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Abstract 
Developing effective signal processing for brain-computer interfaces (BCIs) and 

brain-machine interfaces (BMIs) involves factoring in three aspects of 

functionality: classification performance, execution time, and the number of data 

channels used. The contributions in this thesis are centered on these three issues. 

Contributions are focused on the classification of motor imagery (MI) data, which 

is generated during imagined movements.  

 Typically, EEG time-series data is segmented for data augmentation or to 

mimic buffering that happens in an online BCI. A multi-segment decision fusion 

approach is presented, which takes consecutive temporal segments of EEG data, 

and uses decision fusion to boost classification performance. It was 

computationally lightweight and improved the performance of four conventional 

classifiers. Also, an analysis of the contributions of electrodes from different scalp 

regions is presented, and a subset of channels is recommended.  

Sparse learning (SL) classifiers have exhibited strong classification 

performance in the literature. However, they are computationally expensive. To 

reduce the test-set execution times, a novel EEG classification pipeline consisting 

of a genetic-algorithm (GA) for channel selection and a dictionary-based SL 

module for classification, called GABSLEEG, is presented. Subject-specific channel 

selection was carried out, in which the channels are selected based on training 

data from the subject. Using the GA-recommended subset of EEG channels 

reduced the execution time by 60% whilst preserving classification performance.  

Although subject-specific channel selection is widely used in the 

literature, effective subject-independent channel selection, in which channels are 

detected using data from other subjects, is an ideal aim because it leads to lower 

training latency and reduces the number of electrodes needed. A novel 

convolutional neural network (CNN)-based subject-independent channels 

selection method is presented, called the integrated channel selection (ICS) layer. 

It performed on-a-par with or better than subject-specific channel selection. It 



iv 
 

was computationally efficient, operating 12-17 times faster than the GA channel 

selection module. The ICS layer method was versatile, performing well with two 

different CNN architectures and datasets.  
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Chapter 1 : Introduction 
 

This chapter opens with a discussion of the motivations and aims of the PhD 

research, and then goes on to list the main contributions. It closes with a 

summary of the layout of the rest of the thesis.  

 

1.1  Motivations and Aims 

1.1.1 EEG Technology for Brain-Computer Interfaces 

Brain-computer interfaces (BCIs) have enabled humans to control computers and 

machines using just their brains. Some works in the literature refer to these 

systems as brain-machine interfaces (BMIs). The recording equipment used can 

be invasive, with electrodes being placed within the skull via a surgical 

procedure, or non-invasive, with electrodes or recording equipment remaining 

external to the body [1], [2]. Non-invasive techniques present a lower risk to the 

user, are faster to set up, can be used more widely with immediate effect and, 

currently, may be more viable for commercial systems for consumers who do not 

want to carry out surgery [1].  

Of the non-invasive recording techniques available, electroencephalogram 

(EEG) recording has a relatively high time resolution, and it is also one of the 

cheapest, most portable, and easiest of the options to set up [1]. EEG signals are 

comprised of multi-channel time-series data, recoded using electrodes placed on 

the scalp, with each electrode producing a channel signal [3]. Other recording 

techniques include magnetoencephalography and functional magnetic resonance 

imaging, which have better spatial resolution than EEG, but require machinery 

that is expensive, high-power, and bulky, making them commercially unviable for 

many practical BCIs [1]. Functional near infrared spectroscopy, which monitors 

blood flow in brain tissues, is a more portable recording technique used in BCIs 
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and provides good spatial localization[1], [4]. It is often used in conjunction with 

EEG to exploit the time-domain resolution of EEG signals [4]. 

Signal processing and classification techniques enable EEG signals to be 

used in BCIs. Artificial intelligence techniques, particularly machine learning and 

deep learning, have been widely used to classify EEG signals [5]–[11]. 

Classification can be carried out on raw EEG data [6]–[9], however many studies 

extract features or time-frequency domain (TFD) images from EEG signals for 

classification [5], [10], [12]–[15].  

This thesis is focused on classification techniques for motor imagery (MI) 

EEG signals. MI activity is generated in the brain when the subject imagines a 

movement, and MI EEG-based BCIs can be used for the intuitive control of 

prosthetics or robotic vehicles, neurorehabilitation, physical therapy, and gaming 

[16]–[20]. Machine learning and deep learning techniques have been widely used 

to classify MI EEG signals [8], [10], [11], [21]–[24]. This thesis is focused on 

investigating how the effectiveness of BCI classification systems based on 

machine learning and deep learning can be improved. In this work, the concept 

of ‘effectiveness’ is explored in terms of classification performance, user comfort, 

hardware investment and execution times. Whilst some core contributions in this 

thesis improve the classification accuracy of different BCI processing pipelines, 

other contributions improve computational times or reduce the number of 

electrodes needed for classification. These contributions are important because 

for BCIs to become widely used and commercially viable, they must have a high 

classification performance, but also acceptable computational latencies for 

training and during real-time use. They should also use the least electrodes 

possible to reduce cost and improve practicality. The rest of this section 

highlights the core motivations of this work.  

1.1.2  Issues in Machine Learning Classification 

Pipelines  

Many MI EEG classification systems segment data in the time domain during pre-

processing. Sometimes, segmentation can be used to prune transitional activity 
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[7] or for data augmentation [9], [14], but it can also mimic a buffer in a real-time 

system [19], [25]. Relatively few studies in MI EEG classification have 

investigated how majority voting-based time-domain decision fusion between 

adjacent segments could be used to improve performance [8], [26]. However, 

time-domain decision fusion has been found to significantly improve 

classification accuracy in electromyography (EMG) signal classification [27]. EMG 

signals record electrical activity within muscles and are non-linear and non-

stationary like EEG signals [28].  

Many conventional MI EEG classification systems also use a static subset of 

EEG channels that is arbitrarily chosen from the full cohort of channels available 

in a dataset [10], [11], [22], [29]–[31]. In this thesis, a ‘static’ subset of EEG 

channels refers to a subset of channels selected using an unautomated method. A 

‘static’ subset may be based on channels chosen ‘arbitrarily’, usually selected 

based on heuristics. It is common in the literature for studies to choose EEG 

channels for analysis without any justification for the selection of the channels 

beyond the fact that they are located in the vicinity of the scalp region associated 

with the motor region [21], [22], [31]. There is no formal name in the literature 

for these kinds of channel subsets, so in this thesis they are referred to as ‘static’ 

subsets, and the selection of channels is referred to as ‘arbitrary’. Despite the fact 

that arbitrary channel selection is widely used [10], [11], [22], [29]–[31], the 

choice of MI EEG channels in the subset can significantly impact the classification 

performance [32], [33]. Discussion in the literature has been focused on whether 

increasing or decreasing the number of EEG channels in a static subset can 

improve performance [32], [33]. However, different scalp regions have been 

associated with different mental activities [34]–[37], such as motivated attention 

[34], problem-solving [38], planning and control of movement [38], and idling 

[36]. Although distinct MI EEG activity is observed on the central scalp region at 

the crown of the head [34], scalp areas associated with other mental activities 

such as concentration may also impact classification performance in a MI BCI. 

Despite this, the distinct contributions of channel groups surrounding the motor 

cortex to classification performance have not been studied. To elaborate, in the 
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literature reviewed, a study had not been conducted that involved adding and 

removing groups of electrodes that make up the regions neighboring the motor 

cortex, in order to investigate the influence of these electrode groups on 

performance. These regions consist of the central-parietal and central-frontal 

regions in this thesis. Furthermore, whilst studies have compared the 

performance of different conventional classifiers using fixed channel subsets [5], 

[14], [31], to the knowledge of this author no study has compared the 

performance of different classifiers across different EEG channel subsets to 

obtain a more generalized summary of performance.  

1.1.3  Sparse Learning 

Among machine learning techniques commonly used in the literature, sparse 

learning (SL) techniques have exhibited promising performance [11], [15], [39]–

[42]. In particular, dictionary-based learning systems, which construct a sub-

dictionary for each class using training segments of EEG data, then sparse encode 

test samples over the dictionaries and classify the samples based on the 

reconstruction error associated with each sub-dictionary, have been shown to 

have a strong classification performance [11], [39]. However, the performance of 

promising SL systems in the literature have not been assessed when subjected to 

constraints that might be found in practical systems, such as a reduced training 

data size, reduced numbers of EEG electrodes being available, or the introduction 

of the idle state class, which occurs when the user is not carrying out MI activity 

[11], [15], [39]–[42]. Furthermore, the computational times of successful 

dictionary-based SL systems have not been assessed in recent papers [11], [39], 

even though some encoding techniques that can be used, such as orthogonal 

matching pursuit (OMP), are known to be computationally expensive [43].  

Computational times can affect user experience at all stages of BCI use [44]: 

longer training times can increase user fatigue and decrease practicality, whilst 

long classification times on the test set can make the system slow and affect the 

perceived ‘real-time’ performance users expect from computer interfaces [45].  
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1.1.4  Automated Channel Selection 

Automated channel selection has been used in the literature to maintain the 

performance of an MI EEG classification system whilst improving test set 

computational times [44]. This is achieved by applying a channel selection 

algorithm to the training dataset to obtain a reduced subset of EEG channels. Only 

channels within the recommended subset are used during the testing phase, 

leading to improved computational times as a result of having less data to process 

[44]. There are two main categories of automated channel selection techniques: 

filter and wrapper techniques [44]. Filter techniques use statistical or analytical 

measures to rank EEG channels for selection [13], [44], [46], [47]. Wrapper 

techniques iteratively test candidate channel groups, searching for an optimal 

subset by evaluating the classification performance with each candidate [44], 

[48]–[51]. Wrapper techniques are more computationally expensive than filter 

techniques, but generally produce better results [44]. Metaheuristic wrapper 

techniques [49]–[51] use heuristic algorithms to speed up the channel selection 

process, at the expense of solutions that are possibly less-than-optimal, but often 

still acceptable [44], [49]–[51]. Metaheuristic techniques offer a trade-off 

between the high performance of wrapper techniques and faster processing [44]. 

Automated channel selection could be used to reduce the number of channels in 

a dictionary-based SL classifier to improve its computational times. Automated 

channel selection, and in particular metaheuristic channel selection, could ensure 

that the strong performance of the dictionary-based system is preserved when 

using fewer electrodes.  

Many authors opt to use subject-specific channels, which are selected using 

the target training data [13], [23], [46]–[49], and a previous study has found that 

channels selected in a subject-independent (or ‘cross-subject’) manner 

performed worse than when selecting channels using subject-specific data [52]. 

Ideally, however, channels are selected in a way that is independent of the target 

subject, since this would enable fewer electrodes to be used with the target from 

the onset, possibly resulting in faster training times as well as faster testing times. 

Furthermore, using fewer electrodes with target subjects reduces hardware 
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costs, makes system set-up faster, and could make the system more comfortable 

for the end user. Since EEG data can experience great intra-subject variability 

[53], to obtain a generalizable subset, the channel selection process would 

involve using data from as many source subjects as possible. Moreover, due to 

computational constrains, it may be challenging to carry out subject-independent 

channel selection with some classification pipelines. For example, dictionary-

based SL systems are memory intensive, requiring the whole dictionary to be 

stored in memory, as well as requiring memory for the encoding computations. 

Constructing a dictionary based on data from many source subjects, as well as 

carrying out the memory-expensive encoding calculations would be time-

consuming and may occupy unacceptable amounts of memory [54], [55]. 

Furthermore, SL dictionaries are typically constructed based on features such as 

wavelet energy, CSP features and signal power features [11], [56], [57], but the 

frequency bands in which MI activity can occur can vary between subjects.  

1.1.5  Deep Learning and Channel Selection  

Deep learning systems, specifically convolutional neural networks (CNNs) [6], 

are being used at the forefront of subject-independent training for BCIs [7], [58]–

[60]. CNNs have excelled at complex classification problems involving large and 

diverse training sets because they are able to represent data at a high level of 

abstraction [6], [61]–[63]. Possibly, this generalizable representation extracted 

from CNNs could facilitate improved subject-independent channel selection. 

Research on carrying out MI EEG channel selection within CNN frameworks is 

relatively sparse [23], [24], and many recent leading studies into CNNs for 

classification of MI EEG have not delved into the area of channel selection [7]–[9], 

[59], [64], [65]. In one study, Mzurikwao et al. [23] developed a CNN network 

architecture in which the weights of the network could be related back to the 

individual input data channels. After training the network, the channels 

associated with the greatest weights were selected. Then, the CNN was retrained 

with just the selected channels. However, not all CNN networks have 

architectures that can facilitate this kind of weight association with the input 

channels [7], [8], [65], and performance may be linked to the architecture of the 
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whole CNN. Zhang et al. [24] added an automatic channel selection (ACS) module 

to the start of a CNN classification network. The ACS module forces sparsity on 

the input data channels, with the aim of suppressing the contribution of 

redundant channels. Using the ACS module improved the classification 

performance, however all EEG channels still had to be input to the CNN, thus not 

leading to any of the benefits associated with using fewer electrodes. 

Furthermore, Mzurikwao et al. [23] and Zhang et al. [24] did not explicitly 

investigate the problem of subject-independent channel selection, and they do 

not test the effectiveness of their channel selection techniques on different CNN 

architectures.  

1.1.6  Main Research Aims 

Based on this discussion, the main aims of the research reported in this thesis 

were as follows: 

• To study whether using time-domain decision fusion based on segmented 

EEG data can improve the classification accuracy of different machine 

learning pipelines. EEG data segmentation is typically carried out in the 

literature either for augmentation of the training dataset [9], [58], [66], or 

to mimic buffering in a real-time system, which would receive segments 

of EEG data [19], [25]. However, in the literature reviewed, there has been 

no extensive investigation into the impact of time-domain decision fusion 

of these segments across different classifiers.  

• To investigate the contributions of different scalp regions (by association 

- channel subsets) to classification performance and compare the 

performance of popular classifiers across different static channel subsets. 

This is because signals linked to MI activity could appear in scalp regions 

neighbouring the central region [67] (pp. 87-91), which is the traditional 

motor area of the scalp [68]. 

• To investigate the effectiveness of a dictionary-based SL classifier within 

the context of practical constraints.  
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• To apply automated subject-specific channel selection to the SL classifier 

to improve test-set computational times. 

• To develop a versatile approach for carrying out subject-independent 

channel selection within a CNN system.  

1.2 Main Contributions in this Thesis 

The contributions in this thesis can be summarized as follows: 

1) Implementation of a majority voting-based multi-segment decision 

fusion framework for improved classification performance.  

• The framework led to a statistically significant improvement in 

classification accuracy for four different kinds of conventional 

classifiers. An extensive analysis was carried to assess the impact 

of the length of the segmentation window and the overlap between 

consecutive windows on classification performance.  

• A classification pipeline using the framework outperformed some 

other conventional classification systems presented in the 

literature.  

• Additional novel analysis was also carried out: 

o The contributions of electrodes from the central-parietal 

and central-frontal scalp regions were investigated. Static 

subsets were proposed based on this analysis.  

o The performances of various conventional classifiers were 

compared across a variety of static channel subsets.  

 

2) Implementation of a novel dictionary-based SL classifier with a 

metaheuristic channel selection module.  

• A novel MI EEG classification pipeline comprising of a dictionary-

based SL classifier and a metaheuristic (genetic algorithm (GA)) 

channel selection module, called GABSLEEG, is presented. Subject-

specific channel selection is carried out.  
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• The GA selected a channel subset that preserved the classification 

accuracy whilst improving the test-set computational times of the 

system.  

• The GABSLEEG system outperformed five different benchmarking 

and comparison approaches.  

• Additional novel findings: 

o When comparing classifiers without GA channel selection, 

the SL classifier outperformed three machine learning 

classifiers.  

o The GA channel selection module was also effective in 

maintaining or improving the classification accuracy of the 

three benchmarking classifiers.  

 

3) An innovative Integrated Channel Selection Layer for subject-

independent channel selection in CNNs 

• A novel custom CNN layer for channel selection was implemented. 

This integrated channel selection (ICS) layer can be used as a 

preface to existing CNN networks during the training stage. Then, 

a post-training weight analysis is carried out to rank the EEG 

channels, with larger weights in the ICS layer being associated with 

more important channels. 

• When using the proposed new ICS layer, there was no statistically 

significant difference in performance when using either 1) channel 

subsets that were selected in a subject-independent fashion [52] or 

2) channel subsets that were selected in a subject-specific way [47], 

[49]. Importantly, this indicates that the proposed ICS method is 

effective in selecting generalizable channels from subject-

independent data.  

• Channels selected using the new ICS layer always obtained a higher 

classification accuracy than those selected using two other state-
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of-the-art techniques [13], [47]. In 68% of instances, the 

improvement was statistically significant.  

• The ICS layer method was found to be computationally efficient 

when compared to state-of-the-art filter techniques, and more 

computationally efficient than a wrapper channel selection 

method. 

• Using transfer learning helped to improve performance when 

fewer EEG channels were used, leading to performance that was 

comparable to using the full cohort of electrodes.  

 

 

1.3 Publications Resulting from this Thesis 
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1. N. Padfield, J. Zabalza, H. Zhao, V. Masero and J. Ren, “EEG-Based Brain-

Computer Interfaces Using Motor-Imagery: Techniques and Challenges,” 

Sensors, 2019. 

2. N. Padfield, J. Ren, C. Qing, P. Murray, H. Zhao and J. Zheng, “Multi-segment 

Majority Voting Decision Fusion for MI EEG Brain-Computer 

Interfacing,”. Cognitive Computation, 2021. 

3. N. Padfield, J. Ren, P. Murray, and H. Zhao, “Sparse learning of band power 

features with genetic channel selection for effective classification of EEG 

signals,” Neurocomputing, 463, pp.566-579, 2021.  

Articles in Preparation for Submission 

1. “A Versatile CNN-based Subject-Independent Channel Selection Method 

for MI EEG”   
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1.4 Layout of Thesis 

The rest of this thesis is organized as follows: 

• Chapter 2 provides relevant background information about EEG recording 

and the nature of EEG signals, as well as details about the datasets used in 

the contribution chapters.  

• Chapter 3 presents a review of the literature focused on MI EEG 

classification, highlighting conceptual gaps that were explored and 

exploited in the contribution chapters.  It also provides technical details of 

the machine learning and deep learning systems used in the contribution 

chapters.  

• Chapter 4 introduces a majority voting-based multi-segment decision 

fusion approach for boosting classification performance. An analysis into 

the contribution of electrodes from different scalp regions was also 

carried out, and a comparison of classifiers using different electrode 

configurations is also included.   

• Chapter 5 presents a dictionary-based SL classification pipeline with 

subject-specific channel selection.  

• Chapter 6 proposes a versatile custom layer for subject-independent 

channel selection for CNN-based MI EEG classifiers. It also investigates 

how transfer learning can be used to improve performance.  

• Chapter 7 summarizes the key points discussed in this thesis and 

concludes with a discussion of possible future work.  

• The Appendix contains supplementary information for Chapter 6.  
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Chapter 2 : Background in EEG 

Signal Analysis  
 

This chapter provides background information relevant to the contributions 

made in this thesis. It introduces EEG signals, including their physiological nature, 

recording techniques used, and characteristics relevant to signal processing. It 

also summarizes the datasets used for experimentation, including the recording 

protocols used.  

2.1 EEG Data: Physiological Aspects and 

Recording Methods 

2.1.1 EEG Signal Generation and Recording  

The brain is constructed from approximately 100 billion nerve cells called 

neurons. These microscopic cells communicate with one another via electrical 

signals [69](pp. 1-41). The brain has distinct regions of cells which are associated 

with different activities, such as the sensorimotor region in the upper-central 

part of the brain which is responsible for planning and execution of movements, 

and the occipital cortex towards the back of the head which is involved in 

processing visual information [69](pp. 1-41)[34]. During complex, conscious 

tasks there is activity within a dominant brain source associated with the task, 

but there is continuous two-way communication with other brain regions 

[69](pp. 1-41). For example, during movement the dominant brain source is the 

sensorimotor region, however the occipital cortex provides visual information to 

guide movements [69](pp. 1-41).   

The neuronal signals do not just travel within the brain, they also travel 

up towards the scalp. These signals are conducted from the brain source, up 

through other areas of the brain, through the blood-brain barrier, through the 

skull and onto the scalp. The skull, being a poor conductor, attenuates the brain 
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waves, resulting in microvolt signals reaching the scalp [70]. The blood-brain 

barrier, skull and skin produce perturbation and mixing within the signals known 

as volume conduction, and this presents challenges when tracing scalp signals to 

the original brain sources [70]. The scalp signals can be recorded non-invasively 

using sensors placed on the skin. In EEG research, multiple sensors are typically 

placed in contact with the scalp to record the signals across various scalp regions 

[34]. The number of sensors used varies, with open-access datasets like those 

used in this thesis typically using between 3 and 118 sensors [6], [71]–[74].  

Figure 2.1 shows the extended 10-20 electrode placement scheme used 

for recording EEG data. The scalp is divided into 7 main regions, namely: the 

frontal (F), parietal (P), central (C), occipital (O), anterior (A), temporal (T) and 

frontopolar (Fp) regions. There are also regions which are transitional between 

major regions, such as the central-parietal (CP) region [34]. Electrodes with even 

numbers are located on the right side and those with odd numbers are located on 

the left side. Figure 2.2 shows a colour-coded map of the electrodes in the 

extended 10-20 layout, with each colour being associated with a different scalp 

region. Bold colours denote distinct regions, whereas pastel colours denote 

 

Figure 2.1: The electrode layout for the extended 10-20 EEG recording 
montage. 

 
 

Figure1: The electrode layout for the 10-20 EEG recording montage. 
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transitional/overlap regions. The sensors are arranged in a cap which is placed 

on the subject, aligning the Cz electrode with the top-centre point of the head. 

Figure 2.3 shows an EEG cap with electrodes in place, being used by a test subject 

within a practical BCI set-up. In this thesis, the ‘EEG recording montage’ refers to 

the selection of electrodes placed on the scalp during recording. During 

discussions, the electrode signals are often referred to as ‘channel signals’. 

The 7 scalp regions of EEG electrodes mentioned previously, namely C, P, F, O 

T, A, and Fp are broadly associated with different brain activities, summarized in 

the following list: 

• C: The central region is strongly associated with the sensorimotor cortex 

in the brain, and predominantly captures activity related to the execution 

and imagination of motor movements [34]. 

• P: The parietal region is associated with motivated attention and control 

[34].  

 

Figure 2.2: Colour-coded electrode map for the extended 10-20 layout, with each colour 
denoting a particular region. 

 

Figure 2:  
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• F: The frontal region is associated with problem solving, emotions, 

memory and planning or control of voluntary movement [38].  

• O: The occipital region is associated with visual processing. It is also the 

source of the posterior dominant rhythm, an alpha-band wave which 

occurs during relaxed, idle behaviour [36].  

• T: The temporal lobe is associated with audio processing [37], and certain 

seizures [75].  

• A: anterior region EEG has been associated with sleep, anesthesia, and 

drug use [76].   

• Fp: related to behaviour [77] and mental health [78], including anxiety 

and depression.  

EEG data has five clinically relevant frequency bands. These are the: delta 

band (<4)Hz, theta band (4-7)Hz, alpha band (8-12)Hz, beta band(12-30)Hz and 

gamma band (>30)Hz [34]. These frequency bands can vary slightly between 

research papers, but the variation is generally of less than 1Hz [67](pp. 36). EEG 

activity recorded at any one time will have a mixture of data in all these frequency 

 

Figure 2.3: An EEG cap with electrodes being used in a typical BCI set-up. 
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bands. Lower frequency bands, in particular the delta and theta bands, are 

generally associated with subconscious, low-level mental processes including 

sleep, whereas higher frequency bands tend to be associated with conscious 

thought and actions, or higher-level cognitive processing [67](pp. 36). The alpha 

band has been associated with both subconscious and conscious mental 

processes [34], [36].  

One of the core advantages of EEG signals is that they provide a high 

temporal resolution at a relatively cheaper cost and through equipment with 

more portability when compared to other brain imaging techniques such as 

functional magnetic resonance imaging and magnetoencephalography, which 

both require powerful magnets, bulky machinery and high electricity input [18], 

[34]. However, EEG signals are considered to have a poorer spatial resolution 

when compared to these other brain imaging techniques [34]. 

 

2.1.1.1 Mathematical Modelling of EEG Signals   

There is no straightforward, linear relationship between the EEG scalp electrodes 

and the underlying brain sources [70]. This sub-section discusses a mathematical 

model known as the forward model, which is used to explain the nature of scalp 

EEG signals. Although no contribution was made to this area in the thesis, this 

model is useful for explaining the non-trivial nature of EEG signals. The forward 

problem models the movement of electrical brain activity from the cortical source 

(dipole) within the brain, through the head and to the electrode on the scalp.  

Equation (2.1)[67](pp. 86-87) shows the forward problem:   

 𝑽 = 𝑮𝑱 + 𝒏   (2.1) 

 

where: 
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• 𝑽 is the matrix containing the scalp voltage measurements from N 

electrodes at T time samples: 𝑽 =  [
𝑉(𝑟1, 1) … 𝑉(𝑟1, 𝑇)

. … .
𝑉(𝑟𝑁, 1) … 𝑉(𝑟𝑁, 𝑇)

], where 𝑟𝑥 is 

the position of the scalp electrode.  

• 𝑮 is the gain matrix, which describes the potential measured at a scalp 

position 𝑟𝑥 and which originated from a dipole at position 𝑟𝑑𝑖𝑝_𝑦 with 

moment d. Given that p is the number of dipoles in the cortical model and 

e is a unit vector, then:  

 𝑮 =  [

𝑔(𝑟1, 𝑟𝑑𝑖𝑝_1, 𝑒𝑑1) … 𝑔(𝑟1, 𝑟𝑑𝑖𝑝_𝑝, 𝑒𝑑𝑝)
. … .

𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝_1, 𝑒𝑑1) … 𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝_𝑝, 𝑒𝑑𝑝)
].  

• 𝑱 is the matrix of dipole magnitudes, containing the magnitude of p dipoles 

over 𝑇 time samples: 𝑱 =  [

||𝑑1,1|| … ||𝑑1,𝑇||
. … .

||𝑑𝑝,1|| … ||𝑑𝑝,𝑇||
]. 

• 𝒏 is the noise matrix.  

Thus, the voltage at any scalp point can be decomposed into two additive 

parts: a brain signal produced by the combination of different sources (𝑮𝑱)  and 

additive noise (𝒏). The ‘pure’ brain signal can be decomposed further into 

[67](pp. 83-91): 

𝑮𝑱 =  [

𝑔(𝑟1, 𝑟𝑑𝑖𝑝1, 𝑒𝑑1) … 𝑔(𝑟1, 𝑟𝑑𝑖𝑝1, 𝑒𝑑𝑝)
. … .

𝑔(𝑟𝑁 , 𝑟𝑑𝑖𝑝1, 𝑒𝑑1) … 𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝1, 𝑒𝑑𝑝)
] [

||𝑑1,1|| … ||𝑑1,𝑇||
. … .

||𝑑𝑝,1|| … ||𝑑𝑝,𝑇||
] (2.2) 

 

This ‘pure’ part of the brain signal produced at any point on the scalp is 

composed of a summation of the contributions from each dipole. The dipole’s 

influence diminishes the further away it is located from the electrode’s position 

on the scalp [67], [70](pp. 83-91). Therefore, essentially, the biological mixing 

which produces EEG signals is additive, based on the principle of superposition. 



18 
 

The core issue is that there are billions of neurons within the brain in continuous 

communication.   

Solving the forward problem involves calculating the 𝑮 matrix 

coefficients, which depend on the recording electrodes, the dipole configuration, 

and the attributes of the volume conductor model. The volume conductor model 

represents the electrical properties of the brain, skull, and scalp that the signals 

travel through before being recorded using EEG [67] (pp. 87-91). There are two 

standard models for representing volume conduction: a simplified spherical head 

model and a more accurate realistic head model [67] (pp. 87-91).  

EEG signals are mixed with noise from a multitude of sources within and 

outside the body that produce signal anomalies known as artifacts. The human 

body is driven by electrical signals which control eye movements, heartbeats and 

muscle movements, and these signals produce electrocular, electrocardio and 

myoelectric artifacts within EEG recordings, respectively [79].  These are known 

as physiological artifacts. Artifacts can also be produced by the subject 

themselves through movements both voluntary and involuntary, which can 

disturb the electrical contact between the electrodes and the scalp [79]. EEG 

signals are also affected by the surrounding environment, including the 50Hz 

power line hum in recording equipment, light sources, and electrical equipment 

[79]. With good subject and environmental preparation, non-physiological 

artifacts can be reduced, whilst signal filtering and additional processing can be 

carried out to remove physiological artifacts generated by signals within the body 

[79]. Automated artifact detection is an active area of research. Some studies 

choose to use artifact-free data which has had trials containing artifacts removed 

following visual inspection by an expert [2], [9], [38]. 

 

2.1.2 Motor Imagery EEG 

Motor imagery (MI) is the action of imagining movements. The accurate 

classification of EEG signals recorded during different imagined movements can 

be used in brain-computer interfaces (BCIs) for the control of prosthetic limbs, 
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graphical user interfaces, neurorehabilitation, artistic ventures, and gaming, to 

name a few examples [1], [18]–[20], [80]. Typically, MI of the hands, arms, legs, 

tongue, or joints such as elbow or wrist, are studied [7], [10], [23], [59], [81].  

MI is characterized by two phases: i) event-related desynchronization 

(ERD), which is a decrease in activity in the alpha and beta frequency bands at 

the start of a MI event, and ii) event-related synchronization (ERS), an increase in 

the activity within these bands at the end of a MI event [68]. MI is contra-lateral, 

thus movements imagined on the right-hand side of the body manifest in brain 

signals recorded on the left-hand side of the scalp, and vice-versa [34]. Different 

subjects can have different sub-bands within the alpha and beta frequency bands 

within which ERD and ERS are most predominant [82]. Also, there is a human 

reaction time delay between a subject seeing a cue to perform MI and starting the 

task, generally of 0.7s [82] to 1s [81].  The gamma frequency band has also 

exhibited ERD/ERS activity but has not been widely used within MI EEG 

classification since this frequency band usually contains strong myoelectric noise 

from muscles [34], [83].  

ERD/ERS activity occurs within the sensorimotor region of the brain, and 

is most noticeable on the central electrodes [34], [68]. Channels C3 and C4 have 

been found to have highly discriminative signals [34], however electrodes 

outside of the central region, particularly in the parietal and frontal regions, have 

also been found to be discriminative for MI EEG processing [47], [48], [84].  

ERD changes may not be the only way to detect the onset of MI EEG 

activity. Bereitschafts-potentials (BPs) are low-amplitude spikes of activity 

indicating planning, preparation and/or commencement of conscious acts and 

can be observed prior to MI activity  [85]. However, popular EEG datasets do not 

have these potentials marked, and for non-experts it could be challenging to 

differentiate them from noise [2], [86]–[89].  

MI EEG activity is generally recorded from subjects in a structured data 

recording session. Subjects are usually informed when to start imagining a 

movement and when to stop imagining a movement through a graphical user 
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interface or audial signal such as a beep [2], [86], [89].  Each interval of recorded 

MI is called a ‘trial’. Within one session subjects are generally asked to imagine 

several MI tasks in different trials, with a short break of a few seconds between 

each trial [2], [86], [89]. The ground truth in these recordings is the trigger signal 

used to control the graphical user interface or audial signal.  

 

2.1.3 EEG Signal Features 

EEG signals are stochastic and non-stationary [67](pp. 21)[90]. However, short 

EEG segments [67](pp. 21) of length 1.5s or less have been considered 

approximately stationary for signal processing purposes [91], [92].  

There is also wide inter-subject variability within EEG signals for normal 

brain activities [81], [82]. Consider the action of imagining a right-hand 

movement. For any healthy subject this will cause a decrease in the power within 

the alpha and beta bands in the left sensorimotor region. However, there is inter-

subject variability in the prominence of the power decrease, the latency between 

the imagined movement and the desynchronization, and the most predominant 

frequency sub-bands in which the desynchronization can occur [81], [82]. 

Figure 2.4 and Figure 2.5 demonstrate this inter-subject variability. Both 

images are based on EEG data generated during imagined right-hand movements 

for two subjects, labelled ‘al’ and ‘ay’ from Dataset IVa, which was used at BCI 

Competition III [86]. During a data recording trial, a cue was used to indicate 

when the subject is to start imagining the movement, and subjects carried out the 

task for 3.5s. In total, 140 right-hand MI trials were recorded per subject. Results 

for channel C3 were chosen in the figures since this channel is on the left 

hemisphere, which is where MI activity related to the right-hand side can be 

expected to manifest. Plots related to subject al are in blue and those related to 

subject ay are in red. More information on this dataset, and the other datasets 

used in this thesis, can be found in Section 2.2 of this chapter.  
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The plots in Figure 2.4 show the ERD behavior for both subjects. The plots 

were generated by first re-referencing the EEG trials using common average 

referencing (which involves subtracting the mean value of all the EEG channels 

in the trial from every sample on every channel [93]) and then using a standard 

method [68] to extract ERD. This method involves bandpass filtering the signals, 

squaring to obtain the band power, and then finding the average over the trials. 

This method generates the average ERD curves for each subject, and the results 

can be used for demonstrative purposes [68]. In this example, the ERD dynamics 

in the alpha band were studied, so the filter had a passband of (8-12)Hz [68]. For 

the first 1s of data, the subjects are in the idle state, then the cue is shown at the 

1s mark, as indicated in the diagram with the label ‘Cue’. From 1s to 4.5s the 

subjects imagined the right-hand movement. The ERD manifests as a decrease in 

band power that occurs after the 1s mark for both subjects. The plots capture 

inter-subject variability in MI EEG: the idle state signals prior to the cue have 

different amplitudes, with the signal associated with subject ay having a greater 

amplitude. After the cue occurs, both subjects experience a decrease in band 

power, but the decrease for subject al ends around 1.48s, whereas the decrease 

for subject ay ends around 1.58s, which is a ~0.1s difference.  

 

Figure 2.4: Plots of band power against time illustrating the ERD behaviour occurring during 
right-hand motor imagery for subjects al and ay from Dataset IVa from the BCI Competition III. 
The subjects are initially in the idle state, then at time 1s the cue to imagine the movement is 
given.  
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Figure 2.5 shows power spectral density (PSD) plots for subjects al and ay 

when right hand MI was carried out. The signals were first bandpass filtered in 

the frequency range (8-32) Hz to capture content in the alpha and beta bands. 

The plots were obtained by finding the Welch periodogram for all trials of a given 

subject, then the periodograms were averaged across all the trials for the subject 

to plot the mean PSD plots. These plots capture the inter-subject variability in 

frequency content: the PSD plot for subject ay has a singular peak in the alpha 

band and greater frequency content in the beta band than subject al. Subject al 

has a spectrum with a wider spread and multiple peaks. The greatest peak of the 

spectrum for al is at a lower frequency than that of ay. These plots illustrate that 

the PSD in the bands normally associated with MI can vary between subjects.  

EEG signals also exhibit intra-subject variability [53]. This variability can 

be due to naturally occurring microstates within the brain and due to signal drift 

during a single recording session [53]. Figure 2.6 illustrates intra-trial differences 

for subject aa from Dataset IVa when right-hand MI was carried out. Again, results 

for channel C3 are shown. The figure shows PSD plots for four different trials 

within the same recording session, namely trials 25, 50, 75, and 100. These trials 

were chosen to be dispersed equally over the recording session. The plots were 

 

Figure 2.5: Power spectral density plots showing the differing frequency content during a right-
hand MI task for subjects al and ay from Dataset IVa from the BCI Competition III.  
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obtained by first band pass filtering the signals in the range (8-32) Hz, then the 

Welch periodogram was calculated. From the figure it is evident that, even for the 

same subject, the frequency content of the MI signal can vary widely, with the 

peak frequency, width of the peak, and the level of beta-band frequency content 

changing noticeably between trials.  

It has been shown that prior sleep [94], posture [95] or mood [78] can all 

significantly affect the EEG signals recorded. These issues could also result in 

recordings taken on different days suffering from poor intra-subject consistency, 

although the poor consistency could also be caused by changes in the placement 

of electrodes when the EEG cap is placed on the subject. In general, poor intra-

subject consistency is due to classification algorithms not being able to adapt as 

opposed to a fault of the user. Also, drying of the electroconductive gel which 

forms a connection between the scalp and electrodes can affect signal quality 

[96].  

These issues of inconsistencies over time, low repeatability and data 

which is unusable due to artifacts are not unique to EEG data and are experienced 

in other signals within the biomedical engineering sphere, such as 

electromyogram (EMG) signals [28], [97], which are recorded from muscles.  

 

Figure 2.6: The PSD plots of four different trials of right-hand MI for subject aa. 
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 EEG is a non-invasive, cost-effective, and portable technology for brain 

activity recording [1]. It gives insight into neurological and mental processes 

which can provide invaluable information for researchers [34], [36]–[38], [75]. 

Data generated during MI tasks is widely studied [7], [10], [11], [30], [31], [98], 

[99] and is the focus of this thesis because it can be used in BCIs for applications 

including prosthetics [100], brain-controlled vehicles [19], [20], 

neurorehabilitation [1], [16], and gaming [16]. Effective EEG signal processing 

and classification is necessary for BCI technology [3], [16], [34]. However, EEG 

data presents processing challenges due to its non-stationary and non-linear 

nature, as well as its intra- and inter-subject variability [53], [81], [82]. Recent 

research has focused on improving signal processing [14], [30], [101], machine 

learning [10], [11], [13], [51], [99], and deep learning [6], [65], [102] techniques 

for MI EEG classification. This thesis makes contributions to machine learning 

and deep learning for MI EEG classification, and the following section introduces 

technical concepts from these areas used in the contribution chapters.  

2.2 Datasets  

This section describes the open-access datasets used in this thesis. There is no 

standard protocol used for MI EEG recording across datasets, and research 

protocol design is an active area of research [103].  

2.2.1 BCI Competition III Dataset IVa 

This dataset was presented by Dornhege et al. [86]. This is a two-class dataset, 

with MI of the right hand (class 1) and right foot (class 2).  Data from five healthy 

subjects, labelled as aa, al, av, aw and ay is available. The data can be downloaded 

from [73]. Information about the recording protocol and data was obtained from 

[73] and [86]. This dataset is used in Chapter 4 and Chapter 5.  

In the recording protocol, subjects were instructed, through a visual cue, 

to carry out a MI activity. The possible activities were MI of the left hand, right 

hand or right foot. However, in the dataset available for download [73], only MI 

of the right hand or right foot is available. The length of the MI trials is 3.5s 

because this is how long the cue was displayed on-screen. Between each trial, 
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subjects were asked to relax for an interval of between 1.75s and 2.25s. The 

duration of these breaks was varied randomly. Two types of visual cues were 

used: 

• Type 1: A letter appears on-screen behind a fixation cross. The letter is 

associated with the MI activity that should be carried out. This may 

introduce small eye movements correlated with the target.  

• Type 2: A randomly moving object on-screen indicates the MI activity 

to carry out. This may produce target-uncorrelated eye movements.  

Data was recorded over 4 sessions, with 35 trials per class being recorded during 

each session. This means a total of 140 trials per class are available in the dataset.  

For subjects al and aw two sessions using each type of visual cue were recorded. 

For the other three subjects, one session of Type 1 and two sessions of Type 2 

were recorded. Typically, the cue type is not factored when using the dataset for 

BCI research, unless a special focus on the effect of the cue type on the data 

recorded is being investigated [11], [86], [104]. In this thesis the research was 

not focused on the effect of cue type, so this information was not used when 

processing data.  

 The data was recorded using 118 Ag/AgCl EEG channels in the extended 

10-20 system. The data was recorded using a 1000Hz sampling frequency at a 16 

bit (0.1µV) resolution. The data was bandpass filtered between 0.05Hz and 

200Hz to remove noise. The data was then down sampled to 100Hz by retaining 

every tenth sample. The creators of the dataset recommend using this version of 

the dataset [73]. Since frequencies above the down sampled folding frequency of 

50Hz are outside the frequency bands of interest for MI EEG classification, the 

down sampled data was used in this thesis. Table 2.1 shows the number of trials 

Table 2.1: The number of training and testing trials available for each 
subject. 

Subject No. Training Trials No. Testing Trials 
aa 168 112 
al 224 56 
av 84 196 
aw 56 224 
ay 28 252 
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marked for training and testing for each subject in the original competition for 

which the dataset was published [73], [86]. These partitions are available with the 

dataset and have been used in the literature [12], [15], [105], [106]. They are also 

used in Chapter 4. This dataset was chosen because it has been widely used in the 

literature for conventional [10], [49], [104] and deep learning [106], [107] systems.  

 

2.2.2 BCI Competition IV Dataset I 

The BCI Competition IV dataset I [108] was recorded specifically for classification 

of MI EEG data and the idle state. For this reason, it is used in Chapter 5 since one 

aim of that chapter is to assess the performance of the proposed system with data 

including the idle data. This dataset contains data from four healthy subjects, 

labelled 1a, 1b, 1f and 1g. The data was downloaded from [109] and information 

about the dataset was obtained from [2],  [109] and [108].  

 The dataset has two MI classes, with subjects imagining movements from 

two of three possible classes, namely: right hand, left hand, or foot. Subjects 1a 

and 1f imagined left hand and foot movements, whilst subjects 1b and 1g 

imagined left-hand and right-hand movements. For the ‘foot’ class subjects could 

imagine movement of one foot or both feet at the same time, but it is not specified 

in the literature what specific subjects imagined. The dataset also has idle state 

data, thus presenting a three-class classification problem consisting of two MI 

states and the idle state.  

 Data was recorded using 59 Ag/AgCl electrodes that were distributed over 

and around the central part of the scalp, which is associated with sensorimotor 

activity. The data was recorded at a sampling frequency of 1000Hz at a 16-bit 

(0.1µV) resolution and was bandpass filtered in the range 0.05Hz to 200Hz. The 

data was then down sampled to 100Hz using a two-step process: first the data 

was filtered using a low-pass Chebychev Type-II filter (stopband frequency of 

49Hz, stopband ripple of 50dB and order 10) and then the average of consecutive 

blocks on 10 samples were calculated to produce the down sampled signal. The 

down sampled signals are used for computational efficiency. 
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The dataset consists of two sub-datasets: the calibration dataset and the 

evaluation dataset. The calibration dataset consists of 4s long MI trials 

interspersed with 4s periods of the idle state. During recording of the calibration 

dataset, a visual cue appeared on-screen to indicate which MI activity the subject 

should carry out. These cues were arrows pointing towards the left, right or 

downwards to indicate left-hand, right-hand or foot MI, respectively. During the 

idle state, the subjects observed a blank screen for 2s and a fixation cross for 2s. 

In the calibration set there were 100 trials per class. The evaluation dataset was 

designed to mimic asynchronous BCI data, with intervals of MI between 1.5s and 

8s long interspersed with similar length intervals of the idle state. Subjects were 

given a quiet acoustic cue which indicated when they should start imagining a 

particular MI activity. These cues were the words ‘left’, ‘right’ or ‘foot’. The end of 

a period of MI activity was indicated by the acoustic cue ‘stop’. The acoustic cues 

were quiet to prevent auditory evoked potentials, which are spikes in EEG that 

can occur when listening to audial stimuli [110]. Distractions in the form of music 

or videos were played during certain intervals to further replicate distractions 

that can occur during the use of a practical BCI [2]. For each individual subject, 

the data available in the evaluation dataset is: 24 minutes for subject 1a, 33 

minutes for subject 1b, 32 minutes for subject 1f, and 32 minutes for subject 1g. 

This means an average of 30 minutes of data were recorded for each subject. 

This dataset also contains artificially generated EEG data, which was 

labelled as subjects 1c, 1d and 1e. This data was not included in any research in 

this thesis since the focus was on developing classification approaches for data 

recorded from human subjects.  

 

2.2.3 Graz 2A Dataset 

The Graz 2A dataset [72], [111] has data recorded from 9 healthy subjects, 

labelled A1-A9. All information about this dataset was retrieved from [72]. EEG 

signals were recorded using 22 Ag/AgCl electrodes in locations that are part of 

the standard 10-20 system [72]. Three channels of EOG channels were also 
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recorded for artifact removal, however these were not used directly in this thesis. 

However, the dataset contains markings by an expert which indicate trials that 

have artifacts, and the expert used this EOG data to visually assess the data.  

Data was recorded for four MI classes, namely: left hand, right hand, feet, 

and tongue. 288 training trials and 288 testing trials were recorded per subject, 

with a balanced representation of classes. During a trial, subjects were instructed 

when to carry out MI activities via visual cues on a screen. The recording protocol 

was as follows: i) a fixation cross appears on-screen and a brief beep also sounds 

to indicate that a MI trial will begin soon; ii) after 2s the visual cue appears on-

screen and the subject starts the MI activity and continues the activity even when 

the cue disappears 1.25s later; iii) 4s after the cue appeared on-screen the fixation 

cross appears, indicating that the trial has ended and the subject can relax; iv) the 

screen goes blank as the subject is given a short break of 1.5s. The cues consist of 

arrows pointing left, right, up or down to indicate which MI task to carry out. Data 

was recorded during two sessions which took place on different days. A session 

was comprised of six runs, with each run consisting of 48 trials equally 

distributed between the four classes.  Between each run, subjects were given a 

brief break.  

 Data was recorded at a sampling frequency of 250Hz and bandpass 

filtered between 0.5Hz and 100Hz. A 50Hz notch filter was used to remove power 

line noise. During recording, the amplifier sensitivity was set 100µV. 

Trials containing artifacts were not included in analysis and Table 2.2 

shows the numbers of training and testing trials that were used for each subject. 

On average, there are 262 trials for training and 277 for testing.  

This dataset was used in Chapter 6 due to its frequent use in the literature 

in conjunction with deep learning systems, particularly the architectures used in 

Chapter 6 [7]. Furthermore, the dataset has relatively more training data samples 

available on average per subject that the BCI Competition III Dataset IVa and the 

BCI Competition IV Dataset I, making it more suitable for using with a deep 

learning system.  
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2.2.4 HG Dataset 
The HG dataset [8], [112] contains MI data from 14 healthy subjects, labelled H1-

H14, and each EEG trial is 4s long. A 64-channel recording montage was used, 

however in the supplementary material and code provided by the authors a 

subset of 44 central-associated EEG channels are recommended for use [112], and 

this subset was used in this chapter as the full EEG montage. This subset contains 

all the EEG channels surrounding the motor region of the scalp. The information 

in this section was obtained from [113] 

The four MI classes are: left hand, right hand, feet, and the idle state (called 

‘rest’ in the original paper [8]). During data recording, a fixation point appeared 

on-screen which indicated to the subjects that a trial would soon begin. Then, an 

arrow appeared on-screen, with the direction of the arrow indicating which MI 

action to execute. The cue remained on-screen for a four second period, during 

which subjects had to execute the MI task. When the arrow disappeared, subjects 

could rest. Breaks of three to four seconds were given between trials. Subjects 

were instructed to keep muscle artifact-generating actions like blinking and 

swallowing to a minimum during trials and carry them out only during the 

breaks. Data was recorded over multiple runs, with each run consisting of 80 

trials. Between runs, subjects were given breaks.  

The experimental setup was designed to reduce high-frequency noise in 

the data. Precautions involved using active electromagnetic shielding and a 

Table 2.2: A breakdown of the Graz 2A Dataset, detailing the training and testing samples 
available per subject after artifact removal. 

Subject Number Total Number of Training Trials Total Number of Testing Trials 

A1 281 288 
A2 283 288 
A3 273 288 
A4 244 192 
A5 246 288 
A6 215 288 
A7 277 288 
A8 271 288 
A9 264 288 

Average 262 277 
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shielded EEG cap. These precautions ensured that even gamma band frequencies 

could be studied, however this feature of the dataset was not used in this thesis.   

The HG dataset was recorded at 1000Hz, at a resolution of 24 bits/sample. 

This data was down sampled to 128Hz using the MATLAB resample function. The 

data was high pass filtered with a passband of 4Hz. The software accompanying 

the HGD dataset [112] removes trials having spikes of 800mV or greater since 

these are likely to contain artifacts. Table 2.3 contains the total number of training 

and testing trials available for each subject after artifact removal. When carrying 

out experiments, data for subjects H2-H14 was used since testing samples for 

subject H1 were not available for download at the time this work was carried out. 

Thus, for experimental purposes, data from 13 subjects is available. Subjects had 

an average of 705 trials for training and 160 for testing.  

This dataset was used in Chapter 6 due to its frequent use in the literature 

with deep learning systems [58], and because when compared to the other 

datasets discussed, this dataset has the most EEG training trials available.  

 

2.3 Conclusion 

This chapter discussed the nature of EEG signals and EEG recording, with a 

special focus on MI EEG and EEG characteristics relevant to signal processing. The 

Table 2.3: A breakdown of the HG Dataset, detailing the training and testing samples available per 
subject after artifact removal. 

Subject Number Total Number of Training Trials Total Number of Testing Trials  

H1 319 - 
H2 811 160 
H3 880 160 
H4 895 160 
H5 872 160 
H6 835 160 
H7 654 159 
H8 880 160 
H9 880 160 

H10 813 160 
H11 880 160 
H12 877 160 
H13 800 159 
H14 800 160 

Average 705* 160 

                    * Average excluding subject 1 since their data was not used in experiments.  
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chapter also provided in-depth summaries of the datasets used in this thesis. The 

next chapter contains an extensive review of the literature, highlighting the 

conceptual gaps that were investigated, exploited, and addressed in the 

contribution chapters of this thesis.  
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Chapter 3 : Technical 

Background for EEG Signal 

Processing 
 

This chapter presents a literature review of different EEG classification 

approaches, with a focus on MI EEG classification. The discussions are based, in 

part, on those in a review paper [18] published in Sensors as part of the PhD 

project. Throughout this chapter, a thorough technical background of important 

approaches used in this thesis is also provided. This technical background 

introduces common spatial pattern (CSP) feature extraction, conventional 

classifiers, sparse encoding, deep learning concepts, and genetic algorithms.  

The chapter opens with a summary of conventional feature extraction 

methods and classifiers, then goes on to mention different sparse representation-

based classification methods in the literature. It then discusses the state-of-the 

art in CNN processing systems for EEG. Static and automatic channel selection 

techniques are then tackled. Finally, the chapter closes with a discussion of how 

EEG time series are segmented in different BCI applications.  The conclusion at 

the end of the chapter then gathers the gaps in the literature that were explored 

in the contribution chapters of this thesis.  

3.1 Conventional Feature Extraction 

A variety of approaches have been used for feature extraction for MI EEG 

classification. This section discusses the most prominent techniques, namely 

time-domain (TD), frequency-domain (FD), time-frequency domain (TFD), and 

common spatial pattern (CSP) techniques. 

3.1.1 Time-Domain Feature Extraction 

A predominant TD feature extraction technique involves autoregressive (AR)-

type models. In the traditional AR approach, popular in novel approaches in the 
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1990s and 2000s [114]–[116], the model is fitted to a segment of EEG data and 

the AR coefficients or spectrum are used as features [117], [118]. Adaptive AR 

(AAR) models fit an adaptive model to segments of EEG data [114]–[116], with 

the adaptive parameters being estimated using least-mean squares [114], 

recursive least-squares [115] or Kalman filters [116]. Although AR and AAR 

techniques can be computationally advantageous [118], they can be effected by 

artifacts [117], which are common in EEG data.  Furthermore, AR models are 

linear models meaning they can provide limited information on non-linear EEG 

data. This may be a reason why AR-type models have fallen out of popularity in 

recent years.  

Hjorth features were developed in the 1970s [119] to model EEG data 

using three parameters: ‘activity’, which is the variance of the signal, ‘mobility’, 

which is the average frequency, and ‘complexity’, which captures change in 

frequency [120]. These parameters are derived through TD differentiation.  All 

three parameters are computationally inexpensive to obtain [120], have been 

used recently in the literature [120]–[122], and have outperformed AAR features 

[120]. Quaternions are another modelling technique used for feature extraction 

[101]. This technique enables multichannel EEG data to be represented within a 

three-dimensional space, because quaternions can model orientation and 

rotation. Although they have exhibited promising performance [101], they have 

not been directly compared to other feature extraction techniques.  

The TD techniques discussed thus far were parametric modelling 

techniques. TD feature extraction based on analysis and statistical features has 

also been used [123]. In 2014 Hamedi et al. [123] compared using root-mean-

square (RMS) and integrated EEG (IEEG) features. IEEG measures the power 

within the EEG signal using the equation: ∑ |𝒙𝑗|𝑀
𝑗=1  where 𝒙 is a vector 

representing a segment of EEG data and 𝑀 is the number of samples in the 

segment. RMS features provided a better average classification accuracy than 

IEEG features, by 3.42%. Selective bandpower [124] is a power-focused feature 

like IEEG, but extracts the average power within specific frequency bands, as 

opposed to the absolute power, and uses the square of the signal instead of the 
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absolute value. A 2018 paper found selective band power to outperform TD 

template matching and TD statistical moments as a feature extraction method for 

MI EEG classification [124]. Since selective band power features were found to be 

computationally effective as well as being associated with good classification 

accuracy [124], the SL classifier presented in Chapter 5 is based on selective band 

power features.  

 

3.1.2 Frequency-Domain Techniques 

FD techniques are commonly based on the Fourier transform [5], [25], [120], 

[124], [125]. The fast Fourier transform (FFT) is the most primitive FD feature 

extraction technique used in the literature [25], [120], [124].  Analytical features 

extracted from the FFT magnitude signal include the relative power spectrum 

[124], energy in the alpha and beta bands [120], median frequency [25], mean 

peak frequency [25], and total power [25]. These features were effective, with 

Samuel et al. [25] recording a classification accuracy of 99.79% on a private 

dataset with three amputee subjects. The Welch method has also been used to 

extract power spectral density which was used directly for classification [5]. The 

Welch method aims to reduce the variance in the spectrum when compared to 

using the FFT, at the cost of a poorer frequency resolution.   

3.1.3 Comparing Time and Frequency Domain 

Techniques 

There is some disagreement in the literature over whether FD features can 

provide a significantly better classification performance than TD features [120], 

[124]. Consider two studies both focused on the same public dataset [120], [124]. 

In [120], FFT-based features were found to significantly outperform AAR and 

Hjorth features for MI EEG classification. In another study, Arnin et al. [124] 

compared FFT feature extraction to three TD feature extraction techniques, 

namely template matching, statistical moments and selective band power. 

Although the FFT features did provide an improved performance, the 

improvement was not statistically significant. They also found that FFT feature 
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extraction had significantly greater computational complexity, making it less 

favorable than the TD techniques. Based on the results of Arnin et al. [124], the 

sparse-learning classifier in Chapter 5 is based on TD as opposed to FD features.  

 

3.1.4 Time-Frequency Domain Techniques 

TFD techniques have gained popularity for MI EEG classification over the last five 

years [12], [22], [30], [118], [122], [126]–[129] They aim to provide a richer 

analysis than FD techniques by capturing dynamic behaviour at different 

frequencies over time. TFD approaches could also be more suitable than TD and 

FD features for non-stationary and non-linear data [130] such as EEG signals. 

However, these techniques come with their own characteristic trade-offs 

between time and frequency resolution.  

TFD transformations have been applied in three different ways for feature 

extraction: i) the transformation coefficients are used as features [122]; ii) 

statistical features extracted from the transformed signals, such as mean, mode, 

standard deviation, skewness and kurtosis are used to construct a feature vector 

which is passed onto a classifier [22], [30], [118]; or iii) a TFD image is obtained 

and used as input to deep-learning (DL) classifiers [12], [126], [127].  

The spectrogram has been widely used for visual presentation of MI 

within the literature [14], [131] and it is effective for identifying ERD and ERS 

[132]. The short-time Fourier transform (STFT) can provide improved time-

domain resolution by dividing the EEG signal into segments, obtaining the 

spectrum of each segment, and then concatenating the images to form the STFT 

image [130]. The segmentation step in the STFT can improve the representation 

of signals that are non-stationary. The STFT has been used to convert the EEG 

time-series to a TFD image prior to DL-based classification [12], [126], [127]. The 

STFT is given in Equation (3.1) [12]: 

 𝑌(𝑡, 𝑓) =  ∫ 𝑦(𝜏)ℎ(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝜏   (3.1)  
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where 𝑦(𝑡) is the signal on the EEG channel, 𝑌(𝑡, 𝑓) is the TFD representation, 𝑓 is 

the frequency, 𝑡 is time and ℎ(𝑡) is the windowing function used for 

segmentation. However, the STFT creates a trade-off between the time and 

frequency resolutions in the image. 

Wavelet-based feature extraction techniques are more flexible than the 

STFT, offering a representation at multiscale and multiresolution [12], [130]. The 

continuous wavelet transform (CWT) aims to solve some of the resolution issues 

of the STFT by using a scaling factor for more localized signal representation [12], 

and has gained popularity in MI EEG classification [12], [128], [129]. The CWT is 

summarized by Equation (3.2) [12]:  

 𝑊(𝑎,𝑏)[𝑦(𝑡)] =  
1

√𝑎
∫ 𝑦(𝑡)𝜑∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
, 𝑎 > 0    (3.2) 

where 𝜑(𝑡) is the wavelet basis function, 𝑎 is the scaling parameter and 𝑏 is the 

time-shift parameter. To solve the heavy computational demands of the CWT, the 

discrete wavelet transform (DWT) was developed [130].  

 A variation of the DWT is wavelet packet decomposition (WPD), in which 

coefficients excluded during DWT decomposition are retained. In 2017, Kevric 

and Subasi [22] compared the feature extraction capabilities of the WPD, DWT 

and the time-domain decomposition technique empirical mode decomposition 

(EMD), obtaining accuracies of 94.5%, 81.1%, and 62.8%, respectively. This 

analysis indicated that the data retained by WPD could contain salient 

information for MI classification. Later, Mumtaz et al. [122] also found that 

wavelet transform features outperformed TD features.   

In Chapter 5, a sparsity-based classification system using time-domain 

band pass features is presented. The method was found to outperform a similar 

classification pipeline using wavelet-based features. The implementations of 

Kevric and Subasi [22] and Mumtaz et al. [122] were based on feature extraction 

followed by classification either using a k-NN classifier or a hidden Markov model 

classifier. The classification approach in Chapter 5 is different, being based on the 

dictionary-based reconstruction, which is discussed in more depth in Section 3.3. 
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The results in Chapter 5 may suggest that the question of whether TD or TFD 

features are better for MI EEG representation may depend on the classifier used, 

although this would need to be verified through more rigorous investigation.  

 Finally, the empirical wavelet transform (EWT) is a wavelet 

decomposition technique offering another degree of freedom through adaptive 

wavelets [30], [118]. Univariate [118] and multivariate [30] versions of the 

empirical wavelet transform have been effective for MI EEG feature extraction, 

with accuracies of 95% and 97% being obtained for each approach. These 

features performed on a par with the literature, however they required extensive 

tuning for individual subjects [30], [118], unlike the selective band power 

features used in Chapter 5. A variety of TFD approaches have been discussed in 

this section because systems based on TFD feature extraction have been used for 

comparison in contribution Chapter 4 and Chapter 5.  

3.1.5 Common Spatial Patterns  

CSP-based features are one of the most popular feature extraction techniques 

used in MI EEG processing [10], [15], [26], [46], [48], [104], [106], [133]–[135]. 

This approach uses spatial filtering to transform the data in such a way that the 

variance of data in one class is maximized whilst the variance in the other class is 

minimized. Features are then extracted based on the filtered data. Since the 

variance in the filtered EEG signals corresponds to the power in the frequency 

bands within the signal, CSP has been popular for MI EEG BCIs [10], [14], [136], 

[137]. 

 Standard CSP features have been widely used in the last five years [82], 

[104], [106], [107], [133], [134], [138],  particularly in studies presenting novel 

channel selection or classification techniques [104], [106], [107], [133], [134], 

[138], or for benchmarking [82]. Standard CSP feature extraction is implemented 

based on the theory in [10], [139], and is summarized in the following steps: 

1. Training phase: 
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a. Calculate the spatial covariance, 𝑪(0), of the multichannel data, 𝑿, in 

each trial, τ, using: 𝑪𝑋τ

 (0)
=  

1

𝑇
𝑿 τ𝑿 τ

′  where 𝑇 is the length of trial and ′ 

denotes the transpose. The columns of 𝑿 represent the different 

channels.  

b. Obtain the standardised covariance matrix [139], 𝑪𝑋τ

 (1)
:  

𝑪𝑋τ

 (1)
=  

𝑪𝑋τ

 (0)

Tr(𝑪𝑋τ

 (0)
)/𝑁𝑿

, where 𝑁𝑿 is the number of channels and Tr() is the 

trace of the matrix. This compensates for trials having different 

instantaneous power content.  

c. Estimate the class-conditional covariance matrices: 

 ∑̂𝑿|𝐶𝒋

(1)
=  

1

𝑁𝐶𝑘

∑ 𝑪𝑿 τ

(1)
 τ:𝐶 τ=𝐶𝑗

, for 𝑘 = 1, … , 𝐾 where 𝐶𝑗  denotes class 𝑗, 𝐶 τ 

denotes the class associated with trial τ and 𝐾 denotes the total number 

of classes. 

d. Calculate the weight vector, 𝑾, which is used to filter the data: 

i. Obtain the eigenvectors,  𝑽, from the eigenvalue problem:   

∑𝐗|𝐶1
𝑽 =  ∑𝐗|𝐶2

𝑽 𝜆   

ii. Extract the 
𝑝

2
 highest and lowest eigenvectors to create 𝑾:  

𝑾 = [𝑽 (1:
𝑝

2
) , 𝑽 (𝑁𝑿 −  

𝑝

2
: 𝑁𝑿)], where 𝑝 is the dimensionality of 

the subspace used for the filtering transformation.  

e. Carry out spatial filtering to obtain the transformed covariance matrix, 

𝑪𝑌τ
, for each trial: 𝑪𝑌τ

=  𝑾′ 𝑪𝑋τ

 (0)
 𝑾 , τ = 1, … , 𝑁τ. 

f. Obtain the feature vector for the trial, 𝒇τ: 𝒇τ =  
log(diag(𝑪𝑌τ))

sum(diag(𝑪𝑌τ))
 

2. Testing phase: Carry out steps 1a), 1b), 1e) and 1f) on each test trial to obtain 

the test feature vectors.  

 

Standard CSP features capture wideband frequency behaviour. Since subjects 

may experience changes in different frequency bands during MI, standard CSP 

may sometimes provide sub-optimal features [140]. Optimizing the filter band 
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used can improve classification accuracy, but the process is computationally 

expensive, leading to increased training times [140].  

A branch of research has been devoted to exploring technical alterations 

to traditional CSP to improve performance. For example, common spatio-spectral 

patterns (CSSPs) integrate a finite impulse response filter into the CSP processing 

steps to improve performance [141]. Common sparse spatio-spectral patterns 

(CSSSPs) are a sparse extension of the CSSP method, and aim to extract spatial 

patterns which occur on all channels, not just on individual channels [142]. In 

filterbank CSP (FBCSP), EEG data is filtered within different sub-bands, features 

are extracted from each band, then feature selection is carried out [46], [140], 

[143], [144]. FBCSP can lead to improved performance compared to CSP, CSSP 

and CSSSP, at the expense of increased computation [140], [143].  

Regularized CSP (RCSP) is an alternative approach to improving CSP 

which is not focused on tackling the problem of wideband CSP feature extraction 

[13], [145]. RCSP introduces regularization coefficients to the CSP algorithm for 

improved generalizability which has led to better results, but at the cost of high 

computational demands [13], [145]. A simplified regularization algorithm, 

proposed by Jin et al. [13] in 2019, has outperformed traditional CSP methods 

with a lower computational load compared to traditional RCSP.  In a different 

approach, Olias et al. [10] used power normalization to improve the classification 

accuracy of CSP features by enabling more homogenous feature extraction across 

trials.   

 Although these novel approaches to CSP feature extraction are promising 

[10], [13], [46], [140], [143], [144],  standard CSP is still favored in the literature 

for studies that implement novel algorithms [104], [106], [107], [133], [134], 

[138]. For example, Baig et al. [104] presented a novel feature selection approach, 

whilst She et al. [107] presented a novel hierarchical extreme learning machine 

classifier, and both studies used standard CSP for feature extraction. Standard 

CSP feature extraction is still used because it is a reliable, robust and 

computationally efficient feature extraction approach [107]. In Chapter 4, a novel 

temporal decision fusion approach for EEG classification is presented, and in-
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keeping with this trend in the literature [104], [106], [107], [133], [134], [138], 

standard CSP features were used.  

3.2 Conventional Classifiers  

Classifiers can be separated into two types, those based on supervised learning 

and those based on unsupervised learning. Supervised learning [39] involves the 

use of labelled data for training, whereas unsupervised learning [39], [146] uses 

unlabeled sample data and learns decision boundaries in an exploratory way. 

Supervised learning is widely used when training classifiers for MI EEG 

classification [8], [10], [11], [14], [21], [22], [30], [31], [65], [101], [104], [133], 

[147], [148] because the training data is recorded during controlled experimental 

conditions [71], and thus the labels are known. In this thesis, supervised learning 

is used in all three contribution chapters.  

This section discusses the different classifiers used in the literature for MI 

EEG classification. The discussion is focused on conventional machine learning 

approaches, with DL approaches being tackled later.  

Various conventional classification approaches have been used for EEG 

classification, namely support vector machines (SVMs) [13], [14], [21], [31], 

[104], [140], linear discriminant analysis (LDA) [10], [14], [21], [133], k-nearest 

neighbour (k-NN) [14], [22], [31], [101], logistic regression (LR) [10], [31], 

decision trees [101], [104], random forests (RFs) [148]  and naïve Bayes (NB) 

[104], [147] classifiers. Table 3.1  summarizes several salient studies focused on 

conventional classification techniques. The table includes technical details 

including features extracted, classifier type, the main contribution of the study 

and the classification accuracy obtained with the technique. There are also 

columns devoted to the number of EEG channels used, which is relevant to 

discussions later, in Section 3.5.1. The works in Table 3.1 were selected to present 

a wide variety of examples from the literature that cover topics discussed in this 

section [10], [11], [14], [22], [26], [31]–[33], [101], [134].  

The SVM and LDA classifiers are widely popular in the literature [10], [13], 

[14], [21], [31], [104], [133], [140], however there is no clearly superior classifier 
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for MI EEG. Some papers report that SVM classifiers outperformed other 

classifiers, namely LDA, k-NN, RF and NB [5], [31], [104]. However, other studies 

have reported different results, for example Batres-Mendoza et al. [101] reported 

that decision tree and k-NN classification consistently outperformed SVM 

Table 3.1: A table comparing different studies that have used conventional machine learning 
classification techniques.  

Paper Dataset No. EEG 
Channels 

Features Classifier Main Contribution  Accuracy 

Asenio-
Cubero et 
al. [26] 
(2011) 

BCI 
Competition 
III, Dataset 
IVa  

1181 CSP LDA Time segmentation 
methods for 
improved 
classification 

60.14% 

Batres-
Mendoza 
et al. [101] 
(2016) 

Proprietary 
dataset 

141 Quaternion-based 
features 

Decision 
Tree 

Extraction 
quaternion-based 
features 

84.75% 

Ilyas et al. 
[31] 
(2016)  

BCI 
Competition 
IV, Dataset I  

11 FFT features Logistic 
Regression 

Comparing logistic 
regression, SVM, k-
NN and MLP 
classifiers.  

73.03% 

Kevric and 
Subasi [22] 
(2017) 

BCI 
Competition 
IV, Dataset I  

118 for pre-
processing 
/3 for 
classification 

Wavelet packet 
decomposition 

k-NN Finding wavelet 
packet 
decomposition was 
a better feature 
compared to the 
state-of-the-art.  

94.50% 

Siuly et al. 
[33] 
(2017) 

BCI 
Competition 
III, Dataset 
IVa  

1181 Cross-correlation-
based features 

Least-
Squares SVM 

Found that using 
all 118 channels 
gave better 
performance than 
just motor-related 
(central) EEG 
channels. 

97.96% 

Yang et al. 
[32] 
(2019) 

Proprietary 
dataset 

3 Welch spectrum 
features 

LDA Using an optimized 
time window for 
segmentation can 
improve 
performance.  

87.63%2 

Oilias et al. 
[10] 
(2019) 

BCI 
Competition 
III, Dataset 
IVa  

1181 Normalized CSP Tangent 
Space 
Logistic 
Regression 

Improved 
covariance 
estimation 
compared to 
traditional CSP. 

79.62% 

Sreeja et 
al. [11] 
(2019) 

BCI 
Competition 
III, Dataset 
IVa  

30 Wavelet energy Dictionary-
based sparse 
learning 
classifier 
based on 
reconstructi
on error 

Improving 
classification using 
a weighted 
dictionary. 

97.98% 

Hekmatma
nesh et al. 
[14] 
(2020) 

BCI 
Competition 
III, Dataset 
IVa  

1181 Discriminative 
filterbank CSP 

Soft-margin 
SVM 

Using a 
discriminative 
sensitive learning 
vector quantization 
for discriminative 
filterbank CSP 

92.70% 

1The full number of EEG channels available in the dataset. 

2The accuracy was obtained by interpreting a graph.  
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classification. Ilyas et al. [31] also reported that LR, although not widely used, 

performed on a par with SVM. Different studies may report conflicting results due 

to different features or hyperparameter tuning techniques being used. This 

discussion of conventional classifiers illustrates the importance of experimenting 

with different classifiers when developing novel pipelines.  

The SVM classifier has some technical features which could make it 

mathematically attractive [149]. SVM classifiers have noise robustness in-built 

into their learning algorithm [149], unlike k-NN classifiers which build local 

boundaries and depend only on the size of the smoothing kernel to deal with 

noise and outliers [150](pp. 124-127). Although k-NN training is much faster 

than SVM training, it demands the whole of the training dataset to be present in 

memory for classification to take place, making it very memory expensive and 

possibly slower to assign labels to test-set samples for training large datasets 

[150](pp. 291-292).  However, SVM classifier training is computationally 

demanding, leading some BCI researchers to opt for less computationally 

expensive classifiers, such as LDA [151]. Furthermore, because SVM classifiers 

rigidly process multichannel EEG data, they can be ineffective at identifying 

spatial relationships between EEG channels which can vary between subjects 

[152]. Although some studies have identified SVM as giving better performance 

[5], [104], [140], it is not the default classifier in the literature. In fact, many other 

studies still include a variety of classifiers when assessing the effectiveness of 

features [5], [21], classification methodology [14] or channel/feature selection 

approach [104]. 

In this thesis, six different conventional classifiers have been used. In 

Chapter 4, the effect of time-domain decision fusion was investigated on SVM, 

LDA, NB, RF, and MLP classifiers. In Chapter 5, the performance of the proposed 

sparse learning and genetic algorithm channel selection approach is compared to 

that of SVM, k-NN and RF classifiers. These classifiers were chosen for Chapter 4 

and Chapter 5 because they have all been used as part of state-of-the-art 

classification systems [10], [14], [21], [104], [148] and they provide good 

performance, as indicated in Table 3.1 and the discussions earlier in this section. 
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Furthermore, together they provide a range of classification approaches. This 

variety is particularly important in Chapter 4, which aims to investigate the 

impact of the decision fusion approach on various classifiers.  

In Chapter 5, a comparison between four classifiers, namely a novel SL 

system, as well as RF, k-NN and SVM classifiers was carried out. The SL classifier 

was found to be more computationally efficient than the SVM classifier, and 

outperformed the other classifiers in terms of accuracy, sensitivity, and 

specificity.  This comparison is a novel contribution to this area of the literature 

because, to the best of the authors’ knowledge, this mix of classifiers has not been 

compared before under the experimental conditions in Chapter 5.  Specifically, 

the comparison in Chapter 5 includes the idle state as a class for classification and 

investigates the performance of the classifiers as the training data size was 

reduced, which is not common in the literature reviewed [5], [31], [101], [104]. 

However, this kind of analysis is important because an ideal classifier must 

accurately identify the idle state and should be able to operate at high accuracy 

with minimal training data.   

There are some common issues in how papers report experimentation 

with conventional classifiers. Firstly, many papers do not explain how classifier 

hyperparameters are tuned, what values were used for some hyperparameters, 

or whether these hyperparameters were optimized on a validation set or on the 

test set [5], [14], [104], [153]. Furthermore, some papers do not mention the kind 

of kernel used for SVM classification, even though the kernel type (linear, 

polynomial, or radial-basis function (RBF)) has an impact on how the decision 

boundaries are formed [104], [140], [153]. In Chapter 4 and Chapter 5 of this 

thesis conventional classifiers are used, and the hyperparameter tuning process, 

as well as the kernels used with SVM classifiers, are clearly described.   

Furthermore, comparisons between different classifiers are often carried 

out within the context of a fixed (‘static’) channel subset [5], [14], [31]. However, 

the static channel subset could have an impact on classification performance 

because it could affect the dynamics captured, the noisy channels included and 

the number of correlated channels [14]. In Chapter 4 of this thesis, the 
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performance of various conventional classifiers is compared when using channel 

subsets comprised of electrodes from different scalp regions.  

The rest of this section discusses technical details of each of the six 

conventional classifiers used in this thesis.    

3.2.1 Support Vector Machines 
SVMs classify data points within a hyper-dimensional space by constructing a 

hyperplane that acts as a decision boundary. SVMs classify using soft margins, 

meaning that the hyperplane is constructed to classify most of the training 

datapoints correctly, but allows a small proportion to be misclassified, thus 

reducing the risk of the decision boundary overfitting to noise or outliers in the 

training data [149]. The group of data points from different classes closest to the 

decision boundary is called the ‘support’. To construct the decision boundary, the 

SVM classifier aims to maximise the margin between the support points and the 

boundary itself. The distance between the support points and the decision 

boundary is measured perpendicular to the boundary [149]. Figure 3.1 shows an 

example of a feature space with two classes, dark blue and dark green, separated 

by a linear SVM decision boundary, denoted by the solid line. The light blue and 

light green shaded areas denote the class spaces in the feature space as 

interpreted by the SVM classifier. The dotted lines denote the maximum margin, 

and the data points lying on the dotted lines denote the support. A soft margin 

was used, with a single green datapoint near the bottom right-hand corner of the 

space being misclassified. This example is for a 2D feature space, but SVMs can 

classify data in multi-dimension feature spaces.  

In this thesis, SVM classifiers with non-linear decision boundaries are 

used. In non-linear SVMs, kernels are used to transform the data to a new training 

feature space, and the decision boundary hyperplane is created in this space, 

resulting in a non-linear boundary in the original space [149]. In this thesis, 

polynomial kernels, and radial basis function (RBF) function kernels are used. 
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The chosen kernel can be scaled using the parameter 𝑔. The Gram matrix, which 

is the inner product of two vectors, is used to perform the transformation. Thus, 

if the kernel function is ∅, then the Gram matrix of a set of input vectors 

{𝑥1, 𝑥2, … , 𝑥𝑛}′ is 𝐺(𝑥𝑗 , 𝑥𝑖) =  ⟨∅(𝑥𝑗)|∅(𝑥𝑖)⟩ [149], [154]. 

Consider the case of linear SVM classification. The score function used for 

linear SVM classification is given by: 𝑓(𝑥) = 𝑥′𝛽 + 𝑏, where 𝑥 is the row vector of 

observations,  𝛽 is the row vector of coefficients describing the hyperplane, and 

𝑏 is a bias. 

In EEG classification, linear classification cannot be carried out since the 

classes are not perfectly separable. To develop the boundary for non-linear 

problems, the SVM classifier uses the slack variable, 𝜉𝑗 , which penalizes the 

objective function for datapoints which are on the incorrect side of the margin for 

their class. The primal form of the objective function which is optimized by the 

SVM classifier is: 0.5‖𝛽‖2 + 𝐶 ∑ 𝜉𝑗 , which is optimized with respect to 𝛽, 𝑏 and 𝜉𝑗 , 

given that ∑ 𝜉𝑗 > 0 for 𝑗 = 0, … , 𝑛 where 𝑛 is the number of training points. The 

 

Figure 3.1:  Forming an SVM decision boundary hyperplane (solid line) between two 
classes in a feature space. The dotted lines denote the maximum margin, with 
datapoints lying on those lines forming the support. 
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box constraint, 𝐶, is a positive integer which controls the severity and quantity of 

violations of the margin.  The optimization problem is solved using Lagrange 

multipliers [149], [154].  

The dual formalization for non-linear SVM classification involves 

minimizing [154]:  

 
1

2
∑ ∑ 𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘𝐺(𝑥𝑗 , 𝑥𝑘) −  ∑ 𝛼𝑗

𝑛
𝑗=1

𝑛
𝑘=1

𝑛
𝑗=1    (3.3) 

with respect to the Lagrange multipliers 𝛼1, … , 𝛼𝑛 and subject to the constraint: 

∑ 𝛼𝑗 𝑦𝑗 = 0, 0 ≤ 𝛼𝑗 ≤ 𝐶 ∀ 𝑗 = 1, … , 𝑛 and the Karsh-Khun-Tucker (KKT) 

constraints, which are general conditions which must be satisfied in non-linear 

optimization problems [154]. For an SVM classifier the KKT constraints manifest 

as [154]: 

 {
𝛼𝑗𝑓(𝑥𝑗) − 1 + 𝜉𝑗

𝜉𝑗(𝐶 − 𝛼𝑗) = 0
 , ∀ 𝑗 = 1, … , 𝑛  (3.4) 

where 𝑓(𝑥𝑗) =  ∅(𝑥𝑗)
′
𝛽 + 𝑏. Both complementary conditions must be satisfied. 

Thus, the score function for the non-linear SVM classifier with non-separable 

classes is:  

 𝑓(𝑥) =  ∑ �̂�𝑗𝑦𝑗  𝐺(𝑥, 𝑥𝑗) + �̂�𝑛
𝑗=1   (3.5) 

where �̂� is the estimate of the bias and �̂�𝑗  is the estimate of the jth Lagrange 

multiplier [154].  

Thus, two hyperparameters control SVM classification: the regularization 

parameter, 𝐶, and the kernel scale parameter, 𝑔. 𝐶 is a non-negative scalar value 

which controls the amount of error allowed when fitting the SVM model to the 

training dataset, and thus prevents overfitting [155].  𝑔 is a positive scalar value 

that influences the spread of the kernel: a larger value shrinks the kernel size, 

thus enabling the decision boundary to respond to local variations in the data, but 

limits the number of points contributing to boundary construction in a region 

[150]. In the case of SVM with a polynomial kernel, the order of the polynomial is 

also tuneable. Parameters can be tuned using a grid-search method, where 

different combinations of parameters are considered, and their efficacy evaluated 
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on a validation dataset. The parameters that give the best classification accuracy 

are then used on the data. Chapter 4 and Chapter 5 explain in more detail how the 

classifiers used in this thesis were tuned.  

3.2.2 Linear Discriminant Analysis 
The LDA classifier assumes that the data has a Gaussian distribution and 

constructs a linear decision boundary by characterising the training data 

associated with each class in terms of a mean vector and a covariance matrix 

[150]. Each class has its own mean, but the covariance matrix, �̂�, is calculated over 

the whole training data. Figure 3.2 shows an example of decision-boundary 

construction for the LDA classifier for a two-class problem. The classes are 

represented by the data point colours (dark blue/dark green) and the black line 

 

Figure 3.2: Constructing decision boundaries of an LDA classifier for a two-class problem. The 
classes are represented by dark green and dark blue data points, and the decision boundary is 
the black line. The red boxes denote the means of the Gaussian models, and the ellipses 
represent the variance of the models. Data points outlined with a black box are outliers lying on 
the incorrect sided of the decision boundary. 
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represents the decision boundary. The red squares show the class means, and the 

ellipses show the variance of the Gaussian distributions. Outliers, which lie on the 

incorrect side of the decision boundary, are indicated using black squares.   

To avoid overfitting, the regularized covariance matrix, �̂�𝑦, is used, where:  

  �̂�𝑦 = (1 − 𝛾)�̂� + 𝜸𝑑𝑖𝑎𝑔(�̂�)  (3.6) 

𝛾 is the regularization coefficient and can have a scalar value from 0 to 1. It 

influences the amount of regularization used during the estimation of the 

covariance matrices [150], [156]. 

 The LDA classifier generates a predicted class label, �̂�, using [156]: 

 �̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑦=1,…,𝐾

∑ �̂�(𝑘|𝑥)𝐶(𝑦|𝑘)𝐾
𝑘=1   (3.7) 

where 𝐾 is the number of classes, �̂�(𝑘|𝑥) is the posterior probability that 

observation 𝑥 is part of class 𝑘 and 𝐶(𝑦|𝑘) is the cost associated with classifying 

𝑦 as class 𝑘.  

 To perform prediction, latent variables are generated from a linear 

combination of the input data. The weights which are used to generate these 

variables are known as discriminant coefficients [150], [156]. The linear 

coefficient threshold, delta (Δ), is a non-negative scalar [156] which governs 

which features influence the decision boundary: if the discriminant coefficient 

associated with a certain predictor is smaller than Δ, then the value of the 

coefficient is set to zero, effectively removing the influence of that predictor. 

Thus, increasing the value of Δ increases the likelihood that more predictors will 

be excluded [150], [156]. Thus, in the LDA classifier, both 𝛾 and Δ are tunable 

parameters.  

 

3.2.3 k-Nearest Neighbour 
k-NN classification is a non-parametric method, meaning that it does not use any 

parameters to explicitly model the data. Classification of a test sample is carried 

out by a vote based on the k nearest training samples within the feature space: 
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whichever class most of the nearest neighbours form a part of is the class 

assigned to the test sample. Therefore, the posterior probability that sample 𝒙 is 

a part of class 𝐶𝑚is [150](pp. 125-127):  

 𝑃(𝐶𝑚|𝒙) =  
𝐾𝑚

𝑘
  (3.8) 

where 𝐾𝑚 is the number of nearest neighbours forming part of class 𝐶𝑚and k is a 

positive, non-zero number denoting the total number of nearest neighbours 

being considered. During experiments parameter k was tuned.  

Figure 3.3 shows an example of the k-NN method applied to a three-class 

problem. The true datapoints for the three classes are denoted by dark blue, 

green, and purple circles. Datapoints circled in red are from the test-set and those 

not circled are from the training set. The training set points were used to 

delineate the decision boundaries which are shown as black lines in the feature 

space. The pale blue, green and purple shadings show the class regions in the 

 

Figure 3.3: Classification using the k-NN method. The dark blue, green, and purple data points 
represent data from three different classes. The pale shadings represent the class regions as 
understood by the classifier. Red circled data points are from the test set, the rest are from the 
training set. Misclassified points are highlighted with arrows.   
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feature space as understood by the classifier. Misclassified test set data points are 

shown using arrows. For example, there is a dark blue data point which is found 

in the pale green shaded region, meaning that it was misclassified as the green 

class. This is because this blue data point was closer to training samples from the 

green class than the blue class.  

 Parametric methods such as SVM and LDA, which explicitly model the 

distribution of the input data, require extensive tuning to prevent overfitting or 

underfitting. The k-NN method does not suffer these issues since it considers the 

actual training data distribution for classification. However, this requires the 

whole training data set to be retained in memory for classification to be carried 

out, making it very memory expensive [150](pp. 125-127). Furthermore, 

although non-parametric methods like the k-NN can be fast to train because they 

do not need to learn a model of the data, they can be slower to classify test set 

samples when the datasets are relatively large. Tree-based search methods, such 

as the ones underlying the RF classifier discussed next, can attempt to 

approximate nearest-neighbour searches without having to process the entirety 

of the dataset [150](pp. 125-127). 

 

3.2.4 Random Forest 
Decision trees have been used for classification and regression for different 

problems, including EEG classification [101], [157]. A decision tree is comprised 

of nodes (splits) and branches, similar to a flowchart, as shown in Figure 3.4 

[158]. The blue ovals represent split nodes, the arrows represent the branches, 

and the orange ovals represent the leaf nodes, where final decisions are made. 

The example in Figure 3.4 is a decision tree for the process of buying a book, 

which represents a two-class problem: either buy the book, or do not buy the 

book. At each split node, a decision about which branch to take is made, 

eventually leading to a final decision at the terminal nodes, known as leaf nodes.  

When applied to numerical problems, the input to the decision tree is a set 

of predictors, which in this work consists of a feature vector.  At each node, 
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several predictors are randomly selected, and a statistical test is carried out to 

determine which branch (outcome) should be taken. Leaf nodes are terminals 

and are used to assign a decision label. Leaves output the probability that the 

input feature vector belongs to each class. The leaf size is the number of 

predictors at the leaf node that are available to determine the probability [158]. 

The minimum leaf size determines how many predictors are required for a node 

to be determined as a leaf node. It controls the depth of the tree, with larger leaf 

sizes leading to more complex trees which run the risk of overfitting, whilst 

smaller leaf sizes lead to shallower trees which risk underfitting [159]. Thus, 

within a decision tree, the number of predictors sampled at each node, and the 

minimum leaf size are two hyperparameters that can be tuned.  

 Using just one decision tree for classification can lead to overfitting and/or 

a high variance in results when training multiple decision tree classifiers on the 

same problem [158]. RF classification is an ensemble learning approach in which 

several decision trees are used to classify a trial. On average, RFs reduce the 

variance in results and tend to give better classification performance than using 

just a single decision tree [158], [160]. To train a RF classifier, the training data is 

divided into different subsets, and each tree is trained on a different subset of 

data [158]. When classifying a test sample, the class probabilities output by each 

tree are averaged to obtain the classification labels [160]. The class with the 

 

Figure 3.4: An example of a decision tree for buying a book. The ovals represent nodes, with the 
blue ones representing split nodes and the orange ones representing leaf nodes. The arrows 
represent branches. 
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highest average probability is the class the feature vector is assigned to [160]. In 

RF classifiers, the number of trees in the forest is a tunable hyperparameter. All 

the trees within the forest have the same number of predictors at each node and 

minimum leaf size, which can also be tuned.  

3.4.5 Naïve Bayes 
The NB classifier uses a maximum a posteriori decision rule, which means that it 

assigns test set samples to the class which has the highest probability. Figure 3.5 

shows a simple example of a NB classification boundary for a two-class problem. 

Classification involves three steps [161]: 

1. Model the probability density functions of the predictors within the 

context of each class. For modelling, a multinomial distribution based on 

kernel functions was used in this thesis. Specifically, Normal, Box, 

Epanechnikov, and Triangular kernels were considered during model 

tuning. The kernels also have a smoothing window with a tunable width.  

 

Figure 3.5: Decision boundary formation of a naïve-Bayes classifier for a two-class problem 
(dark green vs dark blue). The circles denote the data points, and the black curve denotes the 
decision boundary. Outliers are indicated with red boxes. 
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2. Use Bayes’ rule to calculate the posterior probability for each class, given 

by [162]: 

 �̂�(𝑌 = 𝑘|𝑋1 … 𝑋𝑞) =  
𝜋(𝑌=𝑘) ∏ 𝑃(𝑋𝑗|𝑌=𝑘)

𝑞
𝑗=1

∑ 𝑃(𝑋𝑗|𝑌=𝑘)𝐾
𝑘=1

  (3.9) 

where   𝑋1 … 𝑋𝑞 are the predictors, 𝑞 is the number of predictors, 𝑌 is the 

class label assigned, 𝐾 is the number of classes and  𝜋(𝑌 = 𝑘) is the prior 

probability that the class label is 𝑘. 

3. Assign the class label based on the class that gave the greatest a posteriori 

probability.  

The NB classifier makes the broad assumption that all the predictors are 

conditionally independent in terms of probability distributions. Although in 

practice this assumption is often violated, the NB classifier has exhibited strong 

performance [99], [104], [147], [161]  and was thus considered as well in this 

work.   

3.2.6 Multilayer Perceptron 
The MLP is a classical neural network classifier. It consists of multiple, fully 

connected feed-forward layers, as shown in Figure 3.6. In this work, the input 

layer is an identity layer and has the same size as the input feature vector. The 

initial layer is followed by one or more hidden layers which can have a varying 

number of neurons. In this work, the output layer has a single neuron which 

outputs the classification result. There can be more than one output neuron in the 

final layer, for example if the classes are one-hot encoded (for example, for a two-

class problem, class 1 is encoded as 10 and class 2 is encoded as 01). The number 

of hidden layers and the number of neurons in the hidden layers are tuneable 

parameters linked to the complexity of the transformation which maps the input 

data to the output value.  
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 Figure 3.7 shows a generic artificial neuron. The hidden layers are made 

up of multiple artificial neurons. Each neuron in the hidden layer maps the values 

in the input data vector, 𝒙, to an output value 𝑦(𝒙), via an activation function, 𝜎 

where [150]: 𝑦(𝒙) = 𝜎(𝒘𝑇𝑥 + 𝒘𝑜). 𝒘 is a weight vector learnt during the training 

phase and 𝒘𝑜 is a fixed bias [150]. The activation function thus determines the 

decision surface used by each neuron and is another hyperparameter also 

 

Figure 3.7: A generic artificial neuron. Σ represents a summation and 𝜎 
is the activation function  

 

 

 

Figure 3.6: A generic multilayer perceptron classifier. 
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affecting the mapping carried out in the MLP. Commonly used activation 

functions in EEG processing are the hyperbolic tangent (tanh) function: 𝑓(𝒙) =

tanh 𝒙 [163], the rectified linear unit (relu) function:  𝑓(𝒙) = max (0, 𝒙) [164], and 

the logistic sigmoid function: 𝑓(𝒙) =  
1

1+𝑒−𝒙  [165].  

 Whilst the number of neurons in the hidden layer and the activation 

function are related to the architecture of the MLP, other hyperparameters can 

affect the training process. Stochastic gradient descent is a widely used algorithm 

for the iterative training of weights in a neural network [3], [150], and uses the 

following equation :  𝒘(𝜏+1) =  𝑤𝜏 −  𝜂∇𝑬𝑁 where τ is the iteration number, 𝜂 is 

the learning rate, and ∇𝑬𝑁 is the sum of the error over the data points using the 

current weight vector, 𝒘𝜏 [150]. Thus, the learning rate is a hyperparameter 

which controls the influence of the error in the previous iteration on the update 

of the weights, whilst the maximum number of iterations is another 

hyperparameter controlling the number of iterations which can be carried out in 

the training process. Regularization can also be added to the training process to 

prevent overfitting, with L2 regularization, also known as ridge regression, often 

used [150]. The hyperparameter α is used to control the strength of 

regularization, with a larger value of α corresponding to stronger regularization, 

thus reducing overfitting. However, if α is too large, underfitting can occur [150]. 

 Momentum is a popular optimization technique which can be added to 

stochastic gradient descent to encourage the training of the weights to accelerate 

by pushing the weight gradient vectors in the optimum direction [166].  Equation 

(3.10) shows the weight changes in each iteration without the momentum term, 

whilst Equation (3.11) denotes the weight changes with the momentum term 

[166]: 

 𝛥𝒘𝑎𝑏
𝜏 =  𝜂

𝜕𝑬 

𝜕𝒘𝑎𝑏
𝜏   (3.10) 

 𝛥𝒘𝑎𝑏
𝜏 =  𝜂

𝜕𝐸 

𝜕𝒘𝑎𝑏 
+  𝛽𝛥𝒘𝑎𝑏

𝜏−1  (3.11) 

where 𝑤𝑎𝑏
𝜏  is the value of the weight connecting node 𝑎 to node 𝑏 in iteration 𝜏, 𝐸 

is the error rate in the weight, and 𝛽 is the momentum term.  
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3.3 Sparse Representation  

Sparse representation involves simplifying data with the aim of reducing 

redundancy or noise in data [167]. This representation can also provide 

additional insight into the content of the signal. Sparse representation has been 

applied to the MI EEG classification problem in three distinct ways: 

a. Classification based on a SL dictionary and residual reconstruction error 

[11], [39]; 

b. Using the sparse coefficients for classification with a classifier [15], [40]; 

c. Using sparse representation for channel or feature selection [41], [42].  

Each of these applications will be discussed in more detail in the following sub-

sections.  

3.3.1 Classification Based on Reconstruction Error 

This approach [11], [39] involves constructing a dictionary of examples from the 

training data segments. A dictionary-based SL approach by Sreeja et al. [11] was 

included in Table 3.1. In this work, the dictionary is based on sub-dictionaries for 

each MI class, built using EEG training segments for that class. Thus, if the 

classification problem involves left-hand vs right-hand MI, a sub-dictionary is 

constructed based on left-hand MI training segments, and another is constructed 

based on right-hand MI training segments. The training segments are typically 

converted to a feature vector before being inserted into the dictionary [11], [39]. 

Examples of features used are CSP [39] and wavelet energy [11], [56].  

To classify a test feature vector, 𝒚, it is encoded over the sub-dictionary, 

𝑫, to obtain the sparse coefficient vector, 𝒄. The residual reconstruction error, 𝑒, 

is calculated as [11], [42]:  

 𝑒 =  ‖𝒚 − �̂�‖2 = ‖𝒚 − 𝑫𝒄‖2  (3.12) 

where �̂� is the estimate of 𝒚 based on the sparse encoding, and ‖. ‖2 is the 

Euclidean norm. The test feature vector is assigned to the class whose sub-

dictionary gave the lowest value of 𝑒.  
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State-of-the-art dictionary-based classification systems for MI EEG 

typically use orthogonal matching pursuit (OMP) for sparse encoding [11], [56], 

[57]. OMP is a linear modelling algorithm that can be used to encode a vector over 

a dictionary [54]. Due to its frequent use in the state-of-the-art, OMP was used in 

this thesis as part of a sparse learning classifier in Chapter 5. 

 The OMP algorithm encodes the vector over the dictionary according to a 

sparsity constraint [11], [54]. This constraint is assigned by the user and limits 

the number of non-zero coefficients in the encoding. It is a parameter that can be 

tuned. Letting the vector be 𝑣 and the dictionary be matrix 𝑫, the OMP 

optimization problem can be summarized as follows [54]: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑧

‖𝑣 − 𝑫𝑧‖2
2  , 𝑤ℎ𝑒𝑟𝑒 ‖𝑧‖𝑜 ≤ 𝐾  (3.13) 

where 𝑧 is the encoding and 𝐾 is the number of non-zero coefficients. The 

OMP algorithm aims to construct a linear reconstruction of 𝑣 through the matrix 

multiplication 𝑫𝑧, where 𝑣 ≈ 𝑫𝑧. It achieves this using a greedy forward search, 

assigning non-zero coefficients the dictionary entries (atoms) which have the 

highest correlation with the residual reconstruction error [54]. 

An overview of the OMP algorithm is shown in Algorithm 1 [54]. The OMP 

works iteratively until the required number of non-zero coefficients, 𝐾, are 

obtained in 𝑧. Note that 𝑑𝑞
𝑇 is the transpose (𝑇) of the dictionary atom at q and r 

is the residual, therefore in line 6 the dictionary atom that is most highly 

correlated with the residual is selected. This is the greedy step. S is the support 

which is built up of the indexes of the atoms selected in line 6. In line 8, the signal 

Algorithm 1: Orthogonal Matching Pursuit 
1. Inputs: Dictionary D, input vector v and sparsity constraint K 
2. Outputs: Sparse encoding z  
3. Variables: S is the support set, q is an index to add to the support 
4. Initialization: S = [], r = q 
5. while ‖z‖𝑜 ! =  K do: 

6.      q = argmax |𝑑𝑞
𝑇𝑟|  (Greedy step) 

7.       Append q to S            
8.       𝑧𝑆 =  (𝑫𝑺)+𝑣        (Orthogonalization step, where ()+ is the Penrose-Moore Inverse) 
9.       r = q - 𝑫𝑺 𝑧𝑆                 
10. end 
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is projected orthogonally over the atoms selected, and then the residual is 

calculated in line 9. The orthogonalization step is important because it ensures 

that there is linear independence in the atoms chosen [54]. The equation in line 

8 can be expanded as [54]:  

𝑧𝑆 =  (𝑫𝑺)+𝑣 

                  =  (𝑫𝑇𝑫𝑆)−1𝑫𝑆
𝑇𝑣  (3.14) 

Explicitly calculating the inverse in Equation (3.14) is computationally 

expensive, and it is instead calculated using the Cholesky factorization method 

[54].  

There are different implementations of OMP [54], [55], [168], and in this 

thesis the approach by Rubinstein et al. [54] was used, because it is more 

computationally efficient than traditional OMP [54] and forms part of the Scikit-

Learn package in Python [169] . The efficiency of the algorithm by Rubinstein et 

al. is a result of how the Cholesky factorization is calculated for large signal sets, 

and more details on the mathematics of this can be found in their paper [54]. 

Essentially, Rubinstein et al. [54] use pre-calculations to speed up computation 

times.  

Since non-stationarity within the EEG samples could impact the 

effectiveness of the sparse dictionary, some papers in this area try to adapt the 

dictionary to the test dataset [11], [39]. In their 2015 paper, Shin et al. [39] tested 

supervised and unsupervised methods of calibrating the dictionary. First, an 

incoherence measure was used to compare the dictionary to the test data, and the 

dictionary entries which were most discordant were identified. Assuming an 

online scenario, past test samples can be used to update the dictionary in either 

a supervised or unsupervised manner. The accuracy was increased from 82.90% 

to 85.60% when using the adaptive updating. In their 2020 paper, Sreeja et al. 

[11] tried to compensate for non-stationarity using an approach which 

introduced locality to the dictionary. Before encoding the feature vector over the 

dictionary, Sreeja et al. derived a multiplicative weight for each dictionary atom 

based on the Euclidean distance 𝑛𝑗  between the test feature vector and the 𝑗th 
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dictionary atom. The weight, 𝑤𝑗 , for the dictionary atom was calculated using a 

Gaussian formula: 𝑤𝑗 =  𝑒
−𝑛𝑗

2𝜎2 , where 𝜎 is the mean distance of the dictionary 

atoms. Without the weighted correction, the accuracy on the BCI Competition III 

dataset IVa [86], a two-class classification problem, was 96.91%, and with the 

correction it increased to 97.98%.  

In their promising recent works, Sreeja et al. [11], [56], [57] have typically 

built the dictionary using features such as wavelet energy [56][57], discrete 

wavelet transform coefficient features [11], and the frequency domain band-

power after CSP filtering have been used [56]. Research by Arnin et al. [124] 

discussed previously in Section 3.1.3 has suggested that frequency-based 

approaches to feature extraction are more computationally expensive than using 

time-domain based approaches such as time-domain band-power, and may not 

significantly improve classification performance. In Chapter 5, a SL-based 

classification approach is presented, and the combined alpha and beta time-

domain band power is used for feature extraction. The combined power is used 

since subjects can experience changes in both the alpha and beta frequency bands 

during MI [34]. Moreover, in a short analysis summarized in Chapter 5, the 

combined power was found to be more effective than extracting separate features 

for the alpha and beta frequency bands. To the best of the author’s knowledge, 

this feature has not been used for dictionary construction in this kind of 

classification system before.  

Furthermore, Sreeja et al. [11], [56], [57] do not investigate the effect of 

sparsity level, or the effect of the window size used to segment EEG data for 

dictionary construction. These design parameters were tuned for the system in 

Chapter 5, and the tuning results are demonstrated graphically.  

3.3.2 Sparse Representation and Classification 

Sparse representation has been used as a feature extraction technique, with the 

sparse encoding being passed onto a classifier [15], [40]. In 2018 She et al. [15] 

used CSP feature extraction to construct the dictionary and then used an extreme 

learning machine (ELM) for classification based on the sparse encoding. Later, 
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Taran and Bajaj [40] obtained a sparse representation using a FD technique called 

the tunable Q-factor wavelet (TQFW) and classified feature vectors using a least-

squares SVM classifier. On BCI Competition III dataset IVa [86], a two-class 

classification problem, the implementation by She et al. [15] obtained an accuracy 

of 87.54% whilst that of Taran and Bajaj [40] obtained an accuracy of 96.89%.  

3.3.3 Sparse Representation for Channel or Feature 

Selection 

The sparse representation coefficients can provide information about the test 

feature vector. Since dictionary atoms are designed to capture characteristics of 

the test feature vector, the highest valued encoding coefficients indicate the 

characteristics most associated with the test signal, whilst zero-valued 

coefficients indicate which characteristics are not associated with the test signal. 

This sub-section discusses two implementations which use this aspect of sparse 

representation, one for channel selection [41] and the other for feature selection 

[42].  

 In 2011, Arvaneh et al. [41] applied sparse representation to an EEG 

channel selection problem. They used sparse CSP (SCSP) feature extraction as the 

basis of their optimization problem, which involved finding the smallest subset 

of EEG channels that would provide the same or improved classification accuracy 

when compared to using all EEG channels. Sparse spatial filters were constructed, 

with a sparse coefficient being associated with each EEG channel. In the search 

for the smallest subset, channels associated with zero-valued coefficients were 

discarded and the remaining channels were ranked according to the sparse 

coefficient values. An SVM-RBF classifier was used to classify the spatially filtered 

signals. This channel selection approach produced better performance than other 

common channel selection approaches, including the Fisher criterion, mutual 

information, and traditional CSP channel selection. For the two-class problem in 

BCI Competition III dataset IVa [86], using this channel selection approach 

resulted in a mean classification accuracy of 82.28%, compared to 73.56% when 

using all EEG channels.  
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 Later, Zhang et al. [42] extracted features using FBCSP, and then used the 

sparse representation coefficients to select the most salient features to be used 

for classification with an SVM-Linear classifier. Using the same dataset as 

Arvaneh et al. [41], they obtained an average classification error rate of 7.95% 

with the proposed feature selection method, which was an improvement from 

using just FBCSP, which gave an error rate of 9.50%.  

 

3.4 Deep Learning for MI EEG Classification  

Research into using DL for MI EEG classification has been growing in recent years 

[6]–[9], [12], [29], [58]–[60], [65], [102], [138], [164], [170]–[176]. In their 2021 

paper, Al-Saegh et al. [6]  performed a broad review of 40 papers related to DL 

for MI classification, and found that 73% of systems were based on CNNs, 14% 

were based on other DL systems such as recurrent neural networks, deep belief 

networks, ELMs or stacked autoencoders, and the remaining 13% of the 

literature involved hybrid CNNs (h-CNNs), which consist of a CNN module or CNN 

layers together with other DL structures, such as long short-term memory 

(LSTM) units or an autoencoder for post-processing. There is also variation in 

pre-processing applied to the EEG time-series before it is input to a DL classifier: 

31.7% of systems use time-series as input, 31.7% use images - typically TFD 

images from the CWT or STFT- and 36.6% used calculated features such as CSP, 

FBCSP or EMD [6].  

Since the state-of-the art for DL systems applied to MI EEG classification 

has shown that CNNs and h-CNNs that process multichannel time-series data are 

strong candidates [6], and DL -related research in Chapter 6 of this thesis has 

been focused on CNN systems. I  

 The following section provides a technical introduction to CNN-based 

architectures in general. This is followed by a discussion of state-of-the-art 

architectures.    
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3.4.1 Convolutional Neural Networks  

This section first introduces general concepts related to CNNs and then goes on 

to discuss two salient CNN architectures in the literature, ShallowConvNet [8] 

and EEGNet [7]. These architectures are explained in detail here since they have 

been used either for benchmarking or inspiration in this thesis.  

3.4.1.1 General Introduction to Convolutional Neural Networks 

CNNs are deep-learning approaches inspired by the visual cortex. They are built 

using consecutive layers, as shown in Figure 3.8. CNNs consider the 2D nature of 

the input data, making them more powerful and versatile than simple MLP 

classifiers, which classify data based on feature vectors. The depth of a CNN is 

determined by how many layers it has, and shallower layers typically extract 

more generic features, whilst deeper layers extract progressively more abstract 

features [150] (pp. 267-269).  CNNs are typically used for image processing [150] 

(pp. 267-269) and have been used to classify time-frequency domain images such 

as spectrograms for EEG classification [12]. However, CNNs have also been 

applied to segments of time-domain multichannel EEG signals, as shown in Figure 

3.8 [7], [8], [60]. In these cases, the input data to a CNN will be referred to as a 

time-series segment of size (1 × 𝑁 × 𝑇), where 𝑁 is the number of channels and 

 

Figure 3.8: Part of a generic CNN for EEG classification. The input data is a time-series 
segment, which is first processed in the convolutional layer and then a sub-sampling layer. 
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𝑇 is the number of time-samples. This input time series segment is treated in the 

same way as an image by the CNN.  

CNN Building Blocks 

CNNs are designed to extract local features from input images [150] (pp. 267-

269), as shown in the relationship between the input data layer and the 

convolutional layer in Figure 3.8. For simplicity, the convolutional layer and sub-

sampling layer have been shown to have one plane. However, in general, each 

convolutional and sub-sampling layer has multiple planes, with each plane 

representing different features in a feature map.   

 Three core concepts underly CNN functionality: i) local receptive fields, ii) 

weight sharing, and iii) sub-sampling [150] (pp. 267-269). Consider the simple 

network in Figure 3.8. The convolutional layer extracts a series of feature maps 

from the input data. Each unit within a feature map is extracted from a local 

region within the input image.  Each feature map has a particular set of weights 

associated with it, which are learnt during the training phase. These weights map 

the local data at the input to the corresponding unit in the feature map. Weight 

sharing ensures that the transformation weights for each individual feature map 

are the same for the whole input image, such that the process of extracting feature 

maps can be considered equivalent to convolving the input data with a kernel 

with those weights [150] (pp. 267-269). These convolutions can be considered a 

type of filtering, thus the number of ‘filters’ used in a convolutional layer 

corresponds to the number of feature maps extracted. Soft weight sharing uses 

regularization to provide some more flexibility than traditional, strict, weight 

sharing [150] (pp. 267-269). Convolutional layers typically have an activation 

layer (not shown in Figure 3.8) at their output [7], [8]. The activation layer 

performs similarly to the activation function in the multilayer perceptron, but at 

a larger scale on whole feature maps. Activation functions considered in this work 

are the elu [7] and square-log functions [8], given as:  
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 Elu:  {
𝑥,                   𝑥 ≥ 0
𝛼(𝑒𝑥 − 1),   𝑥 < 0

   (3.15) 

 Square-log:   𝑙𝑜𝑔10 𝑥2 (3.16) 

where 𝛼 is a tunable decay parameter. The log function can also be clipped to 

prevent very large or very small numbers being output [8]. These functions were 

chosen based on the recommendations in [7], [8] for the CNN architectures used. 

 Sub-sampling layers, also known as pooling layers, typically follow 

convolutional layers. Each feature map is transformed to a new plane in the sub-

sampling layer. The sub-sampling layer considers local regions within the feature 

map and transforms the data to a single unit in the new plane by means of a 

pooling function [150] (pp. 267-269). This pooling function is typically a simple 

mathematical function, such as the average or maximum of the points in the local 

field [7], [8], [60]. Sub-sampling helps to decrease the number of parameters 

which need to be trained, leading to faster networks, and the feature map 

smoothing can help prevent overfitting. However, when applied poorly, sub-

sampling layers can over-smooth the data, leading to underfitting [150] (pp. 267-

269).  

 A typical CNN can consist of multiple convolutional and sub-sampling 

layers [150] (pp. 267-269). At the end of the network, the final feature maps are 

flattened using a ‘Flatten’ layer, which simply unravels and concatenates the data 

in the feature maps to create a final feature vector [7], [8], [60]. This feature 

vector is then input to one or more fully-connected layers like those in the MLP 

discussed in Section 3.2.6. These layers are typically known as ‘Dense’ layers [7], 

[8], [60] In this work, classes are encoded using one-hot encoding, so the output 

layer consists of 𝑛 neurons where 𝑛 is the number of classes in the classification 

problem [7], [8], [60]. The final layer uses a SoftMax function, which outputs a 

number from 0 to 1 on each output neuron, with the value denoting the 

probability that the input sample is part of that class [7], [8], [60].  

Depthwise and Separable Layers  

Depthwise layers and separable convolution layers are special CNN layers 

designed to improve computational complexity [177], [178]. They were originally 
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used in computer vision, but have also been applied to EEG data classification [7], 

[65], [102]. In a depthwise layer, each input channel is processed individually 

using the convolutional kernel [177]. Thus, unlike a basic 2D convolutional layer, 

there is no mixing of data between different channels. This layer has a parameter 

called the depthwise multiplier, D, that determines how many feature maps are 

derived from each input channel [7], [177].  In a separable convolution layer, 

depthwise spatial convolution is carried out on each individual input channel, and 

then the results are mixed using a pointwise convolution [178].  

Preventing Overfitting 

To prevent overfitting, modern CNNs [7], [8], [60] typically use batch 

normalization layers [179] and dropout layers [180]. During training, batch 

normalization layers ensure that the output distribution from the layer has 

approximately zero mean and unit standard deviation [181]. During classification 

of a test sample, known as the inference stage, the layer normalizes its output 

using a moving average which corrects the output relative to the mean and 

standard deviation of the training data [181]. This means that if the testing data 

is very different from the training data, this layer can disrupt performance. A 

dropout layer operates during the training stage, and randomly ignores a 

percentage of the outputs from the previous layer [180], [182]. It is a type of 

regularization that can help the network learn more robust features and can be 

viewed as either adding training noise or forcing sparsity into the representation. 

The outputs which are ignored are changed every training epoch [180]. Dropout 

layers do not force any drops in connections during inference [182].  

3.4.1.2 Discussion of CNN-Based Classification Approaches in the 

Literature 

Table 3.2 shows a selection of CNN-based classification approaches that are most 

relevant to the contributions in Chapter 6 [7], [8], [65], [102], [106], [171], [174]. 

The table provides information on the special name given to the architecture 

(where applicable), as well as the main contribution of each study, and the 

classification accuracy obtained. The table summarizes the performance of 

various salient architectures and the main contributions of each paper. The table 
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indicates that in recent years there has been increased interest in transfer 

learning [65], multi-branch CNNs [65] and 3D CNNs [171]. In Chapter 6, transfer 

learning is explored in more depth and a comparison between retraining transfer 

learning and mixed data transfer learning is presented. It is also notable that the 

performance of the same architecture can vary depending on the dataset used, 

for example ShallowConvNet [66] had an accuracy of 93.90% when tested with 

the HG dataset, but an accuracy of ~70.00% when tested on the Graz 2A dataset. 

This discrepancy could be due to the HG dataset being recorded in an 

environment with electromagnetic shielding, resulting in low noise content in the 

signals. Conversely, the Graz 2A dataset was recorded in average lab conditions, 

without special shielding, meaning the data can be expected to have greater noise 

content. Each of these architectures is discussed in more detail throughout this 

section, but since the architectures in the table are largely inspired by EEGNet [7] 

and ShallowConvNet [8], these architectures are discussed next.  

Table 3.2: A table summarizing salient CNN-based classification architectures. 

Paper Dataset Architecture Name Main Contribution Classification 
Accuracy 

Schirrmeister et al. 
[8] (2017) 

HG dataset  ShallowConvNet Investigating in-depth 
the potential of CNNs to 
be applied to MI EEG 
time-series data for 
classification. 

93.90% 

Lawhern et al. [7] 
(2018) 

Graz 2A dataset  EEGNet  Applied depthwise and 
separable convolution 
layers to a CNN 
architecture for MI EEG 
classification. 

~70.0%1 

(ShallowConvNet: 
~70.0%1) 

Kumar et al. [106] 
(2017)  

BCI Competition 
III, Dataset IVa  

N/A Using CSP features with 
a deep neural network 

~ 91.00%1 

Zhao et al. [171] 
(2019) 

Graz 2A Dataset 3D CNN Multi-branch 3D CNN 
classifier 

75.02% 

Wu et al. [174] 
(2019) 

HG dataset MSFBCNN 
(multiscale 
filterbank CNN) 

Design of a MSFBCNN 
based on CSP features. 
Used retraining transfer 
learning for fine-tuning. 

89.30% 

Huang et al. [102] 
(2020) 

Graz 2A Dataset  S-EEGNet  Applied Hilbert-Huang 
transform pre-
processing, and using 
bilinear interpolation to 
add a displacement 
variable to the CNN 

77.90% 

Roots et al. [65] 
(2020) 

Physionet MI 
Dataset  

EEGNet-Fusion Multi-branch CNN based 
on EEGNet, trained 
using mixed data 
transfer learning. 

83.80% 
(EEGNet: 65.80% 
ShallowConvNet: 
77.00%) 

1Results were obtained by interpreting a graph.  
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3.4.1.3 ShallowConvNet and EEGNet 

The ConvNet [8] and EEGNet [7] architectures, published in 2017 and 

2018 respectively, are landmark CNN classification systems which take EEG time-

series data as input. The ConvNet paper [8] introduces ShallowConvNet and Deep 

ConvNet, which, as the names imply, are shallow and deep CNN networks for EEG 

classification. The DeepConvNet architecture was found to work poorly on one of 

the datasets used in Chapter 6 [7] and was not included in work in this thesis. 

ShallowConvNet 

ShallowConvNet (2017)[8] is a CNN used in BCI studies [7], [65]. The structure of 

ShallowConvNet is shown in Table 3.3. As input it takes an array with shape (1, 

No Channels, Samples), with the 1-dimension accommodating for the extraction 

of the feature maps in the first convolutional layer, No Channels being the number 

of EEG channels in the segment and Samples being the length of the EEG segment. 

Typically, the length is the segment is fixed to 2s worth of samples [7], [8]. The 

EEG data is first passed through a convolutional layer performing temporal 

convolution on each channel. The kernel size, W, determines the number of 

transformations that can be performed in the layer, with larger values of W 

leading to a larger variety of transformations that can be carried out [8].  

 Figure 3.9 shows ShallowConvNet applied to a practical classification 

problem from Chapter 6. The EEG data has 22 channels and a sampling frequency 

of 128Hz, leading to a 2s input segment of (1x22x256).  The arrows denote EEG 

layers, and the intermittent diagrams illustrate how the shape of the data changes 

Table 3.3: A summary of the structure of ShallowConvNet. 

Layer Details 

Input identity layer Shape: (1, No Channels, Samples) 
Conv2D Layer (Temporal convolution) 40 filters, kernel size (1, W) 
Conv 2D Layer (Spatial filtering) 40 filters, kernel size (No Channels, 1) 
Batch Normalization + Dropout Dropout rate: 0.5 
Activation Layer Square activation function 
Average Pooling (2D) Pool-size (1, Q), kernel size (Q/5,1) 
Activation layer Log activation layer 
Flatten layer - 
Dense Layer (Linear classification output layer) 4 units; Softmax activation 
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as it travels through the network. Note that the batch normalization and dropout 

layers do not affect the data size.  

The process of temporal and then spatial filtering was designed to mimic 

classical CSP feature extraction, whilst allowing the CNN to extract complex 

features instead of being restricted to the statistical features extracted using CSP 

[8]. The convolutional layers are followed by batch normalization and dropout 

layers.  

A square activation function is then applied, followed by average pooling. 

These two layers, together, aim to extract the mean power of the input signals, 

given that the input signal is zero-mean. Even if the input signal is not zero-mean, 

the squaring function makes the features extracted sensitive to the power of the 

signal, which is important in MI EEG classification [8]. Recall that the CSP features 

in Section 3.1.5 were calculated using the log-variance. In the ShallowConvNet 

system, the log activation layer aims to mimic this final stage of CSP feature 

extraction. Finally, a dense layer with four neurons and SoftMax activation is 

situated at the output. Four neurons are used because ShallowConvNet has been 

applied to four class problems [8], with the target classes encoded with one-hot 

encoding.  

 

Figure 3.9: ShallowConvNet applied to an EEG segment with 22 channels recorded at 128Hz. 
The input is a 2s segment of time-series data. The arrows denote CNN layers, which are labelled 
using the dotted lines. The time-series snippets illustrate the output of each layer, with the sizes 
of the outputs shown in brackets. Note that batch normalization and dropout layers do not 
affect the data size. 
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 Numerous EEG CNN classifiers published in recent years have structural 

similarities to Shallow ConvNet, first performing temporal convolutions followed 

by spatial convolutions in the initial layers [7], [60], [65].  

EEGNET 
EEGNet (2018) [7] is a CNN used widely in the literature for benchmarking and 

as a basis for novel EEG classification techniques [65], [102]. Both EEGNet and 

ShallowConvNet were included in Chapter 6 because they have different 

architecture and activation functions but have been shown to have similar 

performance on an MI EEG dataset [7]. This made them effective for testing the 

novel channel selection approach presented in Chapter 6.  

Like ShallowConvNet, EEGNet was inspired by CSP-based feature 

extraction techniques, and processes data in the temporal domain to extract 

feature maps associated with different frequencies, and then processes data in 

the spatial domain [7]. Table 3.4 shows the general layout of EEGNet. In the 

original paper [7], the number of filters, F1, in the first layer were fixed at 4 or 8, 

the depthwise multiplier D in the depthwise convolution layer was set to 2 and 

the number of filters in the separable convolution, F2, was fixed as F1 × D. EEGNet 

Table 3.4: A summary of the structure of EEGNet. 

Layer Details 

Input identity layer Shape: (1, No Channels, Samples) 
Block 1  

Conv2D Layer (Temporal convolution) F1 filters, kernel size (1, Fs/2) 
Batch Normalization - 
Depthwise Conv2D Kernel Size (No Channels, 1), 

depthwise multiplier D 
Batch Normalization - 
Activation Layer Activation function: Elu 
Average Pooling (2D) Pool size: (1,4) 
Dropout Layer Dropout rate: 0.5 

Block 2  
Separable Conv2D F2 filters, kernel size (1,16) 
Batch Normalization - 
Activation Layer Activation function: Elu 
Average Pooling (2D) Pool size (1,8) 
Dropout Layer Dropout rate: 0.5 

Block 3  
Flatten Layer - 
Dense Layer (Linear classification output 
layer) 

4 units; SoftMax activation 
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is one of the earliest examples of EEG-based CNN classifiers using depthwise and 

separable convolution layers [7]. EEGNet has some similarities with 

ShallowConvNet: the input signals are arranged in a similar shape and the 

‘Samples’ variable encapsulates 2s worth of time samples. Note that in its original 

implementation, EEGNet was tested using MI EEG signals with a sampling 

frequency of 128Hz, and some of the design parameters discussed in the rest of 

this sub-section are borne out by this fact [7]. Figure 3.10 shows EEGNet applied 

to a practical EEG classification problem from Chapter 6. It uses data similar to 

that in the example for ShallowConvNet in Figure 3.9 and can also be used as 

reference. The depthwise multiplier, D, is set to 2 as in [7]. 

Consider Block 1 in Table 3.4. The Conv2D layer carries out a temporal 

convolution which extracts F1 feature maps. In Figure 3.10 eight feature maps are 

extracted. These feature maps are intended to extract salient frequency content 

from the time series. In fact, the kernel size of (1, Fs/2) was designed such that 

frequencies of 2Hz or more would be extracted in the feature maps. In Figure 3.10 

this corresponds to a kernel of size (1,64) since the sampling frequency is 128Hz. 

Batch normalization is carried out followed by depthwise convolution, which 

aimed to obtain a spatial filter for each feature map. The block closes with batch 

normalization, ‘elu’ activation, average pooling, and a dropout layer. The average 

pooling layer uses a pooling size of (1,4) to effectively downsample the input 

signal of 128Hz to 32Hz.  

 

Figure 3.10: EEGNet applied to an EEG segment with 22 channels recorded at 128Hz. The input 
is a 2s segment of time-series data. The arrows denote CNN layers, which are labelled using the 
dotted lines. The time-series snippets illustrate the output of each layer, with the sizes of the 
outputs shown in brackets. Note that batch normalization and dropout layers do not affect the 
data size. 
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The separable convolution layer in Block 2 aims to extract temporal 

features that summarize the information in each feature map, and then mix this 

information using the pointwise convolution step. The separable convolution has 

a kernel size of (1,16) meaning that the depthwise convolution step summarises 

the activity in each feature map into a 500ms segment. A separable convolution 

layer was used because it requires fewer parameters to be trained that a standard 

convolutional layer, leading to shorter computational times. Furthermore, using 

a separable layer means that an initial depthwise convolution is carried out on 

each individual feature map, enabling decoupling of the feature maps. This is 

advantageous because different feature maps may represent activity in different 

frequency bands. Like Block 1, Block 2 closes off with batch normalization, elu 

activation, average pooling, and a dropout layer. The final average pooling layer 

was used for down-sampling of the extracted features.  

EEGNets’ final block performs classification in the same way as 

ShallowConvNet, by flattening out the feature maps and inputting the feature 

vector to a dense layer with SoftMax activation.   

ShallowConvNet, EEGNet and Related Works in the Literature 

EEGNet and the ConvNet architectures have been widely used for benchmarking 

and comparison in MI EEG classification research [7], [24], [58], [59], [164], 

[165], [183]. EEGNet has formed the basis of other DL classifiers such as S-

EEGNet [102] and the fusion CNN [65], and has also been used in a neurological 

study [38]. In the S-EEGNet system [102], the signals are pre-processed using the 

Hilbert-Huang transform to produce TFD signals that are input to an EEGNet-

based architecture with bilinear interpolation. The fusion CNN [65] classifier has 

three branches, with each branch based on a traditional EEGNet structure. Recall 

that the stride size used in the first convolutional layer of EEGNet controls the 

frequency content that can be extracted. In fusion CNN, the branches have stride 

sizes of (1,64), (1,128) and (1,256), which were designed to capture frequency 

features in different ranges. Both S-EEGNet [102] and fusion CNN [65] obtained 

better results than the original EEGNet architecture, as shown in Table 3.2.  The 

ConvNet architectures have also inspired other works, such as the system by Hou 
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et al. [170] that first locates a region of interest within the motor cortex, then 

extracts features using wavelets, and classifies signals using a ConvNet-inspired 

pipeline.  

Multi-branch CNNs are becoming more common in the literature, although 

the way in which the outputs of multiple branches are fused differs [59], [60], 

[171]. For example, Amin et al. [60] trained four CNNs of varying depths 

separately. The CNNs were designed and trained to extract frequency content in 

different bands. The outputs of the CNNs were then concatenated, fused using an 

autoencoder/decoder, and then a fully connected layer attached to the decoder 

output assigned the final classification label. The autoencoder and fully 

connected classification layer were trained separately. The multi-branch 

configuration outperformed each of the individual CNNs as well as different 

combinations of the individual CNNs, but at the expense of greater computational 

complexity.  In 2019 Zhao et al. [171] developed a multi-branch CNN based on 3D 

CNNs. The other CNNs discussed till now were 2D CNNs, that looked at EEG data 

in a 2D space consisting of channels (rows) and samples (columns). The 3D CNNs 

enabled the input data to be structured such that the spatial locations of the 

electrodes could be included in the representation. The three branches were 

designed to extract data from small, medium, and large receptive fields. The 

outputs of the three branches are summed within an addition layer, and a final 

SoftMax layer is used to obtain the classification label. The system was trained 

end-to-end, unlike the implementation by Amin et al. [60], that required each 

CNN to be trained separately. Zhao et al. [171] compared the performance of the 

proposed 3D CNN which takes raw EEG data to that of a 2D CNN taking CSP 

features as input, and the 3D CNN was found to perform better. However, since 

they did not compare the performance of the 3D CNN classifier to that of a 2D 

CNN taking raw EEG data as input, such as EEGNet [102], they did not ascertain 

whether using a 3D architecture actually leads to significant improvement in 

classification accuracy when compared to a 2D architecture with similar input. 

Networks with inception modules for EEG time series classification have also 
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been developed, but current models need to be tailored for the classification 

problem, limiting their versatility [9].  

In Chapter 6 of this thesis a novel and versatile CNN-based channel 

selection approach is presented. In order to test the novel CNN channel selection 

approach, robust and reliable CNN-based classifiers were needed. Since 

EEGNet[7]and ShallowConvNet [66]have been popular for benchmarking, or as a 

basis for novel techniques [7], [65], [102], they were adopted for assessing the 

versatility and performance of the channel selection approach. An attempt was 

made to implement the multi-branch approach proposed by Roots et al. [65] as 

an improvement to the original EEGNet classifier, however when testing on the 

datasets in Chapter 6 it achieved poorer performance than EEGNet despite 

thorough parameter tuning that covered dropout, convolutional parameters 

(number of filters and stride length), and the size of the kernel in the pooling 

layers. Thus, this network was not used in the analysis. Roots et al. [65] did not 

test on the datasets used in Chapter 6, and it is known that the performance of 

CNN-based architectures can vary between datasets [9], which may explain its 

poorer performance. The dataset used by Roots et al. [65] was not used in Chapter 

6, since the focus in this chapter was specifically on multiclass classification 

problems, and Roots et al. [65] used a two-class dataset.   

3.4.2 Cross-Subject Classification 

Cross-subject classification is a groundbreaking frontier in MI EEG signal 

processing and has been a topic of investigation for CNN-based classification 

systems [7], [58]–[60]. In an ideal cross-subject framework, the BCI is trained on 

data from a group of subjects, known as the source signals, and tested on the data 

of another subject/s, known as the test signals. Although systems with subject-

specific training tend to outperform cross-subject systems [7], [58]–[60], the 

collection of training data from subjects and the ensuing latency for training the 

classification system are time-consuming and could limit the widespread use of 

BCI technology. High performing cross-subject BCIs would solve these issues, 

paving the way for commercial systems.  
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The current challenge is finding a cross-subject classification pipeline 

which performs on-a-par with subject-specifically trained systems. Many papers 

presenting cross-subject systems also test their pipelines with subject-specific 

training, and the results for subject-specific training are consistently better [7], 

[58]–[60]. This could be due to inter-subject variability: MI EEG activity can occur 

within different frequency bands and on different EEG channels for different 

subjects [13], [34], [163], [184], [185]. There can also be a lag between EEG 

channels which exhibit ERD/ERS behaviour [82]. Another issue is the lack of an 

independent ground-truth within MI EEG datasets: it is universally assumed that, 

when instructed, the users are generating MI signals. There is no standardized 

way to identify whether subjects correctly carried out the MI task for every trial, 

or whether they maintained concentration for the duration of task generation. 

Some studies attempt to verify that MI activity exists by monitoring the frequency 

content of the EEG signals [30], identifying ERD/ERS behaviour [82], [124], [186], 

or using z-score analysis to remove outlier channels which may not exhibit MI 

activity [131]. However, there is no standard quantitative approach for ground-

truth assessment. Furthermore, some subjects seem to have an inherent inability 

to carry out some BCI-related mental activities, a phenomenon known as BCI 

illiteracy [89]. Some subjects generate signals which perform poorly across 

studies [7], [172], so much so that some researchers generate separate results for 

subjects which generally perform well, and those who generally perform ‘poorly’ 

across studies [52], [172].  

Many approaches use training data from the target subject in order to 

calibrate the cross-subject system [12], [29], [58], [60], [65], [138], [164], [172]–

[176]. Although these approaches fall short of an ideal, generalized, cross-subject 

system which requires no calibration data from the target, they aim to reduce the 

amount of training data required from target subjects [29], [187]. Calibrated 

approaches can be broken down into 3 categories: i) including target-specific 

data together with source data within the training dataset, called mixed data 

transfer learning (MTL) in this thesis [65], [172]; ii) retraining transfer learning 
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(RTL) [58], [60], [174], [175], and iii) minimizing distribution divergence 

between the source and target domains [164], [173].   

Transfer learning is a classic technique for improving the performance of 

DL systems. RTL, where the network is pre-trained on source data and then fine-

tuned for the target subject, is widely used in the MI EEG classification literature 

[58], [60], [174], [175]. The most straightforward approach, presented by Li et al. 

[175], involves pre-training using data from source subjects in the same dataset, 

and then uses a small amount of target data to fine-tune the networks. Amin et al. 

[58], [60] have pre-trained their CNN networks using data from another dataset, 

however they did not report whether this pre-training led to an improvement 

when compared to using randomly initialized weights. Wu et al. [174]  also pre-

trained their network on an open dataset, then fine-tuned using subject data. To 

reduce the amount of target data needed, they mixed the target data with data 

from another randomly selected dataset. This transfer learning method enabled 

the target data to be reduced by a factor of 2.8 with minimal deterioration in 

accuracy. However, there has been no thorough investigation into whether 

mixing source and target data for training the network (MTL) [65], [172], [174] 

or pre-training on data from other subjects within the same dataset and fine-

tuning using only target data (RTL) [175] leads to better results. In Chapter 6 RTL 

and MTL are compared for two different CNN architectures on two different 

datasets. The methods are compared in terms of classification performance as 

well as computational times.  

Pretraining has also been done using non-EEG data. For example, a CNN 

classifier was pre-trained using electromyogram (EMG) signals which capture 

muscle activity and then fine-tuned on EEG signals, resulting in improved 

performance compared to randomly initialized weights [188]. Other approaches 

have transformed EEG data into images using the STFT [12], [176] or CWT [12] 

and performed retraining transfer learning on the pretrained image classification 

CNNs AlexNet [12] and VGG-16 [176] .The CWT may be more effective than the 

STFT for this application [12].  
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Other studies use calibration approaches to minimize the distribution 

shift between the source and target domains [164], [173]. These systems are 

implemented as Siamese CNN networks, where two CNNs are trained in parallel, 

sharing weights between them. In this case, one CNN is trained using source data 

whilst the other is trained on target data [164], [173], and the training process 

aims to encourage universal features to be learnt. To align the features learnt, X. 

Zhao et al. [164] added joint distribution matching and marginal distribution 

alignment. Marginal distribution alignment makes the centroids of the source and 

target distributions aligned regardless of the classes, whereas joint distribution 

matching calibrates the output by considering both the features and class labels. 

H. Zhao et al. [165] used a three-pronged approach to extract more general 

features: i) centre-loss was added to the feature space to decrease inter-subject 

non-linearity differences; ii) a domain discriminator uses adversarial learning to 

decrease the distribution differences between the feature distributions of 

sources and targets; and iii) the classifier is trained using data from both domains. 

The approach used by X. Zhao et al. [164] obtained an accuracy of 69.6% for the 

Graz 2A dataset, which is a four-class problem. The approach by H. Zhao et al.  

[165] exhibited better performance, giving an accuracy of 74.75% for the same 

dataset. 

These works into cross-subject classification illustrate that CNNs can 

extract generalizable representations from EEG data. This observation on the 

generalizability of CNNs helped form the fundamental concept underlying 

Chapter 6, which investigates how subject-independent channel selection can be 

carried out using CNNs. In subject-independent channel selection, a subset of EEG 

channels is selected for a target subject based on data from a group of source 

subjects. Channel selection, and the contribution in Chapter 6, are discussed in 

more detail in Section 3.5.2. 
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3.5 Static EEG Channel Subsets and Automated 

Channel Selection  

This section discusses channel selection for MI EEG classification. The first part 

covers static EEG channel subsets used in the literature, where ‘static’ refers to 

manually selected subsets of channels. It then goes on to discuss automated 

channel selection techniques, in which channels are selected algorithmically. 

3.5.1 Static EEG Channel Subsets Used with Conventional 

Classifiers  

The static EEG channel subsets used for testing conventional MI EEG classifiers 

varies across the literature. In these approaches no algorithmic channel selection 

is carried out.   

Some studies use all the EEG channels available within the chosen datasets 

[10], [21], [104]. However, because the number of EEG channels used for 

recordings varies widely across different datasets, this has led to different studies 

using different numbers of EEG channels. For example, Baig et al. [104] used 118 

channels, Olias et al. [10] used datasets with 22, 60 and 118 channels, and 

Oikonomou et al. [21] used a dataset with just 3 EEG channels.  

Other studies use an arbitrarily chosen subset of EEG. Here the term 

‘arbitrary’ is used to refer to channel subsets that were not selected 

algorithmically but are chosen manually. Typically, these channel subsets are 

constructed of channels in the vicinity of the scalp region associated with the 

motor cortex, which are around the central scalp region.  However, the number 

of channels included in these subsets and the scalp regions from which electrodes 

are derived varies [21], [22], [31]. Some studies use electrodes from the central-

associated scalp regions C, CP and CF, for example Oikonomou et al. [21] selected 

18 such channels from a 64-channel dataset, and Ilyas et al. [31] selected 11 such 

channels from a dataset with 59 channels. Other studies choose even more 

restrictive EEG subsets, selecting electrodes from only the C region of the scalp, 

such as Kevric and Subasi [22] who considered only electrodes C3, C4 and Cz from 
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a dataset containing 118 EEG channels. Although all 118 channels were used 

during pre-processing for de-noising, for classification only channels from the C 

region were considered [22].  

There is conflicting evidence as to whether having a lower number of 

electrodes within a static subset improves performance or not [32], [33]. For 

example, Yang et al. [32] used a 32-channel dataset for left- and right-hand MI 

classification. From this dataset, they considered two static channel subsets, one 

consisting of eight EEG channels from the C, CP and P regions, and another 

consisting of three channels from the central region (C3, C4 and Cz). They found 

that the three-channel subset gave similar or improved performance when 

compared to the eight-channel subset. In a different study, Siuly et al. [33] 

considered data from two datasets, one containing right-hand and right-foot MI, 

and the other containing data for left-hand and foot MI. Both datasets had 118 

channels available. They compared the performance of three different 

classification pipelines when using all 118 EEG channels and when using a static 

subset of 18 EEG channels from the C, CP, and P regions. For both datasets each 

of the three classification pipelines gave a higher classification accuracy when all 

118 EEG channels were used, as opposed to the subset of 18 EEG channels.  

These results of Yang et. al [32] and Siuly et al. [33] are conflicting, however 

comparison between the studies is limited by some factors. Firstly, the studies 

consider different MI classification problems. Left- and right-hand MI, as used in 

[32], produce desynchronization in the right and left hemispheres, respectively. 

The channels C3 and C4 are found on opposite hemispheres and may be adequate 

at capturing this activity. However, in [33] foot imagery was included. Foot 

imagery is known to produce bi-hemispheric activity, regardless of which foot is 

moved [189]. This may be a reason why using more channels improved the 

classification accuracy when the foot class was included [33], because it enabled 

the spatio-spectral patterns associated with each MI class to be identified by the 

classifier. Furthermore, Yang et al. [32] did not conduct a test using all 32 EEG 

channels. Thus, reducing the channels from eight to three may have removed 

some noisy EEG channels which were hindering classification, but considering a 
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wider variety of electrodes, such as those in the CF region, may have improved 

the identification of MI when compared to just three or eight channels [32].  

The works of Yang [32] et al. and Siuly et al. [33] are examples of studies 

that focus on how the number of electrodes used can affect accuracy, without a 

strong focus on which scalp regions those electrodes derive from. As mentioned 

in the previous chapter (Section 2.1.1), different EEG scalp regions are associated 

with different mental processes. There is a lack of investigation into the 

contribution of each scalp region surrounding the strictly C region (namely 

regions CP and CF) to classification accuracy when a static EEG subset is used. For 

example, past research has suggested the parietal-associated regions can 

contribute actively to movement planning and execution [190]. However, an 

explicit analysis of the impact on classification performance of these channel 

groupings has not been carried out to the best of this authors’ knowledge. In 

Chapter 4, a cross-classifier analysis is carried out to assess the contributions of 

channels from different scalp regions to classification performance.   

  

3.5.2 Automated EEG Channel Selection 

Automated channel selection involves using a computational or algorithmic 

approach to obtain a subset of EEG channels for classification. Channel selection 

is typically carried out on the training data, and the selected channel subset is 

then used on the test data to assess its generalizability. There are two main 

motivations for carrying out channel selection: i) improving classification 

accuracy through the removal of redundant or noisy channels; and ii) improving 

the computational time on the test set whilst maintaining the classification 

performance [44]. Sometimes both aims are the motivation, whereas on other 

occasions only one of the aims is the motivation [44]. 

In Chapter 5, the classification accuracy of the SL classifier presented was 

found to be high, but when using all the EEG channels available in the dataset, the 

computational time for test-set samples was much higher than that of some of the 

benchmarking systems, and possibly unacceptably high for a real-time BCI. A 
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novel channel selection module is placed before the SL classifier to select a subset 

of channels to use on the test set. The aim of channel selection was to preserve 

the high classification accuracy whilst, at the same time, reducing the 

computational complexity on the test dataset. This is a novel contribution 

because state-of-the-art dictionary-based sparse learning approaches typically 

use an arbitrarily chosen subset of EEG channels for processing [11], [56], [57], 

which may not lead to optimal accuracy.  

Channel selection techniques are generally classified into two categories: 

filter or wrapper techniques [44]. Filter techniques involve using some form of 

statistical or information measure to rank channels in order of importance, then 

a number of channels are selected for classification [13], [46], [47], [84]. Wrapper 

techniques optimize the channel subset with respect to a performance measure, 

usually classification accuracy [48]–[50]. This means that wrapper channel 

selection involves training the classifier multiple times with different subsets, 

typically leading to improved results compared to filter techniques, at the cost of 

greater computational complexity [44]. Some techniques are a hybrid of filter and 

wrapper techniques [44], for example by selecting a large subset of EEG channels 

using a filter technique, then refining the subset using a wrapper technique [49].  

Table 3.5 summarizes a collection of filter and wrapper channels selection 

techniques that are discussed in more detail throughout this section [13], [23], 

[24], [47], [48], [51], [105]. The table also includes CNN-based channel selection 

methods introduced later in this section.  

3.5.2.1 Filter Techniques 

Filter techniques based on correlation and covariance are common [13], [46], 

[47], although implementations can vary [13], [46]. For example, Jin et al. [13] 

assumed that channels involved in MI would be highly correlated, and removed 

channels that were correlated with relatively few other channels across trials. 

Conversely, in the first step of their algorithm, Park et al [46] obtained a 

correlation coefficient value for each channel that captured the correlation 

between the signals on that channel for two different MI tasks. Since highly 

discriminative channels can be expected to have a low correlation with 



81 
 

themselves for different classes, Park et al [46] extracted the channels with the 

lowest coefficients, labelling them ‘highly discriminative’ channels. For each 

highly discriminative channel they selected a collection of other channels called 

a support, with the support channels being highly correlated with the 

discriminative channel. In this way, they obtained a collection of different 

candidate subsets. They obtained CSP features using each candidate subset and 

selected the best group based on the Fisher score, which can be used to assess 

discriminability. Gurve et al. [47] used covariance instead of correlation whilst 

Yang et al. [84] used mutual information to rank and select a candidate subset of 

EEG channels that were most correlated with the class labels. Afterwards, 

channels within the subset were analysed to remove any that were redundant. 

Other filter techniques are based on obtaining discriminative CSP features [191] 

or Fisher score [30]. 

Table 3.5: A selection of channel selection approaches in this thesis. Note that the paper by Qui et al. 
was tested on two datasets, and that by Jin et al. was teste on three datasets. 

Paper Dataset Channel Selection 
Method 

Features Classifier Accuracy 

He et al. 
[49] (2013) 

BCI 
Competition III, 
Dataset IVa 

Genetic Algorithm  Rayleigh coefficient 
features 

LDA (named 
Fishers’ linear 
discriminant 
classifier in 
the paper) 

88.20% 

 
 
Qiu et al. 
[48] (2016) 

BCI 
Competition IV, 
Dataset 1 

 
 
Improved SFFS 

 
 
CSP 

 
 
SVM 

78.00% 

BCI 
Competition III, 
Dataset 2A 

83.30% 

 
 
 
Jin et al. 
[13] (2019) 

BCI 
Competition IV, 
Dataset 1 

 
 
 
Correlation 
Coefficient-based  

 
 
 
Regularized CSP 

 
 
 
SVM 

81.60% 

BCI 
Competition III, 
Dataset IVa 

87.40% 

BCI 
Competition III, 
Dataset 3A 

91.90% 

Gurve et al. 
[47] (2020) 

Proprietary 
dataset 

Non-negative 
matrix factorization 
analysis 

Riemannian tangent-
space features 

LDA 96.66% 

Mzurikwao 
et al. [23] 
(2019) 

Proprietary 
dataset 

CNN weight analysis EEG time-series CNN 91.50% 

Idowu et al. 
[51] (2021) 

Proprietary 
dataset 

MPSO CSP MLP neural 
network 

89.54% 

Zhang et al. 
[24] (2021) 

Proprietary 
dataset 

CNN-based 
automatic channel 
selection module 

CWT TFD images CNN 87.20% 
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3.5.2.2 Wrapper Techniques 

Sequential searches are a traditional wrapper channel selection technique [44]. 

They are greedy algorithms that iteratively search for the optimal subset by 

gradually adding (‘forward search’) or removing (‘backward search’) channels 

from a candidate subset and monitoring the effect of this on classification 

performance [44]. However, sequential searches are computationally expensive 

[44], [48]. Qiu et al [48] proposed an improved sequential floating forward search 

(SFFS) algorithm which considered electrodes that were physically near each 

other on the scalp as a single channel for search purposes. This reduced the 

computational time of the SFFS without any detriment to performance.  

 Heuristic wrapper channel selection techniques have gained popularity in 

recent years [49]–[51]. Heuristic techniques use general principles to help them 

reach a suitable solution in a faster time than traditional wrapper techniques 

[44]. The faster computational times can come at the cost of a less-than-optimal 

subset of channels, although heuristic techniques have been shown to perform 

strongly [49]–[51], in one study producing subsets that improved classification 

accuracy [49].  

Metaheuristic techniques, that are inspired by natural processes [49], 

have been used for channel selection in BCI problems [49]–[51]. For example, in 

2013 He et al. [105] used a genetic algorithm to select a subset of EEG channels 

based on extracted features. Genetic algorithms are inspired by the concept of 

natural selection, where a population of candidate solutions is created and then 

optimized such that better characteristics of the subsets are more likely to be 

promoted to a subsequent generation of candidate solutions. He et al. [105] 

showed that the GA approach could produce improved accuracy and 

outperformed sequential channel selection algorithms. In 2020 Moctezuma et al. 

used a GA for channel selection within a biometric EEG-based identification 

system [192].  

Particle swarm optimization (PSO) is another metaheuristic technique 

that facilitates exploration of the solution space by mimicking the movement of a 
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flock of birds searching for food: each bird moves in the general direction of the 

current best-known food source scouted by the whole flock, but also explores the 

area around its local best food source [51]. In 2021 Idowu et al. [51] presented a 

modified particle swarm optimization (MPSO) algorithm that introduces an 

additional term into the PSO update equation to prevent it from getting stuck in 

local minima. MPSO channel selection outperformed other heuristic methods, 

namely: traditional PSO, GA, simulated annealing, and ant bee colony 

optimization techniques. Although the classification accuracy always decreased 

as the number of EEG channels was decreased, MPSO experienced a less rapid 

deterioration in performance.  

 In Chapter 5 channel selection is applied to a SL classifier with the primary 

aim of reducing the test-set computational time without affecting the high 

accuracy of the classifier. Since the SL classifier already had an involved 

computational time [54], a metaheuristic wrapper technique was used, since it 

provided a trade-off between the increased computational time associated with 

wrapper techniques and a better likelihood of accuracy preservation through the 

selected subset [44]. Thus, a novel GA was implemented for the selection of EEG 

channels for the dictionary-based sparse-learning EEG classifier. A GA was 

chosen because GAs have a good track record in EEG channel selection [49], 

[192], and have even showed potential for improving accuracy [37]. The 

following section gives a technical overview of GAs.   

Genetic Algorithms  
GAs are optimization algorithms inspired by evolutionary mechanisms that occur 

naturally within biological chromosomes and animal populations [193]. GAs are 

not problem-specific and generally do not converge to the global optimal solution 

but search for an adequate solution [44], [193]. In fact, they are often applied to 

combinatorial problems which can have very large solution spaces, such as EEG 

channel selection [44], [51], [105], [192]. In this work, a GA was used to solve a 

maximization problem in Chapter 5, but they can also be applied to minimization 
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problems [193]. In GAs, a candidate solution is represented by a group of values 

stored in a vector [193]. In GA nomenclature, the vectors are known as 

chromosomes or individuals, and the values in the vector are known as genes 

[193]. 

 Figure 3.11 shows a generic flowchart for a GA, which will be discussed in 

depth throughout the rest of this sub-section. The first step, which occurs once at 

 

Figure 3.11: A flowchart showing the operation of a genetic algorithm at high-level. 

 

.  
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the start of the algorithm, is population initialization [193]. It involves randomly 

generating a collection of chromosomes which represent candidate solutions. 

The size of the population (i.e., the number of candidate solutions in the 

population), is a hyperparameter that can be tuned.  

After initialization, the algorithm then enters an iterative loop which 

searches the solution space. During each iteration, the population is updated, 

leading to a new generation of the population [193].  

In this loop, the fitness of each chromosome in the population is first 

calculated [193]. The fitness is the metric which is used to compare the candidate 

solutions, and depends on the application of the GA. In this thesis, a GA is applied 

to an EEG channel selection problem, where the candidate solutions were subsets 

of EEG channels, and the fitness is the classification accuracy obtained using each 

subset. The fitness results are then used to identify the best individual in the 

population, which is the individual with the greatest fitness [193]. The algorithm 

keeps a memory of the current best individual and its corresponding fitness, and 

this is updated each iteration.  

The GA searches the solution space using exploitation and exploration 

techniques [193]. Exploitation means the algorithm favors characteristics of the 

fittest individuals being promoted to subsequent generations, whereas 

exploration involves producing random mutations in the population to prevent 

the search becoming trapped within local solution spaces.  

The exploitation aspect is executed through selection and crossover [193]. 

In selection, several individuals are randomly selected from the population to 

create the new generation of the population [193]. Usually, a bias is introduced 

into the selection process, such that fitter individuals are selected [193]. This is 

an allegory for mate selection during reproduction within a biological population, 

where healthier individuals tend to be selected as mates. The selected individuals 

are known as parents, and the number of parents is a tunable parameter. A 

common selection strategy is the fitness proportionate selection strategy (also 

known as roulette wheel selection) [193], demonstrated graphically in Figure 
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3.12. In this example, there are 4 chromosomes in the population, and the table 

at the top of Figure 3.12 shows the corresponding fitness of each chromosome. 

The fitness has no units to keep the example generic, since the units depend on 

the problem. The fitness table is then translated to the roulette wheel at the 

bottom of the figure, with the percentage of the wheel covered by each 

chromosome depending on its fitness. For example, chromosome 2 had the 

greatest fitness of 96, and this translated to it occupying the greatest area 

(31.6%) on the roulette wheel.  The roulette wheel is then ‘spun’, and once the 

wheel stops spinning, the red Fixed Position arrow is used to identify the 

individual selected. This is then repeated multiple times to select the parents. 

Note that the same individual can be selected multiple times to be a parent.  

The area occupied corresponds to the probability, p, that the individual, k, 

is selected. Given that the fitness of k is 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑘, p can be calculated as:  

 

Figure 3.12: Fitness proportionate selection, also known as roulette wheel 
selection. 
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 𝑝 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑘

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑧−1
𝑗=0  

× 100%   (3.17)  

 During crossover, the parents are used to generate new individuals, 

known as children. In this thesis, the two-point crossover method [193], 

illustrated in Figure 3.13, is the basis of the crossover strategy used. Two parent 

vectors, Parent 1 (blue) and Parent 2 (green) are selected from the population. 

Two points within the vectors are randomly selected and these are known as the 

crossover points, denoted by dotted lines in Figure 3.13. Crossover is then carried 

out to produce the children and involves swapping the portions of Parent 1 and 

Parent 2 which are found within the bounds of the crossover points, thus 

producing Child 1 and Child 2. Child 1 and Child 2 replace Parent 1 and Parent 2 

in the next generation of the population.  

The next generation can be comprised completely the children produced 

by selection and crossover [193]. However, in some manifestations of GAs, the 

 

Figure 3.13: An illustration of two-point crossover being carried out on two 
parents to produce two children. The dotted lines denote the crossover points. 

 



88 
 

fittest n individuals can be automatically promoted to the next generation, and 

then (n-1) individuals are generated during crossover [193].  

Once the next generation has been created through selection and 

crossover, mutation is carried out on the population [193]. This is the exploration 

step and involves introducing random changes to individuals within the 

population. Typically, mutations can occur with a certain percentage within the 

population (for example, there is a 20% chance of mutation happening within an 

individual in a population) or they can occur at a gene level, with each gene in the 

population possibly having a mutation introduced, usually at a low mutation rate, 

such as 0.01%. After mutation, the fitness of the new generation of individuals is 

calculated.  

The GA can exit the iterative search if the stopping criteria are reached 

[193]. The stopping criteria could consist of a maximum number of iterations, or 

stagnation within the algorithm, which occurs when the best fitness has remained 

the same for a predefined number of iterations. Once the GA exits the iterative 

search, the current best individual is the final solution [193].  

 

3.5.2.3 CNN-Based Channel Selection 

Deep learning has brought to light a new area of channel selection research.  In 

2019 Mzurikwao et al. [23] developed a channel selection method based on the 

analysis of the weights in a CNN. First the CNN was trained using all the channels 

available in the EEG dataset, then the weights associated with each channel were 

summed and sorted. The 20 channels with the largest weights were selected, and 

the network retrained. In a small analysis of four subjects, they found accuracy 

tended to decrease by only 1% when reducing the number of input channels from 

64 to 20. The benefit of channel selection was improved computational time, and 

the possibility of fewer electrodes being used in testing, leading to a more 

comfortable user experience.  

 In 2021 Zhang et al. [24] incorporated a novel automatic channel 

selection (ACS) layer as the first layer of their CNN network.  The EEG time series 
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on each channel is first converted to a TFD image using the CWT. These images 

are then input to the ACS layer, which consists of a squeezing-excitation module. 

The squeezing phase compresses the information in the scalograms along the 

frequency and time dimensions to obtain a single description for each channel. 

The excitation phase learns salient relationships between channels. Finally, the 

input CWT images are reconstructed at the output of the ACS layer, with a 

sparsity constraint reducing the number of channels input to the subsequent CNN 

layers.  Using the ACS module led to an improvement of 2.7% when compared to 

using just the CNN, indicating that their implementation was effective in 

suppressing the effect of the noisy or redundant channels. However, the 

implementation by Zhang et al. [24] does not involve a retraining step using the 

selected channel subset, implying that the whole cohort of electrodes were used 

for training and testing, with the ACS module suppressing redundant channels. In 

the wider CNN literature, discussed previously in Section 3.4, many state-of-the-

art deep learning classification systems do not include automatic channel 

selection [7], [9], [64], [65], [102].  

 In Chapter 6 a novel approach to channel selection in CNNs is presented. 

It involves a custom layer which is inserted at the start of a CNN network. After 

training, an analysis is carried out on the weights in the ICS layer, and an 

importance score is assigned to each EEG channel. The n channels with the 

highest scores are then selected, where n is the number of channels in the subset, 

which is set by the user. The channel selection approaches of Mzurikwao et al. 

[23] and Zhang et al. [24] were each only tested on one CNN architecture, and the 

channel selection approaches were integrated into the designs of these CNN 

networks.  The novelty of the ICS layer approach is in its versatility: it can, in 

theory, be easily applied to any 2D CNN network which takes EEG time-series as 

input.  In Chapter 6, the approach was found to be effective for two different CNN 

networks when tested using two different datasets. This is the first time, to the 

authors knowledge, that such a versatile but straightforward approach has been 

presented for MI EEG channel selection within a CNN.   
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3.5.2.4 Subject-Independent Channel Selection  

Channel selection is often subject-specific [13], [23], [46]–[49]. This means that 

the training data of the individual subject is used to obtain a subset of EEG 

channels to be used on the test data. This can lead to improved computational 

times on the test set, and in a real-time system could provide a more comfortable 

experience for the subject since some electrodes can be removed. However, the 

channel selection process can be time-consuming, particularly for wrapper 

channel selection techniques. In subject-independent channel selection, data 

from other subjects is used for channel selection, then the selected channel subset 

is used directly on a target subject. Although some authors have observed that 

subject-specific training of BCIs leads to more reliable performance [3], other 

authors have shown that subject-independent channel selection holds promise 

[52].  

Some of the motivations for subject-independent EEG channel selection are 

as follows: 

• EEG electrodes are an added cost to commercial BCIs: Ideally, commercial 

systems are sold with the minimum number of EEG electrodes possible 

that still provide an acceptable performance. Having a subset of electrodes 

that are known to work well for a wide variety of users would increase 

commercial viability.  

• Removing the need for end-user channel selection: Subject-specific 

channel selection is time-consuming in and of itself and contributes to an 

overall increased training time. This is investigated in Chapter 5. If the best 

subset of EEG electrodes could be selected beforehand through a subject-

independent EEG channel selection process without any negative impact 

on the classification performance with the target subject, this would 

remove the need for time-consuming subject-specific channel selection.  

• Improved or more stable performance: Some electrodes may hold 

redundant or noisy data that either contributes little to the classification 

process, or even affects it adversely [13]. By removing channels that are 

redundant across subjects, the classification performance could become 
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more stable. Furthermore, reducing the number of EEG channels could 

reduce the training times for the end-user.   

• Better look and feel: EEG recording systems with many electrodes may 

appear cumbersome and aesthetically unappealing to users. Systems with 

more electrodes may also be less comfortable. Thus, an added benefit of 

reducing the number of EEG electrodes may be enhanced commercial 

value based on comfort and aesthetics.   

Despite these motivations, many studies still favor subject-specific 

channel selection [13], [23], [46]–[49]. Handiru et al. [52] showed that using a 

subject-independent channel subset resulted in a decrease in average 

classification accuracy of only 2.8% when compared to using a subject-specific 

channel selection, an observation they used to support subject-specific channel 

selection. Even recent works into CNN-based channel selection do not present 

results for subject-independent channel selection [23], [24]. Studies into cross-

subject DL classification discussed previously in Section 3.4  also do not delve into 

the subject of subject-independent channel selection [7], [58]–[60].  

In Chapter 6, a novel analysis assessing the capabilities of the ICS layer 

channel selection method within the context of subject-independent channel 

selection is presented.  Subject-independent channel selection with the ICS layer 

did not result in a statistically significant decrease in classification performance 

when compared to selecting subject-specific channels, indicating that it is an 

effective method for subject-independent channel selection. The benefits of using 

subject-independent channel selection on training latency for the user are also 

summarized.  

3.6 Windowing Techniques in EEG Classification 

EEG time-series data is typically segmented, with features being extracted from 

the segment and input to the classifier. Approaches for segmenting EEG time-

series data for classification vary across studies. Some studies consider whole 

trials of EEG data, the length of which depends on the dataset, although trials 3.5s 

and 4s long are common [22], [194]. Other studies pass a sliding window over the 



92 
 

EEG data, creating multiple segments for each EEG trial [5]. This technique can be 

used with different aims in mind, either as a ‘cutting and splicing’ technique to 

increase the training data for a DL system [8], [9], [58] or to mimic within the 

constraints of an offline BCI the buffering system that might exist within a real-

time BCI, where segments of EEG data are classified in almost real-time [19], [25]. 

The sliding window technique is characterized by the window size (how many 

samples are in a segment) and the window increment (how many samples the 

window moves with each step). EEG data around 1.5s in length or less can be 

considered approximately stationary [91], [120], [195] so segmentation may be 

used for certain feature extraction techniques that can be adversely affected by 

non-linearities, such as CSP [120], [196]. 

 Effective BCI classification would require refinement of the window size 

and window increment size. Some studies use maximally overlapped windows 

[8], [58], although many studies also use partial overlap, moving the window by 

increments of milliseconds [25], [26], [197], possibly to improve computational 

efficiency. Samuel et al. [25] used FFT features and an LDA classifier, and 

investigated window sizes in the range 100ms to 350ms, and window increment 

sizes in the range 25ms to 100ms. They obtained a peak classification accuracy of 

99.97% when using a window size of 100ms and a window increment of 25ms. 

However, their study used private data so the results cannot be replicated. Using 

a simple CSP-LDA pipeline, Asensio-Cubero et al. [26], [135] segmented EEG trials 

using overlapping windows, and obtained a feature vector from each segment. 

They then investigated two classification approaches: i) obtaining a classification 

label for each segment and using majority voting to obtain the final label for the 

trial; and ii) concatenating the feature vectors from the segments, and then 

inputting that to the classifier to obtain the label for the trial. They found that (i) 

provided better classification accuracy, and that using a window size over 2s long 

gave better accuracy. The core difference in the windowing approaches in the 

works of Samuel et al. [25] and Asensio-Cubero et al. [135] is that in [25] the 

segmentation just augmented the dataset, mimicking a basic buffering system, 

whilst in [135] the information from different segments of a trial were joined to 
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obtain the final classification of the trial. In 2019 Yang et al. [32] optimized the 

time window for EEG segmentation in a conventional classification system, and 

found that the optimization improved classification performance by 5%-15%. 

However, they did not investigate fusing the decisions made on multiple 

windows. In 2017, Schirrmeister et al. [8] applied a post-processing technique 

similar to that used by Asensio Cubero et al. [135] to a CNN classifier. They found 

that taking the mean of the SoftMax output for different segments from a trial led 

to improved accuracy when compared to just classifying the whole trial. 

However, none of these studies have conducted an in-depth investigation into the 

impact of window size and window increment size for a wide variety of 

classifiers.  

EMG signals are noisy biosignals recorded from muscle and, like EEG 

signals, are non-stationary and non-linear [28]. In a 2020 study, Wahid et al. [27]  

found that segmenting EMG signals and then merging classification results across 

temporal windows led to a significant improvement in classification results for a 

variety of classifiers. Although present studies into EEG classification indicate 

that using windowing can improve classification accuracy [8], [135], more 

investigation is needed to identify how effective windowing can be for different 

classification pipelines, and any relationship between performance, window size, 

window increment and classifier. 

To address these gaps in the literature, Chapter 4 presents a multi-

segment majority-voting decision fusion framework. This framework involves 

segmenting the EEG data in a trial, obtaining a classification label for each 

segment, and then performing majority voting on the segments to obtain the final 

classification label for the trial. The approach was applied to a variety of 

conventional classifiers, and the effects of window size and window increment 

size are discussed in depth. Using the multi-segment decision-fusion framework 

generally led to a significant improvement in classification performance when 

compared to just assigning a label using the whole EEG trial with no 

segmentation. The framework is assessed using an open-access dataset [71], such 

that results could be replicated, as opposed to the work by Samuel et al. [25], 
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which was carried out on a private dataset and was therefore not easily 

replicable.  

 

3.7 Conclusion 

This chapter provided a broad overview of the literature related to MI EEG 

classification, highlighting gaps in the literature that are explored in the 

contribution chapters of this thesis. It also provided a technical background into 

CSP feature extraction, conventional classifiers, OMP, CNN-based classification 

and GAs.  

 Although EEG data segmentation is common [8], [25], [26], [58], [197], the 

literature has not explored in-depth whether time domain-based decision fusion 

from multiple EEG segments can significantly improve classification accuracy. 

Although some studies have suggested potential improvements from TD 

decision-fusion [8], [26], these have been limited to experiments on just one kind 

of classifier, or have not explored in-depth the relationship between window 

design parameters (i.e. window size and window increment size) on classification 

performance. A study into EMG signals has indicated that a TD decision fusion 

approach can boost classification performance across different classifiers [27].  In 

Chapter 4, a majority-voting based multi-segment decision fusion framework is 

presented. In this approach, EEG trials are segmented in the time domain, and 

each segment is assigned a label by a classifier. Majority voting is carried out on 

all the labels assigned to segments to obtain the final label for the trial. The 

framework was assessed on multiple conventional classifiers, and the effect of 

window design parameters was investigated in-depth.  

 Conventional machine learning approaches remain a current topic of 

research [10], [13], [14], [21], [22], [30], [31], [104], [118]. Although many 

studies have compared different conventional classifiers [5], [101], [104], to the 

knowledge of this author, no study has compared the classification performance 

of a variety of classifiers (namely SVM, LDA, RF, NB and MLP) across different 

channel subsets. Since the channels included in a subset can have a substantial 
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impact on classification performance, this kind of analysis would provide a novel 

perspective for classifier comparisons. In Chapter 4, the performance of several 

conventional classifiers is compared when different channel subsets are used.  

Discussions in the literature on static channel subsets for EEG 

classification have been focused on whether increasing or decreasing the number 

of EEG channels used improves performance [32], [33]. However, it is known that 

electrodes from different scalp regions can be broadly related to different mental 

processes. Chapter 4 presents a straightforward methodology for developing a 

static EEG channel subset based on an analysis of the contributions of electrodes 

from different scalp regions.  

Dictionary-based SL approaches have performed with high classification 

accuracy in the literature [11], [39], [56], [57]. Many approaches have been based 

on frequency or time-frequency feature extraction techniques and extract 

multiple features per channel [11], [56], [57]. In Chapter 5, a dictionary-based SL 

approach based on TD band power is presented. This approach outperformed a 

state-of-the-art SL approach based on wavelet features [11]. Furthermore, an 

analysis showed that using just one feature per channel was adequate for high 

performance when using the band power in the combined alpha and beta 

frequency range as the feature.  

Despite their strong performance, dictionary-based SL approaches are 

based on encoding algorithms that can be computationally expensive [11], [54], 

[55], [168]. In Chapter 5, the test-set computational time of a SL classifier using 

all the EEG channels was found to possibly be unacceptably long for a real-time 

application such as a graphical user interface. Subject-specific channel selection 

was applied to reduce the number of EEG channels and improve the 

computational time. A GA channel selection module was developed to select EEG 

channels using training and validation datasets. A metaheuristic channel 

selection method was used since these methods are renowned to provide a trade-

off between accuracy and faster convergence when compared to other wrapper 

techniques [44]. A GA framework was chosen since it had been previously shown 

to work well for EEG channel selection [49], [192], actually improving the 
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accuracy in the work of He et al. [49]. Using a subset of channels produced by the 

GA maintained the classification accuracy and reduced the run-time 

computational times to be more compatible with a real time application. To the 

authors’ knowledge this is the first time that metaheuristic channel selection has 

been applied to a dictionary-based SL classifier for MI EEG.  

Whilst subject-specific channel selection is popular in the literature, there 

are many motivations for effective subject-independent channel selection, 

including a decreased training latency for the end-user and cheaper setups with 

fewer electrodes which makes them more commercializable. One impediment to 

subject-independent channel selection is that it can result in deteriorated 

classification performance when compared to using subject-specific channels 

[52].  

Although CNNs have been effective for MI EEG classification [6]–[8], [60], 

[65], [102] and research into cross-subject classification has been heavily focused 

on CNNs [7], [58]–[60], they have not been applied to the subject-independent 

channel selection problem for MI EEG. Furthermore, recent methods of CNN-

based channel selection have been tested only on specific CNN pipelines, and in 

the case of the work of Mzurikwao et al. [23], the channel selection approach is 

intrinsically tied to the structure of the CNN used. In Chapter 6, a novel CNN-

based channel selection method for subject-independent channel subsets is 

presented, called the ICS layer method. This method consists of an integrated 

channel selection layer that can, in theory, be easily added to any 2D CNN 

network that processes segments of EEG time-series data.  The versatility of the 

method is illustrated by applying it to two different CNN pipelines and testing it 

on two datasets. Furthermore, there was no statistically significant difference in 

performance when using the ICS method to extract subject-specific or subject-

independent channel subsets, indicating that this method is suitable for subject-

independent channel selection.  

Transfer learning involves using source data from other subjects to 

improve the classification performance on a target subject. It is widely applied in 

DL classifiers for MI EEG classification problems [12], [58], [60], [65], [138], 
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[172], [174]–[176], however no study has compared the performance of the RTL 

and MTL approaches. In Chapter 6, transfer learning is used to improve the 

performance of the CNN classifiers when using a reduced channel subset, and the 

RTL and MTL methods are compared in terms of classification performance and 

computational times. This experiment is not only novel because of the 

comparison between the two techniques, but because of the application of 

transfer learning to improve the classification performance after CNN-based 

channel selection, which other studies in the literature have not done.   

The next chapter, Chapter 4, presents work in conventional classifiers. The 

core contribution of this chapter is the multi-segment decision fusion framework. 

The chapter also presents a comparison of various classifiers based on different 

channel subsets, and a straightforward approach to selecting a static channel 

subset using an analysis of the contributions of electrodes from different scalp 

regions.  
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Chapter 4 : Multi-Segment 

Fusion for MI EEG Classification 

with Static Channel Analysis 
 

 

 

4.1 Introduction 

As previously discussed in Chapter 3 (Section 3.6) the segmentation of EEG trial 

data is common in the literature, for reasons of dataset augmentation [25] or for 

decision fusion [8], [26]. This segmentation also mimics the buffering that can 

happen in a real-time BCI [19], [25]. A recent study into the classification of EMG 

signals found that using majority-based decision fusion on segmented time series 

could lead to a significant improvement in performance [27]. However, to the 

best of the author’s knowledge following extensive literature review, no study 

has investigated the relationship between segmentation approaches and 

classification accuracy in the context of various classifiers.  

The main contribution of this chapter is a novel investigation into the 

effect of a majority voting-based multi-segment decision fusion classification 

approach. This approach segments each EEG trial, labels each segment, and then 

uses majority voting to obtain the final classification label for a trial. The 

investigation analyses the effect of different window sizes and increment sizes 

for segmentation. It also analyses the effect of multi-segment decision fusion on 

the accuracy of LDA, SVM, NB, RF and MLP classifier. These classifiers were 

chosen because they have been widely used in the literature [10], [13], [14], [21], 

[31], [104], [133], [140], [147], [148], [188], and cover a variety of different 

approaches to constructing decision boundaries, as previously discussed in 

Chapter 3. This study also summarises the impact windowing can have on 

execution time.  A paper related to multi-segment decision fusion was published 

in Cognitive Computation [198]. 
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The secondary contribution of this chapter is a novel and straightforward 

methodology for building a static EEG channel subset. This subset was then used 

in the multi-segment decision fusion classifier. As previously discussed in 

Chapter 3 (Section 3.5.1), it is common for studies in the literature to use 

arbitrarily chosen subsets of EEG channels for classification [10], [21], [29], [30], 

although there is a lack of consensus as to whether decreasing the number of 

channels leads to a degradation in classification performance or not [32], [33]. 

The static subsets chosen vary across studies [10], [21], [29], [30], and it is 

relatively rare for a study to present results for multiple arbitrarily chosen 

channel subsets [30]. In this work, the static channel subsets are constructed by 

considering the EEG scalp regions surrounding the central region, which is most 

associated with motor activity [34]. Although EEG scalp potentials at any one 

point are produced from mixing of signals from different brain regions [70], there 

is a relationship between the scalp region and the underlying cerebral functions 

[34]–[37]. This method for constructing the channel subsets aims to analyse the 

effect of electrodes from different scalp regions on classification performance.   

The analysis of static channel subsets as well as the full cohort of channels 

in the dataset was conducted for the five different classifiers mentioned 

previously. Although studies comparing different classifiers are common in the 

literature [5], [31], [101], as previously discussed in Chapter 3 (Section 3.2) these 

comparisons are rarely carried out when considering different channel subsets. 

Thus, the novelty of the approach proposed in this chapter lies in the analysis and 

comparison of the results from various static channel subsets and the impact that 

multi-segment decision fusion can have on classification performance.  

 The rest of this chapter is organized as follows. Section 4.2 describes the 

proposed static channel subset analysis and the multi-segment fusion approach. 

Then, Section 4.3 describes the datasets used, hyperparameter tuning, 

performance metrics and statistical analysis. The chapter then continues with 

Section 4.4 where the results are presented and discussed before conclusions are 

drawn in Section 4.5 and the main contributions of this chapter are reiterated.  
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4.2 Scalp Region-Based Static Channel Analysis 

and Implementation of the Majority Voting-Based 

Multi-Segment Decision Fusion Approach  

This section covers three areas: the static EEG channel analysis, pre-processing 

and feature extraction, and the proposed multi-segment fusion classification 

approach. For both the static channel analysis and the multi-segment 

classification fusion, five different classifiers were used for analysis, namely: LDA, 

SVM, RF, NB, and MLP classifiers. SVM classifiers with linear, polynomial and RBF 

kernels were considered, and are labelled as SVM-Linear, SVM-poly and SVM-

RBF, respectively.  

4.2.1 Proposed Static EEG Channel Analysis 

Figure 4.1 shows a map of electrodes used in the EEG recording montage. The 

electrode map shows the channels that are available in the extended 10-20 

electrode setup [199], and includes the regions most of interest in this chapter. 

In the original dataset, a special high-density cap of 118 electrodes was used. This 

cap contains electrodes that are in the extended 10-20 system as well as 

additional electrodes to make a high-density covering of the scalp. These caps are 

generally expensive and impractical [199], thus the experiments in this chapter 

are mostly focused on electrode regions that are in the extended 10-20 montage. 

The full montage of 118 channels was used just for baseline comparisons. The 

channels involved in this static analysis are highlighted in red. Four channel 

subsets are considered in this analysis, alongside the use of all 118 channels in 

the dataset. The four subsets are: 

1. Central Channels (C): C5, C3, C1, Cz, C2, C4, C6, 7 channels in total; 

2. Central and Central-Parietal channels (C+CP): C5, C3, C1, Cz, C2, C4, C6, CP5, 

CP3, CP1, CPz, CP2, CP4, CP6, 14 channels in total; 

3. Central and Central-Frontal channels (C+CF): C5, C3, C1, Cz, C2, C4, C6, FC5, 

FC3, FC1, FCz, FC2, FC4, FC6, 14 channels in total; 
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4. Central, Central-Parietal and Central-Frontal (C+CP+CF): C5, C3, C1, Cz, C2, C4, 

C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, 21 

channels in total. 

 

 

Electrodes in the CP and CF regions were considered in the analysis 

because they border the central scalp region, which is associated with MI activity. 

Although the central region has been linked to MI, due to volume conduction in 

the scalp (previously discussed in Section 2.1.1.1), signals from one scalp region 

can mix with signals in neighboring regions [70], meaning salient information 

could be obtained from the CP and/or CF regions. 

These channel subsets were designed to combine different scalp regions 

which are associated with particular mental processes. All the subsets contain the 

C group, which has been fundamentally linked to the sensorimotor region of the 

brain and to MI [34]. The CP region is at the overlap between the central and 

Figure 4.1: A map of electrodes used in the EEG recording montage, with the channels 
which were used in the static subsets highlighted in red. 
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parietal region, which is associated with motivated attention and concentration 

[34], which are both important mental components of completing MI tasks. The 

CF region is at the overlap of the central and frontal region, which is associated 

with planning of voluntary movement [35]. The aim of this brief static analysis is 

to study the contributions of the CP and CF regions individually, as well as their 

synergistic contribution when included together in a subset. This analysis is 

important because, although many studies use static channel subsets [10], [21], 

[29], [30], the contribution of smaller groups of channels in the same scalp 

regions bordering the central region has not been studied. This study presents a 

new and straightforward methodology which could be used in studies which opt 

for a static EEG subset. Although some papers present results using different 

static subsets [30], this methodology does not just arbitrarily select the EEG 

channels, but factors-in the broad relationship between scalp location and 

underlying mental processes.  

 In this analysis, features are extracted from the whole trials and passed 

onto the classifier for classification. For simplicity, the two best static EEG subsets 

obtained from this analysis are then used to study the multi-segment fusion 

classification approach.  The ‘best’ static subset is the one that obtained the best 

classification accuracy in the static analysis. 

 

4.2.2 Pre-Processing and Feature Extraction 

EEG data for each trail is pre-processed and then common spatial pattern (CSP) 

features are extracted for classification. CSP-based features were chosen because 

of their wide use in benchmarking [5], [22], [29], [163], [197] and in 

investigations into novel classification [21], [131], [133], [134], [153] or channel 

selection [48] pipelines, which were previously discussed in Chapter 3 (Section 

3.1.5). 

Pre-processing involves filtering and mean-centering the EEG channels in 

the static subset. Filtering is carried out using an elliptic bandpass filter [41], 

[135] with a passband from 8Hz to 32Hz, which covers the alpha and beta 

frequency bands important for MI [34]. Afterwards, data is mean-centered by 
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taking the mean of the data in the trial, and subtracting it from each of the EEG 

channels [10]. This is a type of EEG re-referencing which aims to reduce the effect 

of artifacts and noise [200].  

After pre-processing, a standard CSP feature vector [10], [139] is extracted 

from each trial. The technical aspects of CSP feature extraction were discussed 

previously in Chapter 3 (Section 3.1.5). Based on the results obtained by Olias et 

al. [10]  𝑝, the dimensionality of the subspace, is set to 8. The approach in [10]  

was followed since the CSP feature extraction approach in this chapter was based 

on the implementation used in [10] and the same dataset is also used.  

 

4.2.3 Proposed Multi-Segment Decision Fusion 

Classification 

The proposed multi-segment fusion classification approach is shown in Figure 

4.2. In the proposed approach, each EEG trial is divided into multiple segments 

using an overlapping, moving window approach. A CSP feature vector is obtained 

from each segment, and a classification label is obtained from each feature vector. 

The classification label is obtained from a classifier. Majority voting based on the 

classification labels obtained from the segments is used to obtain the final 

classification label for the trial. Note that in the case of the dataset used in this 

chapter, each EEG trial is 3.5s long [86]. More information on the dataset used 

can be found in Section 4.3.1. 

The moving window approach consists of two design features: the 

window length, 𝑥s, which controls how many time samples are included in the 

window, and the window increment, 𝑦s, which controls the overlap between the 

present data window and the following one. To clarify, the first window would 

extract data from time 0s to time 𝑥s, whilst the second window would extract 

time samples from 𝑦s to 𝑥s + 𝑦s, and so on until the leading edge of the window 

reaches the end of the trial. It follows that the number of segments obtained per 

trial depends on the values of both 𝑥 and 𝑦. The effect of different window sizes 
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and window increments is studied, with the values documented in Table 4.1. All  

the possible combinations of window size and increment in each row are 

considered. Note that for the 0.25s window, increments of 0.25s and 0.1s only are 

used since an increment size of 0.5s would be larger than the size of the window, 

resulting in certain trial samples not being processed.  Windowing schemes are 

described in short as (𝑥s, 𝑦s), for example (1.25s,0.5s) for a window size of 1.25s 

and increment of 0.5s.  

 

Figure 4.2: The multi-segment fusion classification approach, showing segmentation of the EEG trial and 
majority voting label assignment. The labels used in majority voting are obtained from a classifier. 

 

Table 4.1: A table of the different window sizes and window increments that were used in this 
study. 

Window Size Window Increment 
2s, 1.75s, 1.5s, 1.25s, 1s, 0.75s, 0.5s 0.5s, 0.25s, 0.1s 

0.25s 0.25s, 0.1s 
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 Training and testing using the proposed multi-segment fusion approach 

first involves dividing trials into training and test sets, then segmenting them 

using the moving window. Feature vectors from the segmented training trials are 

then used to train the classifier, and feature vectors from the test set are used for 

multi-segment fusion classification, with labels being obtained for each of the 

segments in a trial and majority voting being used to obtain the final label for each 

trial. studies investigating the effect of segment-based majority voting for trial classification 

have only used one classifier, LDA 

 Figure 4.3 and Figure 4.4 show an illustrative example of how majority 

voting can work with an actual segment of EEG data. Both images show the same 

3.5s MI EEG being classified, but Figure 4.3 shows the traditional method of 

classifying the whole trial, whilst Figure 4.4 shows the multi-segment decision 

fusion approach applied to the same trial. In both Figures, the EEG time series is 

made up of the central (C) EEG channels. Class 1 corresponds to an imagined 

right-hand movement whilst class 2 corresponds to imagined right-foot 

movement. Figure 4.3 shows an example of a whole trial from MI class 1 being 

incorrectly classified: features are extracted from the whole 3.5s of the trial and 

are input to the classifier, which assigns the class label 2 to the trial. Figure 4.4 

(overleaf) shows the same trial segmented using a 2s window size and a 0.25s 

increment size, leading to 7 segments. A feature vector is extracted from each of 

 

Figure 4.3: An example of a whole trial classification leading to misclassification. 
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the segments, and the feature vectors are classified to obtain an assigned label for 

each individual segment. For simplicity, the feature extraction step and classifier 

have not been shown graphically in the image. Note that three of the segments 

were classified as class 2, whereas four were classified as class 1. Thus, when a 

 

Figure 4.4: An example of segmentation and majority-voting based classification for a trial. The 
3.5s long EEG trial has been segmented into seven segments using a 2s long window and a 
0.25s window increment. 
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majority vote is then conducted over the assigned labels, the final classification 

label assigned to the trial is 1, which is the correct class.  

 Although many studies segment EEG data, either to augment the 

dataset, to perform decision fusion [135], to mimic the buffering in a real-time 

classification system and/or dataset augmentation [19], [25], [59], studies 

investigating the effect of segment-based majority voting for trial classification 

have only used one classifier, LDA [26], [135]. The aim of this study is to fill this 

conceptual gap in the literature. The novelty in this chapter is in investigating the 

effect of majority voting-based decision fusion across various classifiers, namely 

LDA, SVM, NB, RF and MLP classifiers. In particular, the analsysis is focused on  

the effect of window size and window increment size on performance across 

these five different classifiers.  

 

4.3 Experimental Methodology 

The experiments in this section use subject-specific training, meaning that the 

classifiers were trained using training trials from each subject and tested using a 

different, “unseen” set of testing trials from that subject. This is a widespread 

approach in the literature [3], [11], [12], [173], particularly for CSP-based 

classification systems [5], [21], [22], which have not performed well in cross-

subject classification tasks [133], [197].  

4.3.1 Dataset  

Experiments were carried out on the BCI Competition III Dataset IVa [86]. This 

dataset was described in more depth in Section 2.2.1. The training trials are used 

for hyperparameter tuning and classifier training. The testing trials are used as 

‘unseen data’ for obtaining the results for the cross-classifier analysis and multi-

segment classification fusion approach. All the training data was used for 

hyperparameter tuning. However, since EEG data is artifact-prone and non-

stationary, a 10-fold evaluation approach was used, in which the training data of 

each subject was divided into ten segments, and performance was recorded when 

training on nine segments of the data. This was repeated for ten times, each time 



108 
 

with a different segment ‘left out’. The average results over the ten folds were 

recorded as the performance for the subject.  This general approach has been 

used in other EEG studies [120], [201], [202].  

 Only one dataset is used in this chapter, whereas in Chapter 5 and Chapter 

6, two datasets are used. To assess the generalizability of a proposed approach, it 

is good practice to test on additional datasets. However, the work presented in 

this chapter was the first completed during the course of the PhD research, when 

the evaluation methodology was still being refined. Furthermore, knowledge 

about other datasets available was still being built, and many of the studies 

reviewed at that point had focused on one dataset [104], [106], the BCI 

Competition III dataset IVa, which is used in this chapter.  

 4.3.2 Hyperparameter Tuning  

Grid-searches were used to tune the hyperparameters of the classifiers. During a 

search, for each combination of hyperparameters, the 10-fold cross-validation 

accuracy was evaluated for each subject in the dataset. This involved partitioning 

the training data into 10 folds and using 9 folds for training and 1 to obtain the 

validation accuracy. This is repeated 9 more times, using a different fold for 

validation each time. The average validation accuracy across the folds is then 

obtained. To select final parameters for each classifier that are generalizable, the 

parameters which resulted in the highest average classification accuracy across 

subjects were used. The relevance of each parameter was previously discussed in 

Chapter 3. The following parameter values were considered in the grid-search:  

• LDA classifier: Linear coefficient threshold (Δ) values of 2n, for values of n 

from -10 to 10, increasing in steps of two. The value zero was also included 

in the set. Regularization coefficient (ϒ) values of 2n for values of n from -10 

to -1 in increments of two. The values 0, -0.5 and -0.25 for n were also 

included.  

• SVM classifiers: For linear, RBF and polynomial SVMs, the search for the 

regularization parameter (𝐶) and the kernel scale (𝑔) were in the set 2n for n 
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in the range -10 to 10 in increments of two. For the SVM-poly classifier, 

polynomial factors of 2 and 3 were considered.  

• NB classifier: Four different kernel functions were considered: Gaussian, 

Epanechnikov, box and triangular. Kernel widths of 10n for n in the range -1 

to 1, increasing in increments of 
1

50
, were considered. 

• RF classifier: The number of trees was increased from 20 to 1000 in 

increments of 20, the predictions at each node were increased from 1 to 8 in 

increments of two and the observations per leaf were increased from 4 to 20 

in increments of four.  

• MLP: The number of neurons in the hidden layer (HN) were from the set {3, 

5, 10, 20, 100}, maximum training iterations in the set {200, 400, 800}, the 

momentum term (β) was from the set {0.6, 0.7, 0.8, 0.9}, the learning rate (η) 

was from the set {10-2, 10-3, 10-4} and the regularization coefficient (α) values 

were from the set {10-2, 10-3, 10-4}. The activation functions tanh, relu and 

logistic were considered.  

 

In this chapter a grid search was used to tune the hyperparameters because 

it is a standard, reliable approach [203]. However, in Chapter 5, Bayesian 

optimization [90] was used to tune the classifier hyperparameters. This is 

because further literature review indicated that Bayesian optimization has the 

potential to produce similar results to grid searches with lower computational 

expenditure [204].  

All the classifiers were implemented using standard functions in MATLAB, 

except for the MLP classifier which was implemented in Python 3. The classifiers 

were tuned during the static EEG analysis, with each classifier being assigned a 

set of tuned parameters for each of the subsets. The 10-fold cross validation grid- 

search was carried out for each subject independently. However, to decide on the 

final parameters, the cross-validation accuracy, averaged across the subjects, was 

used. The parameters which gave the highest accuracy were used. This meant 

that individual subjects may have had better results for other hyperparameters, 

but the overall optimal classifier for each channel subset was selected. These 
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hyperparameters were used for both the static EEG analysis and the multi-

segment fusion classification assessment, so that the effects of multi-segment 

fusion could be analysed with all other factors controlled. The aim of selecting the 

best overall parameters was to obtain universal classifiers on which to assess 

performance. This is a similar concept to finding the best channel subset across 

subjects, which is also explored in this chapter.  

Figure 4.5 shows the hyperparameter tuning results for the different 

classifiers when 118 channels are used. The axes of the plots denote the 

parameter values in the grid-search, and the colours of the data points denote the 

average accuracy value. The red data points denote the data point with the 

greatest accuracy. The parameter values associated with these data points were 

the values used for further analysis.  Similar results were obtained for the C, C+CP, 

C+CF and C+CP+CF channel subsets. The hyperparameter results for the MLP 

classifier are not shown since six hyperparameters were tuned, requiring a 6D 

plot for visualization. Table 4.2 shows the selected parameter values obtained for 

each channel set and classifier pairing, and the associated grid-search accuracy.  

 

Figure 4.5: Hyperparameter tuning of the classifiers. The axes of the plots denote the 
parameter values, and the colours of the data points are related to the accuracy according to 
the colour bar on the right-hand side of each plot. The red data points have the highest 
accuracies and are associated with the parameters chosen for further analysis. 
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These parameter values were used for experimentation throughout the rest of 

this chapter.  

 

4.3.3 Evaluation Methodology 

This section discusses the performance metrics used, statistical tests carried out, 

and explains the methodology used for the execution time analysis.    

4.3.3.1 Performance Metrics  

The statistics used to evaluate performance were Accuracy and Sensitivity. These 

metrics are based on the values recorded in a confusion matrix: true positives 

(TP), false positives (FP), true negatives (TN) and false negatives (FN), and are 

calculated as follows [205]:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑃+𝑁
  (4.1) 

Table 4.2: The chosen hyperparameters chosen for each classifier and channel subset pairing. 
The grid-search accuracies obtained for each pairing are also shown.  

Classifier C C+CP C+CF C+CP+CF 118 
 

SVM-
Linear 

C =0.0039; 
 g =0.0313 
(76.29%) 

C=0.25; 
g = 0.0078 
(82.00%) 

C = 0.0078; 
g = 0.0313 
(79.43%) 

C = 128; 
g = 1 

(82.71%) 

C = 128; 
g = 16 

(77.79%) 
 
 

SVM-
Poly 

 
C = 16; 
g = 2; 

Order = 2 
(76.14%) 

 
C = 128 
g = 3; 

Order = 3 
(81.93%) 

 
C = 256; 
g = 16; 

Order = 2 
(79.64%) 

 
C = 8; 
g = 2; 

Order =2 
(82.00%) 

 
C = 256; 
g = 16; 

Order = 2 
(77.71%) 

 
 

SVM-
RBF 

 
C = 2; 
g = 4 

(75.86%) 

 
C = 512; 
g = 32 

(81.86%) 

 
C = 32; 
g = 4 

(79.43%) 

 
C = 32; 
g = 16 

(81.57%) 

 
C = 512; 
g = 32 

(77.50%) 
 

LDA 
 

Δ =  0.0313 
ϒ = 0.002 
(76.07%) 

 
Δ =  0.0078 
ϒ = 0.0625 
(82.07%) 

 
Δ =  0.002 
ϒ = 0.0078 
(79.22%) 

 
Δ =  0.0313 

ϒ = 0.25 
(81.93%) 

 
Δ =  0.0156 

ϒ = 0 
(82.07%) 

 
NB 

 
Width = 0.2399 

Fn.: Box 
(75.07%) 

 
Width = 0.1259 

Fn.: Normal 
(80.86%) 

 
Width = 0.5495 

Fn.: Triangle 
(77.36%) 

 
Width = 0.1585 

Fn.: Epanechnikov 
(81.07%) 

 
Width = 0.2884 

Fn. = Normal 
(75.00%) 

 
RF 

 
Trees = 260 

Preds at node = 3  
Obs/leaf = 12 

(76.07%) 
 

 
Trees = 620 

Preds at node = 3 
Obs/leaf = 4 

(81.71%) 

 
Trees = 560 

Preds at node = 3 
Obs/leaf = 8 

(78.79%) 

 
Trees = 660 

Preds at node = 7 
Obs/leaf = 20 

(82.43%) 

 
Trees = 660 

Preds at node = 7  
Obs/leaf = 16 

(77.93%) 

MLP HN = 3 
Max. Iter = 400 

η = 10-2 

α = 10-4 

β = 0.6 
Act. Fn: relu 

(75.86%) 

HN = 100 
Max. Iter = 200 

η = 10-2 
α = 10-4 
β = 0.9 

Act. Fn: logistic 
(82.57%) 

HN = 10 
Max. Iter = 800  

η = 10-2 
α = 10-3 
β = 0.9 

Act. Fn: logistic 
(78.29%) 

HN = 5 
Max. Iter = 800  

η = 10-3 
α = 10-3 
β = 0.6 

Act. Fn: relu 
(81.21%) 

HN = 100 
Max. Iter = 200  

η = 10-2 
α = 10-4 
β = 0.7 

Act. Fn: tanh 
(74.93%) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4.2) 

where 𝑃 =  𝑇𝑃 + 𝐹𝑃 and 𝑁 =  𝑇𝑁 + 𝐹𝑁. These statistics are used in the 

literature to assess the classification performance of EEG BCI classifiers [10]–

[12], [107], [188], [205]–[207]. The sensitivities to classes 1 (Cl 1) and 2 (Cl 2) 

were both considered in this analysis. Note that the sensitivity to Cl 2 

corresponds to the specificity to Cl 1, with specificity defined as [205]:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4.3) 

 

4.3.3.2 Statistical Analysis 

In all statistical analysis, a significance level of 0.05 was used. This means that p-

values which were less than or equal than 0.05 were considered statistically 

significant. Statistical analysis in this study was carried using t-tests, Wilcoxon 

signed-rank tests, analysis of variance (ANOVA), McNemar’s test and the Pearson 

correlation coefficient.  

 t-tests and an ANOVA compare sets of data to assess if there are any 

statistically significant differences between the sets. Whilst t-tests can only 

compare two sets of data, an ANOVA can compare multiple sets of data at once. 

The ANOVA can be conducted along only one dimension of a table, called a one-

way ANOVA, or along the rows and columns of a table, called a two-way ANOVA. 

Both t-tests and the ANOVA assume that the data is normally distributed, thus an 

Anderston-Darling test was carried out to test whether the data was normal or 

non-normal prior to testing. In the case of ANOVA tests in this chapter, the data 

was always normally distributed, however in the case of t-test analysis, some 

samples were not normally distributed, and in these cases, the Wilcoxon signed-

rank test was used because it is suitable for non-normal data.  

 McNemar’s test [208] can be used to compare the performance of two 

classification approaches by factoring in the sensitivity and specificity of the 

classifiers. In this study, the test has been used to compare the classification 

results when using a channel subset, called k, to the case when 118 channels are 
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used. Table 4.3 shows the contingency table used to calculate the McNemar’s test 

statistic, 𝜒2. The test statistic is calculated as:  𝜒2 =  
 (𝑏−𝑐)2

𝑏+𝑐
. It has a chi-squared 

distribution and using a 0.05 level of significance, the threshold for 𝜒2 to be 

significant is 3.84146. Thus, if 𝜒2 is above this threshold, the difference between 

the classifiers, measured in terms of b and c, is significant. If 𝜒2 exceeds the 

threshold and 𝑐 > 𝑏, the reduced channel subset was deemed to have 

outperformed the case when 118 channels were used. 

 To identify correlations between two sets of data, the Pearson correlation 

coefficient was used. The value of this coefficient can range from -1 to 1, which 

indicate perfect anti-correlation and perfect correlation, respectively. A value of 

0 indicates no correlation. In general, positive values of the coefficient indicate a 

positive correlation and negative values denote a negative correlation. A p-value 

is generated along with the coefficient and this was used to assess whether any 

correlations in the data were statistically significant. Pearson correlation uses a 

linear approximation of the data to derive the coefficient, and the coefficient value 

is not an implication of a direct relationship between the two sets of data. 

However, it was utilized in this study as an observational data analysis tool.  

 

4.3.3.3 Execution Time Analysis Methodology  

Execution time is an important aspect of functionality for BCI interfaces and is 

often recorded in studies [44], [65], [124], [134], [209] because it can impact user 

experience and the hardware required to operate BCIs [44], [124]. In this chapter, 

Table 4.3: The contingency for McNemar's test. Values a-d are integers which represent the 
number of classified results falling into each category. 

 Classifier Subset k;  
Correct Classification 

 

Classifier Subset k;  
Incorrect Classification 

118 EEG Channels; 
Correct Classification 

 

a b 

118 EEG Channels; 
Incorrect Classification 

c d 
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the training and testing execution times of the multi-segment decision fusion 

classification system were recorded.  

 For accurate estimation of execution times, all other programs on the 

computer used were closed and elective background processes were suspended. 

To obtain an averaged result, 10 runs were carried out per subject. In each run, 

the total time taken to train the classifier, and the total time taken to classify the 

test set samples, were recorded using the tic and toc functions in MATLAB. The 

total times were then divided by the number of training or testing samples 

processed.  The median time across all 10 runs was saved. The median and not 

the mean was chosen because it is more robust to outlier values, which could 

occur in the data if a mandatory background process in the computer biased the 

results of some of the folds. This process was repeated for each of the subjects, 

and finally the average training and testing processing times, calculated across 

the subjects, were used for the analysis.  A Lenovo™ ideapad 330 laptop using a 

64-bit Windows 10 operating system and an Intel® Core™ i5- 8300H, 2.30GHz 

CPU was used.  

 

4.4 Results and Discussion 

The results and discussion are divided into three sections. The first discusses the 

static EEG channel analysis, the second compares the performance of the 

different classifiers used, and the final section discusses the results for the multi-

segment decision fusion classification approach.  

4.4.1 Static EEG Channel Analysis 

This section investigates how the different EEG channel subsets performed when 

compared to using all 118 EEG channels. The aim was to establish which subsets 

performed best and would be used for the multi-segment decision fusion 

approach. This section begins with a statistical analysis and concludes with a 

discussion of peak performance.  
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4.4.1.1 Statistical Analysis: Static EEG Channel Subsets 

A two-way ANOVA was carried out to establish whether there were any 

significant differences in performance: i) between different channel subsets for 

each classifier, and ii) between the classifiers for each channel subset. This 

analysis was carried out for each subject individually. The p-values are recorded 

in Table 4.4. Considering the results for channel subset, it is evident that there 

were significant differences in performance across the five channel subsets 

(p<0.05). There were also significant differences in performance across the 

classifiers in most instances (p<0.05), except for accuracy and sensitivity to class 

2 for subject aa and sensitivity to class 1 for subject ay. This was a generic 

comparison across all the channel subsets and classifiers to assess if there was a 

significant difference in performance across classifiers and channel subsets.   

 A McNemar’s test [208] was then used to directly compare the results 

obtained for each channel subset to the case when 118 EEG channels were used. 

This analysis was carried out for each classifier individually, with the results 

shown in Figure 4.6. In the bar chart there is a separate group of bars for each 

classifier, with each group consisting of four colour-coded bars representing the 

four channel subset groupings, namely: C, C+CP, C+CF and C+CP+CF. Note how 

some of the bars are ‘missing’ for the LDA and RF classifiers - this is because 𝑏 =

𝑐 and therefore 𝜒2 = 0. The black dotted line denotes the value 3.84146, which is 

the threshold of significance: bar chart values that exceed the threshold are 

statistically significant, whilst those below the threshold are not statistically 

significant.  

Table 4.4: p-values obtained from a two-way ANOVA. Results which are not statistically 
significant are shaded. 

 aa al av aw ay 
Channel 
Subset 

Classifier Channel 
Subset 

Classifier Channel 
Subset 

Classifier Channel 
Subset 

Classifier Channel 
Subset 

Classifier 

Accuracy 1.5e-13 6e-1 1.4e-05 1.1e-16 2.6e-05 3.4e-3 7.2e-05 3.7e-3 1.6e-05 4e-2 
Sensitivity 
(Cl1) 

1.9e-10 4e-2 5.0e-05 4.0e-18 4.5e-5 7.8e-3 4.7e-4 1.4e-2 7e-3 6e-1 

Sensitivity 
(Cl 2) 

2.3e-11 7.1e-1 3.5e-05 6.0e-13 3.3e-3 2e-2 1e-2 1.0e-2 9.6e-07 3e-2 
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In most cases, using subsets of channels instead of 118 EEG channels did 

not significantly impact classification performance. Exceptions to this trend were 

the C and C+CP+CF subsets for the SVM-Linear classifier, and the C+CP and the 

C+CP+CF subsets for the MLP classifier. To determine whether using the channel 

subset resulted in an improvement or degradation in classification performance 

in these cases, the values of 𝑐 and 𝑏 were compared: if 𝑐 > 𝑏 then using the 

channel subset led to an improvement in performance compared to using all 118 

channels, otherwise it led to a degradation in performance. In the cases when the 

C+CP or C+CP+CF subsets were used, there was an improvement in performance, 

however when the C subset was used, there was a degradation in performance.  

These results are promising since they indicate that the static subsets 

C+CP and C+CP+CF are suitable across various classifiers, without leading to a 

significant depletion in performance. Perhaps more significantly, for some 

classifiers, such as the SVM-Linear and the MLP classifier, these static subsets 

showed the potential to lead to significant improvements in performance. 

Considering the results where there was no significant difference in performance, 

these results illustrate that the proposed channel subsets may be suitable for 

 

Figure 4.6: Comparing the χ2 values obtained from a McNemar’s test for different channel 
subsets and classifiers. The black dotted line denotes the threshold of singificance, values below 
the line are not statistically significant, whilst those above the line are statistically singificant. 
‘Missing’ bars occur when χ2=0, since b=c.       
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consideration if a static subset of electrodes is desired. This is an important 

finding because it is an established concept in the literature that reducing the 

number of EEG channels leads to lower computational processing demands, less 

redundant data and lower costs for electrodes [44], [48], [210]. Therefore, having 

candidate static channel subsets that may be suitable for EEG classification is 

useful.  

4.4.1.2 Channel Subsets and Peak Performance  

Table 4.5 shows the average performance for each classifier and channel subset 

combination, calculated across subjects. The column ‘Average1’ contains the row 

averages, which capture the average performance of each channel subset across 

the classifiers. The rows labelled ‘Average2’ contain column averages, which 

capture the performance of each classifier across the channel subsets. Peak 

average results are in bold.  

Considering the Average1 results in the final column of the table, the C+CP 

configuration had the highest accuracy and sensitivity to class 1, followed by the 

C+CP+CF configuration. Considering the results for sensitivity to class 2, the 

C+CP+CF subset gave the best performance, closely followed by the C+CP subset.  

Table 4.5: The accuracy and sensitivity results for different channel subset and classifier 
combinations. The peak average results are in bold. Average1 are results averaged across the 
classifiers for each channel subset and Average2 are results averaged across the channel 
subsets for each classifier. 

 SVM-Lin SVM-Poly SVM-RBF LDA NB RF MLP Average1
 

Accuracy 
C 74.64 74.36 74.07 74.64 73.43 73.43 67.50 73.15 
C+CP 80.57 80.93 80.36 80.93 78.64 79.50 78.64 79.94 
C+CF 78.07 77.86 78.43 76.93 75.50 76.07 70.50 76.19 
C+CP+CF 81.07 80.64 81.43 81.93 80.00 76.07 76.93 79.72 
118 72.92 75.86 76.00 75.36 75.00 75.86 70.14 74.45 
Average2 77.45 77.93 78.06 77.96 76.51 76.19 72.74  

Sensitivity Class 1 
C 76.14 76.57 78.57 76.57 74.29 74.00 69.00 75.02 
C+CP 82.57 80.00 82.14 82.29 79.28 80.57 78.57 80.77 
C+CF 78.57 79.57 80.14 77.86 72.00 77.29 71.43 76.69 
C+CP+CF 80.57 79.86 81.72 83.43 80.14 77.29 76.43 79.92 
118 74.43 75.86 77.14 77.43 72.43 77.29 70.86 75.06 
Average2 78.46 78.37 79.94 79.52 75.63 77.29 73.26  

Sensitivity Class 2 
C 73.14 72.14 69.57 72.71 72.57 72.86 66.00 71.28 
C+CP 79.29 81.14 78.57 79.57 78.00 79.03 79.43 79.29 
C+CF 77.57 80.15 76.71 76.00 79.00 74.86 69.57 76.27 
C+CP+CF 80.43 80.57 81.14 81.43 79.86 78.00 77.43 79.84 
118 71.43 75.86 74.86 73.29 77.57 74.43 69.43 73.84 
Average2 76.37 77.97 76.17 76.60 77.40 75.84 72.37  
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When considering the accuracy results obtained for each individual 

classifier, peak accuracy was achieved using the C+CP+CF channel subset 57% of 

the time and using the C+CP channel subset 43% of the time. To determine 

whether there was any significant difference in performance using the C+CP+CF 

and C+CP subsets, paired t-tests were used to compare the results obtained for 

each individual subject. The p-values obtained were: 0.0134, 0.0977, 0.2462, 

0.0852 and 0.9910 for subjects aa, al, av, aw and ay, respectively. This indicated 

no significant difference in classification accuracy between these channel subsets 

except for subject aa, which had a p-value less than 0.05.  

To conclude, these results indicated that the C+CP+CF and C+CP subsets 

tended to lead to peak performance across a variety of classifiers, and the results 

they produced were statistically similar for four out of five subjects. Based on the 

analysis in this sub-section and the previous one, subsets C+CP and C+CP+CF 

were selected for further processing and analysis using multi-segment decision 

fusion classification. These results indicated that the central and central-parietal 

regions provide important information for MI classification, possibly because the 

parietal region is involved with concentration [34], which is required for MI tasks. 

Furthermore, the synergistic combination of the C+CP+CF regions provided more 

discriminative information than just the C+CF regions, indicating again the 

importance of the contribution of the central-parietal region to classification 

performance.  

4.4.2 Comparison of Classifiers 

This section is an extension of the discussion about  Table 4.5 in the previous 

section and is focused on comparing the performance of the classifiers, averaged 

across the different channel subsets, captured in the Average2 rows. Although 

extensive work has been carried out into comparing conventional classifiers [5], 

[31], [101], [140], it is uncommon for a discussion to be based the performance 

of conventional classifiers averaged across different channel subsets. The 

opportunity was taken to analyse these conventional classifiers using this novel 

perspective.  



119 
 

First, an analysis was carried out to identify whether there was any 

significant difference in the Average2 results. A Wilcoxon signed-rank test was 

used on the accuracy results, which were found to be non-normal, and t-tests 

were used on the sensitivity results, which were found to be normal. The p-values 

obtained for the accuracy, sensitivity to class 1 and the sensitivity to class 2 were 

1.56e-2, 1.54e-10 and 3.47e-11, indicating that the results varied significantly 

between classifiers.  

Considering the Average2 results, the SVM-based classifiers gave the best 

performance, with the SVM-RBF classifier giving the best accuracy and sensitivity 

to class 1, and the SVM-poly classifier giving the best sensitivity to class 2. 

Considering the individual results for subsets C+CP and C+CP+CF, the peak 

accuracies were obtained for the SVM-poly classifier and the LDA classifier, 

respectively, with the accuracy of the latter, 81.93%, being the peak accuracy in 

the table.  

The robustness of the classifiers was then assessed. A comparison was 

carried out to identify whether there were any classifiers for which there was no 

significant difference in the sensitivity results for classes 1 and 2. Finding no 

significant difference would indicate that the classifier had a robust performance 

across classes, which is important in practical BCIs. Since the data was found to 

be normal, paired t-tests were used to compare the sensitivity results obtained 

for class 1 for all the channel subsets to the corresponding results obtained for 

class 2, and this test was carried out for each classifier. Table 4.6 shows the p-

values obtained from this analysis. The p-values above 0.05 indicate that the SVM-

Poly, SVM-RBF, NB, RF and MLP classifiers all exhibited robust performance 

when classifying each of the two classes across all five EEG channel montages 

investigated. Notably, the LDA classifier failed to have uniform performance 

across the two classes. Similar results of high accuracy and poor specificity for 

Table 4.6: p-values obtained for each classifier when using paired t-tests to compare the results 
the sensitivities to classes 1 and 2 across the different channel subsets. Results which were not 
statistically significant are shaded. 

Classifier SVM-Linear SVM-Poly SVM-RBF LDA NB RF MLP 

p-value 3e-2 7e-1 6e-2 3e-3 4e-1 8e-2 3e-1 
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LDA have been observed previously in [211]. Another contributing factor to this 

observation could be that both MI classes were associated with the right-hand 

side of the body, leading to strong MI patterns on the left-hand side electrodes for 

both classes [34], [163], possibly making linear discrimination with high 

specificity less likely. 

 Based on these results, the SVM-RBF or SVM-poly classifiers, with the 

channel subsets (C+CP) or (C+CP+CF) would be most strongly recommended for 

conventional classification problems when whole trials are classified. Since 

channel subsets affect the noisy data entering a classifier, they can affect the 

decision boundaries formed, and thus the overall classification performance. 

Previously, various studies in the literature have compared different classifiers 

using just one static EEG subset [5], [31], [101], [140]. By comparing different 

classifiers within the context of multiple static channel subsets, the analysis in 

this section was a novel contribution to this area of research.  

 

4.4.3 Evaluation of Multi-Segment Fusion Classification 

Approach 

This section analyses the multi-segment fusion classification approach. It begins 

by assessing the effect of multi-segment fusion classification on performance 

when compared to whole-trial classification. Afterwards, the relationship 

between each windowing scheme and performance is discussed, including an 

execution time analysis. Finally, a comparison to the literature is made.  

4.4.3.1 Multi-Segment Fusion Performance Analysis  

Recall that channel subsets C+CP and C+CP+CF were selected for assessing the 

multi-segment fusion classification approach. The same classifier parameters as 

those obtained through hyperparameter tuning and ten-fold cross-validation 

were used in this section. Figure 4.7 and Figure 4.8 show the results using the 

channel subsets C+CP and C+CP+CF, respectively. These figures can be found at 

the end of this section. The colour coding was used to compare the results using 

multi-segment fusion to whole-trial classification (‘No Windowing’). The marker 
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type indicates whether accuracy, sensitivity or specificity are denoted. The 

accuracy and sensitivity values were obtained by averaging across the five 

subjects. The MLP classifier is not included in these figures because the multi-

segment fusion approach did not result in any significant changes in performance 

for any window size or window increment.   

 The multi-segment fusion approach has the potential to improve 

performance when compared no windowing. For example, an overall peak 

accuracy of 84.51% was obtained using the LDA classifier with the C+CP subset 

and windowing scheme of (1.75s, 0.25s), which was an improvement when 

compared to the accuracy when not using windowing, 80.93%, as shown in 

Figure 4.7. This windowing scheme also improved the sensitivity of the LDA to 

classifier to classes 1 and 2. Considering the results for the C+CP+CF channel 

subset in Figure 4.8, a peak accuracy of 84.43% was obtained for the SVM-Linear 

classifier for scheme (1.25s, 0.1s), compared to 81.07% accuracy when no 

windowing was used.  

There are a number of cases where multi-segment decision fusion 

improved all three-performance metrics, namely: i) LDA-C+CP for the schemes: 

(2s,0.25s), (1.75s,0.25s), (1.75s,0.1s) and (1s,0.1s) and ii) NB-C+CP for the 

window/increment scheme (1.75s,0.25s). In other cases, multi-segment fusion 

classification improved one or two areas of performance, with no significant 

change in the other area/s. 

 There are also instances where multi-segment fusion classification led to 

a deterioration in one area of performance and a coinciding improvement in 

another area of performance. One pattern that is evident in the data is an increase 

in accuracy coinciding with a decrease in sensitivity to class 1. Examples of this 

with the C+CP subset were the SVM-Linear classifier with scheme (1.5s,0.5s) and 

LDA classifier with scheme (0.5s,0.5s). Examples with the C+CP+CF subset were 

SVM-RBF classifier with scheme (1.25, 0.5) and the NB classifier also with scheme 

(1.25,0.5). Lower sensitivity to class 1 could indicate a reduction in false positives 

for that class, which led to an improvement in overall accuracy [205].  
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Negative deterioration in one area of performance, without a 

complementary increase in another area of performance, was observed only in 

the SVM-Linear classifier, for subset C+CP and (025s, 0.1s). The impact of multi-

segment fusion appears to be dependent on the classifier and channel subset 

pairing. This result further highlights the importance of researchers using static 

subsets consider multiple configurations during the design stage.  

 These results illustrate that multi-segment fusion classification has the 

potential to significantly improve classification accuracy for a variety of 

classifiers, with LDA, SVM-Linear and NB classifiers being particularly 

susceptible to improvement. Data segmentation is widespread in the MI EEG 

literature, and this analysis showed that majority voting-based decision fusion 

can be used to exploit the segmented data to boost classification performance. 

However, the window size and increment must be tuned to prevent any 

deterioration in performance. This tuning could be carried out on the training set 

using a grid-search through parameters. The correlation analysis later in this 

chapter provides further recommendations for window design in practice.   
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Figure 4.7: Results for subset C+CP showing how accuracy and sensitivities to classes 1 and 2 change with multi-segment fusion with different windowing schemes when compared to no 
windowing. The x-axes denote the windowing schemes used. The values of each statistic, averaged across the five subjects, are plotted. The colour coding is as follows: green – without 
windowing, blue – multi-segment fusion had no significant effect, red/cyan – multi-segment fusion had a statistically significant effect, improving (red) or diminishing (cyan) the performance. 
Statistical significant was tested using an ANOVA test. 
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Figure 4.8: Results for subset C+CP+CF  showing how accuracy and sensitivities to classes 1 and 2 change with multi-segment fusion with different windowing schemes when 
compared to no windowing. The x-axes denote the windowing schemes used. The values of each statistic, averaged across the five subjects, are plotted. The colour coding is 
as follows: green – without windowing, blue – multi-segment fusion had no significant effect, red/cyan – multi-segment fusion had a statistically significant effect, 
improving (red) or diminishing (cyan) the performance. Statistical significant was tested using an ANOVA test. 
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4.4.3.2 Execution Time Analysis of Multi-Segment Fusion 

Classification 

The LDA classifier with channel subset C+CP, which provided peak performance 

for multi-segment fusion, was used for this analysis. Figure 4.9 shows the 

processing time per trial results obtained for different window sizes and window 

increments, for the training and the testing phases. Although both the window 

size and window increment size impact the number of segments obtained from 

each trial and thus how many feature vectors are extracted and processed, it is 

evident that the results for different window sizes are grouped closely together, 

and it is the increment size which has the most substantial impact on processing 

time. Smaller increment sizes led to an increased processing time because more 

segments had to be processed for each trial. However, the peak testing time is 

below 500µs, which is well below the human visual perception time of 13ms [45], 

indicating the multi-segment fusion approach had an acceptable latency for a BCI.  

 

 

 

 

Figure 4.9: Computational complexity analysis for training and testing. The x-labels denote the 
window increment size, and the colours of the plots denote the window size. 
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4.4.3.3 Window Scheme Correlation Analysis  

The relationship between window scheme and performance was then analysed 

using the Pearson correlation coefficient. Although the Pearson correlation 

coefficient provides limited inferential information, it is still a useful tool for 

observational analysis.  

 This analysis was conducted separately for the three performance 

metrics: accuracy, sensitivity to class 1 and sensitivity to class 2. The results, 

averaged across subjects, were considered. For each windowing scheme, the peak 

averaged classifier metric was used for the analysis. The metric results were then 

split into three groups based on the window increment sizes used (0.5s, 0.25s and 

0.1s). The Pearson correlation coefficient (ρ) and its corresponding p – value was 

calculated for each of the groups. The results for subsets C+CP and C+CP+CF are 

recorded in Table 4.7.  

 The coefficient results for accuracy are always positive and had p-values 

less than 0.05, indicating that there was a significant positive correlation between 

the accuracy and window size, inferring larger windows tended to provide a 

higher accuracy. This was observed in the previous section, with the peak 

accuracies being associated with window sizes of 1.75s and 1.25s, some of the 

larger window sizes considered. For the sensitivity results, there was no 

significant correlation with window size for increments of 0.5s or 0.25s, but there 

was a significant negative correlation between the size of the window and 

sensitivity to class 1, indicating that as the window got larger the sensitivity to 

class 1 tended to get smaller. This is the inverse of the relationship with accuracy, 

Table 4.7: Observing how the Pearson correlation coefficients and corresponding p-values vary 
with decreasing window size for each window increment. Channel subsets C+CP and C+CP+CF 
were considered. 

C+CP 

Inc Size 0.5 0.25 0.1 

Statistic Acc. Sens. C1 Sens. Cl 2 Acc. Sens. Cl 1 Sens. Cl 2 Acc. Sens. Cl 1 Sens. Cl 2 
𝜌 0.84 -0.57 0.61 0.92 -0.38 0.64 0.86 -0.76 0.94 

p-value 0.02 0.18 0.15 1.2e-3 0.35 0.09 6.3e-3 0.03 5.4e-4 
C+CP+CF 

Inc Size 0.5 0.25 0.1 

Statistic Acc. Sens. Cl 1 Sens. Cl 2 Acc. Sens. Cl 1 Sens. Cl 2 Acc. Sens. Cl 1 Sens. Cl 2 
𝜌 0.87 -0.45 0.60 0.87 -0.39 0.59 0.76 -0.88 0.87 

p-value 0.01 0.31 0.16 3e-3 0.35 0.12 0.03 4.1e-3 4.8e-3 
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possibly indicating that as the window size got larger, false positives attributed 

to class 1 also decreased. This would agree with observations made previously in 

Section 4.4.3.1, in which a significant decrease in sensitivity to class 1 tended to 

coincide with a significant improvement in accuracy. This also coincided with 

significant positive correlation between window size and sensitivity to class 2 for 

an increment of 0.1s in Table 4.7, which further supports this conclusion. 

 Despite these results, the peak accuracy results were not obtained using 

the 2s window size, which was the largest window available. EEG data of length 

1.5s or less have been considered approximately stationary in previous studies 

[91], [195]. This was previously mentioned in Chapter 3 (Section 3.1.5). This 

tendency towards stationarity could enhance CSP feature extraction, which is 

adversely affected by non-stationarities [196]. However, windows smaller than 

1s would be an even closer approximation to stationarity but are not correlated 

with improved accuracy. This may be because there was not adequate data for 

the CSP features to be highly discriminative. These correlation results, together 

with the peak accuracy results obtained for multi-segment decision fusion with 

window sizes of 1.75s and 1.25s, may indicate that the accuracy of multi-segment 

decision fusion classification depends on a trade-off of two factors when it comes 

to window size: i) having small enough window sizes that the EEG data could tend 

towards stationarity; and ii) having a window size large enough to allow the 

extraction of discriminative features.   

4.4.3.4 Comparison to Current State-of-the-Art EEG MI 

Classification Methods 

Table 4.8 compares the peak multi-segment decision fusion classification results, 

obtained using subset C+CP, window scheme (1.75s,0.25s) and LDA classifier to 

results obtained using comparable state-of-the-art approaches that have been 

presented in the literature. Note that this configuration of channel subset, 

window scheme and classifier were used across subjects and that the 

hyperparameters for the LDA classifier were as those tuned in Section 4.3.2. In 

the table, conventional approaches, like the multi-segment decision fusion 



128 
 

approach, are shaded. Comparisons in this section are centred on the Average 

Accuracy results in the table (last column).   

The studies in Table 4.8 were selected because they had generally similar 

testing approaches to the 10-fold cross-validation approach used in this chapter. 

In particular, Baig et al. [104] used 10-fold cross-validation, Kumar et al. [106] 

used a 10-by-10-fold cross-validation approach, and She et al. [107] used a nine-

fold cross-validation approach. He et al. [49] used the same train-test splits in the 

data but do not mention reporting cross-validated results. Olias et al. [10] used a 

Monte-Carlo based testing approach which involved splitting all the data 

available for each subject into training and test sets 40 times, and then averaging 

the test set accuracies. In each split, 40 trials are used for training and 40 for 

testing. These differences in testing methodologies may have impacted the 

fairness of the comparison. In the literature, comparisons like those in Table 4.8, 

in which the performance of a proposed system is compared to the reported 

performance of systems in other studies that use the same dataset but which may 

have been tested with a slightly different methodology, have been made [9], 

[104]. However, it is important to note that the conclusions made from this kind 

of discussion can be limited due to the methodological differences in testing.  

Overall, the multi-segment decision fusion approach outperformed some 

other conventional approaches presented in papers in the literature [10], [104], 

Table 4.8: Comparing the multi-segment fusion classification approach to conventional [10], 
[103], [49] and deep learning [122], [123] approaches in the literature. Results for the proposed 
approach are bold. 

 Classification Accuracy (%)  

Papers Features & Classifiers used Channels aa al av aw ay Average 

Olias et al. (2019) 
[10] 

CSP+LDA (classical) 118 67.68 96.81 62.12 85.12 87.68 79.88 

Normalised CSP+tangent space logistic 
regression 

70.31 96.31 67.87 87.75 91.62 82.77 

Baig et al. (2017) 
[104] 

CSP+SVM (classical) 118 82.00 94.00 70.00 87.00 87.00 84.00 

CSP with differential evolution feature 
selection +SVM 

95.80 98.80 89.80 99.20 96.50 96.02 

 
He et al. (2013)  

[49] 

Rayleigh coefficient+LDA 118 67.90 88.30 59.20 87.60 80.40 76.68 

Rayleigh coefficient+LDA with GA  
optimisation to select channel subset 

Subject-specific 
(13-18)1 

86.40 98.50 75.10 93.90 87.10 88.20 

She et al.  
(2019) [15] 

Hierarchical extreme learning machine with 
deep architecture 

118 61.70 100 73.88 88.17 79.64 79.33 

Kumar et al. 
(2017) [106] 

CSP + encoder-based deep neural network  118 90.00 97.5 73.00 97.00 96.00 90.70 

Multi-segment 
decision fusion 

CSP+LDA (Fusion: 1.75s,0.25s) C+CP (14) 80.40 95.36 72.50 79.29 95.00 84.51 
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[105] and an extreme learning approach based on deep learning [107]. However, 

it was outperformed by some systems with automated channel selection [104], 

[105], and an encoder-based deep learning approach [106]. The rest of this 

section discusses the comparisons in Table 4.8 in more depth.  

The multi-segment decision fusion approach with static channel subset as 

proposed in this thesis outperformed the classic conventional techniques by Olias 

et al. [10], Baig et al. [104] and He et al. [49] (highlighted in grey). It also 

outperformed the implementation of She et al. [15], which involved sparse 

feature extraction and extreme learning machine classification. These 

implementations used 118 EEG channels, whilst the implementation presented 

in this chapter used only 14 channels for the C+CP channel subset. It is important 

for the development of practical BCIs to identify classification approaches which 

use fewer electrodes without diminishment in classification performance, thus 

the proposed approach is competitive. In fact, the multi-segment decision fusion 

approach outperformed state-of-the-art conventional classification approaches 

using fewer sensors than used in the related work. 

 The multi-segment decision fusion classification approach was 

outperformed by the pipeline with genetic channel selection by He et al. [49] and 

the differential evolution feature selection approach by Baig et al.[104] (results 

not highlighted in grey). Although not a pure channel selection approach, the 

implementation by Baig et al. [104] extracts 236 salient features from the 118 

EEG channels, and then uses differential evolution for feature selection. This 

process can therefore exclude features from certain channels which were 

deemed redundant.  

The deep learning CNN implementation by Kumar et al. [106] also 

outperformed the multi-segment decision fusion approach. Notwithstanding this, 

deep learning approaches require significant training times and investment in 

more expensive graphical processing unit (GPU) technology, which can impact 

their widespread practical use in some cases.  

 This comparison to the literature shows the benefits and limitations of the 

multi-segment decision fusion classification approach presented. The approach 
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proposed in this chapter, which included a static channel subset selection 

methodology, outperformed other works in the literature that used static channel 

subsets [10], [107], and this confirms the validity and relevance of the method 

presented in this chapter. The multi-segment decision fusion approach is also 

versatile and can be applied to CPU-based and GPU-based classifiers. 

 The main contribution of this chapter in relation to the wider literature is 

the versatility and low execution time of the multi-segment decision fusion 

approach. This approach was found to be effective in significantly improving the 

performance of four different classifiers, namely LDA, SVM, RF and NB classifiers. 

In comparison, He et al. [49] only tested their channel selection approach on one 

classifier, meaning that its versatility is still open to investigation. Due to its 

versatility, the multi-segment decision-fusion approach could be applied to 

various pipelines with the aim of boosting performance, even possibly the 

approaches of He et al. [49], Baig et al. [104] or Kumar et al. [106]. This is an area 

where future work could be done.  

The multi-segment decision fusion approach introduced less than 500µs 

execution time overhead per trial during testing. Human visual perception time 

is 13ms [45], meaning that it is unlikely that this overhead would be perceived by 

subjects in an online system. Unfortunately, the papers reviewed do not report 

the execution time overhead of the channel or feature selection approaches 

proposed [49], [104], [106]. However, the approaches by both He et al. [49] and 

Baig et al. [104] are both metaheuristic wrapper techniques. These techniques, 

previously discussed in Chapter 3, are known to notably increase the latency 

experienced by the subject between training data recording and online testing 

[44]. This is because the metaheuristic channel or feature selection occurs on the 

training data [44], [49], [104]. The multi-segment decision fusion approach was 

found to introduce less than 220ms to the training time, making it a competitive 

approach for boosting performance at a relatively low computational expense.  

The performance of the approach presented in this chapter falls short of 

the performance of more sophisticated channel/feature selection techniques 

[104], [105] and a deep learning technique [106]. Motivated by this observation, 
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Chapter 5 presents a GA-based channel selection algorithm that produces an 

optimized subset of channels for an individual subject. Although this method is 

found to be effective for subject-specific channel selection, it is found to be 

computationally expensive for subject-independent channel selection, which 

brings a range of benefits when compared to subject-specific channel selection 

including eradication of channel selection latency for the end user and systems 

with fewer electrodes. In Chapter 6, a CNN-based channel selection method is 

presented, which selects a subject-independent subset of channels in a more 

efficient way than the GA channel selection method.  

 

4.5 Conclusion  

The main contributions of this chapter can be summarised as follows: 

• From the static channel analysis: 

o Developing channel subsets based on scalp region groupings can 

be a viable method for developing a static channel subset for MI 

EEG BCI studies which do not use automated channel selection. 

o A study found that the C+CP and C+CP+CF channel subsets were 

the most reliable for static channel analysis. In fact, these channel 

subsets led to no deterioration in performance and, in some cases, 

improvement in results. 

o A novel comparison of machine learning classifiers was carried out 

within the context of several channel subsets. In this analysis, the 

SVM-Poly and SVM-RBF classifiers were found to outperform SVM-

Linear, LDA, NB, RF, and MLP classifiers. 

• The main contribution of this chapter was the extensive investigation into 

the effect of window size and window increment size within a majority 

voting-based decision fusion framework. A correlation analysis indicated 

that greater accuracy tended to be correlated with larger window sizes, 

and peak performance was obtained with a window of size 1.75s.   
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• The majority voting-based multi-segment decision fusion classification 

framework was demonstrated to significantly improve performance for 

LDA, NB, RF and SVM classifiers. It was rare for the multi-segment decision 

fusion approach to lead to a deterioration in all areas of performance. 

• 84.51% was the peak accuracy obtained with the multi-segment decision 

fusion approach. This was achieved using an LDA classifier with the C+CP 

subset and windowing scheme (1.75s,0.25s). This was on par with or 

outperformed some other classical conventional classifiers [10], [49], 

[104] which used more EEG channels. It also outperformed a deep 

learning approach using extreme learning machines [107]. 

EEG data segmentation is widely used in the literature. The multi-segment 

decision fusion framework was demonstrated as a way of exploiting this 

segmentation approach to improve the classification performance. It was also 

versatile, leading to significant improvements across different classifiers. The 

execution time analysis showed that the approach is lightweight, leading to 

training and testing latencies in the order of milliseconds and microseconds, 

respectively. This post-processing could be added to pipelines in order to 

boost performance with low additional computational overhead. 

However, multi-segment decision fusion did not perform as well as some 

systems using algorithmic channel selection [104], [105] or deep learning 

[106], possibly because it was applied to a conventional machine learning 

pipeline in the analysis within this chapter. Traditional CSP-based pipelines 

are still used in the literature for design and investigation [82], [104], [106], 

[107], [133], [134], [138], and the proposed approach is still an effective tool 

that could be applied to these and other pipelines for improved performance. 

The versatility of the multi-segment decision fusion approach means that in 

future work it could be applied to the works in [104], [105] and [106], 

possibly improving their classification performance further.  

Motivated by the superior performance of algorithmic channel selection 

methods in [104], [105] the next chapter of this chapter focuses on 
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algorithmic channel selection. It presents a GA-based channel selection 

approach for selecting subject-specific channels for a SL classifier.  
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Chapter 5 : Sparse Learning and 

Genetic Channel Selection for 

MI EEG Classification with the 

Idle State 
 

 

5.1 Introduction 

In this chapter, a new genetic algorithm band power sparse learning classification 

system is presented for EEG (GABSLEEG). It consists of a dictionary-based SL 

classifier preceded by a GA module used for channel selection. A paper related to 

the work in this chapter has been published in Neurocomputing [212]. 

 A SL dictionary-based classification module was chosen because of the 

strong history of this kind of classifier in the literature, discussed previously in 

Chapter 3 (Section 3.3) [11], [56], [57]. Similar systems in the literature use 

frequency or time-frequency features [11], [56], [57], however the novel 

implementation in this chapter uses time-domain band power features. This 

decision was motivated by the work of Arnin et al. [124], who found that time-

domain features can be just as effective as frequency-domain features, and at a 

lower computational cost. In this chapter, the feature vector is constructed by 

extracting the band power in the combined alpha and beta frequency bands – so, 

7.5Hz-32Hz – for each EEG channel. This is novel because similar works in the 

literature have typically constructed the feature vector using more than one 

feature per channel [11], [56], [57].  
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Furthermore, recent works in SL classification in the literature have not 

investigated the impact of sparsity level or window segmentation size on 

accuracy [11], [56], [57]. During system calibration in Section 5.3.5.1 the relation 

between classification performance and these two design features is investigated.  

In Section 5.4.1, the SL classifier was compared to three popular 

conventional classifiers, namely SVM, k-NN and RF. To the authors’ knowledge 

this kind of comparison between conventional classifiers and a dictionary-based 

SL system for MI EEG classification has not been carried out before in the 

literature.  

Despite the strong performance of the SL classifier presented in this 

chapter, the OMP encoding algorithm used is computationally expensive [54], 

[55], [168]. This kind of encoding algorithm was used due its popularity in similar 

systems in the literature [11], [56], [57]. The test-set execution time results in 

Section 5.4.3 confirmed that the proposed SL classifier using all the EEG channels 

in the dataset may be unsuitable for use in a real-time system. It should be noted 

that during these tests the code was not specifically optimized to reduce the 

computational time, so with optimized code the times recorded may be reduced.  

The execution time of the OMP algorithm is linked to the number of 

channels used, with the execution time increasing when a greater number of 

channels are used [54].  Previous studies focused on SL classification have used 

hand-picked subsets of EEG channels which may not be optimal [11], [56], [57]. 

Although these channels are typically chosen to be close to the central scalp 

region, which is known to be where MI activity manifests, there is no analysis or 

automation associated with channel selection [11], [56], [57]. In this chapter, a 

metaheuristic channel selection approach is applied to select a subject-specific 

subset of channels from training and validation datasets. The selected subset is 

then used on the test-set, resulting in improved execution times. Channel 

selection is applied with the core aim of maintaining or enhancing the already 

good classification performance of the SL classifier, whilst improving the 

computational speed on the test-set through a reduced channel subset. A 

metaheuristic approach was chosen because it provides a trade-off between the 

strong performance of wrapper techniques and faster convergence [44].  A GA 
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was the metaheuristic method of choice because GAs already have a history of 

good performance in EEG channel selection [49], [192]. To the authors’ 

knowledge this is the first time that a GA channel selection module has been used 

in conjunction with a dictionary-based SL classifier for MI EEG. Automated 

channel selection techniques were previously discussed in Chapter 3 (Section 

3.5.2), and a high-level introduction to GAs was provided in Chapter 3 (Section 

3.5.2.2). Thus, the proposed GABSLEEG system consists of two modules: the GA 

channel selection module and the SL classification module. The GABSLEEG 

system is compared to state-of-the-art systems [56] in Section 5.4.5.2.  

 An in-depth analysis of the performance of the GABSLEEG system was 

carried out. Previous works in SL classifiers for MI EEG have only assessed 

classification performance in problems involving data generated during different 

MI tasks [11], [56], [57]. However, if SL classifiers are to be applied to practical 

scenarios, it is important to assess their capability in classifying the idle state, 

which is when the user is not actively imagining any movement. In all 

experiments in this section, except for those in Section 5.4.5.1 when comparing 

to the general literature, the idle state is a class within the classification problem. 

Another aspect of SL classifiers that has not been assessed in the literature is 

robustness to changes in training data size [11], [56], [57]. In Section 5.4.2 the 

performance of the GABSLEEG classifier is assessed as the amount of training 

data used is reduced. This is an important assessment since the recording of 

training data from subjects can cause user fatigue and introduces an impractical 

latency before the BCI can be used. Thus, algorithms that can perform with less 

training data are more favorable.  

The layout of this chapter is as follows. Section 5.2 discusses the proposed 

GABSLEEG implementation and Section 5.3 explains the experimental 

methodology and hyperparameter tuning. Results and discussion are covered in 

Section 5.4. The chapter closes with a conclusion of the contributions in Section 

5.5.  



137 
 

5.2 Proposed Sparse Representation and Genetic 

Channel Selection Approach 

A flowchart of the proposed GABSLEEG system is shown in Figure 5.1. Figure 5.2 

shows in detail the structure of the SL classifier module, labelled as ‘Sparse 

Learning Classifier’ in Figure 5.1. In the pre-processing stage, the EEG time series 

is first filtered and then segmented. Feature vectors based on the band power of 

each channel are then extracted from each segment, and are divided into training, 

validation, and test sets. The training data is used to construct a dictionary for 

sparse learning, which consists of three sub-dictionaries: one for MI class 1, 

another for MI class 2 and the final one for idle state data. A GA is used for channel 

selection, taking the dictionary and validation data as input. The GA selects a 

 

Figure 5.1: The proposed GABSLEEG classification system. 
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suitable subset of EEG data through an iterative process which aims to maximize 

the accuracy of the SL classifier. Based on the channel subset selected by the GA, 

channels are removed from the dictionary and test data accordingly. A SL 

classification module is used to assign the final labels to each test set feature 

vector. As shown in Figure 5.2, each test feature vector is sparse encoded over the 

dictionary using OMP, with the sparse encoding having six non-zero coefficients. 

The reconstruction errors based on each of the three sub-dictionaries are then 

calculated, and the class label of the sub-dictionary which gives the minimum 

error is assigned to the test feature vector. The proposed system, as well as the 

benchmarking classifiers, are implemented in Python 3.  

 

5.2.1 Pre-Processing and Feature Extraction 

The EEG data is mean-centered and then filtered using a 10th order Butterworth 

filtered, with a passband from 7.5Hz to 30Hz, which spans the alpha and beta 

 

Figure 5.2: The sparse learning (SL) classifier. 
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frequency bands [34]. Afterwards, the data is segmented using a window size of 𝑡 

seconds. This means that each segment of EEG data is of size 𝑇 × 𝑀, where 𝑇 is 

the number of time samples, calculated as: 𝑇 =  𝑡 ×  𝐹𝑠, with 𝐹𝑠 is the sampling 

frequency, and 𝑀 is the number of EEG channels. In this work an investigation 

was carried out to identify the optimal window size, the details of which are 

discussed in the Section 5.3.5.1.  

 For each segment, the average power on each EEG channel, 𝑝𝑗 , is 

calculated using:  𝑝𝑗 =
1

𝑇
∑ 𝑥𝑗𝑖

2𝑇
𝑖=1 , where 𝑥 is the value of the EEG data on channel 

𝑗 at time 𝑖. These power values are concatenated together to produce a feature 

vector of size (𝑀 × 1) for the segment. 

5.2.2 Sparse Learning  

The SL dictionary is constructed of feature vectors obtained from the training 

dataset. As shown in Figure 5.1, the dictionary has three sub-dictionaries 

constructed from feature vectors from MI EEG class 1, MI EEG class 2 and the idle 

state. Each sub-dictionary has a size of 𝑀 × 𝐿, where 𝑀 is the number of EEG 

channels in the subset (which corresponds to the length of the feature vectors), 

and 𝐿 is the number of feature vectors in the sub-dictionary. The value of 𝐿 is 

determined by the class which had the lowest number of training feature vectors. 

The total length of the dictionary is therefore 3𝐿. 

 For classification, feature vectors from the test set are sparse encoded 

over the dictionary using OMP. Technical details of the OMP algorithm can be 

found in Chapter 3, Section 3.3.1. If the test feature vector is 𝒚, the sparse 

reconstruction  �̂� is calculated as:  �̂� = 𝑫𝒙, where 𝑫 is the dictionary and 𝒙 is the 

row vector of sparse coefficients of length 3𝐿. The aim of sparse learning is to 

calculate the coefficients vector,  𝒙, which has  𝑟 non-zero coefficients. The value 

of  𝑟 is six for this system, and the tuning process is described in Section 5.3.5.1 

of this chapter. Figure 5.3 shows an illustrative example of the dictionary, which 

has three sub-dictionaries and 59 rows, one for each channel. The figure also 

shows an example of a sparse coefficient vector with orange boxes representing 

non-zero values and black boxes representing zero values.  
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 In the first step of calculating 𝒙, OMP creates a support vector, 𝑺, which 

contains the indices of the dictionary entries which are most representative of 

the test feature vector, 𝒚. The length of the support vector is 𝑟. The support 

indices are based on the residual error, 𝑒, calculated as:  

𝑒 = ‖𝒚 − ∑ 𝒙𝑖𝒅𝑖𝑖𝜖𝑺 ‖2    (5.1) 

where 𝒅𝑖  is the dictionary atom, 𝒙𝑖 is the coefficient associated with that 

dictionary atom, and ‖. ‖2 is the Euclidean norm. OMP uses a greedy search 

approach for constructing the support vector, adding the index of the next atom 

in the dictionary which correlates with the residual error. 

 The values of the non-zero coefficients in 𝒙 are obtained by minimizing 

the reconstruction error, 𝐫𝐞: 

 𝒓𝒆 =  𝑚𝑖𝑛
𝒙𝑆

‖𝒚 − 𝑫𝑆𝒙𝑆‖2 (5.2) 

where 𝑫𝑆 is constructed from dictionary atoms selected through the support 

vector and 𝒙𝑆 are the non-zero coefficients corresponding to the dictionary atoms 

selected in the support. This optimization problem is solved using the 

optimization process described previously in Section 3.3.1. 

 The sparse coefficients in 𝒙 span the entire length of the dictionary. 

Breaking 𝒙 into three parts of length 𝐿 gives the coefficient vectors associated 

 

Figure 5.3: An illustrative example of a dictionary and a vector of sparse coefficient values. In 
the coefficient vector, orange boxes represent non-zero values and black boxes represent zero 
values.  
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with each sub-dictionary. For classification, the reconstruction error based on 

each of the sub-dictionaries is calculated, and the class of the sub-dictionary 

which results in the lowest error is the class assigned to the test feature vector. 

The reconstruction error associated with the 𝑗th sub-dictionary, 𝑫𝑗 , is given by: 

 𝑒𝑗 =  ‖𝒚 − �̂�‖2
2 =  ‖𝒚 − 𝑫𝑗𝒄𝑗‖

2

2
 (5.3) 

 where 𝒄𝑗  is the vector of coefficients associated with 𝑫𝑗 . 

 The approach to dictionary construction and SL presented in this section 

has previously been used for MI EEG classification[11], [56]. It was chosen due to 

its strong performance, making it a good candidate for investigating the use of 

genetic channel selection in conjunction with a SL system. The sparse learning 

module presented also has some technical differences when compared to similar 

modules in the literature. Firstly, previous implementations had dictionaries 

which used multiple features to represent each channel within the feature 

vectors [11], [56]. For example, one implementation [11] represented each 

channel with two features, namely the energies in the wavelet detail and 

approximation coefficients obtained from a DWT decomposition of each channel, 

and another [56] represented each channel with three features, namely wavelet 

energy, the alpha and the beta band powers. The difference between the 

approach presented in this chapter and what has gone before is that each channel 

is represented using only one feature: the band-power within the joint alpha and 

beta frequency bandwidth. The alpha and beta bands exhibit salient activity 

during MI actions [68]. However, the exact frequency sub-bands in which MI-

associated activity occurs can vary between individuals [82], as well as between 

trials for a particular individual [53]. Thus, in the proposed system, the combined 

alpha and beta bands were used. The work in this chapter also investigates the 

effect of window size on classification performance, whereas other works used 

window segmentation sizes of 0.5s [11] or 2s [56] without any mention of 

parameter tuning. Furthermore, previous works selected arbitrarily (manually) 

chosen subsets of EEG channels [11], [56], whereas the approach presented in 

this chapter uses algorithmic channel selection.  



142 
 

 5.2.3 Genetic Channel Selection 

Genetic channel selection is used to obtain a subset of EEG channels which 

maximizes the classification accuracy of the SL module. The algorithm is driven 

to find a subset of EEG channels which provides the greatest classification 

accuracy, with the overall aim of maintaining or improving the accuracy when 

compared to the case when the original, full montage of EEG channels is used. 

Although the accuracy of the selected subset may not exceed that of the original 

montage [213], the aim is to drive the algorithm to search for the best possible 

solution.  

An exhaustive search through all possible channel combinations is 

practically impossible; as an example, the BCI Competition IV dataset I [108] used 

for evaluation in this chapter has 59 EEG channels, and if a subset of 30 EEG 

channels were to be selected, there would be 5.91×1016 possible combinations to 

consider. A GA was chosen for channel selection because it is especially suitable 

for dealing with combinatorial problems [193] and has previously been applied 

with success to other MI EEG channel selection problems [49], [192]. However, 

GAs are not guaranteed to find the global maximum and can get stuck at local 

maxima/minima [44]. Despite this shortcoming, they have a track-record of 

finding acceptable solutions [49], [125], [192], making them a suitable candidate 

for channel selection in the proposed design. Since this is a subject-specifically 

trained system, channel subsets are selected for each subject individually.  

 A high-level overview of GAs was provided in Chapter 3, Section 3.5.2.2. In 

this chapter, a main contribution lies in the application of a GA to the channel 

selection problem for a SL classifier. Although the general framework of GAs are 

well established in theory [193], each implementation of a GA has its own 

particularities which tailor it to the application [49], [51], [192]. Therefore, 

although the aim of this chapter is not to delve into GA algorithm design or 

optimization, the GA implementation in this chapter has its own original design 

aspects. The rest of this section discusses the GA implementation used in this 
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thesis and is mainly focused on the design details tailoring the GA to the 

application.  

Algorithm 2 summarizes the operation of the GA. The GA is a wrapper 

method [44], meaning that it optimizes the choice of channel subset based on the 

classification accuracies obtained for each candidate channel subset with the SL 

classifier previously described in Section 5.2.2. The dictionary is constructed 

using the training dataset and the classification accuracies are calculated on the 

validation set. The GA optimizes the candidate channel subsets with respect to 

the validation set classification accuracy, and the candidate that had the greatest 

accuracy is the one applied to the test-set (lines 24- 26 in Algorithm 2). Therefore, 

the GA channel selection process is only applied at the training stage, with the 

selected channel subset is immediately deployed at the test stage.  

The GA encodes the candidate subsets as a row vector of numbers, with 

each number being uniquely associated with a particular EEG channel. The length 

of the vector, 𝑛, denotes how many channels will be selected, and is a global 

variable fixed by the user. These vectors are the chromosomes. On initialization, 

the GA randomly generates a population of 𝑧 chromosomes. The size of the 

population remains constant throughout the running of the algorithm.  

Algorithm 2: Genetic Algorithm Based Channel Selection 

1: Inputs: n, the size of the EEG subset, z the size of the population, D the dictionary based on the training dataset Xtrain, Xval 
and Xtest  
2: Initialization: stagnation = 0, tolerance = 0.000009, bestFitness = 0 
3: population = a set of z randomly generated chromosomes of length n 
4: while stagnation < 3: # Monitor if the bestFitness has remained the same for three consecutive iterations 
5:              for each chromosome in the population: # Calculate the population fitness 
6:                        SL classification with D[population{current chromosome},:] and Xval [population{current chromosome},:] 
7:                        Calculate the accuracy and store in population_fitness 
8:              end 
9:              lastBestFitness = bestFitness # Update the best fitness and the best chromosome 
10:            if max(population_fitness) > bestFitness: 
11:                       bestFitness = max(population_fitness) 
12:                       bestChromosome = population[argmax(population_fitness)] 
13:            end 
14:            if abs(lastBestFitness - bestFitness) < tolerance: # Monitor for convergence 
15:                       stagnation = stagnation +1  
16:            end  
17:           cumulative_fitness = sum(population_fitness) # Carry out selection 
18:           Select (z-5) chromosomes to be used in crossover. Probability of selection, p is calculated in (4).Store in parents.  
19:           From the parent chromosomes generate the children as described in (5) and (6). 
20:           In the population replace the (z-5) chromosomes with the lowest fitness with the children. 
21:           Mutation step: 20% probability that a random mutation in one chromosome will occur.  
22: end  
23: Calculate the test_set _accuracy for the final bestChromosome:  
24: Carry out classification using (3) and (5) with D[population{bestChromosome},:] and  
       Xtest [population{bestChromosome},:] and calculate the  
25: accuracy 
26: Output: bestChromosome and test_set_accuracy 
27: END 
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At the start of each iteration of the GA, the fitness of all the chromosomes 

in the population is calculated. In this implementation, the fitness is the 

classification accuracy obtained on the validation set. The GA monitors the 

current best fitness in the population and the corresponding chromosome. As 

previously explained in Chapter 3, Section 3.5.2.2, during each iteration the GA 

updates the population. In this implementation, the 5 individuals in the current 

population with the greatest fitness are directly promoted to the next generation, 

leaving (𝑧 − 5) new individuals to be constructed through selection and 

crossover. Since a type of two-point crossover (previously explained in 3.5.2.2) is 

used, (𝑧 − 5) parents must be selected from the population.  Selection is carried 

out using a fitness proportional roulette wheel approach [193], previously 

described Section 3.5.2.2. 

 Crossover is carried out using a kind of two-point crossover approach 

[193]. In this approach, two chromosomes from the selected group are randomly 

paired and called 𝒑𝒂𝒓𝒆𝒏𝒕1and 𝒑𝒂𝒓𝒆𝒏𝒕𝟐. A random position within each parent 

chromosome is chosen, and the gene at that position and the one right-adjacent 

to it are selected for crossover. Crossover merely involves exchanging the gene 

pairs between parents 1 and 2. This process produces two new chromosomes, 

named 𝒄𝒉𝒊𝒍𝒅1 and 𝒄𝒉𝒊𝒍𝒅2, and can be summarised by (5.4) and (5.5): 

𝒄𝒉𝒊𝒍𝒅1 = [𝒑𝒂𝒓𝒆𝒏𝒕1[0, … , 𝑝1], 𝒑𝒂𝒓𝒆𝒏𝒕𝟐[𝑝2, 𝑝2 + 1],  𝒑𝒂𝒓𝒆𝒏𝒕1[𝑝1 + 2: 𝑒𝑛𝑑]]  (5.4) 

𝒄𝒉𝒊𝒍𝒅𝟐 = [𝒑𝒂𝒓𝒆𝒏𝒕𝟐[0, … , 𝑝2], 𝒑𝒂𝒓𝒆𝒏𝒕𝟏[𝑝1, 𝑝1 + 1],  𝒑𝒂𝒓𝒆𝒏𝒕𝟐[𝑝2 + 2: 𝑒𝑛𝑑] ] (5.5) 

 
where the parent and child variables are row vectors of length n, p1 and p2 

represent a random location in parent1 and parent2 respectively, and (p1, p2 ≠ n). 

Crossover only occurs if it will not result in any gene duplication within the 

children. This is because a duplicate gene would mean that a particular channel 

was selected twice within a subset. If gene duplication will occur, crossover is not 

carried out, and other random locations within the parent chromosomes are 

selected as crossover points. In this way, crossover is attempted up to 4 times for 

a particular pairing before the parent chromosomes are deemed too similar for 

crossover and are returned to the population. In total, crossover must produce 
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(𝑧 − 5)  child chromosomes. The new population consists of the (𝑧 − 5) child 

chromosomes produced during crossover and the five fittest individuals from the 

previous population.  

 Mutation, an exploration step in the GA, is then carried out on the new 

population. In the GA design presented, one chromosome can experience 

mutation per iteration and there is a 20% chance that this mutation will occur. If 

the algorithm decides that mutation will occur in the iteration, a chromosome is 

selected from the new population using a uniform probability distribution. Then, 

one gene is selected at random within the chromosome and this gene is replaced 

with a randomly generated channel number which does not result in any gene 

duplication within the chromosome.   

 The GA concludes its search when the current best accuracy has stagnated 

for three consecutive iterations. Stagnation is considered to have occurred in an 

iteration when the improvement in accuracy is less than 0.0009% when 

compared to the previous iteration. 

 The classification accuracy on the test set, which is the classification 

accuracy of the GABSLEEG algorithm, can then be obtained. The best 

chromosome found by the GA is used to select the EEG channels from the 

dictionary and the test-set, and then these are input to the SL classification 

module to obtain the test-set classification accuracy.  

 

5.3 Experimental Methodology and 

Hyperparameter Tuning 

This section first introduces the datasets used, and then goes on to summarize 

the evaluation methodology. It then discusses hyperparameter tuning and design 

decisions made for the GABSLEEG system and benchmarking systems.  
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5.3.1 Datasets 

Two datasets were used in this study, the BCI Competition IV, dataset I [108] and 

the BCI Competition III dataset IVa [86], which were previously described in 

Chapter 2,  Section 2.2.   

 The BCI Competition IV dataset I was used because it specifically included 

idle state data. The calibration dataset was used for hyperparameter tuning in 

Section 5.3.5, and then the evaluation dataset was used to obtain the results in 

Section 5.4. 

The BCI Competition III, dataset IVa was used to assess the performance 

of the GABSLEEG system on another dataset, and for comparing the GABSLEEG 

system to other implementations due to the popularity of this dataset in the 

literature [11], [12], [15], [40], [129], [214].   

Since both datasets had 2 MI classes and the idle state, the work in this 

chapter is focused on three-class classification problems.   

 

5.3.2 Evaluation Methodology 

This section discusses the general evaluation approach, then summarizes the 

systems used for benchmarking or comparison, and the performance metrics 

used.  

5.3.2.1 General Evaluation Approach 

Subject-specific training was carried out, meaning that the GABSLEEG system 

was trained from scratch for each individual subject in a dataset [3]. The data for 

each subject was divided into training, validation, and test sets, comprising of 

80%, 10% and 10% of the total data, respectively. This data division was carried 

out once for each subject, with a single set of performance metrics being obtained 

for each experiment involving the GABSLEEG system. The performance metrics 

were then averaged across subjects to obtain a general overview of the system’s 

performance. The same data divisions were used for the benchmarking and 

comparison systems. This method of data division has been used in other studies, 
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for example in the work of Chaudhary et al. [12] which involved a CNN-based 

classifier which could have long training times. In fact, this approach was adopted 

due to the long execution time of the GA module.  

5.3.2.2 Systems used for Benchmarking and Comparison 

This section discusses the benchmarking classifiers and comparison systems 

used to assess the effectiveness of the SL classifier and the GABSLEEG system. 

First the benchmarking classifiers are introduced, then the state-of-the-art 

comparison systems are discussed.  

Benchmarking Classifiers  

The benchmarking classifiers are the k-NN, RF and SVM-RBF classifiers. These 

classifiers were chosen due to their widespread use in the literature [13], [14], 

[21], [22], [31], [101], [104], [140], [148], and because they have been used as 

part of novel classification systems [13], [14], [21], [22], [31], [101], [104], [118], 

[140], [148], [187], [215].  In Section 5.4.1 the classification performance of the 

SL classifier was first compared to the performance of the three benchmarking 

classifiers. After, the performance of the full GABSLEEG classification system was 

compared to GA-kNN, GA-RF and GA-SVM classifiers. Results for the 

benchmarking systems were generated by replacing the SL classifier in the 

GABSLEEG framework with a benchmarking classifier. In Section 5.4.3, the 

execution time of the GABSLEEG system is compared to those of the 

benchmarking classification systems.  

State-of-the-Art Comparison Systems 

The whole GABSLEEG system was compared to two state-of-the-art classification 

approaches: the SL classification pipeline presented by Sreeja et al. [11] and a 

deep learning classifier named EEGNet [7]. The work of Sreeja et al. was discussed 

at length in Chapter 3 (Section 3.3.1), and EEGNet was introduced in Chapter 3 

(Section 3.4.1.3). Code scripts for these implementations were obtained from 

[216] and [217], respectively. The effectiveness of the GA channel selection 

module was also compared to Fisher score channel selection, which is a 

commonly used channel selection method in the literature, particularly for 
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comparison to new channel selection approaches [30], [52]. These comparisons 

to the literature can be found in Section 5.4.5.2. The rest of this section discusses 

the experimental settings for each comparison system.  

SL Classifier Comparison System: The SL approach by Sreeja et al. [11] 

is a state-of-the art sparse learning system which is similar to the approach used 

in this chapter, with a dictionary constructed of features derived from EEG data. 

However, Sreeja et al. [11] used 30 arbitrarily chosen EEG channels, the features 

extracted were wavelet features, and the authors used an arbitrary window size 

of 0.5s for dictionary construction. Later in this section the window size of the 

GABSLEEG system is tuned to be 50ms. To ensure a thorough comparison, results 

for the implementation by Sreeja et al. [11] and the GABSLEEG approach were 

generated for window sizes of 0.5s and 50ms. This approach, published in 2020, 

is the best-performing sparse learning system in the literature reviewed 

 EEGNet Comparison System: EEGNet [7] is a benchmark CNN-based MI 

EEG classification system, which has been used for comparison to the state-of-

the-art [59], [164], [218]. It uses all the EEG channels within the dataset. In the 

original study, EEG data was broken down into 2s segments, and due to the 

structure of the CNN used, this could not be reduced to 50ms as in this study. 

Thus, when comparing to EEGNet, the data was segmented using 2s windows.  

Fisher Score Channel Selection: For comparison, the GA channel 

selection module in the proposed pipeline was replaced with a Fisher score 

channel selection algorithm. This approach has been used in the state-of-the-art, 

in the works of Park et al. [46] and Sadiq et al. [30].  In the Fisher score channel 

selection approach, each channel, ℎ, is assigned a Fisher score, 𝐹ℎ, using the 

equation [219]: 

 𝐹ℎ=
∑ (𝑚𝑘,ℎ−𝑚ℎ𝑡𝑜𝑡𝑎𝑙

)
2

3
𝑘=1

∑ 𝑣𝑘,ℎ
3
𝑘=1

  (5.6) 

where 𝑚𝑘,ℎ and 𝑣𝑘,ℎ are the mean and variance of the features extracted from 

channel h for class k (k=1,2,3). 𝑚ℎ𝑡𝑜𝑡𝑎𝑙
 is the mean of all the features extracted 

from channel h. The channels are then ranked based on this score, with higher 
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scores associated with greater importance. In this analysis, the 30 channels with 

the highest scores were selected. Since the Fisher score does not require a 

validation set, the training and validation datasets were combined for the 

calculation of the Fisher score.  

 

 5.3.2.3 Performance Measures 

Accuracy, sensitivity, and specificity were used to assess the performance of the 

systems. The equations for these measures were previously included in Chapter 

4, Section 4.3.3.1.  As in Chapter 4, the performance metrics were calculated for 

each individual subject. However, the classification problem in this chapter is a 

multi-class problem, whereas the problem in Chapter 4 was a binary problem. In 

this chapter, the accuracy was calculated as the ratio of the number of correctly 

classified samples to the number of in correctly classified samples. Sensitivity and 

specificity, however, are class specific. Therefore, the confusion matrix values TP, 

FP, TN, and FN were calculated separately for each individual class, using a one-

vs-rest approach to the calculation.  

 

5.3.2.4 Training Data Size Analysis Methodology 

The performances of the GA-based systems, namely the GABSLEEG, GA-kNN, GA-

SVM and GA-RF classifiers, with reduced training data size were analyzed. This 

experiment involved reducing the training data from 100% to 20% in steps of 

20% and calculating the accuracy, sensitivity, and specificity at each stage. This 

analysis is important because the recording of training data is time consuming 

and can decrease the practicality of BCIs using subject-specific training since the 

recording of training data increases latency. 

 

5.3.4 Execution Time Analysis Methodology 

Execution time is an important aspect of performance to assess because it can 

have a significant effect on user experience of a BCI. The training times in subject-
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specifically trained systems such as those in this chapter represent the waiting 

time between recording the training data and the user being able to use the BCI.  

Testing times represent the latency a user would experience during ‘real-time’ 

use of the BCI algorithm. Therefore, it is important to identify systems with 

shorter training and test times, or to identify pipelines with high accuracies but 

which have long execution times to highlight areas for improvement.  

An execution time analysis was carried out in which the training and 

testing times of the GABSLEEG, GA-kNN, GA-SVM and GA-RF systems were 

compared. All tests were carried out on a Lenovo™ ideapad 330 laptop using a 

64-bit Windows 10 operating system and an Intel® Core™ i5- 8300H, 2.30GHz 

CPU. Prior to the experiments, all non-essential background processes were 

suspended to ensure more accurate results. 

 The total training time involved the GA channel selection process, and the 

training of the classifier in the k-NN, SVM and RF pipelines, or structuring of the 

dictionary for the SL classifier. In this work, the total testing time was the time 

taken for the classifier to assign all the classification labels to the test-set feature 

vectors. To obtain the average execution times pre-segment for each subject, the 

total training time and total test time were recorded, and then divided by the 

number of segments included in the training and test sets, respectively. In this 

way, the training and testing times per segment were obtained. The execution 

times were recorded for each subject individually, and then the average times, 

calculated across the subjects, were considered for discussion. 

 

5.3.5 Hyperparameter Tuning for the GABSLEEG and 

Benchmarking Classifiers 

As previously mentioned, hyperparameter tuning was carried out using the 

calibration sub-dataset in the BCI competition IV Dataset I [108]. This section first 

discusses the tuning of the GABSLEEG system and then that of the benchmarking 
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classifiers. For the GABSLEEG system, a discussion of the effects of different 

parameters on classification accuracy is also included.  

5.3.5.1 Hyperparameter Tuning and Analysis for the GABSLEEG 

System  

The GABSLEEG system had two distinct modules which require tuning: the SL 

module and the GA module. The SL module had two tunable parameters: the 

window size used for segmentation and the number of non-zero coefficients in 

the representation. The GA also had two tunable parameters: the initial 

population size and the number of channels in the subset. The average accuracy 

across subjects was used to decide which parameters to use, which is the same 

approach used in Chapter 4 for the classifiers used for multi-segment decision 

fusion. Since the GA is a wrapper-based channel selection method designed with 

the aim of preserving the accuracy of the SL module, the SL classifier was tuned, 

followed by the GA module.  

 The SL module shown in Figure 5.2 was tuned using a grid-search which 

spanned window sizes of {50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 150ms, 

200ms} and non-zero coefficients in the set {3, 4, 5, 6, 7}.  The 10-fold cross-

validation accuracy for each subject and parameter pairing was calculated, then 

the results were averaged across subjects. Figure 5.4 shows the grid-search 

results for the SL classifier. A peak accuracy of 99.07% was obtained on the 

calibration dataset using a window size of 50ms and six non-zero coefficients, 

highlighted with a red marker in Figure 5.4. These parameters were then used in 

the calibration of the GA module. 

 To confirm that using the combined alpha-beta band power was the best 

design choice, the SL classifier grid-search was carried out again, but this time 

characterizing each channel in the feature vector using the separate alpha and 

beta band powers. Peak average accuracy was 98.97%, obtained for a window 

size of 50ms and five non-zero coefficients. This was slightly lower than the 

accuracy obtained when using the combined alpha-beta band power features and 

confirmed that this was a suitable design choice.  
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 A grid-search was also used to tune the GA module, covering initial 

population sizes in the set {10, 15, 20, 25, 30, 35} and the channel subset sizes in 

the set {5, 10, 15, 20, 25, 30}. A maximum of 30 channels was chosen to observe 

whether, using the GABSLEEG approach, better performance could be obtained 

when compared to the approach of Sreeja et al. [11], which used 30 arbitrarily 

chosen channels. This comparison is included in Section 5.4.5.2.  Due to the 

relatively long execution time taken for the GA search, the calibration data for 

each subject was divided into training, validation, and test sets just once, the test-

set accuracy for each parameter pairing was calculated, then the results were 

averaged across subjects. 80% of the data was used for training, 10% for 

validation, and 10% for testing.  

 

 

Figure 5.4: Results for grid-search hyperparameter tuning for the SL classifier. 

 

 

 

 

 

Table 5.1: Average calibration test-set accuracy of the 
GABSLEEG system with different sizes of channel subsets.  
Channel subset size refers to the number of channels in each 
subset. 

Channel Subset Size Average Accuracy 

5 61.42 ± (9.6×10-3) 
10 95.29 ± (5.5×10-3) 
15 97.28± (2.4×10-3) 
20 97.93± (1.3×10-3) 
25 98.28 ± (5.5×10-4) 
30 98.44± (4.3×10-4) 
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Table 5.1 shows the average accuracy results for each of the channel 

subset sizes. The average accuracy for each channel subset size was calculated by 

averaging the grid-search results across all the initial population sizes (10-35) for 

that subset size. The results are recorded as average accuracy ± standard 

deviation. The standard deviation therefore captures the variability in accuracy 

between the different population sizes for a particular channel subset size. The 

standard deviation is always less than 1%, which is relatively low compared to 

the accuracy values. It is evident that increasing the channel subset size increased  

the average accuracy, although the greatest improvement was when increasing 

the number of channels in the subset from 5 to 10, with the effect plateauing as 

the subset size is increased linearly in steps of five. Peak accuracy was obtained 

when a channel subset size of 30 was used. As the subset size increased, the 

standard deviation tended to decrease, indicating that a larger number of 

channels in the subset reduced the impact of the initial population size.  

An overall peak test-set accuracy of 98.49% was obtained for an initial 

population size of 35 and 30 channels in the subset. Using the same train and test 

splits and only the SL module with all 59 EEG channels, a test-set accuracy of 

98.62% was obtained. Thus, reducing the number of EEG channels from 59 to 30 

resulted in a decrease in accuracy of just 0.13%. In further analysis involving the 

GABSLEEG system, an initial population size of 35 and a subset of 30 EEG 

channels were used. However, considering the results in Table 5.1, reducing the 

number of EEG channels in the subset from 30 to 10 resulted in just a 3.15% 

decrease in average accuracy. Due to this relatively small decrease in accuracy, 

and because a core aim of this chapter was to reduce the number of EEG channels 

used to improve execution times on the test-set, in the execution time analysis in 

Section 5.4.3, the case when a subset of 10 EEG channels is used is also analyzed, 

to investigate the trade-off between execution time and accuracy.   

Finally, the effect of sparsity level on test set fitness (i.e. classification 

accuracy) of the GA was observed. Sparsity level is determined by the number of 

non-zero coefficients used in the OMP encoding of the test set feature vector, with 

fewer non-zero coefficients indicating increased sparsity. In this analysis, the 
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number of non-zero coefficients used in the encoding was varied from 6, which 

gave the maximum average accuracy during tuning, to 500, and the test set 

accuracy was recorded for each case and plotted in Figure 5.5. Increased sparsity 

was related to higher accuracy, with the accuracy being over 98% when 25 or 

fewer non-zero coefficients were used. When 200 or more non-zero coefficients 

were used, the classification accuracy tended to fluctuate around 95.75%. In all 

further analysis in this paper, 6 non-zero coefficients were used. 

  

5.3.3.2 Hyperparameter Tuning for the Benchmarking 

Classifiers 

The k-NN, SVM and RF classifiers were tuned using Bayesian optimization [90], 

which facilitated exploration of the vast parameter spaces of these classifiers. 

Like the methodology for the SL classifier, the average 10-fold cross-validation 

classification accuracy calculated over the subjects was used to choose the best 

hyperparameters. To carry out Bayesian optimization the Python function 

skopt.BayesSearchCV  from the scikit-optimize toolbox was used.  

The k-NN classifier was tuned for the k parameter, which determines the 

number of nearest neighbours considered when delineating decision boundaries. 

 

Figure 5.5: Analysing the changes in test set fitness for changes in the number of 
non-zero coefficients used in the OMP reconstruction. A smaller number of non-zero 
coefficients indicate increased sparsity. 
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Values of k in the range 3-20 were considered, and a peak accuracy of 93.32% 

was obtained for a k of 3. For the SVM classifier, the 𝐶 and ϒ parameters were 

tuned considering values in the ranges 0.1 to 100 and 0.01 to 10, respectively. A 

peak accuracy of 84.99% was obtained for a 𝐶 value of 100 and a ϒ value of 10. 

For the RF classifier, the number of trees was tuned for the range 10-500, the 

predictions at each node were tuned in the range 2-20 and the number of 

observations per leaf were tuned for values in the range 1-10.  A peak 

classification accuracy of 86.27% was obtained for 500 trees, minimum 

predictions at each node of 2 and 1 observation per leaf.  For completeness, the 

hyperparameter tuning results for the k-NN, SVM and RF classifiers are shown in 

Table 5.2. The parameters that gave peak accuracy are in bold.  
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Table 5.2: The hyperparameter tuning results for the k-NN, SVM and RF classifiers. 

Classifier Hyperparameter Tuning Parameters Accuracy (%) 

 

 

 

 

 

 

k-NN 

k  

12 81.65 

7 87.53 

12 81.64 

6 87.80 

7 87.53 

17 77.64 

19 76.23 

12 81.64 

5 90.22 

9 85.24 

3 93.00 

3 93.00 

3 93.00 

 

 

 

 

 

 

 

SVM 

C/ ϒ  

100/10 84.99 

100/1 82.22 

100/0.1 71.53 

100/0.01 55.35 

10/10 83.85 

10/1 78.10 

10/0.1 63.43 

10/0.01 46.67 

1/10 80.02 

1/1 71.80 

1/0.1 55.41 

1/0.01 42.10 

0.1/10 65.70 

 

 

 

 

 

 

 

 

RF 

Number of trees /observations per leaf/predictions at each node  

270/7/13 82.24 

137/10/18 80.48 

269/2/8 85.34 

82/8/10 81.40 

124/3/15 83.50 

421/10/15 80.39 

484/8/10 81.70 

260/6/15 82.38 

55/9/16 80.67 

191/5/7 83.66 

500/1/2 86.72 

19/1/2 85.44 

500/1/2 86.77 

500/1/2 86.66 
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5.4 Results and Discussion  

This section first analyses the impact of the GA channel selection module on 

classification accuracy. Afterwards, the performance of the GABSLEEG system 

was compared to that of the benchmarking classifiers. This comparison is then 

expanded by comparing the performance of the GABSLEEG system and 

benchmarking classifiers with reduced training data size and by conducting a 

execution time analysis. The channels most frequently selected by the GA are then 

analysed. Finally, the GABSLEEG system is compared to other implementations 

in the literature, including Fisher channel selection [30], [52], the SL classifier by 

Sreeja et al. [11] and EEGNet [7].  

 

5.4.1 Classification of Motor Imagery and the Idle State  

The effectiveness of the SL and the GA modules were assessed separately using 

the evaluation sub-dataset of the BCI competition IV Dataset I [108]. First, the 

performance of the SL classification module (‘SLEEG’) was compared to the 

benchmarking classifiers, with results recorded in Table 5.3. The results in this 

table are called the ‘control’ test set accuracies since these results were obtained 

without the GA channel selection module and when using all 59 channels in the 

EEG dataset. The highest accuracies are highlighted in bold and indicate that the 

SL classifier outperformed the benchmarking classifiers. The k-NN classifier was 

the best performing benchmarking classifier whilst the RF classifier was the 

poorest.  

 The effectiveness of the GA module was then assessed in Table 5.4, which 

contains the results for the GABSLEEG system and the benchmarking classifiers 

with the GA channel selection module. Again, the GABSLEEG system had the 

strongest performance, whilst the GA-kNN classifier was the best performing of 

the benchmarking methods and the GA-RF method had lowest accuracy.   
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The effect of the GA module on classification accuracy can be observed by 

comparing the results in Table 5.3 and Table 5.4. GA channel selection resulted in 

a depreciation in average accuracy for the SL, k-NN and RF classifiers, which 

amounts to decreases of 0.19%, 0.50% and 0.91%, respectively. However, the GA 

module increased the accuracy of the SVM classifier by 1.38%.  These conflicting 

results agree with the literature, with some studies reporting a slight decrease in 

accuracy with the introduction of channel selection [213], and others reporting 

an increase in classification accuracy [48], [220]. These results may indicate that 

the effect of the GA channel selection module on accuracy depends on the 

classifier used. Furthermore, the decrease in accuracy was always less than 1%, 

which was deemed to meet the aim of maintenance of accuracy. Of the classifiers 

which experienced a decrease in accuracy, the GABSLEEG classifier experienced 

the lowest decrease in accuracy.  

Recall that in this chapter the main aim of channel selection is to produce 

a subset of EEG channels that maintains the classification accuracy so that the 

test-set execution time can be reduced. The results in Table 5.3 and Table 5.4 

confirm that the GA is capable of selecting a subset of channels that preserves the 

accuracy performance for the SL classifier, as well as for three conventional 

classifiers.  

Table 5.3: The control test accuracies (%) for the proposed SL classifier and three 
benchmarking classifiers. The results of the best performing system are in bold. 

Systems 1a 1b 1f 1g Average 

SLEEG 99.89 99.70 99.86 99.92 99.84 
SVM 94.49 93.80 96.80 93.66 94.69 
k-NN 98.05 94.89 99.54 97.55 97.51 
RF 89.94 85.39 95.57 90.74 90.40 

 

 

Table 5.4: The test accuracy (%) for the proposed GABSLEEG system and three 
benchmarking systems. The results of the best performing system are in bold. 

Systems 1a 1b 1f 1g Average 

GABSLEEG 99.52 99.62 99.77 99.69 99.65 
GA-SVM 96.89 94.73 98.54 94.13 96.07 
GA-kNN 97.63 94.76 99.03 96.63 97.01 
GA-RF 89.60 85.78 96.25 89.09 89.49 
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Table 5.5 contains results for sensitivity and specificity for each class. For 

all classifiers the performance was relatively stable across classes, particularly 

for the GABSLEEG system. Again, the GABSLEEG system had the highest results, 

followed by the GA-kNN classifier. As expected from the accuracy results in Table 

5.4, the GA-RF classifier had the lowest performance.  

These results indicated the GABSLEEG system had the strongest 

performance in terms of accuracy, sensitivity and specificity when compared to 

the three benchmarking systems. Furthermore, the GA module was found to be 

effective at maintaining the classification accuracy of various classifiers. Later, in 

the execution time analysis in Section 5.4.3, the computational benefits of using 

the channel subsets is confirmed.  

5.4.2 Performance with Reduced Training Data Size 

Figure 5.6 shows how the accuracy, sensitivity, and specificity of the GA-based 

systems vary with decreasing training data size. The sensitivity and specificity 

results shown were obtained by averaging across the classes. For all systems, the 

performance tended to decrease with decreased training data, and the accuracy 

plots had a noticeable knee when training data was reduced from 40% to 20%. 

The GABSLEEG system had the best performance across the metrics for all 

training data sizes. The GA-RF pipeline consistently had the poorest performance, 

whilst the GA-kNN and GA-SVM systems had mid-range performance. Most 

notably, when only 20% of the training data was used, only the GABSLEEG system 

exhibited over 90% accuracy, sensitivity, or specificity. 

 

Table 5.5: Comparison of the test-set sensitivity and specificity associated with each class 
(%), averaged across subjects, for the proposed GABSLEEG System and three benchmarking 
systems. The results of the best performing system are in bold. 

 Sensitivity Specificity 
Systems MI Class 1 MI Class 2 Idle Class  MI Class 1 MI Class 2 Idle Class 
GABSLEEG 99.92 99.86 99.44 99.81 99.77 99.96 
GA-SVM 94.31 92.21 99.01 99.56 99.70 93.39 
GA-kNN 99.13 98.49 95.14 98.13 98.39 99.23 
GA-RF 93.58 91.83 86.20 94.32 94.32 96.00 
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 When using 100% of the data, there is 24.20±3.35 minutes of training 

data per subject, on average. When using 20% of the data, an average of 

4.98±0.83 minutes of training data were used per subject. The less training data 

that is required, the lower the latency experienced by the user, and the more 

practical the system is. The performance of the GABSLEEG system is robust to 

changes in training data, indicating its practicality. When comparing to practical 

EEG-based BCIs for device control in the literature, the amount of training data 

used throughout this section could be considered reasonable: for the deep-

learning system in [221], an average of 24 minutes of training data per subject 

was used, for the SVM-based classifier in [222] 10 minutes of training data were 

used, and for the single hidden layer RBF network in [223], 4 minutes were used. 

These results from the literature indicate that, in terms of training data 

requirements, the GABSLEEG system is comparable. 

 These results indicated that the GABSLEEG system was robust to 

decreases in training data size and could be a suitable candidate for practical MI 

EEG classification systems with subject-specific training since, ideally, such 

systems use the minimum possible amount of training data.  

 
Figure 5.6: Comparing decrease the in accuracy, sensitivity and specificity for reduced training data 
size for the GABSLEEG (blue), GA-SVM (red), GA-kNN (green) and GA-RF (black) classifiers.  

 

 



161 
 

 

5.4.3 Execution Time Analysis 

The results for training and testing times per segment are shown in Table 5.6. 

Both the average times and the worst case (longest) times were recorded.  When 

considering the training times, the GA-kNN was the fastest, followed by the GA-

RF classifier and then the GABSLEEG system. The GA-SVM classifier was the 

slowest to train. When considering the testing execution times, which are of 

particular interest, the GA-kNN and GA-RF classifiers are the fastest, followed by 

the GABSLEEG system and then the GA-SVM.  

When using a graphical user interface, humans can only perceive visual 

latencies of approximately 13ms [45]. Since the test latency of the GABSLEEG 

system was, on average, 13.1ms, it could possibly be suitable for seamless control 

of a BCI, particularly if a computer with a faster CPU or alternative streamlined 

hardware implementation were used, such as graphical processing unit (GPU) or 

field-programmable gate array (FPGA). The GA-SVM pipeline had a test latency of 

36ms, which was over twice the acceptable latency for a visual interface, possibly 

making it unsuitable for a real-time BCI unless more powerful hardware is used, 

or if the SVM classifier were adapted to run on a GPU. 

 The execution time analysis justifies the use of the GA channel selection 

module. The SL EEG classifier using all 59 EEG channels has an average testing 

time per segment of 32.39ms, which is substantially greater than 13ms. Using the 

subset of 30 EEG channels selected by the GA module, this testing time was 

reduced to 13.1ms, a decrease of 60%. This result illustrates the value of using a 

reduced channel subset for classification. The GA module is particularly effective 

Table 5.6: Comparing the averaged and worst case training and testing times per segment for the 
GABSLEEG and benchmarking systems. The results of the best performing system are bold. 

Systems 
Average Training 

Time/ms 
Average Testing 

Time/ms 
Worst case 

Training Time/ms 
Worst Case 

Testing Time/ms 

GABSLEEG 199.0±10.7 13.1±0.7 208.5 13.9 
GA-SVM 557.0±49.1 36.2±2.0 601.8 39.2 
GA-kNN 4.0±0.3 0.3±0.0 4.0 0.3 
GA-RF 5.2±1.8 0.3±0.0 7.8 0.3 
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because it managed to find channel subsets that maintain the classification 

accuracy within a 1% tolerance, meaning that the substantial computational 

benefits of using a reduced channel subset do not come at the cost of a substantial 

decrease in accuracy. The improvement observed in the testing time, however, 

comes at the expense of the training time of the GA channel selection module.   

5.4.3.1 Further Decreasing the Channel Subset Size: The 

Accuracy-Execution Time Trade-Off 

In the GABSLEEG system, there is a trade-off between classification accuracy and 

execution time, with the number of channels in the EEG subset playing a key role 

in controlling this trade-off. In all experiments so far in this results and discussion 

section, the GA has selected a subset of 30 EEG channels. However, in the 

hyperparameter tuning process in Section 5.3.5.1 (Table 5.1) it was observed that 

a subset of just 10 EEG channels gave an accuracy over 95.29% for the GABSLEEG 

system on the calibration dataset. This was a relatively small decrease when 

compared to using 30 channels, which gave an accuracy of 98.44% with the 

calibration set (see Table 5.1).  

If a subset of 10 EEG channels were to be selected in the GABSLEEG 

pipeline on evaluatio2n dataset, an average classification accuracy of 96.12% was 

obtained, which is a 3.65% decrease in accuracy compared to when 30 channels 

were used (99.65%, as per Table 5.4). However, when using 10 EEG channels, the 

average training time was decreased to 70.3ms and the average testing time was 

decreased to 6.6ms, which is a substantial improvement on the 199ms and 

13.1ms training and testing times in Table 5.6, when 30 channels were used. 

These results encapsulate the trade-off between classification accuracy and 

execution time, in which reducing the number of channels can substantially 

improve execution time but at the cost of a decrease in accuracy. The exploitation 

of this trade-off depends on the application, which will determine the required 

speed of response of the BCI, the number of electrodes desired, and the minimum 

acceptable classification accuracy.  
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The results from this execution time analysis indicate that the GABSLEEG system 

has some potential for being used in a real-time scenario. Using a more powerful 

machine or programming the BCI on an FPGA or GPU [224] could possibly narrow 

the computational performance gap between the GA-kNN and GABSLEEG system 

to provide a means of deploying high performance EEG classification in real time.  

 

5.4.4 Discussion about the Selected EEG Channels 

The aim of this analysis is to observe which channels were most selected across 

all the subjects using GA-based systems, and to discuss how these could be 

related to underlying mental processes. This analysis therefore covered 16 

channel subsets, obtained from the four subjects for the GABSLEEG, GA-kNN, GA-

SVM, and GA-RF systems. Figure 5.7 is a graphical summary of how often each 

channel was selected. Note that there are 11 scalp regions in the recording 

montage, namely the: central (C), central-frontal-central (CFC), central-central-

parietal (CCP), frontal-central (FC), central-parietal (CP), frontal (F), parietal (P), 

parietal-occipital (PO), temporal (T), occipital (O), and anterior-frontal (AF) 

regions. The discussion is focused on channels which were selected at least 50% 

 
 

Figure 5.7: Electrode map of the 59 EEG channels in the montage, with the frequency of selections 
highlighted. The fractions denoting the frequency of selection were calculated across 16 channel 
selection events – one for each of the four subjects and for the four GA-based classifiers: GABSLEEG, 
GA-kNN, GA-SVM and GA-RF.  
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of the time, so in 8 or more of the 16 subsets, since these were less likely to be 

due to random choice.  

 The central-associated regions C, CFC and CCP accounted for 58.33% of 

the selected channels. This makes sense since the central region is strongly 

associated with MI EEG activity, and these regions tend to be prominent in 

algorithmically selected channel subsets [34], [48], [225]. This result also loosely 

links back to the work in Chapter 4 which indicated the synergistic importance of 

the CFC and CCP regions.  

However, nearly half of the most selected channels were outside of the 

central and central-associated regions. This coincided with various central-

associated channels such as CCP6, CCP5, C6, and CCP2 being infrequently 

selected. Although channels outside the central region do tend to be included 

within channel subsets[48], [105], [225], central-associated channels are known 

to dominate in algorithmically selected channel subsets[48], [225]. Nearly half of 

the most selected EEG channels are not central-associated, and since this is not 

due to a lack of central-associated channels left to select, these results suggest 

that non-central channels could be important for classification. For example, the 

occipital-associated channels PO1 and O1 both featured in 8/16 channel subsets. 

The occipital region has been associated with MI activity, with ERD being 

observed during MI, particularly when subjects visualize during the imagined 

movement [226], [227]. Purely parietal (P) and frontal (F) electrodes each made 

up 19% of the most selected electrodes. The parietal region is associated with 

concentration [228] and the frontal region is associated with planning motor 

movements [35], thus electrodes in these regions could, plausibly, have been 

associated with distinction between the idle state and MI.  The T8 electrode also 

features in 12/16 subsets. The temporal regions are associated with responses to 

audial stimuli [37], and this channel may have been selected because subjects 

were instructed though an audio cue which MI movement to carry out [2].  

The channel subsets selected can be related to possible underlying 

neurological processes, however the relevance of the channels in the subsets is 

limited by the nature of the GA. Firstly, a classic limitation of GAs is their risk of 
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getting trapped in local minima or maxima, meaning that the final subsets may 

not be globally optimal [193]. Furthermore, the GA introduces exploration to the 

algorithm through randomization in two ways: i) the subsets in the initial 

population are randomly generated, and ii) the mutation step also introduces 

random changes to the subsets. Although this exploration feature can help the GA 

get closer to the global maximum accuracy, it could also introduce randomly 

selected channels into the subsets, which have little or no contribution to the final 

classification label. To mitigate for this effect the discussion was limited to 

channels which were selected in most subsets, however the limitations of the 

discussion are still acknowledged.  

 

5.4.5 Comparison to the Literature  

This comparison to the literature has two distinct parts: ‘General Comparison’ 

and ‘Comparison using Implemented Systems’. The first part compares the 

results of the GABSLEEG system to those reported in the literature for state-of-

the-art. The BCI Competition III, dataset IVa [86] was used for this comparison 

due to its popularity in the literature. Although other studies have carried out 

similar comparisons by simply reporting results previously published in other 

studies and comparing them to their own [9], due to the methodological 

differences between studies in the literature, this comparison is limited in value. 

Thus, the second part of this section compares the performance of the GABSLEEG 

system to some state-of-the-art implementations from the literature, namely the 

SL classifier by Sreeja et al. [11], a SL classifier with Fisher score channel 

selection, and the CNN classifier EEGNet [7]. These were previously introduced 

in Section 5.3.2.2. To assess the generalizability of the GABSLEEG system, 

comparisons in this section were carried out using both the BCI Competition IV 

dataset I [108] which has been used in the earlier results sections, as well the BCI 

Competition III, dataset IVa [86].  
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5.4.5.1 General Comparison  

For this analysis, two-class classification was carried out using only the MI EEG 

data, since leading works in the literature tend to use only the MI classes for 

evaluation [11], [12], [15], [22], [40], [46], [48], [105], [106], [129], [214], [229]. 

To assess the generalizability of the results previously tuned on the BCI 

Competition IV, dataset I [108], the same hyperparameters were used in this 

section. Thus, from the 118 EEG channels available in the BCI Competition III 

dataset IVa [86], the GA module chose a subset of 30 channels. This analysis was 

also beneficial because it showed how the GABSLEEG classifier performs with a 

two-class problem.  

 The results are recorded in Table 5.7, which summarizes the category of 

the approach, the features, classifiers, and numbers of channels used in each 

study. A variety of approaches were chosen, including implementations using all 

the available EEG channels [12], [15], [106], [229], those using arbitrarily chosen 

subsets [11], [40] and those with automated channel selection [46], [48], [105]. 

Table 5.7: Comparing the results obtained within this paper and state-of-the-art SL, conventional, 
channel selection and deep learning methods. The results of the best performing system are in bold.  

Papers, Year Category Features Classifiers Channels Average  
Accuracy 

GABSLEEG   Band power  Dictionary-based 30 98.74 
[11], 2020 Sparse 

Learning 
Discrete wavelet transform  Dictionary-based 301 97.98 

[40], 2019 TQWT features Least Squares -
SVM  

51 96.89 

[15], 2018 CSP, Fisher discriminant 
structured dictionary 

ELM  118 80.68 

[229], 2015  
 
Conventional 
Approaches 

Spatial and spectral features 
with maximized mutual 
information 

SVM-RBF 118 90.70 

[214] , 2017  Analytic intrinsic mode function 
features 

Least Squares-
SVM 

101 97.56 

[22], 2017 Multiscale principal component 
analysis de-noising, wavelet 
packet decomposition features 

k-NN  31 94.50 

[129], 2019  
 
Deep Learning 

Blind source separation, 
continuous wavelet features 

CNN 181 94.66 

[106], 2017 CSP features and LDA feature 
scoring  

Autoencoders & 
softmax 

118 90.70 

[12], 2019 Time-frequency representation  AlexNet with 
transfer learning 

118 99.35 

[49], 2013  
Automated 
Channel 
Selection 

CSP with Rayleigh coefficient 
maximization based genetic 
algorithm channel selection 

Fisher’s LDA 15.52 88.20 

[48], 2016 CSP and selected floating 
forward channel selection 

SVM-RBF 30.82 83.30 

[46], 2020 Filter-bank CSP and correlation 
coefficient channel selection 

SVM 8.22 88.62 

1Channels selected arbitrarily, not with channel selection. 
2 Subject-specific channel subset sizes were used, results show the average subset length. 
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Comparison systems based on SL [11], [15], [40], conventional machine learning 

approaches [22], [214], [229], and deep learning [12], [106], [129] are included. 

The GABSLEEG system performed better than all the state-of-the-art SL and 

conventional classification methods, as well as two of the deep learning systems. 

The only approach which outperformed the GABSLEEG approach [12] did not 

perform channel selection, and in theory had all 118 EEG channels available for 

classification. It also may have benefitted from using the pre-trained AlexNet DL 

classifier.  

 Consider the results for systems with automated channel selection [46], 

[48], [105]. These approaches adapted the number of channels within the EEG 

channel subset according to the subject and Table 5.7 records the average 

number of electrodes selected, calculated across the subjects. Although the 

channel selection approaches in [105] and [46] performed worse than the 

GABSLEEG system, on average they used substantially fewer channels than the 

GABSLEEG system and this may have been a contributing factor. The GABSLEEG 

approach fixed the number of EEG channels in the EEG subset at 30 for all 

subjects, and its strong performance indicates that this was an effective approach 

which may improve classification accuracy compared to systems with variable 

numbers of EEG channels in the subsets.  

5.4.5.2 Comparison to the Implemented Systems  

This comparison was carried out using both datasets, and the idle state was 

always included as a class. The inclusion of the idle state is justified for these 

particular systems because Sreeja et al [11] have recommended their sparse 

learning system for application in practical BCIs, which include the idle state, the 

Fisher score channel selection method is a generic method used for comparison 

in the literature [30], [52] and EEGNet [7] has been designed for practical BCI use. 

EEGNet has also been found to perform on-a-par with or better than other CNNs 

which have been applied to classification of the idle state[7]. Furthermore, in 

Chapter 6 of this thesis, EEGNet is applied to a dataset with the idle state included 

as a class and is found to perform similar to ShallowConvNet, which was 

originally designed for a classification problem that included the idle state [8].    
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The results are recorded in Table 5.8, with the best results highlighted in 

bold. The GABSLEEG system outperformed the SL approach by Sreeja et al. [11] 

for both datasets and window sizes, and the difference in performance was 

greater for Dataset IVa. Although Sreeja et al. [11] used a similar structure for the 

SL dictionaries, they construct the dictionary by obtaining the DWT of the signal 

on each channel, and then calculate the average energy of the detail and 

approximation coefficients, before concatenating the results for all the channels 

into a single feature vector. Since Sreeja et al. [11] use raw EEG data, the detail 

coefficients may have captured high-frequency noise within the EEG data, leading 

to poorer performance when compared to the GABSLEEG system, which used 

EEG data bandpass filtered in the alpha-beta bandwidth. Furthermore, the work 

of Sreeja et al. [11] used an arbitrarily chosen subset of EEG channels, whereas 

the channel subsets used by the GABSLEEG system were optimized through the 

GA.  

 The GABSLEEG classification system performed on-a-par with the Fisher 

score channel selection approach. In the case of Dataset I, the GABSLEEG system 

performed better, whereas with Dataset IVa, the Fisher score method performed 

better. Since the SL classifiers are the same for both systems, this result 

confirmed that the GA module performed useful channel selection.  

 EEGNet [7], a state-of-the-art CNN classifier for EEG, was outperformed by 

the GABSLEEG approach on both datasets, with a larger margin exhibited for 

Dataset IVa. Furthermore, note that for larger window sizes (2s for comparison 

to EEGNet), the GABSLEEG system performed more poorly as opposed to when 

smaller window sizes were used (e.g. 50 ms – 500 ms for other comparisons 

Table 5.8: Comparing the performance of the GABSLEEG system to contemporary implementations. 
The results of the best performing systems are in bold.  

  Dataset I Dataset IVa 

Comparison System 
Window   

Size 
GABSLEEG 
Accuracy 

Comparison System 
Accuracy 

 GABSLEEG 
Accuracy 

Comparison System 
Accuracy 

Sreeja et al. [11] 0.5s 99.69% 97.95%  98.11% 92.11% 
Sreeja et al. [11] 50ms 99.65% 98.01%  96.08% 90.14% 
Fisher Score Channel 
Selection + SL [219] 

50ms 99.68% 99.54%  96.08% 96.17% 

EEGNet [7] 2s 78.33% 77.81%  87.43% 83.75% 
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shown in Table 5.8). This may be because larger segments of EEG are not 

approximately stationary or approximately linear [91], [195]. Since the OMP 

algorithm sparse encodes the feature vectors over the dictionary using a linear 

approximation approach [54], the nonlinearities introduced by the larger 

window size may negatively impact performance. 

It was noted that the GABSLEEG system outperformed the 

implementation of Sreeja et al. [11] and EEGNet [7] to a notably larger margin for 

Dataset IVa. It should be noted that this dataset was intended to be used for MI 

EEG classification only, with the idle state not included. This may mean that 

during breaks between MI EEG stimuli, which were the idle state for this analysis, 

may have been times when the subjects could blink or change position, leading to 

higher artifact and noise content in the data. Since both the implementation by 

Sreeja et al. [11] and EEGNet [7] use raw data without filtering, this additional 

noise in the data may have negatively impacted performance.  

5.5 Conclusion  

The main contribution of this chapter is the design and implementation of the 

proposed novel GABSLEEG system: a MI EEG classifier which merges GA channel 

selection with a dictionary-based SL classifier. This work showed that the GA and 

SL module work effectively for classification of MI EEG and the idle state.  

The SL classifier had a better classification performance than the 

benchmarking classifiers (k-NN, SVM and RF). However, its execution time on the 

test-set suggested that it may be unacceptably slow for a real-time BCI.  

 The aim of the GA channel selection module was to produce a subset of 

channels to be used with the test-set that preserved the high accuracy of the SL 

classifier but led to computational improvement. The GA channel selection 

module was effective in preserving the classification accuracy of the SL classifier 

as well as the benchmarking classifiers (k-NN, RF and SVM). In fact, the GA 

channel selection module improved the accuracy of the SVM classifier and 

resulted in less than 1% decrease in accuracy for the SL, k-NN and RF classifiers. 

Using a reduced channel subset substantially improved test-set execution time 
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and the testing time of the GABSLEEG system indicated that it has the potential 

to be used in a real-time BCI. It was faster than the GA-SVM classifier in terms of 

training and testing times; however, it was notably slower than the GA-kNN 

system. This indicates an area for improvement in future i.e. reducing the 

GABSLEEG testing time, which is contingent on the SL classifier.  

The GABSLEEG system outperformed conventional benchmarking 

approaches, namely GA-kNN, GA-SVM and GA-RF pipelines in terms of accuracy, 

sensitivity, and specificity. The GABSLEEG system had the most robust 

performance when training data size was reduced. The GABSLEEG system also 

performed on-a-par with many systems in the literature, and outperformed state-

of-the-art SL [11] and CNN-based [7] classifiers which were published as recently 

as 2020 [11]  and 2018 [7] . The GA module was just as effective as a state-of-the-

art Fisher channel selection algorithm [30], [52], [219]. 

 Although the GABSLEEG classifier performed robustly, it has a noticeable 

drawback. The dictionary was constructed by segmenting trials, extracting a 

feature vector with a length equal to the number of channels in the subset, and 

then storing the entire dictionary of feature vectors in memory. Since a single 

dataset can have hundreds of training trials, this could lead to a large amount of 

occupied memory. During experimentation for this Chapter, typically 6.4GB or 

more of the 8GB of memory on the laptop used was occupied during use of the SL 

classifier. Furthermore, the OMP algorithm is also memory intensive [54]. 

Although the GABSLEEG system could be run for subject-specifically trained 

systems where training data from just one subject is required, the memory 

demands of such a system for cross-subject EEG data, where hundreds of training 

trials from multiple subjects are used, may be great. Furthermore, the time taken 

for the OMP algorithm to encode test samples depends, in part, on the dictionary 

size, possibly leading to even slower test times. Although using less data would 

be a possible solution, due to the great inter-subject variability of EEG data [34], 

arbitrarily reducing the number of training samples in cross-subject EEG 

classification may lead to a less optimal performance. Dedicated algorithms for 

dictionary reduction could be an option for future work [230]. Deep learning 
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systems, particularly CNNs, have already been found to be very effective for 

cross-subject MI EEG classification [7], [58]–[60], [164] They can be trained to 

extract abstract features based on large training datasets without needing the 

whole training set to be loaded into memory as is the case for a SL dictionary-

based classifier. 

Another issue impeding the expansion of the GABSLEEG system to 

subject-independent channel selection is the involved execution times for GA 

channel selection. This issue is discussed in greater depth in Chapter 6, where the 

execution time of the GA channel selection module for subject-independent 

channel selection is compared to other channel selection methods, including the 

novel ICS layer channel selection method, which is the focus of Chapter 6.  

 Deep learning systems are ideal candidates for subject-independent 

channel selection due to their track record in cross-subject EEG classification [7], 

[58]–[60], [164]. The next chapter, Chapter 6, is focused on subject-independent 

channel selection using CNNs and presents a versatile method that was applied 

to two different architectures. This channel selection approach is found to be 

more computationally efficient than the GA channel selection approach. 

  



172 
 

Chapter 6 : An Integrated 

Channel Selection Layer for 

Subject-Independent Channel 

Selection in CNN Networks 
 

 

6.1 Introduction  

This chapter presents a novel, integrated channel selection (ICS) layer which can 

be used for subject-independent channel selection in different CNN networks. 

CNN-based channel selection for MI EEG channel selection has been gaining 

popularity in recent years [23], [24], as discussed in Chapter 3 (Sections 3.5.2.3 

and 3.5.2.4). Two main gaps in the literature were identified: i) a lack of focus on 

subject-independent channel selection, and ii) CNN-based channel selection 

methods are typically tested on just one architecture, meaning their versatility is 

undocumented. The wider literature in MI EEG channel selection also tends to 

focus on subject-specific channel selection [13], [23], [46]–[49], and a study by 

Handiru et al. [52] has found that subject-independent channel selection may not 

perform on-a-par with subject-specific channel selection. Notwithstanding this, 

subject-independent channel selection is desirable because it removes the 

channel selection latency time associated with subject-specific training. It can 

also lead to lower hardware costs because effective subject-independent channel 

selection means that systems can be sold with fewer electrodes, making for a 

more practical BCI set up. See Chapter 3 (Section 3.5.2.4) for a more in-depth 

discussion on the benefits of subject-independent channel selection.  

The ICS layer method presented in this chapter addresses these gaps in 

the literature. Firstly, it was found to be effective for subject-independent channel 

selection; in fact, there was no statistically significant difference between 

classification accuracy results when channels were selected in a subject-specific 
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and subject-independent manner (Section 6.4.1).  The ICS layer channel selection 

technique also outperformed two other state-of-the-art channel selection 

techniques (Section 6.4.2).  

The new ICS layer that is presented in this chapter was found to be 

versatile: it was effective for MI EEG channel selection when applied to two 

different CNN architectures and tested on two different datasets. In all cases, it 

outperformed benchmarking systems which select channels based on a ranking 

scheme like that used in the ICS layer method (Section 6.4.2).  

The method in this chapter can be compared with the GA channel selection 

method from Chapter 5. In Chapter 5, channel selection was applied to improve 

the execution times in the testing phase by selecting subject-specific channels 

during training. This approach could also improve the practicality of the system 

by reducing the number of electrodes used in the test phase, which represents 

practical use of the system. Subject-specific channels are selected using the 

training data of the individual subject and the selection process increases the 

training latency of the BCI system. The work in this chapter goes a step further 

and is focused on subject-independent channel selection, where channels are 

selected using data from a pool of source subjects, and the subset is applied 

directly to a target subject. An ICS layer, which can be added to the start of a 2D 

CNN network for channel selection, was designed for this purpose. The ICS layer 

has the same size as the input data segment and consists of trainable weights with 

sparse L1 activity regularization to suppress channels that are redundant. The 

proposed, new ICS-CNN system is trained end-to-end, then the weights of the ICS 

layer are extracted. An average weight value for each channel is obtained, and the 

channels are ranked, with larger average weights being associated with more 

important channels. In this chapter, the GA channel selection method and the ICS 

layer method are compared for the subject-independent channel selection 

problem in Section 6.4.3. 

Reducing the number of EEG channels using the ICS layer did, however, 

result in a statistically significant decrease in classification accuracy when 

compared to using the full EEG montage. Transfer learning was applied to try and 
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improve classification performance. Two kinds of transfer learning approaches 

were compared: RTL and MTL, which were previously introduced in Chapter 3 

(Section 3.4.2). RTL involves pre-training the CNN network using source data and 

then fine-tuning using the targets’ data, whilst MTL involves merging the source 

and target data and training the CNN models. In three out of the four experiments 

carried out in this chapter, MTL performed worse than RTL in terms of 

classification accuracy. Furthermore, MTL consistently increased the training 

latency experienced by the target subject by a notable amount. Applying RTL to 

the CNN classifier was an effective way of improving the classification accuracy 

when the number of channels was reduced. In fact, when using RTL, there was no 

statistically significant difference in accuracy when comparing results obtained 

using the full EEG channel montage and when using half the channels. These 

results (in Section 6.4.4) are a novel contribution because, to the best of the 

authors’ knowledge, there has been no explicit investigation focused on 

comparing RTL and MTL in this way for 2D CNNs for MI EEG classification, 

particularly within the context of a channel selection framework. This highlights 

the significance of the results in this chapter, in which a channel selection 

approach has been developed for CNN classifiers, and transfer learning used to 

improve performance.  

A comprehensive execution time analysis (Section 6.4.5) investigates the 

computational benefits of subject-independent channel selection, the effect of 

RTL and MTL on training times, and compares the times taken for channel 

selection when using the ICS layer, the GA channel selection module, and the 

benchmarking approaches.  

The rest of this chapter is structured as follows. The proposed ICS layer 

method is introduced in Section 6.2, and then the experimental methodology is 

discussed in detail in Section 6.3. In Section 6.4 the results are presented together 

with a discussion of their relevance. Finally, Section 6.5 discusses the concluding 

remarks.   
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6.2 Proposed CNN-Based Integrated Channel 

Selection Layer Method 

Figure 6.1 shows how the proposed ICS layer can be applied to a CNN network to 

carry out channel selection. The CNN classification module can be based on any 

CNN classifier that takes as input EEG time segments of size (𝑁 × 𝑇), where 𝑁 is 

the number of EEG channels in the dataset and T is the number of samples in the 

time segment. These segments are structured as (1, 𝑁, 𝑇) for input to the CNN to 

create an extra dimension for the CNN filter signals to be stored. As discussed 

previously in Chapter 3, CNN classifiers typically have an identity layer which 

takes the EEG segments as input, which in Figure 6.1 is called the ‘Input Layer’. 

As shown in Figure 6.1, the ICS layer is placed between this Input Layer and the 

‘CNN Classification Module’, which consists of the CNN feature extraction and 

classification layers. Note that prior to being passed into the ICS layer, the input 

data is reshaped to size (𝑁 × 𝑇), and after exiting the ICS layer the data is 

reshaped to size (1, 𝑁, 𝑇). The reshape layers were not shown in Figure 6.1 for 

simplicity.   

The ICS layer has size (𝑁 × 𝑇) and consists of trainable weights. In the ICS 

layer there is a trainable weight for every time sample on every channel in the 

input segment. When a segment of data is passed to the ICS layer, each sample is 

 

Figure 6.1: A high level diagram of how the ICS layer can be applied to a CNN classifier. 
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multiplied with its corresponding weight in the layer. Thus, the ICS layer can 

produce a ‘gain’ or ‘attenuation’ in each sample in the input through the 

multiplicative weights. At the start of training, the weights in this layer are all 

initialized to a value of one. Therefore, at the start of training, the ICS layer 

behaves as an identity layer, passing the time series signals directly to the CNN 

Classification Module. Note that the weights in the CNN Classification Module are 

randomly initialized in keeping with the literature [7], [8]. The weights in the ICS 

layer are subject to an L1 regularization penalty, governed by a regularization 

factor of 0.01. The aim of this sparsity constraint is to force channels that have a 

minimal contribution to the classification process to be assigned smaller weights 

during training.  The ICS layer was implemented as a custom layer in TensorFlow 

with Python 3.   

The first step in the channel selection process involves training the system 

in Figure 6.1 in an end-to-end manner. Information about the training 

methodologies used can be found in Section 6.3.3.1. After training, the weights of 

the ICS layer are extracted as an array of size (𝑁 × 𝑇) for post-processing. The 

core hypothesis of this channel selection approach is that larger weights in the 

ICS layer correspond to greater importance within the CNN network. The ICS 

layer weights are averaged such that a vector of length 𝑁 is obtained, with a single 

average weight value for each EEG channel. The average weight values are the 

‘scores’ of the EEG channels, and the channels are ordered in descending order. 

The channel associated with the highest score is considered the most important 

and the channel with the lowest score is considered the least important. The 𝑀 

channels with the highest scores are selected for the EEG channel subset, where 

the value of 𝑀 is set by the user. The original CNN classifier (i.e. without the ICS 

layer) is then trained using the selected EEG channel subset.  

Figure 6.2 shows an example of the ICS layer weight analysis for subject 

1A from the Graz 2A dataset [72], [111]. More information on the dataset can be 

found in Section 6.3.1.1. In this example, the ICS layer was applied to the EEGNet 

architecture [7]. The first image on the left shows the ICS layer weights obtained 

through subject-independent training. The ICS layer directly maps onto the input 
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data segment, so the y-axis is associated with the different EEG channels in the 

dataset, whilst the x-axis is associated with time samples. There are 256 time 

samples at the input since two-second segments of EEG data recorded at 128Hz 

were used. The colours denote the size of the weights, and the colourbar on the 

right-hand side gives an indication of the weight values. Note how the larger 

weights are found towards the centre of the image, which corresponds to the 

centre of the trial, where ERD activity can be expected [68]. The second image 

shows the average weight value associated with each channel, and indicates that 

in this case channels Cz, CP3 and CP4 are of greatest importance. The final image 

shows the channels ordered in descending order according to mean weight, with 

channels Cz, CP3 and CP4 at the top of the list being the most important channels, 

and channel Pz with the lowest weight value being considered the least important 

at the bottom of the list.  

 

6.2.1 Applying the ICS Layer to State-of-the-Art CNNs 

The ICS layer is applied to two different state-of-the-art CNN networks, namely 

ShallowConvNet [8] and EEGNet [7], which were previously introduced in 

Chapter 3 (Section 3.4.1.3). For channel selection, the ICS layer is added after the 

 

Figure 6.2: Analysis of the ICS layer weights. The first image on the left shows an example of 

the ICS layer weights obtained for subject 1A in the Graz 2A dataset when cross-subject 

training is used. The x-axis corresponds to the time samples and the y-axis corresponds to the 

channels. The colormap shows the value of each weight. The second image shows the average 

weight value for each channel and the third image shows the channels sorted in descending 

order (top to bottom) according to the mean weight value.  
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input layers of the CNNs. Complete layer-wise descriptions of the 

ShallowConvNet and EEGNet networks with the ICS layer included are shown in 

Table 6.1 and Table 6.2, respectively. The layers added for channel selection are 

highlighted in red, and the descriptions include the reshape blocks as well as the 

ICS layer. The hyperparameters were set as in the Tables, which were 

recommended by the literature [7], [8]. The values of other parameters were set 

as follows: Samples is 256 since the segments are always 2s long and recorded at 

Table 6.1: A summary of the structure of ShallowConvNet with the ICS layer added. 

Layer Details 

Input identity layer Shape: (1, No Channels, Samples) 
Reshape Layer Output Shape: (No Channels, Samples) 
ICS Layer Shape: (No Channels, Samples) 
Reshape Layer  Output Shape: (1, No Channels, Samples) 
Conv2D Layer (Temporal convolution) 40 filters, kernel size (1, W) 
Conv 2D Layer (Spatial filtering) 40 filters, kernel size (No Channels, 1) 
Batch Normalization + Dropout Dropout rate: 0.5 
Activation Layer Square activation function 
Average Pooling (2D) Pool-size (1, 35), stride size (1,7) 
Activation layer Log activation layer 
Flatten layer - 
Dense Layer (Linear classification output layer) 4 units; Softmax activation 

 

Table 6.2: A summary of the structure of EEGNet with the ICS layer. 

Layer Details 

Input identity layer Shape: (1, No Channels, Samples) 
Reshape Layer Output Shape: (No Channels, Samples) 
ICS Layer Shape: (No Channels, Samples) 
Reshape Layer  Output Shape: (1, No Channels, Samples) 
Block 1  

Conv2D Layer (Temporal convolution) F1 filters, kernel size (1, Fs/2) 
Batch Normalization - 
Depthwise Conv2D Kernel Size (No Channels, 1), depthwise 

multiplier D 
Batch Normalization - 
Activation Layer Activation function: Elu 
Average Pooling (2D) Pool size: (1,4) 
Dropout Layer Dropout rate: 0.5 

Block 2  
Separable Conv2D F2 filters, kernel size (1,16) 
Batch Normalization - 
Activation Layer Activation function: Elu 
Average Pooling (2D) Pool size (1,8) 
Dropout Layer Dropout rate: 0.5 

Block 3  
Flatten Layer - 
Dense Layer (Linear classification output layer) 4 units; SoftMax activation 
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a sampling frequency (Fs) of128Hz, W is 13, and D is 2, in accordance with the 

literature [7], [8]. No Channels depends on the dataset.  

For better visualization, Figure 6.3 shows the ICS layer added to the 

ShallowConvNet architecture with 22-channel EEG data as input. Note how it has 

been added immediately after the input layer and before the first Conv2D layer. 

The batch normalization and droupout layers for ShallowConvNet and the 

reshape layers associated with the ICS layer have been omitted from the 

illustration for simplicity. The ICS layer does not in any way alter the 

characteristic classification layers of the original CNN but simply weights the 

input.  

 

  

6.3 Experimental Methodology  

This section opens with a discussion of the datasets and pre-processing methods 

used, and then describes the performance measure used. It then explains the 

training methodologies for channel selection and transfer learning. This section 

concludes with a summary of the benchmarking systems used and the execution 

time analysis methodology. 

6.3.1 Datasets, Pre-Processing and Data Augmentation 

Two datasets were used for evaluation: the Graz 2A dataset [72], [111] and the 

high gamma (HG) dataset [8], [112]. Both datasets present a four class MI EEG 

 

Figure 6.3: An example of the ICS layer added to ShallowConvNet. The ICS layer was inserted 
between the input layer and the first convolutional layer. For simplicity, the reshape layers 
before and after the ICS layer have been omitted. 
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classification problem and were chosen because they have been widely used in 

the literature for CNN-based classification [6]–[9], [59], [60], [64].  They have also 

been used in previous studies [7], [8] with the CNN architectures to which the ICS 

layer is applied in this chapter. Furthermore, these datasets have more subjects 

than the BCI datasets used in Chapter 4 and Chapter 5, making them more 

suitable for investigating transfer learning.  

The Graz 2A and HG datasets were pre-processed according to 

recommendations in the literature [7], [8], [112]. Regardless of the dataset used, 

for testing, data in the interval 0.5s - 2.5s in the EEG trials was used for 

classification, and this was in-keeping with the literature [7]. Data between the 

0.5s and 2.5s time points of trials is commonly used because this is where the 

ERD activity that characterizes MI is typically captured [7], [68]. 

 The data in the Graz 2A dataset was pre-processed according to the 

recommendations by Lawhern et al. [7]. The steps were as follows: each EEG trial 

is pre-processed using a two-step method. First, to remove low frequency drifts 

and artifacts, the data was high pass filtered with a passband frequency of 4Hz. A 

minimum-order filter that automatically compensates for any filter delays was 

used. Afterwards, the signals were down sampled to 128Hz. This reduces the 

folding frequency of the signals to 64Hz, thus eliminating higher frequencies 

which are more often associated with noise, whilst still encapsulating the alpha 

band, beta band, and part of the gamma band. No additional pre-processing was 

carried out on the HG dataset, since it had already experienced some pre-

processing, described in Section 2.2. 

As previously mentioned in Chapter 3 (Section 3.6) some systems segment 

EEG data to augment the training dataset. This is particularly common for DL 

classification systems [6], [8], [58], [60] since they need large datasets to prevent 

overfitting [6]. Thus, the training data from both datasets was augmented 

through a segmentation method to increase its size by a factor of three. This was 

achieved by segmenting each training trial into three using an overlapped moving 

window approach that obtains segments from the time intervals: 0.5s-2.5s, 1.0s-
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3.0s and 1.5s-3.5s within trials. Cropping techniques such as this are widely used 

to augment EEG datasets for training CNN classifiers [6], [8], [58], [60].  

 

6.3.2 Performance Measure 
Since multi-class classification problems are tackled in this chapter, categorical 

accuracy was used to assess the classification performance of the systems. This is 

a measure used for EEG-based CNNs in the literature [7], [59], [60], [231], and 

comprises of the percentage of correctly classified trials to the total number of 

trials classified, as shown in (6.1):  

 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
  (6.1) 

 

 

6.3.3 Training Methodologies 
This section summarizes the training methodologies used for channel selection 

and transfer learning.  

6.3.3.1 Channel Selection 

The training process for ICS-based channel selection involves two steps: 

A) Train the CNN classifier with the ICS layer added and carry out the post-

training weight analysis previously described in Section 6.2. 

B) Train the CNN classifier using the reduced channel subset. The ICS layer is 

not included in this step. 

For both steps A and B, categorical cross-entropy loss was used for CNN 

training because both datasets in this chapter are multiclass. The Adam optimizer 

was used, and training was carried out for 100 epochs, which was in-keeping with 

trends in the literature [188], [232], [233]. To prevent overfitting, the early 

stopping approach was used [7]. In this approach, the training data is split into a 

training subset and a validation subset, with the training subset being used for 

learning but the weights that gave the best results on the validation subset being 

loaded at the end of training. This is an established training method for the CNNs 
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used [7].   At the end of this section, a brief analysis verifies that using 100 epochs 

did not lead to underfitting.  

 In step A, the training data was randomly divided into two groups, a 

training subset, and a validation subset. The ratio used for splitting data into the 

training and validation subsets was 80:20. The data division was stratified, 

ensuring that the training and validation subsets were comprised of the same 

percentages of trials for each class. When carrying out subject-specific channel 

selection, the training data of the subject was used, whereas when subject-

independent channel selection was carried out, the training data of all the other 

subjects was combined into a single training dataset. In the case of the Graz 2A 

dataset, data from 8 other subjects was merged, whereas for the HG dataset, data 

from 12 other subjects was merged. The CNN-ICS network was trained for 100 

epochs, and at the end of training the network weights that gave the best 

categorical classification accuracy on the validation subset were loaded to the 

model. The ICS layer weights were then extracted for further processing. At the 

end of step A, a set of 𝑀 channels was selected.  

 Step B uses subject-specific data from the target. The performance of the 

channel subset was evaluated using five-fold cross-validation, which was carried 

out as follows: 

1) Randomly divide the training data into five groups. This data division 

resulted in an 80:20 split between training and validation data, like in step 

A. Stratified k-fold cross-validation was used, meaning that the percentage 

of samples from each class is the same for every fold, ensuring balanced 

training.  

2) Randomly initialize the weights in the CNN model.  

3) Train the CNN for 100 epochs using four groups of data for learning and 

one for validation. At the end of the 100 epochs, load the best weights and 

evaluate the performance of the model on the test set. 

4) Repeat steps 2) and 3) for every fold, and then calculate the average 

performance on the test set.  
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Different channel subset sizes were considered in investigations. For the Graz 

2A dataset, subset sizes of 11, 6 and 3 were considered, whilst for the HG dataset 

subset sizes of 22, 11, 6 and 3 were considered. Note that at each step, the channel 

subset size is decreased by half or approximately half.  

To verify that 100 epochs provided adequate training and did not lead to 

underfitting, an analysis of the validation training curves for 500 epochs was 

carried out. In this analysis ShallowConvNet and EEGNet were trained in a 

subject-independent manner on the Graz 2A and the HG datasets for 500 epochs. 

In this analysis all the channels in the dataset were input to the classifiers. A five-

fold cross validation approach was used, such that five validation data training 

curves were obtained per subject. These were averaged to obtain a single training 

curve per subject. The resulting curves for individual subjects were then 

averaged again for each dataset-classifier pairing to obtain the plots in Figure 6.4. 

The vertical red lines mark 100 training epochs. In every case, by 100 epochs the 

bulk of the learning has been achieved, with the curves already flattening out 

notably by the time 100 epochs has been reached. Beyond 100 training epochs 

there is limited change in validation accuracy. These results suggest that training 

for 100 epochs was acceptable for the CNNs considered.  

 

Figure 6.4: Plots of the average validation training curves for ShallowConvNet and EEGNet 
when using the Graz 2A and HG datasets. The y-axes show the validation set accuracy and the 
x-axes show the epochs.  
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6.3.3.2 Transfer Learning  

Transfer learning was applied to the CNNs with the aim of improving the 

classification performing when using a reduced channel subset. Results obtained 

using two different methodologies, namely RTL and MTL, were compared. 

Regardless of the transfer learning strategy used, it only affects the outcome of 

step B in Section 6.3.3.1 and thus has no effect on the channels selected. These 

methodologies are discussed in more depth in the rest of this section.  

RTL is a two-step process: first a base model is trained using source data 

from other subjects, then the model is fine-tuned using target data. Consider the 

base model training process. The Graz 2A dataset has a total of 9 subjects, 

meaning that for each target subject there is source data available from 8 other 

subjects. The training trials from the source subjects were combined and 

randomly divided into a training subset and validation subset using an 80:20 

ratio. Again, stratified data division was used.  In the case of the HG dataset, 12 

source subjects are available for each target subject, and the training and 

validation subsets were obtained using the same ratio. The base model was 

trained using 100 epochs and the Adam optimizer. After training, the weights that 

gave the best categorical classification accuracy with the validation set were 

loaded to the base model.  

The base model was then fine-tuned using the target data. This was 

achieved by carrying out step B in Section 6.3.3.1, but instead of randomly 

initializing the weights in the CNN model, the base weights were used.  

Note that base model training can be carried out well in advance of the 

fine-tuning step and, in a well-planned practical implementation, the time taken 

to train the base model would not contribute to the training latency time 

experienced by the target subject.   

In the case of MTL, the source data was combined with the target training 

data, and the CNN in step B was trained from scratch using this data.  

In this analysis, the aim was to use transfer learning to improve 

performance so that there is no degradation in accuracy when the number of 
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channels was reduced by half through ICS channel selection. Thus, for the Graz 

2A dataset 11 channels were selected and for the HG dataset, 22 channels were 

selected. Regardless of the transfer learning method used, the channels were 

selected in a subject-independent way.  

6.3.4 Systems used for Benchmarking 
The channel selection methods used for benchmarking the novel ICS layer 

method were based on two state-of the art methods from the literature [13], [47]. 

Both approaches are filter-based and use a statistical analysis on the raw EEG 

data to rank the channels. The first approach is a correlation-based method 

presented by Jin et al. [13] and the second is a covariance-based method 

presented by Gurve et al [47]. These methods were chosen since they resemble 

the ranking approach used by the ICS layer method.   

6.3.4.1 Correlation Coefficient Based Channel Selection 

Correlation coefficient channel selection (CCS) [13] is based on the hypothesis 

that channels related to MI activity will be strongly correlated across trials. Based 

on a Pearson correlation analysis, channels which are correlated with 

comparatively few other channels across trials are deemed to be redundant and 

are excluded from the channel subset. The approach is as follows: 

1. The signals in all EEG training trials are Z-score normalized so they have a 

mean of zero and a standard deviation of 1.  

2. For each trial in the training dataset: 

a. Obtain the correlation matrix based on the correlation coefficient. 

Since the directionality of correlation is not of interest, only 

absolute values are included in the matrix. 

b. The mean value of each row is calculated. This gives a score that is 

related to the strength of the correlation between a given channel 

and the other channels in the dataset. Channels with a higher score 

are considered more important.  

c. Rank the channels according to the score and choose the M 

channels with the highest scores to form a candidate subset.  
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To obtain the final subset of channels, the M channels that are most 

frequently included in the candidate subsets are used.  

6.3.4.2 Covariance and Non-Negative Matrix Factorization 

Channel Selection  

The second benchmarking approach is based on the covariance and non-negative 

matrix factorization (CNMF) method presented by Gurve et al [47]. CNMF-based 

channel selection consists of the following steps: 

1. For each trial in the training dataset: 

a. Compute the covariance matrix, 𝐶𝑁. If the EEG signal consists of 𝑁 

channels and the data on channel 𝑘 is denoted by 𝑥𝑘(𝑡), where 𝑡 is 

the time sample, then the covariance matrix is [47]:  

𝑪𝑵 =  (
𝑉𝑎𝑟(𝑥1) ⋯ 𝐶𝑜𝑣(𝑥𝑁 , 𝑥1)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑥1, 𝑥𝑁) ⋯ 𝑉𝑎𝑟(𝑥𝑁)

), where 𝑉𝑎𝑟(. ) is the 

variance and  𝐶𝑜𝑣(𝑎, 𝑏) is the covariance between signals 𝑎 and 𝑏. 

Since directionality is not important, the absolute value of the 

covariance matrix is considered.  

b. The covariance matrix is decomposed using non-negative matrix 

factorization (NMF). The NMF decomposition can be summarized 

as [47]: 𝑪𝑁 ≈ 𝑾𝑯, where 𝑾 is called the template or basis matrix 

and 𝑯 is called the activation matrix. These matrices have a size of 

𝑁 × 𝑟 and 𝑟 × 𝑁, respectively, where 𝑟 is the rank for matrix 

factorization. The authors recommend a rank of 3 [47]. Details on 

how NMF is carried out can be found in [47]. 

c. The rows of the activation matrix are then normalized using:  

𝐻𝑗𝑁 =
𝐻𝑗−min (𝐻𝑗)

max(𝐻𝑗)−min (𝐻𝑗)
, where 𝐻𝑗  is the 𝑗th row in 𝑯 and 𝐻𝑗𝑁 is the 

normalized row.  

d. The root-mean-square-deviation (RMSD) of each row from 𝐻𝑟𝑒𝑓, 

which is a straight line of value 0.5, is then calculated. The RMSD is 

calculated as: 
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 𝑅𝑀𝑆𝐷 =  √
1

𝑁
∑ ‖𝐻𝑗𝑘 − 𝐻𝑟𝑒𝑓‖

2𝑁
𝑘=1  (6.2) 

e. The values in the row of the activation matrix which has the 

maximum RMSD score are used as the weights for the channels.  

f. Guave et al. [47] consider larger weights to be associated with more 

important channels. Thus, the M channels with the highest weights 

are selected as a candidate subset. 

Like the approach used for the CCS method, the M channels which feature 

most frequently within the candidate subsets are selected to form the final subset.  

6.3.5 Comparison to the GA Channel Selection Module 
The ICS layer method was also compared to the GA channel selection module 

presented in Chapter 5. The GA was applied to the CNN channel selection process 

by replacing the SL classifier with ShallowConvNet or EEGNet in Algorithm 2, 

which was presented in Section 5.2.3. A comparison between the GA channel 

selection module and the ICS layer method for subject-independent channel 

selection is presented in Sections 6.4.3 and 6.4.5.4. In this analysis, channel 

selection was carried out for both ShallowConvNet and EEGNet with the Graz 2A 

dataset. Only the Graz 2A dataset was used for this comparison because the GA 

tuning and channel selection process took significant execution time, and results 

based on the Graz 2A dataset were deemed sufficient for comparison in terms of 

classification accuracy and execution times.  

The GA had to first be tuned for the CNN channel selection problem. 

Previously, in Chapter 5, the number of channels in the subset and the size of the 

population were both tuned (Section 5.3.5.1). Since the tuning process is 

involved, the number of channels in the subset was set to 11. This corresponds to 

half the channels in the Graz 2A dataset and is also the size of the channel subset 

used in other analysis in this chapter (namely in Section 6.4.4). Thus, only the 

population size of the GA was tuned in this chapter. Population sizes of 5, 10, 20 

and 30 were considered during the grid-search tuning process. In this tuning 

process, the source data associated with a target subject was divided into an 

80:20 ratio, with 80% being used for learning and 20% being used for validation. 



188 
 

Recall that the source data consists of the training data of all the other subjects in 

the dataset, so if subject A1 is the target, the source data is the training data from 

subjects A2-A9. The GA channel selection approach was then run for each of the 

different population sizes. The validation accuracy obtained with the best 

individual (i.e. the chosen candidate subset), and the execution time taken to 

execute the GA channel selection process were recorded. This process was 

repeated for all subjects in the Graz 2A dataset. Note that this whole search 

process was carried out twice, once when using ShallowConvNet as the classifier 

and then when using EEGNet as the classifier.  

The execution time of the tuning process was also monitored. For each 

population size, the time taken for the GA to run on each subject was recorded. 

The execution times for each population size were then averaged across subjects. 

The total time taken to accumulate the results for all subjects and population 

sizes was 21.89 hours for ShallowConvNet and 24.1 hours for EEGNet. Whilst 

recording these computational results, all optional background processes on the 

laptop used were halted. This analysis was carried out using a Lenovo™ ideapad 

330 laptop using a 64-bit Windows 10 operating system and an Intel® Core™ i5- 

8300H, 2.30GHz CPU. 

Figure 6.5 shows the validation accuracy results, averaged across subjects, 

and the execution times obtained for each population size. The blue plots are for 

EEGNet and the red plots are for ShallowConvNet. The individual results for each 

subject can be found in Table A 1- Table A 4 in the Appendix. Considering the plot 

for validation accuracy (on the left) it is clear that, in general, the average 

accuracy tended to improve as the population size increased. Considering the plot 

on the right, the execution time always increased substantially as the population 

size was increased. Previously, when tuning the GA module in Chapter 5, the best 
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hyperparameter was the one which gave the greatest accuracy during the grid-  

search. However, it is evident that population size can have a substantial impact 

on the computation times of the GA module. Thus, in this chapter the tuning 

process of the GA was refined to include a statistical analysis that factors in both 

validation accuracy and execution time.  

To assess whether there was any significant difference in classification 

accuracy for the different population sizes, a one-way analysis of variance 

(ANOVA) was carried out on Table A 1 and Table A 3 in the Appendix, which 

contain the individual subject results for classification accuracy. An ANOVA was 

used because the data in the tables was previously found to be normal using an 

Anderston- Darling test. For ShallowConvNet, the ANOVA gave a p value of 0.9916 

and for EEGNet it gave a p value of 0.9863. Since, in both cases, p >0.05, there was 

no significant difference in classification accuracy across the different population 

sizes. Similarly, a statistical test was used to assess whether there was a 

significant difference in execution times when different population sizes were 

used (data in Table A 2 and Table A 4 in the Appendix was involved in this 

analysis). An ANOVA test on the results of ShallowConvNet gave a p value of 

1.29e-9 and a Kruskal-Wallis test on the results of EEGNet gave a p value of 7.24e-

 

Figure 6.5: Plots of how the average validation set accuracy (left) and the average 
computational times during GA tuning (right), vary with population size for ShallowConvNet 
and EEGNet. 
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7. Since p < 0.05, these results indicate that the execution time varied significantly 

with population size. A Kruskal-Wallis test was used for the EEGNet results 

because an Anderston-Darling test found that the result set was non-normal, and 

thus a test for non-normal data was used.  

 Based on this hyperparameter tuning analysis, a population size of 5 was 

chosen because it provided similar accuracy results to larger population sizes, 

but with a substantially lower execution time.  

 

6.3.6 Execution Time Analysis Methodology 
A four-part execution time analysis was carried out. Figure 6.6 and Figure 6.7 

capture the training and testing latencies when subject-specific and subject-

independent channel selection is carried out, respectively. In both diagrams, the 

‘Target Training Phase’ captures the latency experienced by the target subject 

before they can use the BCI. In the case of subject-specific channel selection 

(Figure 6.6) this latency consists of the recording of the target subjects training 

data, channel selection, and training of the classifier using the selected channels. 

In the case of subject-independent channel selection (Figure 6.7) the ‘Target 

Training Phase’ consists of just the training data recording and the training of the 

classifier. This is because subject-independent channel selection (yellow block in 

 

Figure 6.6: A diagram showing a breakdown of the latencies involved in the training and 
testing phases when subject-specific channel selection is carried out. 
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Figure 6.7) uses source data from other subjects and can be carried out in 

advance, so it does not create a latency experienced by the target subject.  

 The first part of the execution time analysis investigated the time saved 

during the ‘Target Training Phase’ when subject-independent channel selection 

was carried out. This corresponds to the time taken for subject-specific channel 

selection, denoted by the yellow block in Figure 6.6.  

The second and third parts of the analysis are focused on the training 

times experienced by the user when subject-independent channel selection is 

used.  The second part assessed the impact of using a reduced channel subset on 

the target classifier training time, denoted by the purple block in Figure 6.7. 

Results were recorded when using the full EEG montage of the dataset, and when 

half the electrodes were used. In the third part, the classifier training latency 

times attributed to the RTL and MLT methods were compared. For the RTL 

method, this involves the fine-tuning step carried out using target data, whilst for 

the MTL method, this involves the training of the CNN using merged source and 

target data.  Since transfer learning involves the training of the classifier, this part 

of the analysis is also focused on the purple block in Figure 6.7. 

The fourth and final part of this analysis compares the execution times for 

subject-independent channel selection when using the ICS layer method, CCS, 

CNMF, and GA methods. This latency corresponds to the yellow block in Figure 

 

Figure 6.7: A diagram showing a breakdown of the latencies involved in the channel selection, 
training, and testing phases when subject-independent channel selection is carried out. 
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6.7. This is the only latency in this analysis that is not experienced by the target 

subject, since subject-independent channel selection can be carried out ahead of 

time. 

The first and fourth parts of this analysis involved recording channel 

selection latencies and use the same methodology for recording execution times. 

The execution time for channel selection was recorded for each subject, then the 

average time across subjects was calculated. In the case of the first part, the times 

for subject-specific channel selection using the target training data were 

recorded, whereas for the fourth part the times for subject-independent channel 

selection using the source data were recorded.   

The second and third parts of this analysis are concerned with the time 

taken to train the classifier and used the same methodology for recording 

execution times. This involved recording the training times of the CNN during 

step B of the channel selection process in Section 6.3.3.1. For each subject, the 

CNN training times for each of the 5 folds were recorded, then the median time 

was saved. Finally, the median times were averaged across the subjects to obtain 

the mean training time, and the maximum of the median times was recoded as 

the worst-case time.  

 For this computational analysis a Lenovo™ ideapad 330 laptop with a 64-

bit Windows 10 operating system and an Intel® Core™ i5- 8300H, 2.30GHz CPU 

was used. All optional background processes on the laptop were halted whilst 

these execution time results were recorded.  

 

6.4 Results and Discussion 

This section opens with a comparison of the results obtained when applying the 

ICS layer method to subject-specific and subject-independent channel selection. 

It then compares the performance of the ICS layer method to the two 

benchmarking methods. After, it presents the results obtained when applying 

transfer learning to improve performance with a reduced channel subset. Finally, 
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this section closes with an execution time analysis and a discussion of the most 

frequently selected channels. In all statistical analysis, a 0.05 level of significance 

was used. This means that p-values below 0.05 were considered to indicate 

statistical significance.  

6.4.1 Comparing Subject-Specific Channel Selection and 

Subject-Independent Channel Selection when using the 

ICS Layer Method 

In this section, the results obtained when applying the ICS layer method to 

subject-specific channel selection and subject-independent channel selection are 

compared. Table 6.3 and Table 6.4 present the average categorical accuracy 

results for the Graz 2A and HG datasets, respectively. Both tables contain the 

results for subject-specific and subject-independent channel selection for 

different channel subset sizes. Results for both the ShallowConvNet and EEGNet 

architectures are shown.  

 The subject-specific and subject-independent results were compared 

using statistical tests, with the p-values for each comparison recorded in brackets 

Table 6.4: Comparing classification accuracy results on the HG dataset for subject-specific and 
subject-independent channel selection when applying ICS to ShallowConvNet and EEGNet, for 
different channel subset sizes. 

 ShallowConvNet EEGNET 

Subset 
Size 

Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

3 70.73% 68.29% (p= 0.1046) 64.32% 70.63% (p=0.0464) 
6 79.62% 78.56% (p=0.3596) 71.48%  75.90% (p=0.0114) 

11 83.12% 83.07% (p=0.2076) 76.30% 79.91% (p=0.0151) 
22 87.86% 86.95% (p=0.4071) 79.56% 82.09% (p=0.0233) 

 

Table 6.3: Comparing classification accuracy results on the Graz 2A dataset for subject-specific and 
subject-independent channel selection when applying ICS to ShallowConvNet and EEGNet, for 
different channel subset sizes. 

 ShallowConvNet EEGNET 

Subset 
Size 

Subject-Specific Subject-Independent Subject-Specific Subject-Independent 
 

3 50.40% 49.66% (p= 0.78) 51.34% 50.17% (p =0.49)  
6 57.17% 59.17% (p =0.17) 57.40% 57.84% (p =0.77)  

11 62.12% 63.47% (p =0.10*) 59.84% 59.70% (p =1.00*)  

* A Wilcoxon signed-rank test was used. 



194 
 

in the Tables as (p=…). The categorical accuracy results in Table 6.3 and Table 6.4 

are the result of averaging across subjects. The individual results for subject A1 

with ShallowConvNet is 53.61% for subject-specific channel selection and 

66.88% for subject-independent channel selection, and the rest of the results for 

individual subjects can be found in the Appendix, Table A 5 to Table A 11. The 

statistical tests were carried out using paired subject data from these tables. So, 

for example, when assessing whether there was any significant difference in 

performance when using subject-specific and subject-independent channels for 

the Graz 2A dataset and the ShallowConvNet architecture with a subset size of 3, 

the paired accuracy results for subjects A1-A9 were compared in the statistical 

test. Prior to carrying out the tests, each set of accuracy results were tested for 

normality using an Anderston-Darling test. If both the subject-specific and 

subject-independent result sets were normal, then a paired t-test was used for 

comparison, otherwise a Wilcoxon signed-rank test was used. In the tables, p-

values marked with a superscript Asterix were obtained using a Wilcoxon signed-

rank test, otherwise t-tests were used. The focus in this section is on comparing 

subject-independent channel selection to subject-specific channel selection. A 

comparison between results with channel selection and the full cohort of 

channels is included in Section 6.4.4. 

 Considering the results for the Graz 2A dataset in Table 6.3, no significant 

difference was found between the subject-specific and subject-independent 

results for any subset size (p>0.05). Considering the results for the HG dataset in 

Table 6.4, no significant difference was found in results when using 

ShallowConvNet (p>0.05). However, when using EEGNet, there was always a 

significant difference in performance (p<0.05). In fact, the results indicate that 

using subject-independent channel selection always resulted in a significant 

improvement in accuracy when compared to using subject-specific channels. This 

indicates that the ICS layer channel selection method can select EEG channels that 

generalize well to new subjects. It also indicates that this CNN-based channel 

selection method may work better with more data, even if that data is from other 

subjects. Effective subject-independent channel selection like this is desirable 
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since it can save the target subject from the latency introduced when the channel 

selection algorithm is run on their training data to select a subject-specific 

channel subset. This computational saving is analysed in Section 6.4.5.1. 

These results indicate that the ICS channel selection method was a viable 

approach for subject-independent channel selection for both ShallowConvNet 

and EEGNet, since the results for subject-independent channel selection were 

either not significantly different from those for subject-specific channel selection, 

or they were significantly better. Using the ICS channel selection layer, the EEG 

channels could be pre-selected using data from a pool of source subjects, then 

applied to a target subject with no significant deterioration in performance when 

compared to selecting channels using the subjects’ own training data. This means 

that fewer electrodes can be used for the target subjects, resulting in lower cost 

and improved practicality. It also means that the training times for subjects can 

be improved since the channel selection latency during the individual subjects’ 

training could be axed when using subject-independent ICS channel selection.  

6.4.2 Comparing the ICS Layer Method to Other State-of-

the-Art Channel Selection Techniques 

The performance of the ICS layer for subject-independent channel selection was 

compared to that of the CCS and CNMF methods previously described in Section 

6.3.4. The metric for performance comparisons was the average categorical 

accuracy. Table 6.5 shows the results obtained with the Graz 2A dataset, whilst 

Table 6.6 shows the results obtained with the HG dataset. The tables present the 

results obtained with different channel subset sizes and the peak accuracy values 

are in bold. Subject-wise results obtained with the CCS and CNMF methods can 

be found in Table A 12 to Table A 15 in the Appendix.  

A pairwise statistical comparison was carried out between the paired 

subject results of the ICS method and the CCS or CNMF method in a similar way 

to the analysis in Section 6.4.1, with t-tests being used if all the data was normal 

and a Wilcoxon signed-rank test if it was not. Therefore, for example, the p-value 

of 0.948 in Table 6.5 is based on the comparison of the subject-wise results 
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obtained with the CCS method and those obtained with the ICS layer method, 

when using ShallowConvNet and a channel subset size of 3.  

Across both datasets, the ICS layer method always obtained peak accuracy 

when compared to the other methods, regardless of the channel subset size or 

CNN classifier used.  

Considering the statistical results for the Graz 2A dataset in Table 6.5, 

when using ShallowConvNet, the ICS method performed on-a-par with the state 

of the art. It also significantly improved the performance when compared to 

CNMF when 6 channels were used (p<0.05). Considering the results obtained for 

EEGNet, the ICS method gave significantly improved performance compared to 

the other methods when 6 channels were used (p<0.05). It also significantly 

improved performance compared to the CCS method when 3 channels were 

used(p<0.05). Considering the statistical results for the HG dataset in Table 6.6, 

using the ICS method almost always resulted in significantly improved 

performance, for both ShallowConvNet and EEGNet (p<0.05). The only exception 

was when using EEGNet and the CCS method when 22 EEG channels were 

selected (p>0.05).  

These results indicate that the ICS layer method had a strong performance 

when compared to the state-of-the-art. It always exhibited a greater categorical 

accuracy than the comparison methods, and in 68% of the instances considered 

in Table 6.5 and Table 6.6, the p-value results indicated that the ICS method 

produced significantly improved results compared to the comparison systems. In 

the rest of the instances, there was no significant difference in performance 

between the ICS layer method and the comparison methods. Thus, these results 

indicate that the ICS layer method exhibited strong potential to outperform the 

state-of-the-art, and in the worst-case-scenario, performed on-a-par. 
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 hgh 

Table 6.5: Comparing the results of ICS, CCS, and CNMF channel selection techniques with ShallowConvNet and EEGNet for 
different numbers of channels in the subset. Results for Graz 2A dataset. 

 ShallowConvNet  EEGNET 

Subset Size ICS CCS CNMF  ICS CCS CNMF 

3 49.66% 49.51% (p=0.948) 45.93% (p=0.195)  50.17% 42.14% (p = 0.012) 48.58% (p=0.327) 
6 59.17% 55.88% (p=0.546) 51.71% (p= 9.3e-3)  57.84% 48.83% (p= 0.008) 52.04% (p=0.030)  

11 63.47% 61.32% (p=0.546) 59.64% (p=0.387)  59.70% 57.20% (p = 0.652*) 57.76% (p=0.164*) 

               * A Wilcoxon signed-rank test was used. 

Table 6.6: Comparing the results of ICS, CCS, and CNMF channel selection techniques with ShallowConvNet and EEGNet for 
different numbers of channels in the subset. Results for the HG dataset. 

 ShallowConvNet EEGNET 

Subset Size ICS CCS CNMF ICS CCS CNMF 

3 68.29%  60.03 (p=1.45e-05) 55.75% (p=1.0e-04) 70.63%  59.85% (p= 6.7e-05) 55.90% (p=4.1e-05) 
6 78.56%   70.20% (p=2.7e-06) 65.51% (p=2.9e-07) 75.90%  70.01% (p=0.008*) 65.98% (p=9.7e-05) 

11 83.07%  77.29% (p=0.001) 75.95% (p=8.0e-05) 79.91% 75.56% (p=8.5e-04) 74.03% (p=0.013*) 
22 86.95%  88.72% (p=0.029) 82.89% (p=0.002) 82.09%  81.25% (p=0.274) 79.71% (p=0.036) 

        * A Wilcoxon signed-rank test was used.  
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6.4.3 Comparing the ICS Layer Method to GA Channel 

Selection 

As explained previously in Section 6.3.5, the comparison was conducted for 

subject-independent channel selection when using the Graz 2A dataset, and when 

a subset of 11 channels was selected. Table 6.7 compares the classification 

performance of the ICS layer method to the performance of the GA channel 

selection method for ShallowConvNet and EEGNet. The peak results for 

ShallowConvNet and for EEGNet are highlighted in bold.  

 Considering the average results (bottom row), the ICS layer method 

performs slightly better than GA channel selection in terms of classification 

accuracy. Considering the results for individual subjects, the best channel 

selection method tended to vary with the subject-classifier pairing. For example, 

the ICS layer method gave a higher accuracy for subject A3 when using 

ShallowConvNet, whilst the GA gave a better performance for the same subject 

when using EEGNet.  

 A statistical analysis of the results was also carried out. Since an 

Anderston-Darling test indicated that the results for the ICS layer were non-

normal, a Wilcoxon sign-rank test was used for comparisons. When comparing 

the results of the ICS layer and GA methods for subjects A1-A9 for the 

ShallowConvNet classifier, a p-value of 0.0391 was obtained. Since p < 0.05, this 

result indicates a significant difference in performance between the two methods. 

Table 6.7: Comparing the classification accuracy results obtained with  
subject-independent channel subsets selected using the ICS layer 
method and the GA channel selection method from Chapter 5. 

 ShallowConvNet EEGNet 

Subject  ICS Layer Method GA  ICS Layer Method GA  

A1 77.71% 75.76 76.39% 70.28% 
A2 45.14% 44.44 40.90% 43.06% 
A3 80.14% 80.00 78.96% 84.44% 
A4 56.77% 53.75 48.96% 51.25% 
A5 42.57% 35.83 28.47% 26.18% 
A6 42.29% 39.65 40.28% 39.86% 
A7 77.22% 77.50 70.97% 65.69% 
A8 77.74% 77.98 75.96% 75.81% 
A9 71.67% 69.24 76.39% 77.64% 

Average 63.47% 61.57% 59.70% 59.36% 
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When comparing the results for EEGNet, a p-value of 0.8438 was obtained, 

indicating there was no significant difference in the performance.  

 These results indicate that channel subsets obtained by the ICS layer 

channel selection method and the GA channel selection method performed 

similarly in terms of classification accuracy. However, on average, the ICS layer 

method tended to outperform the GA channel selection method by a small margin 

for ShallowConvNet. 

6.4.4 Transfer Learning for Improved Performance 

Ideally, reducing the number of EEG channels through channel selection should 

not result in a significant decrease in performance when compared to using all 

the EEG channels in the dataset.  

Consider the results in Table 6.8 and Table 6.9 for the Graz 2A dataset 

when using the ICS layer method. Table 6.8 shows the results for ShallowConvNet 

and Table 6.9 shows the results for EEGNet. The tables compare the categorical 

accuracies obtained when using the full EEG montage of 22 channels (‘All 

Channels’) to the case when a subset of 11 channels were used with 

ShallowConvNet and EEGNet. Results for random weight initialization (w/o TL), 

for RTL (w. RTL) and for MTL (w. MTL) were compared to the results obtained 

using all channels. Statistical comparisons were carried out using Wilcoxon 

signed-rank tests since the data was found to be non-normal, and the p-values for 

Table 6.8: For ShallowConvNet- Comparing the categorical classification accuracy obtained when 
using the full cohort of 22 channels in the Graz 2A dataset to using 11 channels selected via the 
ICS layer method, when using randomly initiated weights in the CNN classifier and when using 
transfer learning. 

Subject  
 All 

Channels 
11 Channels 

w/o TL 
11 Channels w. RTL. 11 Channels w. MTL 

A1  79.50% 77.71% 81.18% 83.89% 
A2  48.79% 45.14% 46.94% 56.32% 
A3  80.21% 80.14% 80.07% 84.72% 
A4  63.37% 56.77% 63.44% 65.10% 
A5  43.21% 42.57% 52.78% 57.01% 
A6  44.86% 42.29% 46.94% 54.38% 
A7  81.29% 77.22% 76.88% 82.50% 
A8  79.84% 77.74% 78.98% 78.44% 
A9  75.86% 71.67% 72.08% 67.92% 

Average  66.33% 63.47%  
(p=0.004*) 

66.59% 
(p=0.8203*) 

70.03% 
(p=0.129*) 

 * Calculated using a Wilcoxon sign-rank test 
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each comparison are recorded in the final row of the tables. The highest 

accuracies are highlighted using bold font.  

For both ShallowConvNet and EEGNet, there was a significant decrease in 

classification performance when using the reduced channel subset without 

transfer learning (p<0.05). Using either transfer learning strategy led to an 

improvement in average accuracy, and there was no statistically significant 

difference (p>0.05) between the results using the channel subsets with transfer 

learning and the full montage for either transfer learning approaches.  Using MTL 

provided noticeably improved performance when compared to using RTL for 

ShallowConvNet, although the improvement due to MTL, when compared to 

using all channels, was not significant (p>0.05).  

 Consider now the results for the HG dataset, presented in Table 6.10 and 

Table 6.11. RTL did not have as noticeable an impact on the average accuracy as 

it did with the Graz 2A dataset, with a change of less than 1% when compared to 

not using transfer learning. However, like the Graz 2A dataset, when no transfer 

learning was used, the results were significantly different to the case when all 

channels were used (p<0.05), whereas when RTL was used, there was no 

significant difference (p>0.05). Considering the results for MTL, there was always 

a significant decrease in classification performance when compared to using the 

full montage (p<0.05).  

Table 6.9: For EEGNet- Comparing the categorical classification accuracy obtained when using the 
full cohort of 22 channels in the Graz 2A dataset to using 11 channels selected via the ICS layer 
method, when using randomly initiated weights in the CNN classifier and when using transfer 
learning. 

Subject  
 All 

Channels 
11 Channels 

w/o TL 
11 Channels w. RTL. 11 Channels w. MTL 

A1  73.64% 76.39% 77.71% 76.88% 
A2  44.07% 40.90% 45.28% 51.81% 
A3  81.86% 78.96% 81.74% 84.03% 
A4  52.61% 48.96% 52.40% 50.42% 
A5  36.29% 28.47% 46.88% 43.54% 
A6  44.00% 40.28% 49.31% 52.57% 
A7  77.21% 70.97% 72.29% 75.90% 
A8  78.04% 75.96% 78.65% 78.24% 
A9  79.43% 76.39% 77.08% 67.64% 

Average  63.02% 59.70% 
(p=0.012*) 

64.59% 
(p=0.426*) 

64.56% 
(p=0.426*) 

*Calculated using a Wilcoxon sign-rank test  
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The Graz 2A dataset may have benefitted more from RTL because it has 

less training data per subject than the HG dataset. For the Graz 2A dataset, 

transfer learning may have enabled the classifiers to learn generalizable 

information that improved accuracy. In the case of the HG dataset, there may not 

have been much additional information that could be extracted from the source 

data that could already be obtained from the target data. Furthermore, the data 

in the HG dataset was recorded within a Faraday cabin with electromagnetic 

shielding [8]. This is an idealistic experimental condition that reduces the impact 

Table 6.11: For EEGNet- Comparing the categorical classification accuracy obtained when using 
the full cohort of 44 channels in the HG dataset to using 22 channels selected via the ICS layer 
method, when using randomly initiated weights in the CNN classifier and when using transfer 
learning. 

Subject  All Channels 22 Channels w/o TL 22 Channels w. RTL. 22 Channels w. MTL 

H2 84.50 83.13% 79.00% 76.13 
H3 93.88 92.63% 92.50% 90.63 
H4 97.50 96.88% 96.63% 91.13 
H5 90.63 88.88% 86.00% 79.38 
H6 88.13 89.63% 90.50% 77.75 
H7 77.48 71.45% 81.89% 73.21 
H8 86.63 85.25% 91.88% 81.63 
H9 78.00 72.88% 68.50% 65.38 

H10 87.50 86.25% 86.88% 83.38 
H11 69.13 68.75% 70.50% 68.00 
H12 92.37 92.88% 93.50% 86.63 
H13 87.55 79.25% 78.49% 72.20 
H14 64.00 59.38% 60.63% 58.88 

Average 84.41% 82.09% 
(p=4.8e-12) 

82.84% 
(p=0.091) 

77.25% 
(p=4.44e-4) 

 

Table 6.10: For ShallowConvNet- Comparing the categorical classification accuracy obtained when 
using the full cohort of 44 channels in the HG dataset to using 22 channels selected via the ICS 
layer method, when using randomly initiated weights in the CNN classifier and when using transfer 
learning. 

Subject  All Channels 11 Channels w/o TL 11 Channels w. RTL. 11 Channels w. MTL 

H2 83.62% 87.25% 83.13% 80.13% 
H3 95.50% 96.75% 96.63% 92.00% 
H4 94.25% 97.25% 96.00% 93.88% 
H5 93.00% 90.63% 94.25% 84.63% 
H6 95.75% 91.88% 93.00% 87.63% 
H7 84.15% 83.27% 81.01% 79.37% 
H8 95.00% 91.50% 94.25% 91.25% 
H9 82.38% 83.25% 75.88% 68.00% 

H10 87.25% 84.00% 86.88% 79.75% 
H11 78.63% 75.88% 78.13% 74.25% 
H12 96.88% 96.88% 96.25% 91.38% 
H13 94.72% 92.83% 89.43% 83.27% 
H14 67.50% 59.00% 63.38% 62.63% 

Average 88.36% 86.95% 
(p=2.4e-14*) 

86.78% 
(p=0.091*) 

82.16% 
(p=2.44e-4*) 

           *Calculated using a Wilcoxon sign-rank test 
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of environmental noise [8]. In the case of the Graz 2A dataset, results were 

recorded under more ‘practical’ conditions without electromagnetic shielding 

[72], [111], meaning that the data may contain more noise. Thus, RTL may have 

been more effective with the Graz 2A dataset because it helps the CNN to learn 

more meaningful representations from the data by reducing overfitting to noise.  

 These results indicate that RTL had the potential to ensure that EEG 

classifiers operating with reduced channel subsets performed on-a-par with 

classifiers trained using the full montage. In fact, when using RTL, the number of 

EEG channels used could be halved without any statistically significant change in 

performance when compared to using all channels. Furthermore, RTL could 

improve the categorical classification accuracy when using the reduced channel 

subset, but this effect depends on the dataset used. When compared to MTL, RTL 

had a more stable performance across datasets and classifiers. The results 

suggest MTL may run the risk of leading to a significant deterioration in 

performance, thus RTL is recommended.  

6.4.5 Execution Time Analysis 

6.4.5.1 The Impact of Subject-Independent Channel Selection on 

Target Training Times  

Table 6.12 records the average training latencies introduced when subject-

specific channel selection was carried out on ShallowConvNet and EEGNet, using 

the Graz 2A and HG datasets. The times are longer for the HG dataset because it 

has more training trials per subject than the Graz 2A dataset, as previously 

discussed in Section 6.3.1. The times in Table 6.12 capture the average time saved 

per subject when using subject-independent channel selection, since channel 

Table 6.12: A table showing the average latency introduced by 
subject-specific channel selection for ShallowConvNet and EEGNet, 
when using the Graz 2A and HG datasets. 

 Subject-Specific Channel Selection Latency Times/s 

 ShallowConvNet EEGNet 

Graz 2A Dataset 44.44 35.89 
HG Dataset 208.12 142.77 
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selection does not introduce a latency experienced by the subject. In the case of 

the Graz 2A dataset, the saving is of less than a minute, whereas for the HG 

dataset, the time saving was of approximately 3.5 minutes for ShallowConvNet 

and 2.4 minutes for EEGNet. The time saving is linked to the size of the dataset 

used, with larger datasets experiencing a greater saving since the CNN takes 

longer to train when there is more data. These results confirm that performing 

subject-independent channel selection can lead to a notable decrease in training 

phase time, particularly for larger datasets.  

 

6.4.5.2 The Impact of Channel Selection on Classifier Training 

Times  

The impact of using a reduced channel subset on target classifier training times 

was analysed. In the previous section, it was shown that the number of EEG 

channels used could be halved without any significant change in categorical 

accuracy if RTL is used. This sub-section is focused on comparing the training 

execution times when half the EEG channels are used to when the full cohort was 

used.  In RTL, the pre-training on source data can be carried out prior to the target 

using the system, and therefore is not factored in the training times. This sub-

section is interested in the latency a target subject would experience between 

recording of their own training data and being able to use the system, which 

would encompass just the retraining step. 

 Table 6.13 and Table 6.14 show the average training times and worst-case 

training times recorded on the Graz 2A and HG datasets when all channels were 

used, and when they were halved. Reducing the number of channels led to an 

improvement in the average and worst-case testing times for both datasets. The 

benefit appeared to depend on the dataset used: when the Graz 2A dataset was 

used, the improvement in the average training time for ShallowConvNet was of 

7.1s and 3.27s for EEGNet, which would be negligible in a practical scenario. 

However, for the larger HG dataset, the improvement in average timings was of 

68s and 44s for ShallowConvNet and EEGNet, respectively. The difference in 
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results between the datasets is attributable to the difference in their training data 

sizes. In both cases, however, the improvement in training times was modest 

from a practical perspective.  

6.4.5.3 Comparing the Classifier Training Latencies attributed to 

RTL and MTL 

Table 6.15 and Table 6.16 show the classifier training latencies attributed to RTL 

and MTL for the Graz 2A and HG datasets, respectively. It is immediately evident 

that MTL resulted in a notably larger latency than RTL. The best results for each 

classifier are shown in bold. For the Graz 2A dataset, averaging the mean results 

for both CNNs, the training latency using RTL was under half a minute, whilst the 

latency attributed to MTL was 2.7 minutes. Since the HG dataset had a larger 

Table 6.16: Comparing the average and worst-case latency times (in s) contributed by RTL and 
MTL for ShallowConvNet and EEGNet classifiers when using the HG dataset with 22 channels 
selected. 

 Average Latency Times/s Worst Case Latency Times/s 

 RTL MTL RTL MTL 

ShallowConvNet 114.29 529.00 117.07 528.71 
EEGNet 85.31 398.61 86.48 390.46 

 

Table 6.15: Comparing the average and worst-case latency times (in s) contributed by RTL and 
MTL for ShallowConvNet and EEGNet classifiers when using the Graz 2A dataset with 11 channels 
selected. 

 Average Latency Times/s Worst Case Latency Times/s 

 RTL MTL RTL MTL 

ShallowConvNet 27.03 164.79 27.50 176.65 
EEGNet 24.53 159.22 25.09 290.69 

 

Table 6.14: Comparing the average training times and worst-case training times for the 
ShallowConvNet and EEGNet classifiers with the full EEG montage of the HG dataset (44 channels) 
and half the montage. 

 Average Training Times/s Worst Case Training Times/s 

 44 Channels 22 Channels 44 Channels 22 Channels 

ShallowConvNet 180.94 112.74 199.44 122.32 
EEGNet 132.61 88.72 146.71 100.21 

 

 Table 6.13: Comparing the average training times and worst-case training times for the 
ShallowConvNet and EEGNet classifiers for the full EEG montage of the Graz 2A dataset (22 
channels) and half the montage. 

 Average Training Times/s Worst Case Training Times/s 

 22 Channels 11 Channels 22 Channels 11 Channels 

ShallowConvNet 40.95 33.87 45.30 37.75 
EEGNet 33.55 29.83 37.39 35.30 
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amount of training data and more subjects than the Graz 2A dataset, the 

discrepancies between the RTL and MTL latencies are even more notable. 

Averaging the mean results for both CNNs, MTL contributed 7.73 minutes of 

training latency, whilst RTL contributed just 1.7 minutes. Papers in the literature 

use MTL [65], [172], [174], and this analysis has highlighted the computational cost 

of MTL when compared to RTL. To conclude, RTL has a more stable performance 

in terms of accuracy across classifiers and datasets than MTL, and the target-user 

training latency was approximately 4.5 times shorter.  

6.4.5.4 Comparing the Subject-Independent Channel Selection 

Times for the ICS layer Method and Comparison Systems  

Table 6.17 shows the average subject-independent channel selection latencies for 

the ICS layer method and the CCS, CNMF, and GA methods. The results for both 

ShallowConvNet and EEGNet, obtained using the Graz 2A dataset, are shown. The 

CNMF method has the lowest latency and its results have been emphasized in 

bold.  Although the ICS layer method has a longer latency than the CCS and CNMF 

methods, it still takes under a minute to select the channels. The GA has a notably 

longer training time than the other methods, taking approximately 10 minutes 

and 11 minutes to select channels for ShallowConvNet and EEGNet, respectively. 

Although, in practice, an 11-minute training time might be acceptable, this 

analysis highlights the computational efficacy of the proposed ICS layer method, 

which produces similar classification performance to GA channel selection (as 

previously discussed in Section 6.4.3), but selects channels approximately 12 

times faster for ShallowConvNet and 17 times faster for EEGNet. 

Table 6.17: Comparing the average subject-independent 
channel selection latencies of the ICS layer method and 
comparison methods, namely the CCS, CNMF and GA 
methods. Results for both ShallowConvNet and EEGNet, 
recorded on the Graz 2A dataset are shown. 

 Channel Selection Latency/s 

Method  ShallowConvNet EEGNet 

ICS 49.05 38.55 
CCS 28.49 24.55 

CNMF 28.18 21.81 
GA 622.16 683.82 
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 The ICS approach was not only faster than the GA channel selection 

method, it also produced richer information during the processing time. Although 

the GA channel selection method aimed to select the best subset of 11 channels, 

it does this through the exploration and exploitation of candidate subsets and 

does not give a ranking of the importance of each individual channel. Thus, if the 

subset size were to be changed from 11 channels to some other size, say 5 

channels, the GA channel selection process would have to be run again from the 

start. In contract, the ICS layer method can rank all the channels in the dataset as 

part of the channel selection process.  This means that if the required subset size 

changes, the rankings just need to be consulted to decide which channels should 

be used, without needing to re-run the channel selection process. Thus, the ICS 

layer method is more computationally efficient than the GA channel selection 

method.  

 GA channel selection, being a wrapper channel selection method, is 

expected to take longer than the CCS and CNMF methods, which are filter channel 

selection methods [44]. The ICS layer method forms part of a newer subset of 

channel selection methods which are based on CNNs. However, since CNN 

learning involves backpropagation based on the classification error, this means 

CNN-based channel selection methods are affected by the classification accuracy. 

This makes them conceptually similar to wrapper channel selection techniques, 

which optimize the channel subset based on the classification accuracy. This 

contrasts with filter-based methods which rank the channels independently of 

the classifier. Thus, the ICS layer method is a channel selection method that has a 

sensitivity to the classification error like wrapper methods, which performed on-

a-par with the GA wrapper technique in terms of classification accuracy but was 

found to operate much faster than the GA wrapper method. This analysis verifies 

that the ICS layer method is a computationally efficient tool for channel selection 

in CNNs.  
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6.4.6 Analysing the Selected Channels 

This section discusses the subject-independent channels selected using the ICS 

layer method. These are the same channel subsets that gave the results for the 

ICS layer in Table 6.5 and Table 6.6, previously. In the case of the Graz2A dataset, 

this analysis is focused on the case when 11 channels were selected, and in the 

case of the HG dataset, it is focused on the case when 22 channels were selected. 

The scenario when channel selection is used to approximately halve the number 

of channels was also considered for the channel analysis in Chapter 5 (Section 

5.4.4).    

Since there are 9 subjects in the Graz 2A dataset, 9 subject-independent 

channel subsets were obtained for both ShallowConvNet and EEGNet. Similarly, 

13 subject-independent channel subsets were obtained for both ShallowConvNet 

and EEGNet when using the HG dataset.   

Figure 6.8 shows the frequencies that each of the channels in the Graz 2A 

dataset were selected in the channel subsets. The top image shows the results for 

ShallowConvNet and the bottom image shows the results for EEGNet. ‘Frequency 

of Selection’ means the number of times that a channel was included in a selected 

 

Figure 6.8: Bar plots showing the frequency of selection of different channels from the Graz 2A 
dataset. 
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channel subset. So, for example, channel Fz was selected in the channel subsets 

of 8 out of the 9 subjects when ShallowConvNet was used. Figure 6.9 shows 

similar results for the HG dataset.  

Figure 6.10 and Figure 6.11 show the EEG recording montages used in the 

Graz 2A dataset, with the most popular electrodes selected by the ICS layer circled 

in red. Figure 6.10 shows the most popular channels selected for ShallowConvNet 

and Figure 6.11 shows the most popular channels for EEGNet. Figure 6.12 and 

Figure 6.13 show similar results for the HG dataset. A channel is ‘popular’ if it was 

selected in more than half the subsets, which corresponds to 5 or more subsets 

in the case of the Graz 2A dataset and 7 or more in the case of the HG dataset.  

Note that the frontal (F) electrodes are at the front of the scalp, above the face.  

From the bar charts in Figure 6.8 and Figure 6.9, it is evident that the 

channels detected by the ICS layer depend, to some extent, on the classifier used. 

For example, considering the results of the Graz 2A dataset in Figure 6.8, channel 

Fz was selected in 8 out of the 9 subsets for ShallowConvNet, but was selected in 

only 3 out of the 9 for EEGNet. Conversely, channel Pz was only selected in 2 out 

 

Figure 6.9: Bar plots showing the frequency of selection of different channels from the HG 
dataset. 
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of the 9 subsets with ShallowConvNet but was selected in 6 out of 9 when EEGNet 

was used. Considering the results for the HG dataset in Figure 6.9, channel CPP5h 

was selected in 13 out of 13 of the channel subsets for ShallowConvNet, but in 

only 4 out of 13 when EEGNet was used. Conversely, channel FCz was not used in 

any subset for ShallowConvNet but in 12 with EEGNet.  

Notwithstanding this, the ICS layer determined some channels to be 

important for both classifiers. Examples of these for the Graz 2A dataset are CP4 

and CP3, whereas examples for the HG dataset are C4, CP5, CP6, C1, C2, FFC5h 

and CCP3h.  

 
Figure 6.12: The most popular channels 
selected from the HG dataset when using the 
ICS layer method with ShallowConvNet. 

 
 
 

 
Figure 6.13: The most popular channels 
selected from the HG dataset when using the 
ICS layer method with EEGNet. 

 
 
 

 
 

 
Figure 6.10: The most popular channels 
selected from the Graz 2A dataset when 
using the ICS layer method with 
ShallowConvNet. 

 
 

 
Figure 6.11: The most popular channels 
selected from the Graz 2A dataset when 
using the ICS layer method and EEGNet. 

 
:  
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Consider the scalp electrode results for the Graz 2A dataset in Figure 6.10 

and Figure 6.11. Comparing the results obtained for ShallowConvNet and 

EEGNet, it is evident that the most popular electrodes for ShallowConvNet are 

skewed towards the right-hand side, whereas those for EEGNet are more 

balanced across both hemispheres. Considering the results for the HG dataset in 

Figure 6.12 and Figure 6.13, ShallowConvNet had more channels in the FFC and 

CPP regions, whereas EEGNet had more channels in the FC and FCC regions. For 

both classifiers, the C and CCPh electrodes were popular.   

Whilst this discussion was based on a purely observational analysis, it is 

possible to draw some limited preliminary conclusions. These results indicate 

that the ICS layer method could have the potential to tailor the channel subsets 

to the classifier. This makes sense since the weights in the ICS layers are 

optimized by backpropagation through the classifier network itself. This means 

it could possibly be used with different CNN networks with similar success. The 

ICS channel selection layer also identified some universally important channels 

across classifiers, possibly indicating that it was able to identify channels 

important for MI activity, regardless of the classifier used.  

 

6.5 Conclusion 

This chapter presented a novel ICS layer method for subject-independent channel 

selection in CNN classifiers. The proposed method was shown the be versatile, 

achieving good performance with two different CNN classifiers on two different 

datasets. 

The proposed, novel, ICS layer was found to be effective for subject-

independent channel selection and did not result in any statistically significant 

deterioration when compared to subject-specific channel selection. Effective 

methods for subject-independent channel selection are important, since subject 

independent channel selection can lead to faster training times, lower hardware 

costs and improved user comfort, as previously discussed in Chapter 3. In fact, 

using the ICS layer for subject-independent channel selection resulted in notable 
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decreases in the target training phase when compared to carrying out subject-

specific channel selection. The magnitude of the decrease depends on the size of 

the target training dataset, with larger datasets leading to longer training times 

for subject-specific channel selection, and thus the positive impact of subject-

independent channel selection is more notable.  

For subject-independent channel selection the ICS layer method gave a higher 

categorical classification accuracy when compared to two other state-of-the-art 

channel selection methods  [13], [47]. In 68% of the experiments, this 

improvement was statistically significant.  The ICS layer channel selection 

method also had a similar classification performance to the GA channel selection 

method presented in Chapter 5 when applied to the subject-independent channel 

selection problem. The average accuracy of the ICS layer method was consistently 

greater than that of the GA channel selection method, although the difference 

between the two methods were not found to be statistically significant. 

The ICS layer method was found to be more computationally efficient than the 

GA channel selection method and completed the subject-independent channel 

selection process a factor of 12-13 times faster. In fact, the ICS layer method 

completed the channel selection process in under a minute, exhibiting a execution 

time similar to the state-of-the-art filter-based methods used for comparison 

[13], [47]. Furthermore, whilst the GA channel selection method produces a 

candidate subset of channels based on a subset size, z, fixed a priori by the user, 

the ICS channel selection layer produces a ranking for all channels, and the z 

channels with the highest scores are chosen for the subset. If, later, a larger or 

smaller subset of channels is needed, the GA channel selection method would 

have to re-run from the start, whereas using the ICS layer method, the rankings 

would just need to be consulted to know which channels to add or remove in 

order of importance. These results indicate that the ICS layer method is superior 

to the GA method for channel selection in a CNN, since the classification 

accuracies obtained with the two methods are similar, but the ICS layer method 

provides richer information in a shorter time. 
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RTL was found to be an effective method for improving CNN performance 

when channel selection is used. In fact, RTL enabled the number of EEG channels 

to be reduced by half through the ICS layer without any significant decrease in 

classification accuracy compared to the full cohort of channels. RTL was also 

found to have a more stable performance across datasets when compared to MTL. 

Furthermore, the training latency when using RTL is approximately 4.5 times 

shorter than that of MTL.  

Due to its versatility, the ICS channel layer could be applied to other 2D CNN-

based classifiers, or to other EEG paradigms. Future work could also look into 

applying the ICS layer to other paradigms where ShallowConvNet and EEGNet, or 

architectures based on them, have already shown success, such as emotion 

recognition [102] or event-related potential detection [7]. In theory, the ICS layer 

could also be applied to any 2D-input CNN problems outside of EEG classification 

which involve suppression of irrelevant or less informative data that is known to 

be present in the input, but which is not obviously identifiable.   

Subject-independent channel selection is important because it enables fewer 

electrodes to be used by the target subject, making for a more practical and 

easier-to-use BCI experience. This chapter presented a new, viable method for 

subject-independent channel selection in CNNs and demonstrated a transfer 

learning approach that preserves performance despite a reduced subset of 

channels. 
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Chapter 7 : Conclusions and 

Further Work 
 

 

This chapter opens with a summary of the main achievements in this thesis, then 

discusses the limitations of the contributions made. The future work section 

explains how the contributions could be applied to a practical, online system. It 

also discusses possible avenues for new research directly related to the 

contributions in this thesis, as well as further afield in MI EEG classification. 

 

7.1 Main Achievements 

The majority voting-based decision fusion approach in Chapter 4 was found to 

have the potential to significantly improve the classification performance of LDA, 

SVM, RF and NB classifiers. An extensive analysis of the effect of the window size 

and window increment parameters was carried out, and larger windows were 

found to be correlated with better performance. However, the results suggest 

that there may be a trade-off between improved performance from more 

information being included in the feature extraction window, and increased non-

stationarity present in EEG segments longer than 1.75s. A peak accuracy of 

84.51% was obtained using an LDA classifier, a window size of 1.75s and window 

increment size of 0.25s. The channel-classifier analysis identified the channel 

subsets C+CP and C+CP+CF to perform better than electrodes just from the C 

region or the full montage of 118 channels. The majority-voting based decision 

fusion approach was computationally lightweight, introducing latencies in the 

order of milliseconds or microseconds on the training and testing phases, 

respectively. This means that it can be easily applied to almost any BCI classifier 

without significant execution time overhead.  

 The GABSLEEG system in Chapter 5 successfully merged the strong 

classification capabilities of a dictionary-based SL classifier with a metaheuristic 
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GA channel selection module. Using the channel selection module to halve the 

number of channels used led to a 60% improvement in classification times on the 

test set whilst maintaining classification accuracy. Furthermore, the GA channel 

selection module was effective for kNN, RF and SVM classifiers. The GABSLEEG 

system outperformed GA-kNN, GA-RF and GA-SVM systems in terms of accuracy, 

sensitivity and specificity, and was the most robust to changes in training data 

size. The GABSLEEG system was also more accurate than a variety of other 

systems in the literature, including deep learning approaches and SL classifiers.  

 The ICS layer method presented in Chapter 6 was an effective channel 

selection approach for CNNs. It was a versatile approach, found to be effective on 

two different datasets and classifiers. The ICS approach was appropriate for 

subject-independent channel selection, with the subject-independent channel 

subsets performing better than or on a par with subject-specific channel subsets. 

Furthermore, the ICS layer method generally outperformed similar channel 

selection approaches in the literature. Transfer learning was found to be effective 

for maintaining the classification performance of a CNN classifier when using a 

reduced subset of EEG channels. The RTL approach was 4.5 times faster than the 

MTL approach, and performed more reliably across datasets and classifiers. The 

ICS channel selection approach was 12-17 times faster than the GA channel 

selection approach presented in Chapter 5. 

7.2 Limitations of the Contributions  

A general limitation across all the work in this thesis was the fact that all the 

proposed approaches were only tested through offline analysis on datasets. 

Although the focus of the research was to produce more effective and efficient 

approaches for practical BCIs, the full value of the contributions made can only 

be determined through assessment in an online, real-time BCI. Online testing 

would provide information about the robustness of these approaches to real-time 

EEG data and the latencies that are experienced during use. This kind of 

investigation would highlight areas where the proposed approaches could be 

refined and improved. In light of the fact that such testing was not carried out, the 



215 
 
 

 

approaches presented may not be quite appropriate for immediate deployment 

in an online system.  

 The datasets used contained data recorded from between 4 and 13 

different subjects. Although the datasets were chosen due to their popularity in 

the literature, their limited size limits the assessment of generalizability of the 

proposed approaches to large populations of BCI users.   

 The open-access datasets used only contained data from healthy subjects. 

Although healthy subjects may use some practical BCIs, such as those related to 

gaming or interactive design [18], practical BCIs may also be used as part of 

enabling technologies for subjects that are disabled or have impaired mobility 

due to disease [20]. BCI technologies may also be used as part of stroke 

rehabilitation[234]. Since the approaches in this thesis were only assessed using 

data from healthy subjects, it is unclear whether they would be appropriate for 

BCIs aimed at subjects who have a disease or disability. Future work could focus 

on testing the proposed approaches with data recorded from stroke patients, 

subjects with motor neuron diseases such as ALS, or with data from people with 

spinal cord injuries.  

 The approaches in this thesis were only tested on MI data. Since testing 

was not carried out using data recorded using other EEG paradigms, it is unclear 

whether the proposed approaches could be effective outside of the domain of MI 

EEG classification.  

 Throughout the project, execution times have been reported. Although 

multiple runs were always carried out in order to obtain an average measure, 

under 100 runs were always completed. These results provide a record of how 

long computations took, however for a rigorous analysis of execution times over 

1000 runs should have been carried out. Moreover, although effort was made to 

use good programming practices throughout the project, the code was not 

optimized before the execution time tests were carried out. Future work could 

involve optimizing the code before recording the execution times. Finally, 

although all background processes were suspended whilst the programs were 
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run, essential operating system operations could still take place whilst the 

programs ran. Together, all these issues limit the reliability and robustness of the 

execution time results recorded.  

 The work in Chapter 4 was only assessed on one dataset. Although it is not 

uncommon in the literature to assess proposed approaches on a single dataset 

[104], this is a limitation as it remains unclear whether the multi-segment 

decision fusion approach could be used to improve performance outside of the 

dataset used. Furthermore, the effects of multi-segment decision fusion were only 

assessed in an observational way on the test-set data. To assess generalization 

capabilities of the approach to a practical system, it would have been appropriate 

to tune the window size and window increment size on the training dataset and 

then assess the performance of the selected parameters on the test set.  

 The GABSLEEG system in Chapter 5 was found to be relatively slow for 

test set classification when compared to the kNN and RF classifiers. Furthermore, 

the channel selection latencies for subject-specific channel selection were also 

found to be significant. This could limit its applicability to a practical system, 

although with more powerful hardware these issues could be overcome.  

 

7.3 Future Work 

This section first discusses how the contributions in this chapter could be applied 

to a practical system.  It then goes on to explain future work that could be carried 

out directly in relation to the contributions made in this thesis. It presents generic 

suggestions related to additional testing and hyperparameter tuning, as well as 

specific technical suggestions related to each contribution.  

This section then concludes with a general discussion of future work that 

could be carried out within the wider domain of MI EEG classification. The 

suggestions in this part are loosely related to the work in this thesis but go 

beyond the specific contributions made.  
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7.3.1 Applying the Contributions to an Online System 

The work in the contribution chapters could be applied to new, online systems. 

This sub-section gives a brief overview of how this could be carried out. 

Estimations of training data size are based on the datasets used for the offline 

analysis.  

A practical system using the contribution presented in Chapter 4 would 

use channels in the C+CP or C+CP+CF regions. Training data would be recorded 

from the subject, and then the window size and increment size could be tuned 

using the training data.  Based on the offline analysis, six minutes of training data 

per subject should be recorded. This value was calculated by finding the average 

amount of training data across subjects in the dataset. The window size and 

increment size that give peak cross-validation classification accuracy on the 

training data are chosen. The training data could be used to tune the 

hyperparameters of an LDA classifier for the particular subject. In the chapter, 

there are LDA parameters that may be a suitable starting point for the search, 

which gave peak performance over five subjects. During online classification, the 

incoming data would be windowed using the tuned window size and window 

increment size, and then majority voting would be used to output a label for each 

trial.  

Based on the work in Chapter 5, a practical system would require training 

data to be recorded from the subject. Depending on time constraints, 25 minutes 

of training data would be recommended, but as little as five could be adequate, 

based on the results. The training data is partitioned into a training and validation 

set, which are used by the GA to select the best subset of channels. In the 

contribution chapter the number of channels is reduced from 59 channels to 30, 

and a similar setup could be used in a practical system. The subject must then 

wait whilst channel selection is carried out. After the channels are selected, the 

unselected channels are removed from the SL dictionary, and the EEG cap. Online 

use of the system can begin, in which incoming EEG data is buffered and labels 

assigned to 50ms segments of data.  
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A practical system based on the work in Chapter 6 would involve 

recording EEG data from a number of source subjects, preferably at least eight 

subjects. Based on the Graz 2A dataset, which had less training data per subject 

than the HG dataset, at least 20 minutes of data per source subject should be 

recorded. The ICS layer method is then used to select a subject-independent 

subset of channels for either EEGNet [7] or ShallowConvNet [66]. Unselected 

channels are removed from the training data, and the CNN classifier is trained 

using the source data. This data recording from source subjects, channel selection 

and pre-training of the CNN on source data can be carried out ahead of time. 

Training data is then recorded from the target subject using only the selected 

channels. Again, twenty minutes of training data is recommended. This data can 

then be used to fine-tune the CNN classifier, which can be used for online 

classification on 2s-long windows of data.  

 The discussion in this section was carried out at a high-level and is 

hypothetical. Since the techniques have only been tested on offline classification 

problems, it is likely that further refinement would be needed before they can be 

used in online systems, since not all issues that can arise in online systems can be 

foreseen in an offline analysis. For example, the classifiers may need to be 

periodically updated in an online system due to drift in EEG signal characteristics 

due to their non-stationarity [235]. Also, it is known that EEG classifiers in online 

systems can spuriously misclassify samples [19]. Some researchers apply 

smoothing on the output of the classifier to improve performance [19], and this 

kind of post-processing may also be needed if the approaches presented were 

applied to online systems. These kinds of adjustments would be carried out as 

part of refinement of the online system.  

7.3.2 Furthering the Contributions 

7.3.2.1 Additional Testing for Algorithm Evaluation 

In this thesis, a variety of standard, open-access datasets were used [2], [8], [71], 

[72]. These datasets have been widely used to present new machine learning and 

deep learning approaches, often without any proprietary data recorded by the 
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researchers themselves being used to further validate the approaches presented 

[6]–[8], [10], [13], [48], [60]. However, if new data were recorded, it could be used 

to validate the techniques presented in this thesis, particularly the channel 

selection methods. Although the literature often uses open-access datasets to 

present results for channel selection [13], [46], [48], [49], [225], there could be 

electrical interference between electrodes [79], [236]. Since the open-access 

datasets are recorded using a full montage of electrodes, removing electrodes at 

the signal processing stage may not remove the effects of other electrodes on 

those left in the dataset. In an ideal scenario, only the chosen subset of electrodes 

would be used at the testing stage for subject- specific channel selection, and in 

the recording of target training and testing data in the case of subject-

independent channel selection.  

 The work in this thesis was focused on offline MI EEG classification, where 

data is recorded and then processed at a later stage. Conversely, when using a 

real-time system, training data is recorded from the subject, algorithm training is 

carried out, and then the subject uses the BCI in real time. Although offline 

analysis is widespread on the literature [7], [8], [10], [11], [13], [46], [48], [49], 

[60], [225] and can be a necessary step in developing new techniques that can be 

applied to real-time systems, it still does not replace the validation of novel 

techniques within the context of a real-time system. Only when applying novel 

techniques to a real-time system can practicality and effectiveness truly be 

assessed, because it provides insight into user tolerance for training data 

recording and algorithm training times, it can highlight unacceptable latencies 

during real-time classification, and it can provide an idea of the robustness of the 

algorithm to the concentration spans and signal noise present in a practical 

scenario. In this thesis, there was a strong focus on algorithm practicality, with 

key aims involving improving execution times and reducing the number of 

electrodes used. The next step in validating these techniques would be applying 

these techniques to a real-time system.  
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 Finally, the techniques proposed in this thesis could be applied to other 

kinds of EEG classification problems, such as emotion recognition or 

concentration tasks.  

7.3.2.2 Hyperparameter Tuning with Bayesian Optimization 

Grid-searches were mostly favoured in this thesis for hyperparameter tuning 

because they have been widely used as a reliable method in the literature. 

Notwithstanding this, Bayesian optimization has been shown to outperform the 

traditional grid-search method for different applications, both in terms of speed 

and quality of parameters [90]. In Chapter 5, Bayesian optimization was used to 

tune the conventional classifiers. Future work could investigate whether 

Bayesian optimization is effective for tuning SL classifiers for MI EEG 

classification. Also, the tuning of the GA channel selection approach in Chapter 5 

was a computationally involved process and applying a Bayesian optimization 

framework to this tuning problem may lead to substantially reduced execution 

times.  

7.4.2.3 Furthering the Specific Contributions  

Future work into the multi-segment decision fusion technique presented in 

Chapter 4 could investigate applying the decision fusion approach to a pipeline 

which uses algorithmic channel selection. Different automated channel selection 

methods could be used in this analysis. In particular, the effectiveness of the 

decision fusion method in boosting accuracy as the number of EEG channels is 

reduced could be investigated. Furthermore, instead of using majority voting, 

other decision fusion techniques [237] such as decision templates [238], Borda 

count [237], behaviour knowledge spaces [237] or summed or averaged 

probabilities in the case of classifiers that can output the probability of class 

membership [239], could be investigated as ways of merging the time-domain 

classification results.  

 One of the challenges identified for using the GABSLEEG system (Chapter 

5) in practice is the execution times for GA channel selection and test-set 

execution times for the SL classification module. Developing GPU or FPGA-based 
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implementations of the OMP encoding algorithm used in the SL classification 

module could substantially improve the speed of both parts of the GABSLEEG 

algorithm [168], [224], [240].  Also, other metaheuristic algorithms could be 

considered for channel selection, such as differential evolution [104] or the firefly 

algorithm [125], which have been effective for feature selection in MI EEG 

classification [104], [125].  

Another limitation of the GABSLEEG system which could be solved in 

future work is its high memory demands, both due to the storage of the dictionary 

in memory and the memory required for OMP encoding. The dictionary size could 

be reduced by selecting the most salient entries using techniques from band 

selection in sparse learning systems in hyperspectral imaging [230], [241]. In 

hyperspectral sensing, multiple images taken at different frequency bands are 

available.  In recent years, sparse representation has been used to select the most 

salient spectral bands [230], [241]. The hyperspectral matrix is broken down into 

a dictionary and sparse encoding using techniques based on k- single value 

decomposition (kSVD). Within the dictionary, each column is related to a 

different frequency band, and bands can be selected by analysing the sparse 

encoding: bands that have larger coefficients in the encoding are more important 

[230]. There are refinements of this technique for sparsity-based band selection 

in hyperspectral images [241]–[243]. In the work in Chapter 5, each column of 

the dictionary is related to a training data sample. Techniques like those used for 

hyperspectral band selection could therefore be applied to the dictionaries used 

in MI EEG classification to identify which samples provide the most information. 

This selection process could be done at the training stage, by partitioning the 

training data into a subset for dictionary construction and a validation set which 

is encoded over the dictionary and used for dictionary minimization. If a method 

of developing smaller dictionaries for MI EEG classification can be found, this 

could also pave the way for the development of cross-subject dictionaries 

containing data from multiple subjects, that could be used for subject-

independent channel selection.  
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 The CNNs to which the ICS layer was applied in Chapter 6, and networks 

based on them such as S-EEGNet [102], have been used for classifying other kinds 

of EEG data, not just MI. Examples include P300 visually evoked potentials [7], 

error-related responses [7] and emotion recognition [102]. Future work could 

involve applying the ICS layer method to channel selection within the context of 

different EEG classification problems.  

The transfer learning step in the proposed framework could also benefit 

from source data selection. Since EEG data has high inter-subject variability [81], 

[82] and some BCI source subjects could suffer from BCI illiteracy [89], it may be 

beneficial to rank source subjects and select those which are most likely to 

positively contribute to the transfer learning process. This selection process 

could be done using a validation set of source subjects, and would aim to reduce 

the presence of noisy or illiterate subjects in the source data. Alternatively, it 

could be carried out using a sample of the target training data. Examples of source 

selection in the literature have been based on measuring the additional 

information a source can provide [244] or the classification accuracy associated 

with the source when using a small amount of target data [29]. These approaches 

could be applied to source selection for EEG transfer learning.  

The ICS layer method was only applied to 2D CNNs, which are widely used 

in the literature [6], [9], [58], [60], [65], [102]. However, it could easily be applied 

to 3D CNNs, which are gaining popularity in the MI EEG classification literature 

[6]. Future work could apply the ICS layer method to 3D CNNs for MI EEG 

classification. 

7.3.3 Future Work in the Wider Sphere of MI EEG Classification 

An ultimate goal in MI EEG classification research is a subject-independent 

classifier where no subject-specific data is used for any part of training. Due to 

the high inter-subject variability in EEG data and the requirement for strong 

performance in commercial BCIs, a transfer learning approach which uses 

minimal training data from a target subject is a more practical goal for BCI 

classification. To improve transfer learning performance or to create better 
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subject-independent systems, decomposition techniques could be explored as 

pre-processing techniques for extracting universal signal components from EEG 

signals. Within the BCI literature, the Hilbert-Huang transform [102], [209], and 

empirical mode decomposition [22], [214] are frequently used, however other 

decomposition techniques such as singular spectrum analysis (SSA) [245], [246], 

which has recently shown promise for EEG signal processing [247], [248], could 

be explored in more depth. Furthermore, 2D CNNs have been widely researched 

for subject-independent EEG classification [7], [9], [58]–[60], and 3D CNNs may 

be a new frontier for development [6]. CNNs with inception layers have excelled 

at MI EEG classification based on subject-specific training and may also hold 

promise for improved subject-independent classifiers [9]. However, these CNNs 

have been heavily tuned to the datasets used, and so inception-based 

architectures with stronger generalization capabilities need to be developed [9].  

 Signal decomposition techniques could also be applied to the problem of 

data augmentation. A recent data augmentation technique has explored 

extracting noise from EEG signals using filtering and then adding the noise to 

filtered training samples to produce an augmented training dataset [9]. Instead 

of using filtering to extract the noise, decomposition techniques could be used to 

extract noise components and mix these with the main MI EEG signal components 

to augment the dataset. Decomposition techniques such as SSA, wavelets and 

empirical mode decomposition may be effective for this.  

The development of novel machine learning and deep learning techniques 

is fundamental to BCI research; however, this development is limited by the data 

available. A practical and commercial BCI should, ideally, be like other electronic 

devices such as phones and laptops: an initial setup is carried out, and then fine-

tuning of settings over time is quick and involves minimal effort from the user. In 

a practical BCI, extensive training by the user should ideally be carried out once, 

and then the device can be used at different times or on different days with 

minimal training. These systems may require adaptive algorithms that use few-

shot or zero-shot learning and may need to be able to compensate for slightly 

different positions of electrodes. Many algorithms in the literature are not trained 
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on data recorded on one day and tested on data recorded on another day [6]–

[10], [12], [49], [60]. Reasons for this dearth of research may be a lack of 

awareness, but also a lack of data, since there are few datasets available with 

significant gaps in time between the training data recording and test data 

recording [71], [249]. New, larger datasets with BCI data recorded on multiple 

days from the same pool of subjects would be important for the development of 

BCIs that would require minimal retraining during different sessions.  

Many EEG databases also depend on data recorded using laboratory-grade 

equipment [8], [71], [72], [111]. However, the domain of portable biotech is 

growing [250], [251], and open-access datasets that provide data recorded from 

consumer-level EEG devices would help aid the development of algorithms that 

can deal with data that may be closer to a practical scenario.  

Single-limb MI EEG classification, in which the MI classes are derived from 

movements imagined within the same limb, for example left hand open and left 

hand closed, is generally more challenging than multi-limb MI EEG classification, 

such as imagined left-hand and right-hand movement [6]. Single-limb MI may be 

useful for some MI applications such as controlling an avatar in a game and in 

neurorehabilitation. It is acknowledged that more research and development is 

required in single-limb EEG data [6]. Future work could therefore also involve the 

publication of a large open-source dataset with single-limb MI data.  

 The work in this thesis contributed to the area of offline signal processing 

for the classification of MI EEG. Offline signal processing research is often a 

necessary preliminary step which precedes developments in practical, online 

BCIs [3]. Future work could focus on bridging the gap between classification 

approaches that work well on EEG datasets, such as those presented in this thesis, 

and their application in online BCIs.  
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Appendix 
 

This Appendix contains results relevant to Chapter 6.  

A.1 Result Tables Tuning of GA Population Size 
 

 

 

 

 

 

 

 

Table A 1: Grid-search validation accuracy results for GA 
hyperparameter tuning with ShallowConvNet. The results 
for different population sizes are shown. The channel 
subset size was fixed at 11. 

 Population Size 
Subjects 5 10 20 30 

A1 72.94% 70.58% 70.58% 71.76% 
A2 52.17% 50.93% 52.80% 56.52% 
A3 74.19% 75.48% 75.48% 75.48% 
A4 86.59% 89.02% 90.24% 89.63% 
A5 71.15% 70.51% 71.79% 69.87% 
A6 61.04% 63.64% 63.64% 65.58% 
A7 68.82% 71.76% 72.35% 70.59% 
A8 89.02% 89.63% 89.02% 88.41% 
A9 53.55% 57.42% 56.77% 57.42% 

 

Table A 2: The computational times for each population size 
recorded during the grid-search parameter tuning for the GA 
on the Graz 2A dataset, with ShallowConvNet. The results for 
different population sizes are shown. 

 Population Size 
Subjects 5 10 20 30 

A1 722s 1014s 2017s 3015s 
A2 632s 1611s 1943s 6978s 
A3 712s 1610s 1874s 4521s 
A4 547s 995s 2034s 3120s 
A5 518s 949s 3015s 2931s 
A6 518s 940s 1976s 3067s 
A7 532s 1043s 3060s 6141s 
A8 549s 1741s 2603s 4032s 
A9 869s 954s 2831s 7188s 
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Table A 3: The grid-search validation accuracies obtained 
when tuning the GA channel selection method with EEGNet on 
the Graz 2A dataset. The results for different population sizes 
are shown. The channel subset size was fixed at 11. 

 Population Size 
Subjects 5 10 20 30 

A1 69.41% 71.18% 70.00% 71.18% 
A2 52.17% 50.93% 49.69% 54.04% 
A3 76.13% 77.42% 76.77% 78.06% 
A4 87.80% 87.20% 89.02% 89.02% 
A5 64.10% 68.59% 67.31% 64.74% 
A6 67.53% 66.23% 69.48% 68.83% 
A7 65.88% 68.24% 74.12% 68.24% 
A8 87.20% 89.02% 89.02% 89.02% 
A9 53.55% 55.48% 57.42% 56.13% 

 

 

Table A 4: The grid-search computational times obtained 
when tuning the GA channel selection method with EEGNet 
on the Graz 2A dataset. The results for different population 
sizes are shown.  

 Population Size 
Subjects 5 10 20 30 

A1 769s 910s 1818s 6033s 
A2 872s 1213s 2018s 3718s 
A3 947s 1070s 2495s 2841s 
A4 543s 1395s 2295s 6239s 
A5 830s 1731s 1743s 4256s 
A6 729s 846s 1788s 6735s 
A7 665s 880s 3470s 8995s 
A8 934s 1022s 3046s 9044s 
A9 683s 1056s 2980s 6774s 
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A. 2 Result Tables Comparing Subject Specific and 

Subject Independent Channel Selection Methods 
 

A.2.1 Graz 2A Dataset 

Table A 5: The results for individual subjects in the Graz 2A dataset when using ICS for channel 
selection with ShallowConvNet and EEGNet with 3 channels in the subset chosen with ICS layer 
selection. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

A1 53.61% 66.88% 61.88% 63.33% 
A2 40.42% 27.64% 40.63% 34.65% 
A3 64.72% 65.90% 66.53% 55.35% 
A4 44.27% 49.79% 42.29% 47.50% 
A5 28.47% 29.24% 25.83% 26.18% 
A6 36.81% 35.63% 38.06% 38.89% 
A7 55.42% 48.06% 53.68% 56.18% 
A8 69.34% 70.43% 67.92% 65.25% 
A9 60.56% 53.40% 65.28% 64.17% 

 

 

Table A 6: The results for individual subjects in the Graz 2A dataset when using ICS for channel 
selection with ShallowConvNet and EEGNet with 6 channels in the subset. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

A1 69.58% 76.39% 70.28% 72.64% 
A2 42.01% 42.36% 43.06% 43.75% 
A3 72.85% 76.74% 78.54% 75.42% 
A4 52.50% 56.88% 46.77% 47.19% 
A5 29.51% 30.97% 28.61% 28.96% 
A6 42.29% 40.42% 36.74% 42.29% 
A7 63.33% 70.42% 61.18% 68.26% 
A8 74.00% 75.22% 77.95% 75.57% 
A9 68.40% 63.13% 73.47% 66.46% 

 

 

Table A 7: The results for individual subjects in the Graz 2A dataset when using ICS for channel 
selection with ShallowConvNet and EEGNet with 11 channels in the subset. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

A1 75.07% 77.71% 73.40% 76.39% 
A2 44.51% 45.14% 43.33% 40.90% 
A3 79.31% 80.14% 80.83% 78.96% 
A4 56.67% 56.77% 48.54% 48.96% 
A5 33.26% 42.57% 32.99% 28.47% 
A6 41.81% 42.29% 38.33% 40.28% 
A7 76.25% 77.22% 69.86% 70.97% 
A8 77.51% 77.74% 78.31% 75.96% 
A9 74.65% 71.67% 72.92% 76.39% 
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A.2.2 HG Dataset  

Table A 8: The results for individual subjects in the HG dataset when using ICS for channel selection 
with ShallowConvNet and EEGNet with 3 channels in the subset chosen with ICS layer selection. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

H2 75.86% 73.25% 67.63% 69.50% 
H3 79.75% 77.00% 64.63% 81.38% 
H4 84.63% 81.63% 61.75% 84.63% 
H5 72.63% 74.25% 64.38% 70.38% 
H6 64.63% 70.63% 60.13% 76.38% 
H7 63.27% 64.28% 65.16% 63.52% 
H8 80.50% 76.75% 68.88% 73.88% 
H9 54.25% 53.50% 57.63% 58.00% 

H10 70.88% 54.75% 72.38% 69.63% 
H11 57.88% 55.25% 53.75% 63.75% 
H12 86.13% 84.13% 74.75% 81.20% 
H13 74.47% 69.06% 62.26% 68.05% 
H14 54.75% 53.38% 62.88% 50.50% 

 

 

Table A 9: The results for individual subjects in the HG dataset when using ICS for channel selection 
with ShallowConvNet and EEGNet with 6 channels in the subset chosen with ICS layer selection. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

H2 82.63% 78.13% 72.25% 75.00% 
H3 87.63% 90.38% 83.75% 87.75% 
H4 90.88% 93.25% 82.38% 92.38% 
H5 80.50% 79.75% 72.63% 75.25% 
H6 81.00% 76.38% 72.25% 84.63% 
H7 76.10% 74.97% 68.43% 68.18% 
H8 88.13% 84.38% 72.25% 80.13% 
H9 64.88% 64.38% 64.25% 61.38% 

H10 83.88% 76.13% 78.88% 75.75% 
H11 68.00% 72.63% 58.13% 67.00% 
H12 92.13% 87.63% 75.75% 87.88% 
H13 83.77% 81.76% 73.21% 75.35% 
H14 55.63% 61.50% 72.25% 56.00% 
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Table A 10: The results for individual subjects in the HG dataset when using ICS for channel 
selection with ShallowConvNet and EEGNet with 11 channels in the subset chosen with ICS layer 
selection. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

H2 81.88% 83.50% 74.25% 77.00% 
H3 95.25% 92.88% 89.00% 91.75% 
H4 93.63% 95.13% 90.88% 93.75% 
H5 89.38% 86.75% 74.88% 85.38% 
H6 91.00% 86.13% 78.75% 87.50% 
H7 74.21% 79.87% 74.59% 73.58% 
H8 92.63% 90.38% 74.63% 86.50% 
H9 72.50% 73.63% 71.75% 68.63% 

H10 86.25% 84.38% 80.50% 82.38% 
H11 76.63% 72.63% 67.38% 68.25% 
H12 93.13% 92.88% 86.88% 87.88% 
H13 89.31% 85.53% 70.06% 77.48% 
H14 58.13% 56.25% 74.25% 58.75% 

 

 

Table A 11: The results for individual subjects in the HG dataset when using ICS for channel 
selection with ShallowConvNet and EEGNet with 22 channels in the subset chosen with ICS layer 
selection. 

 ShallowConvNet EEGNET 

Subject Subject-Specific Subject-Independent Subject-Specific Subject-Independent 

H2 84.50% 87.25% 78.75% 83.13% 
H3 97.50% 96.75% 91.00% 92.63% 
H4 93.25% 97.25% 94.38% 96.88% 
H5 90.50% 90.63% 80.88% 88.88% 
H6 93.00% 91.88% 84.88% 89.63% 
H7 81.26% 83.27% 74.97% 71.45% 
H8 95.13% 91.50% 76.88% 85.25% 
H9 81.13% 83.25% 74.25% 72.88% 

H10 88.00% 84.00% 83.63% 86.25% 
H11 80.50% 75.88% 64.25% 68.75% 
H12 96.63% 96.88% 90.63% 92.88% 
H13 92.45% 92.83% 80.25% 79.25% 
H14 67.25% 59.00% 59.50% 59.38% 
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A.3 Result Tables for the CCS Method 

Graz 2A Dataset 

Table A 12: Results for ShallowConvNet and EEGNet when using the CCS method for subject-
independent channel selection on the Graz 2A dataset, with subset sizes of 3, 6 and 11. 

 ShallowConvNet EEGNet 
Subject 3 6 11 3 6 11 
A1 58.54% 70.00% 73.06% 46.11% 60.21% 67.99% 
A2 33.19% 34.79% 38.40% 27.57% 27.08% 32.85% 
A3 63.96% 70.69% 76.11% 57.57% 71.67% 73.96% 
A4 45.31% 50.42% 57.81% 43.33% 45.83% 50.73% 
A5 29.72% 32.57% 36.25% 27.15% 26.04% 29.24% 
A6 35.90% 37.08% 41.39% 31.53% 32.92% 40.28% 
A7 56.81% 68.06% 78.47% 37.50% 44.31% 70.42% 
A8 61.22% 71.97% 78.41% 50.60% 65.91% 76.05% 
A9 60.97% 67.36% 71.94% 57.92% 65.49% 73.26% 

 

 

HG Dataset  

Table A 13: Results for ShallowConvNet and EEGNet when using the CCS method for subject-
independent channel selection on HG dataset, with subset sizes of 3, 6, 11 and 22. 

 ShallowConvNet EEGNET 

Subject 3 6 11 22 3 6 11 22 

H2 62.75% 68.38% 77.63% 78.25% 62.38% 65.50% 70.25% 79.25% 
H3 68.00% 76.13% 84.00% 92.88% 62.25% 76.63% 84.88% 91.75% 
H4 71.50% 78.75% 91.88% 78.25% 76.88% 84.13% 90.63% 95.75% 
H5 62.00% 73.13% 77.75% 88.13% 62.25% 74.13% 76.50% 85.63% 
H6 60.63% 71.13% 82.88% 88.75% 56.38% 68.00% 80.75% 87.88% 
H7 50.82% 68.43% 69.31% 81.51% 58.11% 68.81% 72.20% 73.96% 
H8 71.25% 81.00% 88.50% 89.13% 72.00% 80.13% 83.38% 86.13% 
H9 46.00% 55.13% 56.50% 73.50% 44.13% 56.63% 58.63% 69.25% 

H10 55.88% 72.63% 77.25% 84.38% 60.38% 67.50% 77.38% 81.38% 
H11 45.75% 60.13% 68.00% 77.75% 48.13% 60.25% 63.63% 70.25% 
H12 70.88% 81.00% 89.13% 95.25% 68.25% 83.00% 90.13% 91.50% 
H13 65.28% 73.21% 84.03% 87.67% 59.12% 66.92% 77.86% 82.89% 
H14 49.63% 53.63% 57.88% 62.63% 50.38% 54.00% 56.13% 60.63% 
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A.4 Result Tables for CNMF Method 

Graz 2A Dataset 

Table A 14: Results for ShallowConvNet and EEGNet when using the CNMF method for subject-
independent channel selection on the Graz 2A dataset, with subset sizes of 3, 6 and 11. 

 ShallowConvNet EEGNet 
Subject 3 6 11 3 6 11 
A1 53.13% 57.99% 73.33% 58.33% 61.53% 70.90% 
A2 37.78% 39.51% 45.28% 41.53% 42.36% 44.24% 
A3 53.96% 72.22% 76.46% 58.82% 74.93% 78.75% 
A4 41.67% 44.58% 53.75% 40.73% 41.15% 45.42% 
A5 25.63% 29.93% 26.60% 24.86% 27.43% 26.94% 
A6 35.83% 38.61% 42.22% 40.07% 40.35% 42.99% 
A7 48.96% 56.39% 74.44% 51.32% 49.65% 63.13% 
A8 60.27% 63.97% 76.66% 60.90% 63.98% 74.26% 
A9 56.18% 62.15% 68.06% 60.69% 66.94% 73.19% 

 

HG Dataset  

Table A 15: Results for ShallowConvNet and EEGNet when using the CNMF method for subject-
independent channel selection on the HG dataset, with subset sizes of 3, 6, 11 and 22. 

 ShallowConvNet EEGNET 

Subject 3 6 11 22 3 6 11 22 

H2 56.75% 66.00% 76.25% 80.75% 53.63% 63.13% 69.50% 76.63% 
H3 50.50% 70.50% 82.13% 92.13% 51.75% 74.00% 82.38% 87.63% 
H4 66.88% 71.00% 85.75% 93.88% 72.38% 75.00% 91.00% 95.88% 
H5 69.63% 72.75% 81.63% 87.38% 68.75% 71.75% 79.38% 83.75% 
H6 58.38% 65.38% 78.00% 87.38% 56.50% 66.88% 76.13% 81.00% 
H7 48.68% 64.40% 75.35% 82.64% 50.82% 66.42% 69.06% 73.21% 
H8 62.25% 73.63% 77.50% 88.00% 59.88% 73.63% 73.63% 82.63% 
H9 43.13% 54.63% 60.00% 70.13% 43.00% 56.75% 60.50% 67.00% 

H10 51.00% 58.25% 74.38% 84.13% 49.88% 57.00% 77.25% 85.88% 
H11 57.50% 61.88% 66.13% 70.75% 59.50% 61.25% 64.75% 67.00% 
H12 59.88% 70.63% 92.75% 95.75% 57.00% 72.00% 87.255 92.38% 
H13 54.21% 70.70% 80.25% 85.41% 56.23% 66.42% 75.22% 83.02% 
H14 46.00% 51.88% 76.25% 59.25% 47.38% 53.50% 69.50% 76.63% 

 

 

 

 

 


