52,048 research outputs found

    Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces

    Get PDF
    Abstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored

    An uncued brain-computer interface using reservoir computing

    Get PDF
    Brain-Computer Interfaces are an important and promising avenue for possible next-generation assistive devices. In this article, we show how Reservoir Comput- ing – a computationally efficient way of training recurrent neural networks – com- bined with a novel feature selection algorithm based on Common Spatial Patterns can be used to drastically improve performance in an uncued motor imagery based Brain-Computer Interface (BCI). The objective of this BCI is to label each sample of EEG data as either motor imagery class 1 (e.g. left hand), motor imagery class 2 (e.g. right hand) or a rest state (i.e., no motor imagery). When comparing the re- sults of the proposed method with the results from the BCI Competition IV (where this dataset was introduced), it turns out that the proposed method outperforms the winner of the competition

    Modeling differences in the time-frequency representation of EEG signals through HMM’s for classification of imaginary motor tasks

    Get PDF
    Brain Computer interfaces are systems that allow the control of external devices using the information extracted from the brain signals. Such systems find applications in rehabilitation, as an alternative communication channel and in multimedia applications for entertainment and gaming. In this work, a new approach based on the Time-Frequency (TF) distribution of the signal power, obtained by autoregressive methods and the use Hidden Markov models (HMM) is developed. This approach take into account the changes of power on different frequency bands with time. For that purpose HMM’s are used to modeling the changes in the power during the execution of two different motor tasks. The use of TF methods involves a problem related to the selection of the frequency bands that can lead to over fitting (due to the course of dimensionality) as well as problems related to the selection of the model parameters. These problems are solved in this work by combining two methods for feature selection: Fisher Score and Sequential Floating Forward Selection. The results are compared to the three top results of the BCI competition IV. It is shown here that the proposed method over perform those other methods in four subjects and the average over all the subjects equals the one obtained by the winner algorithm of the competition

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces

    Get PDF
    Brain Computer Interfaces provide a very challenging classification task due to small numbers of instances, large numbers of features, non-stationary problems, and low signal-to-noise ratios. Feature selection (FS) is a promising solution to help mitigate these effects. Wrapper FS methods are typically found to outperform filter FS methods, but reliance on cross-validation accuracies can be misleading due to overfitting. This paper proposes a filter-wrapper hybrid based on Iterated Local Search and Mutual Information, and shows that it can provide more reliable solutions, where the solutions are more able to generalise to unseen data. This study further contributes comparisons over multiple datasets, something that has been uncommon in the literature

    Hidden conditional random fields for classification of imaginary motor tasks from EEG data

    Get PDF
    Brain-computer interfaces (BCIs) are systems that allow the control of external devices using information extracted from brain signals. Such systems find application in rehabilitation of patients with limited or no muscular control. One mechanism used in BCIs is the imagination of motor activity, which produces variations on the power of the electroencephalography (EEG) signals recorded over the motor cortex. In this paper, we propose a new approach for classification of imaginary motor tasks based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they involve learned statistical models matched to the classification problem; they do not suffer from some of the limitations of generative models; and they include latent variables that can be used to model different brain states in the signal. Our approach involves auto-regressive modeling of the EEG signals, followed by the computation of the power spectrum. Frequency band selection is performed on the resulting time-frequency representation through feature selection methods. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV and the results show that our approach overperforms all methods proposed in the competition. In addition, we present a comparison with an HMM-based method, and observe that the proposed method produces better classification accuracy

    Examining sensory ability, feature matching, and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Disability and Rehabilitation: Assistive Technology on 01/31/2018, available online: http://www.tandfonline.com/10.1080/17483107.2018.1428369.PURPOSE:We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. METHODS: Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. RESULTS: All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. CONCLUSION: As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes

    Decoding neural activity in sulcal and white matter areas of the brain to accurately predict individual finger movement and tactile stimuli of the human hand

    Get PDF
    Millions of people worldwide suffer motor or sensory impairment due to stroke, spinal cord injury, multiple sclerosis, traumatic brain injury, diabetes, and motor neuron diseases such as ALS (amyotrophic lateral sclerosis). A brain-computer interface (BCI), which links the brain directly to a computer, offers a new way to study the brain and potentially restore impairments in patients living with these debilitating conditions. One of the challenges currently facing BCI technology, however, is to minimize surgical risk while maintaining efficacy. Minimally invasive techniques, such as stereoelectroencephalography (SEEG) have become more widely used in clinical applications in epilepsy patients since they can lead to fewer complications. SEEG depth electrodes also give access to sulcal and white matter areas of the brain but have not been widely studied in brain-computer interfaces. Here we show the first demonstration of decoding sulcal and subcortical activity related to both movement and tactile sensation in the human hand. Furthermore, we have compared decoding performance in SEEG-based depth recordings versus those obtained with electrocorticography electrodes (ECoG) placed on gyri. Initial poor decoding performance and the observation that most neural modulation patterns varied in amplitude trial-to-trial and were transient (significantly shorter than the sustained finger movements studied), led to the development of a feature selection method based on a repeatability metric using temporal correlation. An algorithm based on temporal correlation was developed to isolate features that consistently repeated (required for accurate decoding) and possessed information content related to movement or touch-related stimuli. We subsequently used these features, along with deep learning methods, to automatically classify various motor and sensory events for individual fingers with high accuracy. Repeating features were found in sulcal, gyral, and white matter areas and were predominantly phasic or phasic-tonic across a wide frequency range for both HD (high density) ECoG and SEEG recordings. These findings motivated the use of long short-term memory (LSTM) recurrent neural networks (RNNs) which are well-suited to handling transient input features. Combining temporal correlation-based feature selection with LSTM yielded decoding accuracies of up to 92.04 ± 1.51% for hand movements, up to 91.69 ± 0.49% for individual finger movements, and up to 83.49 ± 0.72% for focal tactile stimuli to individual finger pads while using a relatively small number of SEEG electrodes. These findings may lead to a new class of minimally invasive brain-computer interface systems in the future, increasing its applicability to a wide variety of conditions

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future
    corecore