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Abstract

Brain-Computer Interfaces are an important and promising avenue for possible
next-generation assistive devices. In this article, we show how Reservoir Comput-
ing – a computationally efficient way of training recurrent neural networks – com-
bined with a novel feature selection algorithm based on Common Spatial Patterns
can be used to drastically improve performance in an uncued motor imagery based
Brain-Computer Interface (BCI). The objective of this BCI is to label each sample
of EEG data as either motor imagery class 1 (e.g. left hand), motor imagery class
2 (e.g. right hand) or a rest state (i.e., no motor imagery). When comparing the re-
sults of the proposed method with the results from the BCI Competition IV (where
this dataset was introduced), it turns out that the proposedmethod outperforms the
winner of the competition.

1 Introduction

A Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI) is a direct communication
method between man and machine without the need of any muscular activity. The computer analyzes
brain signals and extracts relevant information w.r.t. a certain operation or task the subject is trying
to accomplish, e.g. movement of an on-screen cursor. This way, a direct communication channel
from the brain to the machine is created without the need for amechanical device.

Obviously, the development of such BCIs would enable sufferers of many types of disabilities to
communicate with their environment or to operate certain devices without direct mechanical inter-
action. This increases their potential freedom to operate and means of communication substantially,
thus increasing their quality of life and decreasing the burden on health professionals and families.
Several BCI have been investigated, such as the P300-speller which allows a user to spell words by
focusing on consecutive letters placed on a grid, or the motor imagery BCI used for cursor control
or spelling.

In this contribution we focus on an Electro-EncephaloGram (EEG) based uncued motor imagery
BCI using Reservoir Computing (RC). We used a motor imagery dataset from BCI Competition
IV [2]. Most motor imagery experiments are cued or synchronous experiments, which means that
the classification algorithm has information of the start and end of each trial. Thus, these types
of BCI reduce to a (possibly multi-class) classification of aseries of sensor values limited in time.
In contrast, for the application considered here the cues that indicate the start or end of a trial are
omitted. This means that the BCI has to discriminate betweentwo motor imagery classes and an
idle state in an online manner instead of trial by trial. The addition of the rest state and the loss of
cues makes the problem more complex but obviously more useable in practice.

An important aspect of a BCI is the discriminating neurophysiological phenomenon between the
different possible actions, in this case Event Related Desynchronization (ERD) [10, 11]. When a
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person imagines moving a limb, an attenuation in the EEG signal is noticeable at specific frequen-
cies and in specific regions of the sensorimotor cortex. Left(right) hand motor imagery leads to
desynchronization in the right (left) hand side of the sensorimotor cortex. The center of the senso-
rimotor cortex is activated during foot imagery. However, there can be quite some variation in the
exact frequency bands and spatial locations of these ERDs from subject to subject, which is why a
trainable preprocessing and classification method is desirable.

The features that were used in this work are based on the method of Common Spatial Patterns (CSP)
[3, 7]. The CSP algorithm computes a set of spatial filters that are optimized to discriminate between
two motor imagery classes. It has been shown that the CSP method can be improved by using
a more complicated version or by combining it with subject-specific feature selection algorithms
[1, 4, 9]. Ideas from different feature selection algorithms were combined in a novel feature selection
algorithm that produced better spatial and frequency specific features.

The improved feature extraction method was used as a preprocessing step for a Reservoir Comput-
ing (RC)-based classifier [12]. Reservoir Computing is an umbrella-term for a set of methods for
efficient training of recurrent neural networks. In this contribution we will use the Echo State Net-
work (ESN) flavor of networks. These networks are recurrently connected with random, globally
scaled weights.

In Section 2 we will discuss the methods used in this contribution. We will first briefly introduce
the CSP method, our proposed feature selection algorithm and finally Reservoir Computing. In
Section 3 we will present and discuss the different evaluation methods, experiments and results. We
summarize and conclude in Section 4.

2 Methods

2.1 Common Spatial Patterns

The CSP algorithm [3, 7, 8] operates on EEG signals and searches for spatial filters that are op-
timized to discriminate between two motor imagery classes.The CSP-generated filters linearly
combine the original signals to generate a new signal, whichmakes it a computationally attractive
method once it is trained.

Each spatial filter maximizes the variance of the filtered signal during one condition (e.g. left hand
movement) and minimizes the variance of the other condition(e.g. right hand movement). This
minimization is related to the effects of ERD.

The construction of CSP filters is based on the simultaneous diagonalization of the covariance ma-
trices of the two classes by generalized eigenvector decomposition:

V −1Σ1V = D,

V −1Σ2V = 1−D,

V −1(Σ1 +Σ2)V = I,

whereΣ1 andΣ2 are the estimates of the covariance matrices of the input signals during class 1 and
class 2 respectively, V is the matrix that contains a set of eigenvectors, D is a diagonal matrix that
contains the corresponding eigenvalues and I is the identity matrix. Each spatial filter is associated
with an eigenvector in V and an eigenvalue in D. If the eigenvalue for a filter isd, then the variance
during class 1 equalsd and the variance during class 2 equals 1-d. A filter with a very high or very
low eigenvalue generates new signals with great differences in variance between the two classes.

The CSP computation starts with the computation of the covariance matrices of both classes

Σi =
EiE

T
i

trace(EiE
T
i )

,

Σ = Σ1 +Σ2,

whereEi is the input signal for classi, Σi is the covariance matrix of classi andΣ is the total
covariance matrix. The total covariance matrix can be factored in its eigenvectors

Σ = U−1BU,
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the matrixU contains the normalized eigenvectors andB the eigenvalues. The next step is the
computation of the whitening transform

W = B−

1

2U.

The covariance matrix of the whitened input signals can be diagonalized as shown above:

S1 = WΣ1W
T = V DV −1 and S2 = WΣ2W

T = V (1−D)V −1.

The CSP projection matrix is then given by:

P = WTV.

A single CSP filter is just a column in this projection matrix.The CSP filtered version of the input
is

Ecsp = PTE.

The CSP algorithm is commonly used in a more complete featureextraction system [8], consisting
of several steps:

• spectral filtering of every EEG channel (typically bandpass8-30 Hz),

• spatial filtering by using the CSP filters with the 3 highest and 3 lowest eigenvalues. These
filters should maximize the variance differences between the classes,

• computation of the log-variance of a window of filtered EEG signals:

featurei = log

(

σ2

i
∑n

j=1
σ2

j

)

,

whereσi stands for the variance of the signal generated by CSP filteri, n is the number of
CSP filters.

2.2 Proposed Feature Selection Algorithm

The proposed algorithm is in part inspired by Filter Bank CSP(FBCSP) [1]. The goal is to find
subject-specific passbands and spatial filters to generate better features. The algorithm works in
three steps that are executed twice: once to find the best filter band and associated spatial filters
within the frequency range 6-16 Hz and once to find the best onein 16-26 Hz. The algorithm is also
illustrated in Figure 1.

1. In the first step we apply CSP to extract features. We then use the following scoring func-
tion to find the best spatial filters:

scorei = MI(m1;m2) + max(MI(m1; rest),MI(rest;m2)),

wherei is the filter,MI(a; b) denotes the mutual information between the input features
generated by this filter and the class label when only class a and class b are considered,m1

stands for motor imagery class 1,m2 for motor imagery class 2 and rest for the rest class.
The mutual information between the input X and the class labels Y is defined as

I(X;Y ) =

∫

X

∫

Y

p(x, y) log

(

p(x, y)

pX(x)pY (y)

)

dxdy.

2. Next we apply an overlapping filterbank (5 Hz bandwidth, 1 Hz overlap) before the best 10
CSP filters from the previous step are used and the log-variance is computed. This time we
use the scoring function to determine the most informative frequency band.

3. The third step uses the best frequency band from the previous step to filter the EEG signal
and recompute the CSP filters. These new CSP filters are then ranked again. The filter
selection is dependent on the used frequency range.

In most experiments the differences between the filters withhighest mutual information and the
remaining filters were large. For the filters in the lower frequency range the best filters from each
side of the eigenvalue spectrum are used. There was one subject (subjectf ) where the scores of 4
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Figure 1: Schematic overview of the feature selection algorithm for the 6-16Hz range. The same
process is repeated for the 16-26Hz range.

spatial filters (2 on each side of the eigenvalue spectrum) was very similar. There was no indication
that one set would significantly outperform the other. In that case we choose to keep both sets. The
process described above is repeated for the high frequency range (16-26Hz), but in this case a mutual
information threshold of 0.3 was used. We added this threshold because most of the ERD effects are
noticeable in the lower frequency range. Adding a feature from the higher frequency band is only
useful if that feature is very informative. The threshold itself was empirically determined.

There are three main differences between this technique andthe FBCSP method. The first difference
is the iterative approach. The FBCSP method computes a totalof B×N spatial filters, whereB is the
number of filter banks andN is the number of EEG channels. Our approach only computes2×2×N
spatial filters (the leading factor 2 is because we run the algorithm twice). We use overlapping filter
banks in contrast to non overlapping filter banks in FBCSP. When using an overlapping filter bank,
it is impossible that the ERD is most noticeable at the boundary between two filters. We can always
find a filter that captures the ERD and can compensate for shifts in ERD frequency. A final point of
contrast is that we recompute the CSP filters based on the bestscoring frequency.

2.3 Reservoir Computing

As a classification back-end, we used Reservoir Computing (RC) [12]. RC is a training method for
recurrent neural networks and exists in different flavors. The method we use here is the Echo State
Network (ESN) approach which is presented by H. Jaeger in 2001 [5], which means that a recurrent
random network of tanh-neurons are used. RC greatly simplifies the training of recurrent neural
networks.

The basic principle is as follows: a random recurrent neuralnetwork called the reservoir is created,
and the input- and internal weights are globally rescaled toachieve certain desirable dynamic prop-
erties. A separate linear readout function is then trained on the response of this reservoir to the
input signals. The reservoir is determined by only a few global parameters, which makes it easy to
optimize. The most important parameters are the input scaling and the spectral radius. The input
scaling determines the weights from the input to the reservoir, the spectral radius determines the
global weight scaling inside the reservoir. Moreover, the linear readout function can be trained in a
single step using a computationally efficient series of matrix operations. This training method avoid
the long convergence times and vanishing gradient problemsof traditional RNN learning rules.
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Figure 2: The Reservoir Computing concept. Only the dotted connections are trained. Some con-
nections are not drawn to keep the picture clear.

In this contribution we use a reservoir consisting of so-called Leaky Integrator neurons [6]. These
neurons can be described as standard neurons with a first-order low-pass filter added, which slows
down the dynamics of the reservoir and extends its fading memory further in the past - which is a
desirable property for the kind of long-term temporal processing needed in this task.

The operation of the reservoir can be described as follows: If we usex[k] to represent the current
activation for each of the neurons in the reservoir we can calculate the next reservoir statex[k + 1]
using the following equation:

x[k + 1] = (1− γ)x[k] + γtanh(W res
res x[k] +W res

inpu[k] +W res
bias).

In this equationγ represents the leak rate and is used to set the cutoff frequency of the lowpass filter
in the neurons,u[k] is the input vector andW res

inp represents the randomly generated weight vector
from layer input to reservoir. The reservoir weight matrix is generated by a normal distribution with
zero mean and unit variance. These weights are then rescaledso that the largest absolute eigenvalue
of the weight matrix – called the spectral radius – equals a specific value. The input weights are
randomly chosen out of{−0.1, 0.1} and then multiplied by the input scaling. The output of the RC
system,̂y[k], is determined by:

ŷ[k] = W out
inpu[k] +W out

res x[k] +W out
bias.

In this study ridge regression was used to trainW out
inp ,W

out
res andW out

bias. If

W =
(

W out
inp , W out

res , W out
bias

)

, X =

(

u[1], . . . , u[n]
x[1], . . . , x[n]

1, . . . , 1

)

andY =









y[1]
y[2]

...
y[n]









,

then it is possible to computeW as

W =
(

(XXT + λI)−1XY
)T

,

whereλ is the regularization parameter which has to be determined by cross validation.

We optimized the following parameters: the leak rate, bias scaling, connection fraction (the frac-
tion of non-zero weights) of the internal reservoir weights, connection fraction from the input to the
reservoir, input scaling and spectral radius. The optimization was done by performing cross vali-
dation on the training set. Because the reservoirs are randomly created, we repeated the main RC
experiment 10 times and averaged the performance over reservoir instances to obtain statistically
relevant results. This averaging was done both during parameter optimization and during the final
evaluation.

3 Experiments And Discussion

3.1 Data and evaluation

We used data from the first task in the BCI Competition IV1. The task is to discriminate between
two types of motor imagery and a resting state. This has to be done at every timestep and without

1http://www.bbci.de/competition/iv/
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cues about the start or end of a trial. There are 7 different datasets available, four datasets containing
natural EEG while the other three are artificially generatedEEG. Only the first four (natural) datasets
were used for evaluation purposes. Each subject has a dedicated training and a dedicated test set.
The generated output for every timestep has to be a real number between -1 and 1. (class 1: -1, rest:
0, class 2: 1). It is important to point out that there is no response time limit. This means that the
entire dataset can be processed before generating the output.

Three different evaluation methods are considered:

Discrimination between motor imagery classes This is done by using the single trial accuracy -
so in this case the start and end cues were in fact used. For each motor imagery trial (or
thought) the sign of the averaged output for that trial was used to label the trial. The fraction
of correctly classified trials is given.

Rest state detection To evaluate the rest state detection we took the absolute value of the output: 1
is motor imagery, 0 is the idle state. The True Positive Rate (TPR) and False Positive Rate
(FPR) is calculated for each threshold value between 0 and 1.The TPR is plotted versus
the FPR to obtain the ROC curve, where a higher Area Under Curve (AUC) indicates better
performance.

Mean square error (MSE) The MSE between the desired output and the actual output was used
as performance measure in the BCI Competition. The MSE is computed according to the
following equation:

MSE =

∑m

i=1
(ŷi − yi)

2

m
,

wherem is the total number of samples,ŷi is the generated output at timestepi andyi
is the desired output at timestepi. We include MSE results in order to compare with
the published results of the competition. All our results were obtained while optimizing
the MSE, however the MSE gives little information about the discrimination between the
different motor imagery classes and between motor imagery and the rest class. This is why
the two other evaluation metrics were added to our experiments.

3.2 Experimental setups

Five different experimental setups were evaluated. The goal was to investigate how the different
components influenced the performance. We start of with a default experiment and at each new
experiment we increase the BCI’s complexity. Postprocessing was applied before evaluating the
MSE. This postprocessing consists of one single step: a lowpass filter (Butterworth filter with cutoff
frequency 0.1 Hz) that was applied once in the forward and once in the reverse direction.

Linear regression with standard CSP In this experiment we applied bandpass filtering with a
broad passband (8-30Hz). The CSP filters were then applied onthese filtered signals. Then
we computed the features as described in Section 2.1. We experimented with different win-
dows for the variance calculation and the best performance was achieved by one starting 75
samples before the current timestep and stopping 75 timesteps after the current. The output
was then generated by using linear regression on these features.

Linear regression with feature selection The only difference between this experiment and the
previous one is the addition of the feature selection algorithm. The spectral filtering is done
by using the subject specific passband and spatial filters. These passband and spatial filters
are selected by the proposed algorithm. By comparing the results from this experiment
with the previous one we can isolate the influence from the feature selection algorithm.

Linear regression with feature selection and delay lines We added delay lines before the linear
regression so that information about past samples can be used. In this experiment we want
to evaluate the influence on performance by using information from the past.

Reservoir Computing The delay lines with the linear regression is replaced by a Reservoir Com-
puting system as described above. The features that are fed into the reservoir are the same
as in the previous two experiments. We used a reservoir with 50 neurons, the leak rate
was 0.025, the input scaling was 2, the spectral radius 0.8, the reservoir connection fraction
0.45, the input connection fraction 0.25 and the bias was 0.5. These parameter settings
were obtained trough optimization using a grid search.

6



a b f g avg.
60

80

100

A
cc

ur
ac

y 
(%

)

subject

 

 
Linear Std. CSP
Linear featsel.
Linear Delay
RC
Realtime RC

Figure 3: Discrimination between motor imagery states. Results are percentage correctly labelled
trials.
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Figure 4: Results based on the rest state detection where theAUC measure was used. The dotted
line represents chance level.

Real-time Reservoir Computing We made two changes in this experiment. The first change is
that we omitted the variance calculation step, the input to the reservoir is just spectrally
and spatially filtered EEG. This way the delay originating from the variance calculation is
removed. The second change is that the postprocessing before MSE evaluation was not
done because smoothing in realtime was not possible. This method works instantaneously,
the output for the sample is generated without delay. This experiment is a proof of concept
so only one reservoir was tested.

3.3 Discussion

If we take a look at the discrimination of the motor imagery classes, shown in Fig. 3, we find that
the accuracy is very subject dependent: for instance, performance on subjectg is much higher than
on subjectb. On average we see that without feature selection 81.7% of the samples are classified
correctly. The addition of the feature selection algorithmincreases this accuracy to 86.2%. The
influence of the delay lines is minimal, an accuracy of 86.8% was achieved. The results achieved
with Reservoir Computing are similar with an accuracy of 86.6%. In short: the feature selection
algorithm has a large influence on the discrimination between motor imagery classes, Reservoir
Computing does not.

The evaluation of the rest state detection – a feature which is crucial for real-world applicability of
this BCI system because it eliminates the need for cues – shows that the addition of an idle state
makes the BCI much more complex. (Fig. 4) The average AUC withthe linear method is 0.58, on
subjectb the AUC is only just as good as chance level. Feature selection and delay lines do not
improve the rest state detection, the average AUC becomes 0.57 with feature selection. The delay
lines bring the AUC again up to 0.58. If we add Reservoir Computing the average AUC becomes
0.64. The performance on the easier subjectg stays the same, on the other (harder) subjects there
is more improvement. It is clear that Reservoir Computing enables us to improve the rest state
detection significantly.

We now compare the results with the competition results based on MSE (Table 1). The linear method
achieves good results on average, the MSE is 0.376 compared to the 0.382 of the winner. The best
results per subject give an average MSE of 0.365 which leavesroom for improvement. The addition
of the feature selection algorithm brings the MSE down to 0.348 which is better than the best results
from the competition. There is a slight decrease when the delay lines are added but this is much
smaller than the decrease due to the feature selection. The addition of Reservoir Computing gives a
second big improvement. The average MSE is now only 0.326. The realtime experiments give an
MSE of 0.390. However it has to be said that the realtime constraints make this problem much more
difficult than the task in the competition.
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Table 1: Results based on the MSE. Comparison between methods and BCI Competition IV.

dataset a b f g avg.

linear Std. CSP. 0.358 0.466 0.400 0.280 0.376
linear Featsel. 0.327 0.403 0.372 0.290 0.348
Linear Delay 0.324 0.403 0.369 0.286 0.345
RC 0.296 (0.005) 0.361 (0.041) 0.361 (0.003) 0.284 (0.005) 0.326
Realtime RC 0.364 0.442 0.435 0.320 0.390
Competition winner 0.40 0.42 0.42 0.29 0.382
Competition best 0.35 0.42 0.40 0.29 0.365

4 Conclusions

In this paper we evaluated the performance of Reservoir Computing and a novel CSP algorithm in
an uncued motor imagery BCI.We can conclude that the combination of Reservoir Computing and
the proposed novel feature extraction method is a promisingclassification method for the difficult
motor imagery BCI considered in this contribution. Its superior detection of the rest state compared
to other methods increases the applicability of the method since start and stop cues are generally
not available in real-world situations. Moreover, since the training of RC is entirely based on linear
methods, a whole array of standard procedures for adaptability or online learning (such as Recursive
Least-Squares) are available. This makes the system more robust against potential changes in the
environment, which in turn again increases the usefulness of this setup in an actual assistive context.
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