frequency domain,
wavelet coefficients, and autoregression coefficients were used to extract the features.
From each feature extraction method, a certain amount is considered for feature
selection. In other words, four parts of features (features related to each proposed
method) are used for each channel separately. Feature extraction and feature selection
have been implemented for two channels, 8 parts, and for 3 channels, 12 parts. The
amount of feature selection is determined separately from each method and channel,
and all features from all channels and methods are used for classification.

In all the stated cases, 100 features are considered for the channel using algorithms. In
other words, the reduction is done from 875 to 100 features. To evaluate the five models
mentioned above, we utilized the proposed BGA, PSO, GA, and QGA with ELM classifier
for classification.

If more than one channel is used, the ability to detect 100 features is the same on all
channels. The coefficients determine the location of the features. The values of coefficients
of the elements in our algorithm, chromosomes of genes in GA and QGA, and attributes
of particles in PSO between zero and one change during the execution of the algorithm.
However, in order to improve the accuracy in the fifth model, the coefficients related to the
time domain and autoregression are set to binary values.

For models one and two, filter banks 2 and 5 and channels c3 and c4 have been
used, and their evaluation has been performed on four algorithms, namely the proposed
algorithm, PSO, GA, and QGA. However, for the rest of the models, the ELM classification
and the proposed algorithm have been evaluated on the filter banks and individuals, etc.
Figure 3 shows an overview of the model for better expression and understanding in detail,
which is described in more detail in the experimental section. In this figure, BGA is used as
the main algorithm. The other three algorithms (GA, PSO, and QGA) are used similarly.
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Figure 3. The overview of the dimension reduction using the BGA algorithm and proposed methods for feature selection
and feature extraction.
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3.6. Reduce Features Using Pooling for Channels

The key idea is to make a sampling that happens randomly at each layer of complexity
(deep learning). Common forms of complex (deep learning) sampling are a function of the
mean and maximum determinants that select the largest activity in each sampling area.
In a random sample, the activity selection consists of a polynomial explanation drawn by
the activities in the sampling area. A secondary view of random sampling is similar to
standard maximal sampling but with the copying of input images, each of which has short
local variations. This is similar to the explicit elastic deformation of input images, which
provides excellent performance for some datasets. In addition, the use of random sampling
in a multilayer model gives a large number of changes compared to the higher layers.
In random sampling, we select the pool mapping response by sampling a distributed
polynomial description of activities from each pool area. In maximum sampling, only the
strongest activity is taken from the time filters with input from each area, and whether the
rest of the activities have any effect is not considered. For this purpose, random sampling
is implemented for activities when maximum activities will be useful. You can see an
example of this sampling model in Figure 4 [54–56].

Figure 4. The example of random sampling for deep learning. (a) Image. (b) Filter. (c) Rectified
linear. (d) Activation. (e) Probabilities. (f) Sampled Activation.

In some papers, convolutional layers accept arbitrary input sizes. However, they
produce variable output sizes. Classifications and artificial neural layers need to be con-
nected to fixed vectors. The spatial pyramid sampling improves the previous method to
store space information by sampling in local space depots. Therefore, these depots are
proportionate in size. They are relative to the image.

In this paper, we introduce random sampling to select features randomly and statisti-
cally. This is because sampling methods are considered in all layers. Each layer reduces the
number of features. After the last layer of classification, it begins to gain accurate classifica-
tion. Most methods use GA and particle cluster optimization to reduce the dimension that
the algorithms use. In our study, the feature reduction model is based on deep learning
sampling. Deep learning sampling can be used for samples with any channel, i.e., hybrid
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channels or individuals. In this article, sampling is done in two ways: (1) for all channels
and features for each filter bank individually, and (2) for all channels and features for all
filter banks altogether.

In addition to the functions used in older models, i.e., maximum, minimum, and
average, two new functions are introduced in this article. The first is the intelligent
selection function that selects the maximum or minimum, or average based on a specific
formula. In this case, first, we find the average of all the features of the window; then,
we calculate the absolute value of the difference between their distance and the average.
The maximum value is the selected value. The second function is calculating the average
without the participation of the maximum value.

In the following sections, we briefly present a structure of the sampling layer model
with classification for our idea:

(1) In the filter input of banks in general, no preprocessing has been done. After the
record of subject, data, or domain, the specified frequencies are filtered.

(2) Select the size of different molds (from 2 to 6) for each sampling layer (fixed for each
layer). However, the active layers are three layers for models with sizes 2 to 4 and
five layers for models with sizes 5 to 6.

(3) Selection of sampling functions for each layer (maximum, minimum, average function,
smart maximum or minimum selection, average function without considering the
maximum). All sampling models are supported for all layers. Two sampling models
for layers are used. First, the layers use only one identical function. Second, the layers
use different functions.

(4) The output of each layer is the input of the next layer: according to the combination
of channels and features, the size of the template is a vector, and the output will be
one page. Dimensional reduction occurs for features separately.

(5) Perform steps 2 to 4 for all layers.
(6) The outputs from the last layers all add up and form a vector (all channels). For

classification, if the output is two-dimensional (more than one channel), it is converted
to a one-dimensional matrix to send classifiers.

(7) Selection of training and testing model for classification (10–10 fold method on total
data): The whole data set is divided into ten parts. One part is used for testing and
the rest are used for training. The whole part of the steps related to testing this model
is repeated ten times.

(8) Classification is done in two classes. The results are different for each person. The
results of the first random classification are discussed later in this paper.

An overview of our proposed model for reducing the channel dimension is presented
in Figures 5 and 6.
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Figure 5. The steps of sampling in different layers using functions.
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Figure 6. Reduction of channel dimensions based on the deep learning sampling model on a single
filter bank or the entire filter banks.

4. Experiment and Results
4.1. Case Study and Numerical Results on Proposed Algorithm

The parameters of the benchmark functions are shown in Table 2. These are 8 general
functions for testing optimization regions. Our algorithm with all of the models (domains)
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along with GA and PSO [57,58] are run in MATLAB 2016 software on PC, and a comparison
is performed. All details of the test scenarios for the algorithms are briefly described in
Table 3 [59].

Table 2. Parameters of the benchmark function.

Function Dimention Intitial Range Minimum

Sphere 35 [−100, 100]D 0
SumSquares 35 [−10, 10]D 0
Rosenbrock 35 [−30, 30]D 0

Schwefel 2.22 35 [−10, 10]D 0
Rastrigin 35 [−10, 10]D 0
Schwefel 35 [−500, 500]D −12,569.50
Ackley 35 [−32.768, 32.768]D 0

Griewank 35 [−600, 600]D 0

Table 3. Parameters of the algorithm setting.

Function Population Details

GA 40 Single point crossover (0.8), mutation rate (0.01), generation gap (0.9)
PSO 40 Inertia weight (0.6), cognitive and social components (1.8)
BGA 40 Selection model 1 to 4, an average of coefficients (1), initial element (2.5%)

4.2. Bond Graph Algorithm (BGA)

Compared to other algorithms, the BGA for the benchmark functions is rapid conver-
gence and near to the global optimum. In other words, it avoids falling into local traps (the
main targets are ranges 3 and 4). It is demonstrated that the performance of this model
is better than PSO and GA. Figure 7 shows the convergence diagram and the effect of
the BGA compared to the other two algorithms. The convergences of the two benchmark
functions over time for better understanding are illustrated in Figure 7.

Domains 3 and 4 had excellent results near the global optimum. However, the first
two domains in our definition had the worst convergence, which needs to be improved
(Figure 7 down). Table 4 shows the comparison of 35-dimensional results of GA and PSO
and all of the models of the BGA. From this table, we can conclude that the design of the
formulas and variables used is very important and influential in convergence.

The BGA optimization algorithm, similar to PSO, and GA is linear with order O(n).
Only one loop is used for calculation. BGA is six times more time consuming than PSO and
half as time consuming as GA. For example, the average execution time for 400 iterations
and 30 executions on Spheres (first bench mark) for GA, BGA, and BGA was 0.83 s, 0.42 s,
and PSO 0.07 s, respectively.
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Figure 7. (Top–Left) Convergence of GA. PSO and BGA (third model) on sphere function during 400 steps. (Top–Right)
Convergence of GA, PSO, and BGA (third model) on Ackley function during 400 steps. (Down–Left) Convergence of all of
BGA models (four models (domains)) on sphere function during 400 steps. (Down–Right) Convergence of all BGA models
(four models) on Ackley function during 400 steps.

Table 4. Comparison of 35-dimensional results of GA and PSO and all of the models of the BGA.

Public
Function Parameters PSO GA BGA_Model1 BGA_Model2 BGA_Model3 BGA_Model4

Sphere

Mean 4.72 × 10−2 43.41 4.20 × 10+4 1.60 × 10+4 5.40 × 10−110 1.56 × 10−90

Std 5.64 × 10−2 13.74 5.44 × 10+3 1.11 × 10+4 2.00 × 10−109 7.43 × 10−90

Min 2.45 × 10−3 22.87 2.43 × 10+4 4.28 × 10+3 8.10 × 10−120 1.40 × 10−102

Max 2.24 × 10−1 76.58 4.89 × 10+4 4.82 × 10+4 1.00 × 10−108 4.14 × 10−89

SumSquares

Mean 6.89 × 10−3 7.15 8.53 × 10+3 3.04 × 10+3 3.80 × 10−111 3.92 × 10−90

Std 9.46 × 10−3 2.02 1.40 × 10+3 1.35 × 10+3 1.70 × 10−110 2.17 × 10−89

Min 5.11 × 10−4 3.09 5.06 × 10+3 8.64 × 10+2 1.10 × 10−123 2.50 × 10−100

Max 4.39 × 10−2 11.20 1.07 × 10+4 5.86 × 10+3 9.30 × 10−110 1.21 × 10−88

Rosenbrock

Mean 2.48 × 10+3 1.78 × 10+3 1.22 × 10+8 2.02 × 10+7 33.91 33.93
Std 1.07 × 10+4 1.07 × 10+3 3.21 × 10+7 2.17 × 10+7 0.05 0.06
Min 58.93 8.28 × 10+2 4.82 × 10+7 1.16 × 10+7 33.77 33.75
Max 5.89 × 10+4 5.40 × 10+3 1.71 × 10+8 1.11 × 10+8 33.97 33.98
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Table 4. Cont.

Public
Function Parameters PSO GA BGA_Model1 BGA_Model2 BGA_Model3 BGA_Model4

Schwefel
2.22

Mean 0.19 2.04 3.71 × 10+11 4.21 × 10+3 3.80 × 10−56 7.44 × 10−46

Std 0.35 0.28 1.33 × 10+12 2.29 × 10+4 1.40 × 10−55 1.59 × 10−45

Min 0.01 1.58 1.33 × 10+2 34.77 5.31 × 10−61 9.97 × 10−52

Max 1.60 2.59 5.91 × 10+12 1.27 × 10+5 7.65 × 10−55 5.47 × 10−45

Rastrigin

Mean 1.06 × 10+2 20.52 8.36 × 10+2 4.67 × 10+2 0.00 0.00
Std 18.95 2.87 1.02 × 10+2 1.00 × 10+2 0.00 0.00
Min 59.34 14.04 6.12 × 10+2 2.90 × 10+2 0.00 0.00
Max 1.42 × 10+2 26.09 9.83 × 10+2 6.59 × 10+2 0.00 0.00

Schwefel

Mean −1.00 × 10+50 −2.54 × 10+3 −7.84 × 10+3 −7.99 × 10+3 −8.06 × 10+3 −7.90 × 10+3

Std 1.95 × 10+50 4.84 × 10+2 2.83 × 10+2 2.31 × 10+2 4.85 × 10+2 5.41 × 10+2

Min −7.40 × 10+50 −3.82 × 10+3 −8.65 × 10+3 −8.44 × 10+3 −9.30 × 10+3 −1.01 × 10+4

Max −5.80 × 10+50 −1.78 × 10+3 −7.32 × 10+3 −7.62 × 10+3 −7.22 × 10+3 −7.07 × 10+3

Ackley

Mean 1.49 2.53 19.36 13.97 −8.90 × 10−16 −8.90 × 10−16

Std 0.75 0.33 0.54 2.81 0.00 0.00
Min 0.05 1.81 18.25 7.93 −8.90 × 10−16 −8.90 × 10−16

Max 3.71 3.07 20.01 18.15 −8.90 × 10−16 −8.90 × 10−16

Griewank

Mean 0.10 1.36 3.64 × 10+2 1.49 × 10+2 0.00 0.00
Std 0.16 0.09 52.38 70.58 0.00 0.00
Min 0.01 1.20 2.91 × 10+2 32.94 0.00 0.00
Max 0.83 1.54 4.68 × 10+2 2.81 × 10+2 0.00 0.00

4.3. Experiments and Scenarios

In this study, data set IIa from BCI competition IV [60] is used for our experiments. This
database contains the following details: (1) The number of participants for the test consists
of nine subjects. (2) Brain information record electrodes include 22 channels (processing
is related to these channels). (3) The training and evaluation data for each participant
consist of one session. (4) Each session contains 288 training (including movement imaging
activities). (5) The training time frame of each training session is 3 s (in our study, we
consider 3.5 s, out of which half a second is considered for the preparation for training).
(6) It includes four classes, including the right-hand, left-hand, tongue, and foot. (We have
only used two classes of right-hand and left-hand in our experiments, similarly to the
studies done in the previous works in the literature.) (7) A Butterworth filter is used with
100th order for nine filter banks, including 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–24 Hz,
24–28 Hz, 28–32 Hz, 32–36 Hz, and 36–40 Hz. The details of the data set are presented in
Table 5 [60].

Table 5. The details of data set IIa from BCI competition IV.

Function Dimension Initial Range

Volunteers (subjects) 9 9
Electrodes (channels) 22 22

Session–Trials 1–228 1–228
Imagination Time–Sample

Rate 4 s-250 Afler 0.5 s,3.5 s-250

Each Trial Features 1000 875
Classes Left–right hand, foot, and tongue Left–right hand

Filtering - 9 filter banks
Order of filtering - 100

In our experiments, details of the new optimizer paradigm are described in Section 3
for the production of models. This is similar to most heuristic-based algorithms for finding
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solutions to problems by reducing the dimension for different modes and extracting each
case individually. In this approach, a set of features in the elements is used to represent the
location of features in the channels.

In the following, we present the details of the models (seven model scenarios) used in
our experiments for dimension reduction before the feature extraction (three-dimensional
reduction) and the models that are used for dimension reduction after feature extraction:

1. The first model scenario: a filter bank with one channel for each participant is exam-
ined by four algorithms with ELM [61,62] classification. Two filter banks, i.e., 2 and
5 with two channels, i.e., 8 and 12 which are representing C3 and C4, respectively,
are used.

2. The second model scenario: a new hybrid filter (combination of two, three, or four
filter banks) with one channel with four algorithms with ELM classification is ex-
amined for each participant. A hybrid filter bank with two channels, i.e., 8 and 12,
representing C3 and C4, respectively, is used.

3. The third model scenario: In this model scenario, we first extract the features from
channel 8 (C3) or 12 (C4) according to Table 6. Then, from the extracted features,
the feature selection is done with graph algorithms, genetics, particle clustering, and
quantum genetics (Table 6), and then, the classification is done.

4. The fourth model scenario: In this mode, first, feature extraction from two channels 8
(C3) and 12 (C4) according to Table 6 is performed. Then, from the extracted features,
feature selection (i.e., dimension reduction) is done by the specified algorithms. In
this approach, the selection of features for each method and each channel is selected
separately (Table 6), and their set is sent to the classifier for classification.

5. The fifth model scenario: This model scenario is the same as the previous model
scenario except that in this model scenario, we used three channels. First, feature
extraction is done from three channels 8 (C3), 10 (CZ), and 12 (C4), according to
Table 6. Then, from the extracted features, feature selection (i.e., dimension reduction)
is done by the specified algorithms. In this case, we have four methods and three
channels forming 12 parts. From each part, the best features are selected for the
classification according to Table 6. We used the ELM classifier for classification.

6. The sixth model scenario: In this model scenario, first, the features of channels 8 and
12 are reduced by 100 features (100 features are selected for each channel). These
features are selected from the frequency domain of 8–12 Hz, 20–24 Hz, and 24–28 Hz
that are within the general range of 8–30 Hz. Subsequently, for both of them, using
specific formulas, a matrix of 10 × 100 is prepared for each period of conception as a
part of CSP. The extracted components of CSP are equal to m = 5 (10 features). After
the feature extraction was done for all imaging periods, the classification operation is
performed on it. The formulas of each row in the CSP input matrix are as follows:

R1 = RC3 & FB5 (58)
R2 = RC3 & FB6 (59)
R3 = RC4 & FB5 (60)

R4 = RC4 & FB6 (61)

R5 = RC3 & FB5 + RC3 & FB6 (62)

R6 = RC4 & FB5 + RC4 & FB6 (63)

R7 = RC3 & FB5 + RC4 & FB5 (64)

R8 = RC3 & FB6 + RC4 & FB6 (65)

R9 = RC3 & FB5 + RC4 & FB6 (66)

R10 = RC3 & FB6 + RC4 & FB5 (67)

where R is a row of the CSP input matrix. For R1 to R4, the values are considered
from a specific electrode and frequency domain (one filter bank). For the rest, each
row is calculated by the addition of two selected electrodes and frequencies (two
filter banks).
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7. Seventh model scenario: This model scenario is similar to model scenario 6, but in
this model scenario, first, the features are selected from three channels, i.e., 8, 10, and
12, that are reduced by 100 features. These features are selected from the frequency
domain of 8–12 Hz, 20–24 Hz, and 24–28 Hz that are within the general range of
8–30 Hz. After that, for both of them, using specific formulas, a matrix of 18 × 100 is
prepared for each period of conception as a part of CSP. Extracted components of CSP
are equal to m = 5 (10 features). After the feature extraction was done for all imaging
periods, the classification operation is performed on it. These formulas are the same
as the previous ten formulas in Part 6, to which eight new formulas have been added.
The formulas are as follows:

R11 = RC3 & FB2 (68)

R12 = RC4 & FB2 (69)

R13 = RCZ & FB2 (70)

R14 = RCZ & FB5 (71)

R15 = RCZ & FB6 (72)

R16 = RC3 & FB6 + RC4 & FB2 (73)

R17 = RC3 & FB5 + RCZ & FB6 (74)

R18 = RCZ & FB5 + RC4 & FB6. (75)

Table 6. Selection features of all features based on methods and channels (C3 = 8, CZ = 10, and C4 = 12).

Channels/Type
Features

Time and Frequency
Formulas Autoregression Coefficients Wavelet Fast Fourier

Transformation

Selected
Features

All
Features

Selected
Features

All
Features

Selected
Features

All
Features

Selected
Features

All
Features

Channel C3 8/12 20 6 10 20 200 30 200
Channel CZ 10/10 20 6 10 20 200 30 200
Channel C4 12/15 20 6 10 20 200 30 200

The following are the sampling models used to reduce the dimension based on deep
learning sampling:

1. The first sampling model: Dimensional reduction based on deep learning sampling
for each filter bank and participant is done separately with different window sizes
and different functions. The same function is used in the layers.

2. The second sampling model: Dimensional reduction based on deep learning sampling
for all filter banks together and participants separately is done with different window
sizes and different functions. The same function is used in the layers.

3. Third sampling model: Dimensional reduction based on deep learning sampling for
all filter banks together and participants separately is done with different window
sizes and different functions. Different functions randomly selected with non-uniform
distribution are used in each layer.

Two diagnostic measurements, i.e., accuracy and kappa, are considered for the analysis
of each mental task.

4.4. Results on Algorithms
4.4.1. Results of First Model Scenario

Table 7 shows the results of a dimensional reduction by 100 features performed by
four algorithms on filter bank number 2 (frequency range was 8 to 12). The average
accuracies for channel 8 were calculated as 61.1%, 61.0%, 61.3%, and 60.0%, respectively,
and for channel 12, they were calculated as 61.3%, 61.7%, 62.3%, and 61.4%, respectively
for four algorithms, i.e., PSO, GA, BGA (with the third model), and QGA [63,64]. The
overall best accuracy for the channels 8 and 12 are highlighted for each algorithm. The
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average accuracy of our proposed algorithm is better than the others. In channel 8, our
algorithm demonstrated a slightly better accuracy compared with PSO and GA (i.e., 0.1%)
and outperformed compared with the QGA by about 1%. In channel 12, our algorithm
outperformed other algorithms by about 1–2%. However, for some test subjects, the highest
accuracy was not obtained by our proposed algorithm. For example, in channel 8, the
highest accuracy was obtained by GA for the first, seventh, and ninth subjects, i.e., 62.2%,
61.4%, and 60.8%, respectively. However, in the same channel, our algorithm had better
accuracy for the second, third, fifth, and eighth subjects, i.e., 61.7%, 61.9%, 60.8%, and
60.3%, respectively. In channel 12, our proposed algorithm had the highest accuracy for
the first, second, third, seventh, eighth, and ninth subjects, i.e., 60.5%, 60.3%, 63.0%, 66.6%,
60.4%, and 62.5%, respectively.

Table 7. Feature selection accuracy of PSO, GA, BGA, and QGA with 100 features, FB2, and ELM for 100 iterations.

Subject
PSO GA BGA QGA

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 60.3 59.1 62.2 59.0 60.0 60.5 59.1 59.8
2 60.9 58.9 60.3 60.3 61.7 60.3 58.8 59.5
3 60.5 61.6 61.3 62.4 61.9 63.0 59.8 61.7
4 65.5 64.5 63.7 64.3 64.2 65.0 63.2 63.8
5 60.1 62.3 58.9 62.8 60.8 62.4 58.3 62.0
6 63.0 60.1 61.7 59.6 61.9 60.1 61.5 60.4
7 61.1 64.4 61.4 65.0 60.8 66.6 60.5 65.0
8 59.1 59.1 58.6 60.1 60.3 60.4 58.8 59.7
9 59.8 61.6 60.8 62.0 60.1 62.5 60.2 61.1

Ave 61.1 61.3 61.0 61.7 61.3 62.3 60.0 61.4

Table 8 shows the results of a dimensional reduction by 100 features performed by
four algorithms on filter bank number 5 (frequency range was 20 to 24). The average
accuracies for channel 8 were calculated as 60.8%, 61.2%, 61.4%, and 60.1%, respectively,
and for channel 12, they were calculated as 61.5%, 61.9%, 63.2%, and 61.1%, respectively
for four algorithms, i.e., PSO, GA, BGA (with the third model), and QGA. In general, for
each channel and subject, the highest accuracies are about 0.2 to 1% higher than the other
algorithms. Our proposed algorithm performed better for most of the cases. However,
for some test subjects, the highest accuracy was not obtained by our proposed algorithm.
For example, in channel 8, the highest accuracies were obtained by GA for the first, third,
and sixth subjects, i.e., 61.6%, 62.0%, and 63.2%, respectively, and for the ninth subject, the
highest accuracy, i.e., 61.8%, was obtained by QGA. In channel 12, the highest accuracy,
i.e., 65.2%, was obtained for the fourth subject by PSO algorithm. The rest of the highest
accuracies was obtained by our proposed algorithm in both channels for different subjects.

Table 8. Feature selection accuracy of PSO, GA, and BGA with 100 features, FB5, and ELM for 100 iterations.

Subject
PSO GA BGA QGA

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 60.5 58.7 61.6 59.4 60.6 61.1 60.4 58.1
2 60.7 59.5 59.9 60.0 60.9 60.1 58.3 59.7
3 60.3 62.5 62.0 61.8 60.9 63.3 60.5 61.7
4 65.0 65.2 62.5 64.9 63.8 64.4 60.2 63.3
5 59.6 61.9 59.5 63.5 60.8 63.9 58.9 62.3
6 62.8 61.0 63.2 59.4 62.0 62.8 62.4 60.0
7 60.7 64.6 61.8 66.0 62.2 67.4 60.2 65.4
8 58.5 58.8 59.3 59.5 60.5 61.1 58.4 58.0
9 59.4 61.6 60.7 62.4 61.1 64.6 61.8 61.3

Ave 60.8 61.5 61.2 61.9 61.4 63.2 60.1 61.1
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4.4.2. Results of Second Model Scenario

In the following, we will examine the results of the hybrid signals, i.e., a combination
of filter banks (a) 2 and 5 presented in Table 9, (b) 2, 5, and 6 presented in Table 10, and (c)
2, 5, 6, and 9 presented in Table 11. Such cases do not exist in nature for recording, and no
system can record such models. Hence, we generate them offline. We have highlighted the
highest obtained accuracies in these tables, similar to the previous two tables presented
above. For these cases, our proposed algorithm mostly had the highest accuracies for
channel 12. In addition, our algorithm demonstrated higher average accuracies in all of
the cases. In Table 11, similar to Table 9, in channel 12, the majority of the best accuracies
was obtained by our algorithm. According to the results presented in Tables 7–11, in
general, the algorithms perform better in channel 12 compared to channel 8 (1–3% higher
accuracy). Reduction of the dimensions for the brain signals is effective in avoiding the
local minimums.

Table 9. Feature selection accuracy of PSO, GA, and BGA with 100 features, FB2 & 5, and ELM for 100 iterations.

Subject

PSO GA BGA QGA

FB 2 & 5 FB 2 & 5 FB 2 & 5 FB 2 & 5

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 61.2 60.4 62.52 62.09 61.7 60.4 61.9 61.4
2 62.6 59.8 59.53 59.44 61.1 60.2 58.3 58.6
3 60.8 62.4 61.17 64.51 62.0 64.0 61.4 62.8
4 66.5 65.0 62.76 61.45 65.1 65.1 62.2 60.7
5 60.9 62.9 59.77 62.40 62.3 63.2 59.1 61.2
6 61.1 61.3 62.27 60.04 59.9 61.6 61.5 60.1
7 60.2 62.7 60.68 63.84 60.7 66.2 60.9 63.8
8 57.4 58.8 59.4 60.78 60.7 62.4 56.8 58.7
9 59.5 61.8 60.63 61.96 60.8 63.8 61.0 61.5

Ave 61.1 61.7 61.00 61.83 61.6 63.0 60.3 61.0

Table 10. Feature selection accuracy of PSO, GA, and BGA with 100 features, FB2 & 5 & 6, and ELM for 100 iterations.

Subject

PSO GA BGA QGA

FB 2 & 5 & 6 FB 2 & 5 & 6 FB 2 & 5 & 6 FB 2 & 5 & 6

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 60.7 60.9 62.42 63.32 61.1 60.9 62.2 61.5
2 61.1 58.9 60.31 59.63 61.1 60.5 59.2 60.0
3 60.6 61.7 60.86 62.25 61.5 63.5 59.9 61.4
4 65.5 64.6 60.27 62.48 65.2 64.7 60.0 60.8
5 61.5 62.2 59.52 63.03 61.4 62.5 58.0 61.8
6 62.0 60.6 62.77 59.12 60.8 62.5 61.9 59.9
7 60.6 64.3 61.90 65.66 60.0 66.2 60.0 65.3
8 59.0 60.0 59.56 59.64 61.8 61.2 59.1 58.5
9 59.6 61.1 60.43 62.31 61.1 63.0 60.2 61.3

Ave 61.2 61.6 60.89 61.86 61.6 62.8 60.1 61.2
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Table 11. Feature selection accuracy of PSO, GA, and BGA with 100 features, FB2 & 5 & 6 & 9, and ELM for 100 iterations.

Subject

PSO GA BGA QGA

FB 2 & 5 & 6 & 9 FB 2 & 5 & 6 & 9 FB 2 & 5 & 6 & 9 FB 2 & 5 & 6 & 9

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 60.0 60.6 59.71 62.25 60.6 61.0 58.3 59.9
2 58.7 60.3 59.60 60.75 62.7 60.8 58.6 59.4
3 60.3 61.6 61.18 62.07 61.1 63.0 61.0 61.1
4 61.3 62.3 59.76 61.10 63.9 62.8 58.5 60.2
5 59.9 63.1 61.55 63.32 61.1 64.1 60.1 61.8
6 63.5 60.3 62.34 59.76 62.0 64.7 62.2 59.7
7 61.3 65.8 61.78 65.80 60.3 66.7 60.7 66.2
8 60.7 60.2 60.36 61.99 62.6 61.9 59.5 58.5
9 60.5 61.3 59.56 61.3 61.4 63.2 58.9 61.4

Ave 60.7 61.7 60.65 61.4 61.5 63.1 59.8 60.9

4.4.3. Results of Third Model Scenario

Table 12 presents the results related to the extraction and selection of features, in-
cluding time domain, frequency domain, autoregression, and wavelet coefficients, on a
single channel (C3 = channel 8 or C4 = channel 12) by combining two filter banks, i.e.,
two and five (making a new signal with eight new frequency ranges). The best average
accuracy was obtained by GA on both channels, i.e., 61.90% and 60.97%, respectively. On
channel 8, the average accuracies were calculated as 59.84%, 59.78%, and 59.75% for PSO,
BGA, and QGA, respectively. On channel 12, the average accuracies were calculated as
61.24%, 61.14%, and 60.89% for PSO, QGA, and BGA, respectively. In channel 12, all other
algorithms performed better than our proposed algorithm. In general, in this model, our
proposed algorithm did not perform well.

Table 12. The results of algorithms with four methods (TD, FD, wavelet, and autoregression) on a single channel (C3 = 8 or
C4 = 12) with FB 2 & 5 (25).

Subject
PSO GA BGA QGA

Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12 Channel 8 Channel 12

1 62.78 59.16 63.18 59.98 62.00 58.79 62.43 59.13
2 57.24 60.21 56.60 61.04 58.30 59.57 56.38 59.32
3 60.52 63.13 62.21 63.81 61.80 62.10 61.05 64.75
4 59.18 60.00 59.76 60.80 60.00 59.84 59.05 60.03
5 59.59 61.48 60.03 62.10 57.73 60.38 57.77 59.20
6 57.57 57.98 59.75 58.38 56.65 57.89 57.70 57.94
7 56.97 61.46 56.88 62.34 56.94 60.01 56.65 59.68
8 60.71 59.95 61.12 62.09 60.12 59.90 60.29 60.66
9 64.03 67.77 69.17 66.56 64.42 69.51 66.50 69.61

Ave 59.84 61.24 60.97 61.90 59.78 60.89 59.75 61.14

4.4.4. Results of Fourth and Fifth Model Scenarios

Tables 13 and 14 present the results related to the extraction and selection of features,
including time domain, frequency domain, autoregression, and wavelet coefficients, on
two channels (C3 = 8 and C4 = 12) and three channels (C3 = 8 and CZ = 10 and C4 = 12),
respectively. In both cases, two filter banks, i.e., two and five, were combined, making a
new signal with eight new frequency ranges.

The GA obtained better average accuracies in both models, i.e., 66.16% and 65.45% for
two channels and 66.59% and 66.57% for three channels.



Appl. Sci. 2021, 11, 8761 27 of 42

Table 13. The results of algorithms with four methods (TD, FD, wavelet, and autoregression) on two channels (C3 = 8 and
C4 = 12) with FB 2 & 5 (25).

Subject
PSO GA BGA QGA

M1 M2 M1 M2 M1 M2 M1 M2

1 63.17 63.72 64.62 65.49 62.17 62.88 62.03 62.83
2 60.42 60.67 61.68 61.56 59.20 60.69 59.47 59.73
3 84.64 84.66 85.10 85.10 84.05 83.79 84.61 84.31
4 61.44 60.73 62.40 61.33 60.30 60.23 60.12 60.52
5 61.31 60.18 63.44 59.98 60.61 60.05 60.25 59.79
6 62.49 61.85 62.25 62.34 61.25 61.48 61.12 62.20
7 65.14 59.17 67.48 63.15 61.11 58.41 62.65 59.60
8 61.56 62.99 61.79 62.50 60.47 62.48 62.00 62.22
9 68.94 68.38 66.68 67.60 68.21 66.20 70.82 66.39

Ave 65.46 64.71 66.16 65.45 64.15 64.02 64.78 64.18

Table 14. The results of algorithms with four methods (TD, FD, wavelet, and autoregression) on three channels (C3 = 8 and
CZ = 10 and C4 = 12) with FB 2 & 5 (25).

Subject
PSO GA BGA QGA

M1 M2 M1 M2 M1 M2 M1 M2

1 63.17 63.36 63.03 63.88 62.19 62.89 62.06 62.50
2 62.30 61.50 61.65 61.15 61.09 59.81 60.08 60.02
3 84.34 85.25 84.88 85.03 82.53 83.11 82.85 83.06
4 63.20 63.05 64.52 63.83 62.09 61.68 62.26 61.66
5 59.31 59.92 59.42 59.85 59.90 58.96 60.56 59.20
6 61.81 62.32 61.72 61.93 61.23 60.91 60.88 60.76
7 61.13 61.40 61.88 62.06 60.75 60.96 61.44 61.62
8 65.41 64.39 65.91 65.34 65.55 63.93 66.06 63.66
9 76.04 76.75 76.31 76.06 74.23 75.22 75.16 75.04

Ave 66.30 66.44 66.59 66.57 65.51 65.27 65.71 65.28

4.4.5. Results of Sixth and Seventh Model Scenarios

Table 15 presents the accuracy of the two models with CSP (sixth and seventh models
that we defined earlier). In this case, a feature reduction by 100 features was performed,
which was followed by the creation of new signals using the filter banks 2, 5, and 6. As a
result, matrices M1 and M2 are created as input to CSP based on two and three primary
channels, respectively. Our proposed algorithm shows the best performance, i.e., 73.12%
and 79.53% average accuracies for M1 and M2, respectively. Kappa was calculated as
46.24% and 59.05% for M1 and M2, respectively. The average accuracy for M2 was also
relatively good for the other three algorithms, i.e., 75.07%, 73.99%, and 71.18% for PSO,
GA, and QGA, respectively. While in M1, the accuracy drops by 4 to 5% when using two
channels and three filter banks.

Our proposed algorithm’s average accuracy improves 6.41% from M1 to M2, and
the average Kappa improves 12.82% from M1 to M2. In PSO, this improvement is 5.53%
and 11.06% for the average accuracy and kappa, respectively. In GA, this improvement is
4.7% and 9.43% for average accuracy and kappa, respectively. In QGA, this improvement
is 5.22% and 10.45% for average accuracy and kappa, respectively. This shows that the
addition of the channels and filter banks has a significant impact on improving the accuracy.
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Table 15. The accuracy results of algorithms on dimension reduction and features extraction of CSP new model input matrix
(using formulas) on two and three channels (C3 = 8 and CZ = 10 and C4 = 12).

Subject
PSO GA BGA QGA

M1 M2 M1 M2 M1 M2 M1 M2

1 68.94 75.20 70.88 74.13 70.32 78.16 67.39 71.14
2 67.67 72.03 68.3 72.34 68.50 75.02 64.40 68.12
3 81.66 81.96 71.17 75.37 89.50 90.85 67.32 72.45
4 66.187 73.18 69.73 74.81 68.41 75.21 66.45 70.92
5 65.27 71.12 68.80 70.51 68.20 77.23 65.40 68.64
6 65.36 74.61 67.83 73.58 69.90 77.97 64.52 70.74
7 68.93 72.70 70.72 74.54 70.74 77.09 68.32 72.17
8 64.91 74.59 66.57 73.20 70.32 79.22 62.43 70.90
9 76.98 80.28 69.51 77.47 82.18 85.02 67.38 75.54

Ave 69.54 75.07 69.29 73.99 73.12 79.53 65.96 71.18

4.5. Results on Pooling for Sampling
4.5.1. Results of First Sampling Model

Figures 8 and 9 show the results of selecting four different window sizes for partic-
ipants, all five functions, and all nine filter banks. The first four functions select one of
the features to reduce the dimension, and the fifth function extracts the average of all of
the features in each window. Overall, the fifth function, i.e., average function, has the best
average accuracy, i.e., 73.17%, compared to the other functions in all filter banks and for
all participants. The performance of the rest of the functions, i.e., maximum–minimum
automatic function, no-maximum average function, maximum function, and minimum
function, are 50.70%, 51.34%, 64.74%, and 63.72%, respectively.

Figure 8. Reduction data based on pooling model on some subjects (1, 2, 4, 5, 7, 8) and filter banks
with window size 4 and RF for 10 iterations.
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Figure 9. Reduction data based on pooling model on average subjects with filter banks and window size 4 and RF for
10 iterations.

We investigate three well-known functions, i.e., maximum, minimum, and average
functions for different participants.

For example, for subject one, the accuracy obtained for maximum, minimum, and
average functions were 58.70%, 58.00%, and 71.90%, respectively. While for subject two,
these accuracy values were about 10% different.

The accuracy of the first function, i.e., maximum function, is close to 50% in most
subjects. The accuracy of the second function, i.e., minimum function, in some cases is 4 or
5% better than the first function. In the second function, the difference in accuracies is 13%
and 31% in some subjects. This indicates the effectiveness of the maximum function.

The average accuracy on the average function for all subject on the filter bank 5 is
61.45%, 54.30%, 62.30%, 73.17%, 62.53%, 59.27%, 62.09%, and 63.07%, respectively. So, it
can be concluded that filter bank 5 (FB5) has the most information that is related to the
perception of the left and right hand. According to our experiment, the frequency range
between 8 and 30 Hz contains the most important information that is represented as filter
bank 5.

Figures 10–13 show the results of two filter banks, i.e., 5 and 6, with all the functions
and different types of sampling window sizes for participants. In practice, we have five
different types of sampling window sizes in the range of 3–7. We present the results of the
average accuracy of all subjects with varying window sizes for all functions and the filter
bank 5 in Figure 10.
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Figure 10. Reduction data based on pooling model on some subjects (1, 3, 4, 6, 7, 9) and filter banks
with different window sizes for FB 5 and RF for 10 iterations.

Figure 11. Reduction data based on pooling model on average subjects with filter banks with different window sizes for
FB 5 and RF for 10 iterations.
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Figure 12. Reduction data based on pooling model on some subjects (2, 3, 5, 6, 8, 9) and filter banks
with different window sizes for FB 6 and RF for 10 iterations.

Figure 13. Reduction data based on pooling model on average subjects with filter banks with different window sizes for
FB 6 and RF for 10 iterations.
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The highest accuracy obtained for the first, second, third, fourth, and fifth functions
and filter bank 5 were related to window sizes 3, 6, 4, 4, and 4, respectively, i.e., 56.79%,
57.43%, 64.74%, 63.72%, and 73.17%, respectively (Figure 12). Similarly, the results for filter
bank 6 is presented in Figures 12 and 13.

4.5.2. Results of Second and Third Sampling Models

Table 16 presents the result of two different approaches: first, all filter banks with
the same function used in all layers, and second, all filter banks with randomly selected
functions for each layer. Both cases are applied for different types of sampling window sizes
for participants. The best-obtained accuracies are highlighted in the table. According to
this experiment, we conclude that the window size and the selected functions significantly
impact the accuracy. The best accuracies in this scenario, i.e., using all filter banks, are in
the range of 55–62%, while this range is between 60 and 73% when using only one filter
bank, i.e., filter bank 5 (Figure 11). This demonstrates that effective features are selected in
filter bank 5, contributing to better accuracies.

Table 16. Reduction data based on pooling model on filter banks with different window sizes for all filter banks with the
same function in layers or randomly FB 5 and all of FBs and RF for 10 iterations.

Subject FB-Same FB-Hybrid

Avg

Size/Function F1 F2 F3 F4 F5 R1_HF R2_HF R3_HF R4_HF R5_HF
Size 3 0.545 0.541 0.59 0.595 0.59 0.557 0.545 0.554 0.559 0.554
Size 4 0.523 0.56 0.592 0.589 0.623 0.535 0.516 0.522 0.524 0.534
Size 5 0.506 0.523 0.569 0.577 0.59 0.526 0.518 0.511 0.512 0.511
Size 6 0.537 0.587 0.588 0.604 0.617 0.571 0.555 0.55 0.542 0.578
Size 7 0.529 0.567 0.587 0.581 0.604 0.575 0.548 0.547 0.545 0.571

5. Results and Discussion
5.1. Discussion of Algorithm on Brain Signals

Table 17 shows the best results for four different algorithms for different settings, i.e.,
different combinations of filter banks and channels. Our proposed algorithm (BGA) on
filter bank 5 and channel 12 has obtained the best accuracies in most subjects. The average
best accuracy, in this case, is 63.2%. The second-best result is related to GA with filter
bank 5 and channel 12 (i.e., 61.9%). Subsequently, BGA and PSO have achieved the best
results of 61.6% and 61.7%, respectively, when the combination of filter banks 2 and 5
are used. This indicates that the combination of filter banks 2 and 5 provides valuable
information, but the results are still 1.5% less than the case using only filter bank 5.

In Table 18 and Figure 14, the results of accuracy for GA, BGA, and PSO with two
channels and two proposed models (i.e., FM and CSP) are compared with the methods of
some articles [33,65]. BGA with CSP obtained the best accuracies in most subjects with
the best average accuracy, i.e., 73.12%, which is about 5–6% more than the other three
algorithms, while the results related to GA and PSO are within the same range as the other
three algorithms.
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Table 17. The best results of different methods for feature selection (with feature extraction, feature reduction, and channels,
etc.) on a single channel 8 or 12 by combining different select bands.

Subject
PSO

FB2 & 5 & 6
Ch8

PSO
FB 2 & 5

Ch12

GA
FB 5
Ch8

GA
FB 5
Ch12

BGA
FB 2 & 5

Ch8

BGA
FB 5
Ch12

QA
FB 2 & 5

Ch8

QA
FB 2
Ch12

1 60.7 60.4 61.6 59.4 61.7 61.1 61.9 59.8
2 61.1 59.8 59.9 60.0 61.1 60.1 58.3 59.5
3 60.6 62.4 62.0 61.8 62.0 63.3 61.4 61.7
4 65.5 65.0 62.5 64.9 65.1 64.4 62.2 63.8
5 61.5 62.9 59.5 63.5 62.3 63.9 59.1 62.0
6 62.0 61.3 63.2 59.4 59.9 62.8 61.5 60.4
7 60.6 62.7 61.8 66.0 60.7 67.4 60.9 65.0
8 59.0 58.8 59.3 59.5 60.7 61.1 56.8 59.7
9 59.6 61.8 60.7 62.4 60.8 64.6 61.0 61.1

Ave 61.2 61.7 61.2 61.9 61.6 63.2 60.3 61.4
Std 1.75 1.75 1.3 2.37 1.43 2.11 1.74 1.8

The table is comparing first and second model scenarios using algorithms. FB I & J means that the new signal is the combination of filter
bank I with J. Ch 12 and Ch 8 mean Channel 12 and Channel 8, respectively.

Table 18. The best results of different methods for feature selection (along with feature extraction, feature reduction,
channels, etc.) on two channels 8 and 12 by combining different select bands.

Subject PSO
FM2

GA
FM2

BGA
FM2

PSO
CSP1

GA
CSP1

BGA
CSP1

RF &
DFFS

RF, 8–30
Hz RQNN

1 63.17 64.62 62.17 68.94 70.88 70.32 63.69 66.52 61.11
2 60.42 61.68 59.20 67.67 68.30 68.50 61.97 56.62 61.11
3 84.64 85.10 84.05 81.66 71.17 89.50 91.09 90.36 79.17
4 61.44 62.40 60.30 66.18 69.73 68.41 61.72 59.83 60.42
5 61.31 63.44 60.61 65.27 68.80 68.20 63.41 57.63 71.53
6 62.49 62.25 61.25 65.36 67.83 69.90 66.11 65.19 61.11
7 65.14 67.48 61.11 68.93 70.72 70.74 59.57 64.86 58.33
8 61.56 61.79 60.47 64.91 66.57 70.32 62.84 66.57 67.36
9 68.94 66.68 68.21 76.98 69.51 82.18 84.46 77.69 79.36

Avg 65.46 66.16 64.15 69.54 69.29 73.12 68.32 67.25 66.59
Std 7.21 6.98 7.45 5.53 1.46 7.07 10.65 10.08 7.77

p-value 0.086 0.191 0.020 0.285 0.398 0.005 - 0.242 0.199

p-value, the paired t-test between results of RF & DFFS [33], with fourth (four methods with two channels (FM2)) and sixth (CSP with two
channels (CSP1)) model scenarios and some previous methods.

In Table 18, the statistical significance of performance between RF and DDFS with
two other methods [33] with the fourth model scenario (four feature extractions, i.e., time
domain, frequency domain, autoregression, and wavelet coefficients with two channels),
and the sixth model scenario (CSP with two channels) have been calculated. A paired t-test
is calculated for comparing p-values. The methods are considered of statistical significance
when the p-value is less than 0.05. BGA with CSP with the fourth and sixth model scenarios
could achieve p-values 0.020 and 0.005, respectively.

In Table 19 and Figure 15, the results of kappa for GA, BGA, and PSO with three
channels and two proposed models (i.e., FM and CSP) are compared with the methods of
some articles that use different channels [39]. BGA with CSP obtained the best kappa in
most subjects with the average kappa, i.e., 59.06%, which is only 0.84% less than standard
kappa (i.e., 60%). This result is significantly higher (about 18%) than the article [39] with
three channels, while this difference is only about 0.5–1% compared to the results of the
article [39] that uses all or 8.55 channels.
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Figure 14. The best results of different methods for feature selection (along with feature extraction, feature reduction,
channels, etc.) on two channels, 8 and 12, by combining different select bands.

Table 19. Examining the best kappa different methods for selecting features (along with feature extraction, reducing features
and channels, etc.) on three channels, 8, 10, and 12, by combining different selected bands.

Subject PSO
FM3

GA
FM3

BGA
FM3

PSO
CSP2

GA
CSP2

BGA
CSP2

CSP
ALL

CSP
3.0

Channels

CSP
8.55

Channels

1 26.72 26.06 24.38 50.40 48.26 56.32 81.94 51.38 83.32
2 23 23.3 22.18 44.06 44.68 50.04 12.5 6.94 20.82
3 70.5 69.76 65.06 63.92 50.74 81.7 93.04 86.1 94.28
4 26.1 29.04 24.18 46.36 49.62 50.42 45.82 36.1 41.66
5 19.84 18.84 19.8 42.24 41.02 54.46 27.76 6.94 26.38
6 24.64 23.44 22.46 49.22 47.16 55.94 27.76 22.22 22.22
7 22.8 23.76 21.5 45.4 49.08 54.18 59.72 15.26 56.94
8 28.78 31.82 31.1 49.18 46.4 58.44 94.44 73.6 90.26
9 53.5 52.62 48.46 60.56 54.94 70.04 83.32 77.76 87.50

Avg 32.88 33.18 31.01 50.14 47.98 59.06 58.47 41.81 58.15
Std 16.26 15.89 14.61 6.96 3.69 9.73 29.47 29.64 29.44

p-value 0.112 0.114 0.076 0.176 0.270 0.032 0.003 - 0.003

p-value, the paired t-test between results of CSP (C3, C4, CZ (all 3)) [39], with the fifth (four methods with three channels (FM3)) and
seventh (CSP with three channels (CSP2)) model scenarios and some previous methods.

In Table 19, the statistical significance of performance between CSP with three channels
(C3, C4, and CZ) with two other methods [39], the fifth model scenario (four feature
extractions, i.e., time domain, frequency domain, autoregression, and wavelet coefficients
with three channels), and the seventh model scenario (CSP with three channels) have been
calculated. The methods are considered statistically significant when the p-value is less
than 0.05. BGA with CSP in the seventh model scenario and two models from other papers
could achieve p-values of 0.032, 0.003, and 0.003, respectively.

Table 20 and Figure 16 show the results of kappa for GA, BGA, and PSO with three
channels, and two proposed models (i.e., FM and CSP) are compared with the methods
of some articles that use different channels and different filter banks [39,48]. The best
average kappa in this experiment is related to FBCSP in [48], which was 4.41% higher than
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BGA with CSP. In this scenario, the other methods, in general, had 1.5–3% better kappa
compared to BGA with CSP. This is because in BGA, we use only three channels with 60%
of the frequency range, while in other studies, 22 channels with the entire frequency range
have been used. Considering the significant difference in the channels and frequency range,
the BGA had only 1.5% less kappa compared to the smallest kappa in the other works.

Table 21 and Figure 17 show the results of kappa for various implementation methods
with CSP [66]. The kappa values are in the range of 50% to 63%. BGA with CSP, three
channels, and 60% of the frequency range obtained the second-best average kappa, i.e.,
59%. While in all the other methods, all channels with all frequency ranges have been used.

Figure 15. Examining the best kappa different methods for selecting features (along with feature extraction, reducing
features and channels, etc.) on three channels, 8, 10, and 12, by combining different selected bands.

Table 20. Examining the best kappa different methods for selecting features (along with feature extraction, reducing features
and channels, etc.) on three channels with more than three channels by combining different selected bands and so on.

Subject GA
FM2

BGA
FM2

PSO
CSP2

BGA
CSP2

CSP
ALL

CSP
8.55

Channels

CSP
13.22

Channels
oFBCSP sFBCSP eFBCSP

1 26.06 24.38 50.4 56.32 81.94 83.32 83.32 72.00 72.10 74.70
2 23.3 22.18 44.06 50.04 12.5 20.82 34.72 38.90 39.50 41.60
3 69.76 65.06 63.92 81.7 93.04 94.28 95.82 82.20 81.60 82.40
4 29.04 24.18 46.36 50.42 45.82 41.66 44.44 38.10 38.40 40.00
5 18.84 19.8 42.24 54.46 27.76 26.38 30.54 56.30 59.20 60.80
6 23.44 22.46 49.22 55.94 27.76 22.22 33.34 25.50 28.70 30.90
7 23.76 21.5 45.4 54.18 59.72 56.94 69.44 80.00 83.00 84.90
8 31.82 31.1 49.18 58.44 94.44 90.26 94.44 78.50 78.60 78.70
9 52.62 48.46 60.56 70.04 83.32 87.50 83.32 74.70 76.00 77.20

Avg 33.18 31.01 50.15 59.06 58.48 58.15 63.26 60.70 61.90 63.50
Std 15.89 14.61 6.96 9.73 29.47 29.44 25.84 20 20 20
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Figure 16. Examining the best kappa different methods for selecting features (along with feature extraction, reducing
features and channels, etc.) on three channels with more than three channels by combining different selected bands and
so on.

Table 21. Checking the best kappa results of different methods compared with the proposed method [66].

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg Std p-Value

CSP 77.8 2.8 93.1 40.3 9.7 43.1 62.5 87.5 87.5 56 32.09 0.013
GLRCSP 72.2 16.7 87.5 34.7 11.1 30.6 62.5 87.5 76.4 53.2 28.47 0.028
CCSP1 72.2 20.8 87.5 13.9 1.4 30.6 62.5 87.5 76.4 50 31.71 0.112
CCSP2 77.8 6.9 94.4 40.3 8.3 36.1 58.3 90.3 80.6 54.8 31.71 0.013

DLCSPauto 77.8 2.8 93.1 40.3 13.9 43.1 63.9 87.5 87.5 56.6 31.46 0.011
DLCSPcv 77.8 1.4 93.1 40.3 11.1 25 62.5 87.5 73.6 52.5 32.13 0.046

DLCSPcvdiff 77.8 1.4 93.1 40.3 11.1 25 62.5 87.5 73.6 52.5 32.13 0.046
SSRCSP 77.8 6.9 94.4 40.3 12.5 37.5 58.3 94.4 80.6 55.9 31.49 0.008
TRCSP 77.8 8.3 93.1 41.7 25 34.7 62.5 91.7 83.3 57.6 29.41 0.005

WTRCSP 77.8 9.7 93.1 40.3 31.9 23.6 62.5 91.7 81.9 56.9 29.54 0.009
SRCSP 77.8 26.4 93.1 33.3 26.4 27.8 56.9 91.7 84.7 57.6 27.87 0.004
SCSP 81.9 12.5 93 45.8 27.8 27.8 59.7 94.4 83.3 58.5 29.45 0.003
SCSP1 83.3 34.7 95.8 44.4 30.5 33.3 69.4 94.4 83.3 63.3 25.84 0.002
SCSP2 83.3 20.8 94.3 41.7 26.4 22.2 56.9 90.3 87.5 58.2 29.44 0.003

BGA-CSP2 56.3 50 81.7 50.4 54.5 55.9 54.2 58.4 70 59.1 9.73 0.032
CSP (C3,C4, CZ) 51.38 6.94 86.10 36.1 6.94 22.22 15.26 73.60 77.76 41.81 29.64 -

p-value, the paired t-test between results of CSP (C3, C4, CZ (all 3)) [39], with the seventh (CSP with three channels (CSP2)) model scenario
and some previous methods.

In Table 21, the statistical significance of performance between CSP (C3, C4, CZ) [39]
with two of our model scenarios and other methods is evaluated. We used a paired t-test for
the comping of p-value. All of the methods have a p-value of less than 0.05 (p-value < 0.05).

Figure 18 shows one training epoch of the increasing accuracy of subjects 3 and 8 with
algorithms using the seventh model scenario (CSP with three channels (CSP2)). BGA has
the best converging to reach optimal results.
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Figure 17. Checking the best kappa results of different methods compared with the proposed method.

Figure 18. Converging of subjects 3 and 8 with algorithms on the seventh model scenario (CSP with three channels
(PSO-CSP2, GA-CSP2, BGA-CSP2, and QGA-CSP2)).

In most studies involving filter banks, first, all filter banks are applied to noise space
filters to reduce noise, and then, features are extracted from them. Next, all the features
of all filter banks are added together, and we select a set of features from them. In addi-
tion, in reducing the features for channels or selecting a channel, an interval of eight to
30 frequencies is considered. In this study, two or three filter banks with two important
channels are applied to reduce the noise and extract more important information. We
examined various algorithms tested on brain signals. We also proposed a new algorithm
based on the Bond Graph method, i.e., BGA. Our design goal for the new algorithm is
to effectively reduce the dimension of features and the effect of specified filter banks
and channels.

Most of these algorithms show close convergence with each other. Although the
accuracy values for some subjects were low in some cases, it was still far enough from the
local minimum trap. In most cases, BGA showed the best performance compared to the
other algorithms.
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5.2. Discussion Sampling (Pooling) on Brain Signals

In all our study cases, sampling is part of deep learning to reduce the dimension in
the layers. It is used during the deep learning phase. We use samplings based on four
main functions, i.e., maximum, minimum, maximum–minimum automatic function, and
no-maximum average function, on the data along with filter banks to reduce the dimension
of the channels. The number of channels is fixed, and the dimensional reduction of each
channel depends on the window size. The output window sizes for each channel are
as follows: window size 3 with four features, window size 4 with one feature, window
size 5 with seven features, window size 6 with five features, and window size 7 with
three features.

Window size 4 holds the lowest number of features (i.e., one feature) with 99.88%
dimension reduction. So, in our experiment, a total of 22 features out of a total of
19,250 features have been selected for classification for window size 1. Window size 4
holds the highest number of features (i.e., seven features), with 99.2% dimension reduction.
So, in our experiment, a total of 154 features out of a total of 19,250 features have been
selected for classification for window size 4.

In addition to the earlier functions, we also used an average function for the sampling
in each channel. In the average function, only the average value of the features within
each window size is selected. So, the number of output samples for the average function is
22 features.

The average accuracy of the functions mentioned above is in the range of 55% to
73%. This can be due to the excessive reduction of features in each channel. Therefore,
in future works, more features must be considered to examine the main performance.
However, despite the very small selection of features, when using a single filter bank, the
accuracy of 61.45% to 64.74% is obtained, which is very good considering the very small
selected features.

Compared to the articles on the basic quantum neural network method [65], where
the average accuracy of all individuals based on feature extraction is 66.59%, all channels
and total data have been involved in the extraction, which is only 2.2% better than our
sampling methods with a single filter bank and significant dimension reduction.

Compared to Jing Luo’s [33] article, feature selection was selected after feature extrac-
tion from two channels, i.e., 8 and 12, using a wavelet package. The average accuracy in
the range of 67–68% was obtained using a random forest classifier in the frequency range
of 8–30, which is only 3–4% better than our sampling methods with a single filter bank and
significant dimension reduction.

In Adham Atyabi’s article [36], a Mask model has been used on 118 channels to reduce
the electrodes and features. As a result, the feature reduction rate was 99%, which is near
to our work (i.e., 99.88%). They obtained accuracy in the range of 63–86% for five subjects.
The average accuracy was 74% in their work, which is only1% more than our best average
accuracy. However, the dimensional reduction in our work was more than their work.

5.3. Strength and Weakness of the Bond Graph Algorithm

Based on our experiments for the new BGA, BGA could achieve a very fast conver-
gence compared to GA and PSO on eight benchmarks with models 3 and 4. It means that
the formulation of two domains is suitable for converging, whereas the convergence of
models 1 and 2 was worse than the others. Based on our experience, introducing a formula
structure is very effective for improving the convergence.

It is possible to change parameters to find out the most suitable parameters for
convergence. However, it may not have a significant effect on their performance, because
their structure remains unchanged.

We obtained the best results for feature selection in one or two channels with model 3
when the selected features are sent directly to the ELM classifier. In addition, we obtained
the best results for feature selection in two or three channels with model 3 when the selected
features are sent directly to the CSP feature extraction. Then, the extracted features are sent
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to the ELM classifier. In both cases, the BGA converged significantly faster to the global
optimum compared to the other algorithms.

However, the BGA converges slower and may fall in local optimum when the feature
selection is done based on four different parts, i.e., time domain, frequency domain,
autoregression, and wavelet coefficients. In this case, if some parts are selected based
on the binary model and some other parts are selected based on the random mode, the
BGA performs poorly compared to the other algorithms. However, if all of the parts are
selected based on either binary or random models, the results are better than the other
algorithms. So, to solve this problem, two different models for feature selection should not
be used simultaneously.

6. Conclusions

In this article, a new algorithm called BGA is introduced and implemented to reduce
the feature dimensions in brain signals. This algorithm shows a better performance than GA
and PSO on general functions. Our algorithm performs better compared to other algorithms
when reducing the dimension to 100 features on the specific filter banks. Some scenarios
for testing this algorithm were implemented, including the following. (1) Reductions of
features, electrodes, and frequency range have been evaluated simultaneously for brain
signals. (2) Feature selection (with algorithms) and feature extraction by time domain,
frequency domain, wavelet coefficients, and autoregression have been studied on some
electrodes and filter banks. (3) Feature, electrodes, and the frequency range are reduced,
which is followed by the construction of new signals based on the proposed formulas.
Then, the CSP is used for the extraction of features. (4) Finally, a separate experiment with
the deep learning sampling method was implemented as feature selection in several layers.
The dimensional reduction was performed by sampling using three general functions and
two new functions. All scenarios expressed in the left hand and right hand have been
evaluated between one and three channels. Our algorithm outperformed by up to 5 to
8% accuracy and had 5% better kappa compared to the other studies with the same or
similar settings.

For future works, first, we will investigate even smaller sizes and different combina-
tions of filter banks to optimize the noise reduction and increase the distinctive patterns.
Second, we aim to examine new functions of deep learning sampling models with the aim
of increasing accuracy and performance.
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