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Abstract

Brain-Computer Interfaces are an important and promisirenae for possible
next-generation assistive devices. In this article, wevdhoy Reservoir Comput-
ing —a computationally efficient way of training recurreeunal networks — com-
bined with a novel feature selection algorithm based on Com8patial Patterns
can be used to drastically improve performance in an uncuedmimagery based
Brain-Computer Interface (BCI). The objective of this BELo label each sample
of EEG data as either motor imagery class 1 (e.g. left handjpnimagery class
2 (e.g. right hand) or a rest state (i.e., no motor imagery)ei\tomparing the re-
sults of the proposed method with the results from the BCI @etition IV (where
this dataset was introduced), it turns out that the propossttiod outperforms the
winner of the competition.

1 Introduction

A Brain-Computer Interface (BCI) or Brain-Machine Inteséa(BMI) is a direct communication
method between man and machine without the need of any nausaiivity. The computer analyzes
brain signals and extracts relevant information w.r.t. riade operation or task the subject is trying
to accomplish, e.g. movement of an on-screen cursor. Thys avdirect communication channel
from the brain to the machine is created without the need foeehanical device.

Obviously, the development of such BCIs would enable seffepf many types of disabilities to
communicate with their environment or to operate certaiiags without direct mechanical inter-
action. This increases their potential freedom to openagienaeans of communication substantially,
thus increasing their quality of life and decreasing thelbaron health professionals and families.
Several BCI have been investigated, such as the P300+splieh allows a user to spell words by
focusing on consecutive letters placed on a grid, or the motagery BCI used for cursor control
or spelling.

In this contribution we focus on an Electro-EncephaloGr&R @) based uncued motor imagery
BCI using Reservoir Computing (RC). We used a motor imagemaskt from BCl Competition
IV [2]. Most motor imagery experiments are cued or synchumexperiments, which means that
the classification algorithm has information of the starti @md of each trial. Thus, these types
of BCI reduce to a (possibly multi-class) classification afesies of sensor values limited in time.
In contrast, for the application considered here the cuasitidicate the start or end of a trial are
omitted. This means that the BCI has to discriminate betwa®nmotor imagery classes and an
idle state in an online manner instead of trial by trial. Tleition of the rest state and the loss of
cues makes the problem more complex but obviously more lesgapractice.

An important aspect of a BCI is the discriminating neuropblpgiical phenomenon between the
different possible actions, in this case Event Related Bewsynization (ERD) [10, 11]. When a
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person imagines moving a limb, an attenuation in the EEGasigmoticeable at specific frequen-
cies and in specific regions of the sensorimotor cortex. (r&fht) hand motor imagery leads to
desynchronization in the right (left) hand side of the seinsator cortex. The center of the senso-
rimotor cortex is activated during foot imagery. Howevéere can be quite some variation in the
exact frequency bands and spatial locations of these ERIDs $ubject to subject, which is why a
trainable preprocessing and classification method is alasir

The features that were used in this work are based on the theflti@ommon Spatial Patterns (CSP)
[3, 7]. The CSP algorithm computes a set of spatial filtersahaoptimized to discriminate between
two motor imagery classes. It has been shown that the CSPothetin be improved by using
a more complicated version or by combining it with subjgmtfic feature selection algorithms
[1, 4, 9]. Ideas from different feature selection algorigdwere combined in a novel feature selection
algorithm that produced better spatial and frequency fipdeatures.

The improved feature extraction method was used as a pregsing step for a Reservoir Comput-
ing (RC)-based classifier [12]. Reservoir Computing is amratha-term for a set of methods for
efficient training of recurrent neural networks. In this trdsution we will use the Echo State Net-
work (ESN) flavor of networks. These networks are recuryectinnected with random, globally
scaled weights.

In Section 2 we will discuss the methods used in this contivbu We will first briefly introduce
the CSP method, our proposed feature selection algoritharfiaally Reservoir Computing. In
Section 3 we will present and discuss the different evadnatiethods, experiments and results. We
summarize and conclude in Section 4.

2 Methods

2.1 Common Spatial Patterns

The CSP algorithm [3, 7, 8] operates on EEG signals and sesufcn spatial filters that are op-
timized to discriminate between two motor imagery classéee CSP-generated filters linearly
combine the original signals to generate a new signal, witiakes it a computationally attractive
method once it is trained.

Each spatial filter maximizes the variance of the filtereaaigluring one condition (e.g. left hand
movement) and minimizes the variance of the other conditgg. right hand movement). This
minimization is related to the effects of ERD.

The construction of CSP filters is based on the simultane@mgodalization of the covariance ma-
trices of the two classes by generalized eigenvector deasitign:
Vis,2v = D,
Vs,V = 1-D,
VHE + 5V I
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whereX; andX; are the estimates of the covariance matrices of the inponasgluring class 1 and
class 2 respectively, V is the matrix that contains a set@émiectors, D is a diagonal matrix that
contains the corresponding eigenvalues and | is the igemitrix. Each spatial filter is associated
with an eigenvector in V and an eigenvalue in D. If the eigéudor a filter isd, then the variance
during class 1 equal$and the variance during class 2 equalg. 1A filter with a very high or very
low eigenvalue generates new signals with great differeiceariance between the two classes.

The CSP computation starts with the computation of the ¢anee matrices of both classes
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where E; is the input signal for clasg ¥; is the covariance matrix of clagsand X is the total
covariance matrix. The total covariance matrix can be factin its eigenvectors

Y =U"'BU,



the matrixU contains the normalized eigenvectors aBdhe eigenvalues. The next step is the
computation of the whitening transform
W =B zU.
The covariance matrix of the whitened input signals can bgatalized as shown above:
S =W, W =vDv=! and Sy =WI,W!' =V(1-D)V~1L
The CSP projection matrix is then given by:
P=w"v.
A single CSP filter is just a column in this projection matrie CSP filtered version of the input
® E.,=P'E.

The CSP algorithm is commonly used in a more complete feaixiraction system [8], consisting
of several steps:

e spectral filtering of every EEG channel (typically bandp@&s90 Hz),

e spatial filtering by using the CSP filters with the 3 highest 8dowest eigenvalues. These
filters should maximize the variance differences betweerclasses,

e computation of the log-variance of a window of filtered EEGnsils:

o2
feature; =log | == |,
2j=19

whereg; stands for the variance of the signal generated by CSPfjlteis the number of
CSP filters.

2.2 Proposed Feature Selection Algorithm

The proposed algorithm is in part inspired by Filter Bank GEBCSP) [1]. The goal is to find
subject-specific passbands and spatial filters to geneedter features. The algorithm works in
three steps that are executed twice: once to find the bestldied and associated spatial filters
within the frequency range 6-16 Hz and once to find the bestroh&-26 Hz. The algorithm is also
illustrated in Figure 1.

1. In the first step we apply CSP to extract features. We therthesfollowing scoring func-
tion to find the best spatial filters:

score; = MI(mqy;ms) + max(MI(mq;rest), MI(rest;ms)),

wherei is the filter, M 1(a; b) denotes the mutual information between the input features
generated by this filter and the class label when only classizlass b are considered,;
stands for motor imagery classrhy for motor imagery class 2 and rest for the rest class.
The mutual information between the input X and the classl$a¥iés defined as

I(X;Y):/X/Yp(%y)log <]m) dady.

2. Next we apply an overlapping filterbank (5 Hz bandwidth,Zldderlap) before the best 10
CSP filters from the previous step are used and the log-vaiscomputed. This time we
use the scoring function to determine the most informatiggudency band.

3. The third step uses the best frequency band from the presiep to filter the EEG signal
and recompute the CSP filters. These new CSP filters are th&adagain. The filter
selection is dependent on the used frequency range.

In most experiments the differences between the filters higihnest mutual information and the
remaining filters were large. For the filters in the lower fregcy range the best filters from each
side of the eigenvalue spectrum are used. There was ones(@ibjectf) where the scores of 4
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Figure 1: Schematic overview of the feature selection dlgor for the 6-16Hz range. The same
process is repeated for the 16-26Hz range.

spatial filters (2 on each side of the eigenvalue spectrurs)weesy similar. There was no indication
that one set would significantly outperform the other. Irt tese we choose to keep both sets. The
process described above is repeated for the high frequangg (16-26Hz), but in this case a mutual
information threshold of 0.3 was used. We added this thiddlecause most of the ERD effects are
noticeable in the lower frequency range. Adding a featuwefthe higher frequency band is only
useful if that feature is very informative. The threshokelf was empirically determined.

There are three main differences between this techniqutharfeBCSP method. The first difference
is the iterative approach. The FBCSP method computes aofabak N spatial filters, wheré is the
number of filter banks an®¥ is the number of EEG channels. Our approach only comp@uses< N
spatial filters (the leading factor 2 is because we run therdlgn twice). We use overlapping filter
banks in contrast to non overlapping filter banks in FBCSP. Wisng an overlapping filter bank,
it is impossible that the ERD is most noticeable at the bogndatween two filters. We can always
find a filter that captures the ERD and can compensate fosshiERD frequency. A final point of
contrast is that we recompute the CSP filters based on thedmdtg frequency.

2.3 Reservoir Computing

As a classification back-end, we used Reservoir Computi®) (R2]. RC is a training method for
recurrent neural networks and exists in different flavotse method we use here is the Echo State
Network (ESN) approach which is presented by H. Jaeger in PBQwhich means that a recurrent
random network of tanh-neurons are used. RC greatly simgplifie training of recurrent neural
networks.

The basic principle is as follows: a random recurrent nengalvork called the reservoir is created,
and the input- and internal weights are globally rescalesttoeve certain desirable dynamic prop-
erties. A separate linear readout function is then trainedhe response of this reservoir to the
input signals. The reservoir is determined by only a few glgiarameters, which makes it easy to
optimize. The most important parameters are the inputrsgalind the spectral radius. The input
scaling determines the weights from the input to the resertite spectral radius determines the
global weight scaling inside the reservoir. Moreover, thedr readout function can be trained in a
single step using a computationally efficient series of mafperations. This training method avoid
the long convergence times and vanishing gradient probtérinaditional RNN learning rules.
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Figure 2. The Reservoir Computing concept. Only the dottathections are trained. Some con-
nections are not drawn to keep the picture clear.

In this contribution we use a reservoir consisting of sdechlLeaky Integrator neurons [6]. These
neurons can be described as standard neurons with a fiestlomdpass filter added, which slows
down the dynamics of the reservoir and extends its fading ongrfiurther in the past - which is a

desirable property for the kind of long-term temporal pssieg needed in this task.

The operation of the reservoir can be described as follofuse lusex|k] to represent the current
activation for each of the neurons in the reservoir we cacutaie the next reservoir statgk + 1]
using the following equation:

X[k + 1] = (1 — v)x[k] + ytanh (Wi Ex[k] + Wi ulk] + Wyi).
In this equationy represents the leak rate and is used to set the cutoff freguéithe lowpass filter
in the neuronsy (k] is the input vector andll’;*> represents the randomly generated weight vector
from layer input to reservoir. The reservoir weight matexgenerated by a normal distribution with
zero mean and unit variance. These weights are then resmatbdt the largest absolute eigenvalue
of the weight matrix — called the spectral radius — equalsezifip value. The input weights are
randomly chosen out df—0.1,0.1} and then multiplied by the input scaling. The output of the RC
systemg[k], is determined by:

,g[k] — W-‘)“tu[k:] + WOUtX[k] + Wout

inp res bias*

In this study ridge regression was used to trdifi.’, W24 andWyut . If

res bias*
y[1
out out out u[1]7 ey u[n} y[2]
W= (W Wt Wi )X = X el anay = | 77
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then it is possible to computé” as
W= (XXT + A7 xY)"
where) is the regularization parameter which has to be determigextdss validation.

We optimized the following parameters: the leak rate, b@sgiisg, connection fraction (the frac-

tion of non-zero weights) of the internal reservoir weiglstsnnection fraction from the input to the

reservoir, input scaling and spectral radius. The optitromawas done by performing cross vali-

dation on the training set. Because the reservoirs are malydreated, we repeated the main RC
experiment 10 times and averaged the performance ovewodserstances to obtain statistically

relevant results. This averaging was done both during petemoptimization and during the final

evaluation.

3 Experiments And Discussion

3.1 Dataand evaluation

We used data from the first task in the BCl Competitior.IVhe task is to discriminate between
two types of motor imagery and a resting state. This has toobe dt every timestep and without

http://www.bbci.de/competition/iv/



cues about the start or end of a trial. There are 7 differetaisgés available, four datasets containing
natural EEG while the other three are artificially gener&g¢. Only the first four (natural) datasets

were used for evaluation purposes. Each subject has a tedlitaining and a dedicated test set.
The generated output for every timestep has to be a real mimebgeen -1 and 1. (class 1: -1, rest:

0, class 2: 1). Itis important to point out that there is n@oese time limit. This means that the

entire dataset can be processed before generating the.outpu

Three different evaluation methods are considered:

Discrimination between motor imagery classes This is done by using the single trial accuracy -
so in this case the start and end cues were in fact used. Homaator imagery trial (or
thought) the sign of the averaged output for that trial waslus label the trial. The fraction
of correctly classified trials is given.

Rest state detection To evaluate the rest state detection we took the absolutie withe output: 1
is motor imagery, 0 is the idle state. The True Positive RBRR) and False Positive Rate
(FPR) is calculated for each threshold value between 0 arithé. TPR is plotted versus
the FPR to obtain the ROC curve, where a higher Area UnderddQ@C) indicates better
performance.

Mean squareerror (MSE) The MSE between the desired output and the actual output sex$ u
as performance measure in the BCl Competition. The MSE ipab&ad according to the
following equation:

MsE - S i = i)

m

wherem is the total number of sampleg; is the generated output at timestepnd y;
is the desired output at timestép We include MSE results in order to compare with
the published results of the competition. All our resultgevebtained while optimizing
the MSE, however the MSE gives little information about tiecdmination between the
different motor imagery classes and between motor imagafytfee rest class. This is why
the two other evaluation metrics were added to our expetignen

)

3.2 Experimental setups

Five different experimental setups were evaluated. Thé \gea to investigate how the different
components influenced the performance. We start of with aulteéxperiment and at each new
experiment we increase the BCl's complexity. Postproogssias applied before evaluating the
MSE. This postprocessing consists of one single step: adeg/filter (Butterworth filter with cutoff
frequency 0.1 Hz) that was applied once in the forward an& amthe reverse direction.

Linear regression with standard CSP In this experiment we applied bandpass filtering with a
broad passband (8-30Hz). The CSP filters were then applititbse filtered signals. Then
we computed the features as described in Section 2.1. Weiegrged with different win-
dows for the variance calculation and the best performarseaghieved by one starting 75
samples before the current timestep and stopping 75 tipeafeer the current. The output
was then generated by using linear regression on thesedsatu

Linear regression with feature selection The only difference between this experiment and the
previous one is the addition of the feature selection allgori The spectral filtering is done
by using the subject specific passband and spatial filtemsé& passband and spatial filters
are selected by the proposed algorithm. By comparing thdtseom this experiment
with the previous one we can isolate the influence from theuifeaselection algorithm.

Linear regression with feature selection and delay lines We added delay lines before the linear
regression so that information about past samples can loe brsthis experiment we want
to evaluate the influence on performance by using informdtiom the past.

Reservoir Computing The delay lines with the linear regression is replaced by seR®ir Com-
puting system as described above. The features that arsttethe reservoir are the same
as in the previous two experiments. We used a reservoir viithéurons, the leak rate
was 0.025, the input scaling was 2, the spectral radiust®eggservoir connection fraction
0.45, the input connection fraction 0.25 and the bias was Tlese parameter settings
were obtained trough optimization using a grid search.



100 I Lincar Std. CSP

I Lincar featsel.
[ Linear Delay
C—Jrc
[ Realtime RC

[e2]
o

Accuracy (%)
o)
o

a b f g avg
subject

Figure 3: Discrimination between motor imagery states.uRgsre percentage correctly labelled
trials.
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Figure 4: Results based on the rest state detection whersliiemeasure was used. The dotted
line represents chance level.

Real-time Reservoir Computing We made two changes in this experiment. The first change is
that we omitted the variance calculation step, the inpuh&oreservoir is just spectrally
and spatially filtered EEG. This way the delay originatingnfrthe variance calculation is
removed. The second change is that the postprocessingeldf®E evaluation was not
done because smoothing in realtime was not possible. Thisoti@vorks instantaneously,
the output for the sample is generated without delay. Thi®ement is a proof of concept
S0 only one reservoir was tested.

3.3 Discussion

If we take a look at the discrimination of the motor imagergsses, shown in Fig. 3, we find that
the accuracy is very subject dependent: for instance, peaioce on subjecgt is much higher than
on subject. On average we see that without feature selection 81.7%ecddmples are classified
correctly. The addition of the feature selection algoritimoreases this accuracy to 86.2%. The
influence of the delay lines is minimal, an accuracy of 86.88& wachieved. The results achieved
with Reservoir Computing are similar with an accuracy of686. In short: the feature selection
algorithm has a large influence on the discrimination betbwa®tor imagery classes, Reservoir
Computing does not.

The evaluation of the rest state detection — a feature wkichucial for real-world applicability of
this BCI system because it eliminates the need for cues —ssktmat the addition of an idle state
makes the BCI much more complex. (Fig. 4) The average AUC thighinear method is 0.58, on
subjectb the AUC is only just as good as chance level. Feature sefeatia delay lines do not
improve the rest state detection, the average AUC becorb@siaith feature selection. The delay
lines bring the AUC again up to 0.58. If we add Reservoir Cotimguthe average AUC becomes
0.64. The performance on the easier subjestays the same, on the other (harder) subjects there
is more improvement. It is clear that Reservoir Computinghd®s us to improve the rest state
detection significantly.

We now compare the results with the competition resultsdasdVISE (Table 1). The linear method
achieves good results on average, the MSE is 0.376 compatkd 0.382 of the winner. The best
results per subject give an average MSE of 0.365 which leaaes for improvement. The addition
of the feature selection algorithm brings the MSE down t@8.®&hich is better than the best results
from the competition. There is a slight decrease when thaydeies are added but this is much
smaller than the decrease due to the feature selection.dtigoa of Reservoir Computing gives a
second big improvement. The average MSE is now only 0.32@. réaltime experiments give an
MSE of 0.390. However it has to be said that the realtime caimts make this problem much more
difficult than the task in the competition.



Table 1: Results based on the MSE. Comparison between nsetimadBCI Competition IV.

dataset a b f g avg.
linear Std. CSP. 0.358 0.466 0.400 0.280 0.376
linear Featsel. 0.327 0.403 0.372 0.290 0.348
Linear Delay 0.324 0.403 0.369 0.286 0.345
RC 0.296 (0.005) 0.361(0.041) 0.361(0.003) 0.284 (0.005) 0.326
Realtime RC 0.364 0.442 0.435 0.320 0.390
Competition winner  0.40 0.42 0.42 0.29 0.382
Competition best 0.35 0.42 0.40 0.29 0.365

4 Conclusions

In this paper we evaluated the performance of Reservoir @Qtingpand a novel CSP algorithm in
an uncued motor imagery BCl.We can conclude that the cortibmaf Reservoir Computing and
the proposed novel feature extraction method is a promidagsification method for the difficult
motor imagery BCI considered in this contribution. Its sumedetection of the rest state compared
to other methods increases the applicability of the metliocesstart and stop cues are generally
not available in real-world situations. Moreover, since tfaining of RC is entirely based on linear
methods, a whole array of standard procedures for adaipgadyibnline learning (such as Recursive
Least-Squares) are available. This makes the system mioustragainst potential changes in the
environment, which in turn again increases the usefulnietbssosetup in an actual assistive context.
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