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Decoding Neural Activity in Sulcal
and White Matter Areas of the Brain
to Accurately Predict Individual
Finger Movement and Tactile Stimuli
of the Human Hand
Chad Bouton1,2,3*†, Nikunj Bhagat1,2, Santosh Chandrasekaran1,2, Jose Herrero1,2,4,
Noah Markowitz2, Elizabeth Espinal1,2, Joo-won Kim5, Richard Ramdeo1,2, Junqian Xu5,
Matthew F. Glasser6, Stephan Bickel1,2,3,4,7 and Ashesh Mehta1,2,3,4†

1 Feinstein Institutes for Medical Research at Northwell Health, New York, NY, United States, 2 Institute of Bioelectronic
Medicine, Feinstein Institutes for Medical Research, New York, NY, United States, 3 Hofstra-Northwell Medical School,
New York, NY, United States, 4 Department of Neurosurgery, Northwell Health, New York, NY, United States, 5 Department
of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States, 6 Department of Radiology and
Neuroscience, Washington University in St. Louis, St. Louis, MO, United States, 7 Department of Neurology, Northwell
Health, New York, NY, United States

Millions of people worldwide suffer motor or sensory impairment due to stroke, spinal
cord injury, multiple sclerosis, traumatic brain injury, diabetes, and motor neuron
diseases such as ALS (amyotrophic lateral sclerosis). A brain-computer interface
(BCI), which links the brain directly to a computer, offers a new way to study the
brain and potentially restore impairments in patients living with these debilitating
conditions. One of the challenges currently facing BCI technology, however, is to
minimize surgical risk while maintaining efficacy. Minimally invasive techniques, such
as stereoelectroencephalography (SEEG) have become more widely used in clinical
applications in epilepsy patients since they can lead to fewer complications. SEEG depth
electrodes also give access to sulcal and white matter areas of the brain but have not
been widely studied in brain-computer interfaces. Here we show the first demonstration
of decoding sulcal and subcortical activity related to both movement and tactile
sensation in the human hand. Furthermore, we have compared decoding performance
in SEEG-based depth recordings versus those obtained with electrocorticography
electrodes (ECoG) placed on gyri. Initial poor decoding performance and the observation
that most neural modulation patterns varied in amplitude trial-to-trial and were
transient (significantly shorter than the sustained finger movements studied), led to
the development of a feature selection method based on a repeatability metric using
temporal correlation. An algorithm based on temporal correlation was developed
to isolate features that consistently repeated (required for accurate decoding) and
possessed information content related to movement or touch-related stimuli. We
subsequently used these features, along with deep learning methods, to automatically
classify various motor and sensory events for individual fingers with high accuracy.
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Repeating features were found in sulcal, gyral, and white matter areas and were
predominantly phasic or phasic-tonic across a wide frequency range for both HD (high
density) ECoG and SEEG recordings. These findings motivated the use of long short-
term memory (LSTM) recurrent neural networks (RNNs) which are well-suited to handling
transient input features. Combining temporal correlation-based feature selection with
LSTM yielded decoding accuracies of up to 92.04 ± 1.51% for hand movements,
up to 91.69 ± 0.49% for individual finger movements, and up to 83.49 ± 0.72% for
focal tactile stimuli to individual finger pads while using a relatively small number of
SEEG electrodes. These findings may lead to a new class of minimally invasive brain-
computer interface systems in the future, increasing its applicability to a wide variety
of conditions.

Keywords: neuroprosthetics, stereoelectroencephalography, sensorimotor, tactile stimuli, neural decoding

INTRODUCTION

There are currently 5 million people living with paralysis in
the United States (Armour et al., 2016). The leading causes
include stroke, spinal cord injury, multiple sclerosis, and
amyotrophic lateral sclerosis (ALS). Brain-computer interface
(BCI) technology was successfully demonstrated to form a neural
bypass and restore volitional movement in paralysis during a
first-in-human study that involved decoding movement-related
neural signals recorded via microelectrodes implanted in motor
cortex (Bouton et al., 2016). Furthermore, restoration of the sense
of touch, important to regaining dexterous hand movement,
has been demonstrated with BCI technology as well (Flesher
et al., 2016). Microelectrodes and electrocorticography (ECoG)
electrodes have been used for BCI applications, however, require
a lengthy craniotomy to implant, thereby adding risk to the
procedure. More recently, stereoelectroencephalographic (SEEG)
electrodes have been used for mapping seizure origination
in epileptic patients and is now widely accepted, offering
a minimally invasive method for these procedures. SEEG
electrodes are thin (< 1 mm) electrodes that are typically 25–
30 cm in length and are inserted through a small hole (∼2.4 mm
in diameter) made in the skull. This reduces the total area of
the skull openings needed for SEEG electrodes significantly as
compared to the large craniotomy area required for implanting
micro- and ECoG electrodes. Adverse events associated with
SEEG procedures occur at a significantly lower rate than with
electrocorticography (ECoG) electrodes (Cardinale et al., 2013;
Stricsek et al., 2018). SEEG electrodes therefore may be a good
alternative to ECoG or microelectrode arrays in brain computer
interface (BCI) systems.

Decoding performance in BCI systems is an important
consideration and can be directly impacted by the location and
type of electrode used. ECoG and microelectrode array, placed
on the gyri, have been demonstrated in primates and humans for
a variety of decoding applications including thought-controlled
cursor movement and robotic arm control (Carmena et al., 2003;
Hochberg et al., 2006). Decoding of individual finger movement
has also been demonstrated in ECoG recordings (Kubánek et al.,
2009). Very little work has been conducted to date, however,

in assessing decoding performance when using SEEG electrodes
for BCI applications. Basic two-dimensional cursor control has
been demonstrated via SEEG electrodes (Vadera et al., 2013),
in which the user wiggled their contralateral hand, or foot, to
control the horizontal and vertical motion of a computer cursor,
respectively. Also, a BCI P300 Speller (single degree-of-freedom)
was controlled through ECoG and SEEG electrodes implanted
in and near the hippocampus (Krusienski and Shih, 2011; Shih
and Krusienski, 2012). Also, grasp force related events were
recorded and classified using SEEG electrodes recording from
sulcal areas in motor cortex and from sensory cortex (Murphy
et al., 2016). Finally, SEEG provides access to subcortical areas
including white matter. Recent studies showed white matter
signals may contain a mixture of nearby and distant gray matter
activity (Mercier et al., 2017). Also, high density EEG studies
have also shown that sources involving sensorimotor processing
can be located in white matter areas (Melnik et al., 2017).
Furthermore, recent studies have also shown SEEG recording
sites located in white matter can contribute to accurate decoding
(Huang et al., 2019, 2021).

One compelling application of SEEG electrodes is in
a so-called bidirectional neural bypass for restoration of
movement and the sense of touch. Although activity related
to arm kinematics has been found in the somatosensory area
(Chowdhury et al., 2020), a minimally invasive approach is
of particular interest where the bi-directional neural bypass
application involves stimulating the somatosensory area.
It has been shown that microstimulation of the primary
sensory cortex can evoke tactile percepts that improve robotic
arm control via a bidirectional BCI (Flesher et al., 2021).
Specifically, precise stimulation of sulcal and subcortical areas
for evoking highly focal percepts in the fingertips has also
been demonstrated in humans recently using SEEG electrodes
(Chandrasekaran et al., 2020). Furthermore, a bidirectional
neural bypass needs to be effective in restoring a wide variety
of movements including sustained movements to be useful
for disabled users in activities of daily living. Previous work
has shown that predominantly phasic (transient) neural
modulation patterns were obtained during movements, but
these studies were mostly centered on short or pulsed, but
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not sustained, movements (Shin et al., 2012; Chen et al.,
2014; Flint et al., 2017). Also, recent work has further
confirmed that predominantly phasic (transient) neural
patterns in SEEG recordings occur during sustained grasping
movements (Jiang et al., 2020). This suggests that using this
type of activity as input features to a decoder for restoring
sustained movement in an electronic neural bypass system
may pose significant challenges. Another challenge stems
from noise and amplitude drift/variation that occurs in
neuronal activity over time which can degrade decoding
performance (Zhang et al., 2018; Rule et al., 2020). This
emphasizes the importance of using effective signal processing
and feature selection methods that extract reproducible
features for decoding. Furthermore, machine learning methods
that can effectively use transient features while producing
sustained outputs is important for restoring realistic and
useful hand movements.

A number of strategies and different machine learning
algorithms including linear classifiers, regression machines,
support vector machines (SVMs), and deep neural networks
have been used to decode neural signals recorded in the
brain. In the handful of studies that have attempted to
decode SEEG signals specifically, the results have been
mixed. In one of these studies, three different hand gestures
were decoded using SEEG signals with an accuracy of
78.70 ± 4.01% (Li G. et al., 2017). In another study, SEEG
electrodes placed in middle temporal regions led to fast
typing of up to 14 characters/minute (Li D. et al., 2017).
Lastly, another group decoded SEEG recordings from the
auditory cortex and produced intelligible waveforms with
45–75% accuracy levels depending on the algorithm used
(Akbari et al., 2019).

Here we investigated the temporal characteristics of neural
signals for both motor and sensory events when recorded
using SEEG electrodes and decoding methodologies that
incorporated temporal correlation-based feature selection and
deep learning methods. Specifically, we were interested in
decoding sustained finger movements and tactile stimuli
and hypothesized long short-term memory (LSTM) based
recurrent neural networks (RNNs), due to their memory
cells and ability to handle temporal dependencies, would
lead to sustained outputs and improved decoding accuracy
despite receiving transient inputs (neural features). It was
previously shown that a LSTM network can outperform a
Kalman filter in a neural decoding application (Hosman
et al., 2019). Furthermore, a LSTM network was specifically
selected due to its improved performance, and ability to
handle the vanishing gradient problem, over vanilla RNNs
(Bengio et al., 1994; Shewalkar et al., 2019). Lastly, with
a long-term goal of restoring dexterous hand movement,
we investigated decoding performance for individual finger
movement and touch-related events at the fingertips. Our
findings show that neural patterns recorded with SEEG electrodes
are indeed mostly phasic in nature, but that LSTM-based
deep learning networks combined with repeatability-based
feature selection can produce sustained outputs and high
decoding accuracies.

MATERIALS AND METHODS

Participants
Three patients voluntarily took part in this study that
were undergoing pre-operative seizure monitoring for surgical
treatment of intractable epilepsy. Functional magnetic resonance
imaging (fMRI) was performed in participants 1 and 3 (P1
and P3) and implantation of either HD-ECoG grids and/or
SEEG electrode leads was performed in each participant, and
signals were recorded during various motor and sensory tasks
(see Figure 1). The decisions on whether to implant, the
electrode targets selected, and the duration for implantation
were based entirely on clinical grounds without reference to this
investigation. Some patients required re-implantation which is
indicated by an underscore after the participant code (e.g., _02,
_03). Patients were informed that participation in this study
would not alter their clinical treatment, and that they could
withdraw from the study at any time without jeopardizing their
clinical care. All procedures and experiments were approved
by the Northwell Institutional Review Board and participants
provided informed consent prior to enrollment into the study.

Imaging
Participants were scanned on a 3T MRI scanner (Skyra, Siemens,
Germany) with a 32-channel head coil. Human Connectome
Project (HCP)-like structural and functional MRI were acquired:
T1-weighted (T1w) 3D MPRAGE sequence, 0.8 mm isotropic
resolution, TR/TE/TI = 2,400/2.07/1,000 ms, flip angle = 8
degree, in-plane under-sampling (GRAPPA) = 2, acquisition
time 7 min; T2-weighted (T2w) 3D turbo spin echo (SPACE)
sequence, 0.8 mm isotropic resolution, in-plane under-sampling
(GRAPPA) = 2, TR/TE = 3,200/564 ms, acquisition time
6.75 min; task fMRI using the CMRR implementation of
multiband gradient echo echo-planar imaging (EPI) sequence
(Setsompop et al., 2012), 2.1 mm isotropic resolution, 70
slices with a multiband factor of 7 (Xu et al., 2013), FOV
228 mm × 228 mm, matrix size 108 × 108, phase partial Fourier
7/8, TR/TE = 1,000/35 ms, flip angle = 60 degree, phase encoding
direction = anterior-posterior (A-P), echo spacing = 0.68 ms,
240 volumes in 4 min; and a pair of reversed polarity (A-
P/P-A) spin echo EPI field mapping acquisitions with matched
echo train length and echo spacing to the fMRI acquisition.
The task was button-pressing on the PST button response unit
(Psychology Software Tools, Sharpsburg, PA, United States) using
a single finger (wrist restrained with strap on the button response
unit and neighboring fingers taped down with medical tape),
repeating 6 times of 20-second off (resting with cue of a blank
dark screen) and 20-second on (tapping with continuous video
cue of the same finger motion presented from a projector screen).
Participant P1 performed three repetitions of the task for each
of thumb, index, and little fingers (phase-encoding direction A-
> P) while participant P3 performed two repetitions for each
of thumb, index, and middle fingers (phase-encoding directions
A- > P and P- > A). The MRI preprocessing began with
the HCP minimal preprocessing pipelines version 3.27 (Glasser
et al., 2013) including, motion correction, distortion correction,
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FIGURE 1 | Functional magnetic resonance imaging and electrode placement. (A) Pre-surgical fMRI obtained while participant P1 pressed different buttons on a
handheld device while watching videos showing desired movements. (B) Exemplary placement of SEEG electrodes (participant 3). (C) Photograph of HD ECoG
electrode placement for recordings in participant P1_03. (D) Experimental setup where participants received visual cues of hand movements on a laptop computer
with cues lasting 3 or 4s followed by a 3 or 4s period of rest; the clinical recording system (Natus Medical, Inc.) is not shown and was always connected for
continuous data acquisition.

cortical surface reconstruction and subcortical segmentation,
generation of T1w/T2w-based myelin content and cortical
thickness maps, transformation of the fMRI data to MNI
and CIFTI grayordinate standard spaces using folding-based
registration with MSMSulc, and 2 mm full-width half maximum
(FWHM) surface and subcortical parcel constrained smoothing
for regularization. The fMRI data were cleaned of spatially
specific structured noise using the HCP’s multi-run (version
4.0) ICA-FIX for multi fMRI (multiple finger tasks) and linear
trends without regressing out motion parameters. Somatotopic
functional responses were estimated (first-level for participant
P1 and second-level fixed-effect averaging of the two phase-
encoding directions for participant P3) using a generalized linear
model (GLM)-based fMRI analysis (Woolrich et al., 2001) on the
grayordinate data space for each finger.

Electrode Localization
The SEEG electrodes (PMT Corporation, Chanhassen, MN,
United States) consisted of 16 contacts, cylinders with 2 mm
length, 0.8 mm diameter, and 4.43 mm spacing (center to
center). The HD-ECoG grids (PMT Corporation) consisted
of 2 mm diameter flat contacts, in participant P1 with an
8 × 8 arrangement with 5 mm spacing (center to center)
and in participant 2 with 16 × 16 contact arrangement with
4 mm spacing. Since both patients had clinical indications that
required mapping of the sensorimotor cortex, task-based fMRI
activation maps were used to guide electrode placement. For

digital localization of the electrodes, we used the freely available
iElvis toolbox, available at https://github.com/iELVis/ (Groppe
et al., 2017). Briefly, the electrodes were manually localized
using the software BioImage Suite 1on a postimplant CT which
was co-registered using an affine transformation (6 degrees-of-
freedom FLIRT; 2) to the pre-implantation 3T high-resolution
T1w MRI. We used the FreeSurfer output from the HCP minimal
processing pipeline (Glasser et al., 2013) to obtain the pial
surface. The subdural HD-ECoG electrodes were projected to
the smoothed pial surface. The smoothed pial surface, also called
the outer smoothed surface, is generated by Freesurfer and
wraps tightly around the gyral surfaces of the pial layer while
bridging over the sulci. No correction was applied to SEEG
electrode coordinates. To visualize the fMRI activation maps
and the electrodes simultaneously, we used HCP Connectome
Workbench3. Before importing the electrode coordinates into
Connectome Workbench, we applied a RAS coordinate offset
as follows –

transformed_RAS_coordinates = Norig∗inv(Torig)∗RAS_coordinates
where the transformation matrices Norig is obtained by
mri_info –vox2ras [subject]/mri/orig.mgz and Torig is obtained
by mri_info –vox2ras-tkr [subject]/mri/orig.mgz

The transformed coordinates were then imported as foci using
the cortical surfaces into Connectome Workbench.

1http://www.bioimagesuite.org
2www.fmrib.ox.ac.uk/fsl
3https://www.humanconnectome.org/software/connectome-workbench
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Recording of Neural Activity
In addition to the clinical recording system, neural activity was
recorded using a Neuroport System (Blackrock Microsystems,
Salt Lake, Utah) with a sampling rate of 10 kHz while participants
performed the various tasks. These tasks included hand/finger
movements and mechanical stimulation of the fingertips of
their hand using a von Frey filament (TouchTest Sensory
Probes) of evaluator size, 3.61 (0.4 g). An electrode located
in soft tissue lacking neural activity was used as the system
ground. Subsequent analysis involved multiple steps to extract
information regarding power modulation in different frequency
bands. Signals from neighboring electrodes were subtracted in
software to provide bipolar data with reduced noise. Non-
overlapping Blackman windows of 200 ms in length were applied
to the data, followed by a short Fast Fourier Transform (sFFT)
for each window (with a resulting frequency resolution of 5 Hz)
and a 1 s boxcar filter. The non-overlapping windowing approach
was chosen to allow fast computation and to support artifact
removal (in other ongoing studies where real-time processing is
required and concurrent stimulation is present). The amplitude
information at each frequency was then integrated across pre-
selected frequency bands as follows: 0–10 (delta and theta),
10–15 (alpha/mu), 15–30 (beta), 30–100 (“gamma 1”), 100–500
(“gamma 2”), and 500–5,000 (“gamma 3”) Hz. These frequency
ranges were selected to align with standard bands (as noted) and
three gamma bands were assigned with increasing bandwidth to
compensate for decreasing power density as frequency increases,
thereby maintaining comparable signal amplitudes and quality
for decoding. This produced integrated amplitude features (IAFs)
for all bipolar recordings that were standardized by subtracting
their mean and dividing by their standard deviation across
the entire task.

Task, Decoding, and Feature Selection
Methods
Two different motor tasks and one sensory task were
implemented in the study. The first motor task, called the
“Open-Close Hand” task, included the participant opening
their hand widely (with splayed fingers) and closing the hand
(making a fist) when visually cued by an animated hand on a
laptop (Figure 1). The second motor task, called the “Thumb-
Middle Flexion” task involved flexing each digit (separately)
in a sustained manner, mimicking the animated hand. The
sensory task involved tapping the pads of three different digits
(separately) using a von Frey filament (TouchTest Sensory
Probes) of evaluator size, 3.61 (0.4 g), during each visual cue
(not seen by the participant). In post-session analysis, epochs
were created that aligned with each visual cue, starting at
the cue onset and extending to 400 ms after the cue offset.
All cue-aligned trials for each IAF were averaged to form a
composite temporal response. To quantify the repeatability of
potential features, an algorithm based on temporal correlation
was used to compute the mean correlation coefficient (MCC)
by averaging the correlation coefficients obtained for temporal
responses for each trial with respect to the composite temporal
response. Features were then selected based on their MCC value.

The range of the MCC values chosen were 0.4 to 0.6, known as
moderate correlation levels, as they led to improved decoding
performance. MCC values outside this range tended to worsen
the decoding performance. Selected features were then used to
train an LSTM type RNN using Matlab and the Deep Learning
Toolbox (R2019b, Update 4). Training parameters are as noted
in Results section.

RESULTS

Functional MRI images were obtained in participants P1 and P3
and post-surgical CT images documenting electrode locations
were performed in all three participants. The fMRI images for
the button press paradigm are shown in Figures 2A–C. The
fMRI the peak activity was primarily located in the central
sulcus for all three digit movements the participant performed
during the task. Also shown in Figures 2D,E are post-surgical
CT images highlighting electrodes that have signal features that
were selected for decoding. The feature selection algorithm
required that the MCC values for features to be used in decoding
algorithm be greater than 0.6 (moderate correlation) during
finger flexion tasks.

During the hand and finger movement tasks, phasic
(transient) and phasic-tonic (transient-sustained) evoked
responses were identified, using temporal correlation analysis, in
all frequency bands analyzed across the 0 to 5,000 Hz range (as
shown in Figure 3). Most evoked responses in the delta, theta,
alpha/mu, and beta bands exhibited a decrease in amplitude
during the pre-movement phase (after visual cue presentation to
the participant), whereas an increase in power was observed in
the gamma bands. An exception was observed in one participant
(P3) where both increases and decreases were observed in the
lower frequency bands. Also, it is readily seen in these results
that the neural responses are largely phasic in nature (despite the
sustained hand and finger movements performed) motivating
the use of a LSTM network.

To further examine the transient nature of the evoked
responses, an analysis extended to the time period after the
visual cue offset was performed. As shown in Figure 4, the
composite temporal responses recorded from SEEG electrodes
were observed not only after the cue onset, but also after the
cue offset, in both motor and sensory tasks in participant P3.
In the sensory tasks, mechanical tactile stimuli (rapid tapping)
were presented throughout the entire cue period at the fingertips
(center of pads).

The extended time analysis was also performed for the HD
ECoG recordings in the same participant (P3) during both motor
and sensory tasks as shown in Figure 5. Similar phasic and
phasic-tonic responses were observed but more features with
high temporal correlation were identified (as the HD ECoG array
was placed directly over the sensorimotor cortex). Interestingly,
responses with more tonicity were observed on some digits, but
which digit differed depending on whether a motor or sensory
task was being performed.

Given that the evoked responses observed were primarily
phasic in nature and had a wide variety of temporal shapes,
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FIGURE 2 | Functional MRI and post-surgery CT images for participant P3 related to finger tasks. (A–C) Functional MRI images in orthogonal planes (sagittal,
transverse, and coronal) obtained during button press task for digits 1 (orange-red), 2 (blue), and 3 (green). (D,E) Post-surgical CT images of SEEG electrode sites
found to have a repeatability metric (MCC) value greater than 0.6 (for time range of 0–4.4s with respect to cue onset) for flexion of digits 1 and 3.

and that stable features (features with high repeatability) are
desirable for accurate decoding, temporal correlation analysis
was introduced to quantify repeatability (stability) of potential
features. It was hypothesized using temporal correlation-based
feature selection would identify stable features (of any shape) and
therefore improve decoding performance.

As shown in Figure 6, using temporal correlation-based
feature selection significantly improves decoding accuracy for
both SVM and LSTM type algorithms when using SEEG or HD
ECoG type electrode recordings in participant P3. This trend was
also observed in the other participants. Note the task used for
the HD ECoG recording involved three finger movements, but
was reprocessed to remove the additional finger (index) cue to
match the SEEG task for a more direct decoding performance
comparison. In both SEEG and HD ECoG recordings, and for
SVM or LSTM methods, decoding accuracy was improved when
temporal correlation-based feature selection is used.

Another striking result shown in Figure 6 is the sustained
output (“prediction”) from the LSTM network as compared
to the fragmented SVM output/prediction during the
sustained hand movements. This result offers support for
our previous hypothesis that a LSTM approach may lead to
sustained outputs and improved decoding accuracies during
sustained movement tasks.

In Figure 7 the electrode locations for all three participants
(red = P1, green = P2, and blue = P3), mapped to a standard
glass brain based on the Yeo 7 atlas (Yeo et al., 2011), are
shown for the finger flexion task involving thumb flexion (+)
and middle finger flexion (∗) prompted by visual cues. Temporal
correlation analysis was performed and electrodes that yielded a
MCC value greater than 0.6 (in one or more frequency bands)
are shown using a colored symbol and a diamond shape is
used to denote that the MCC value was greater than 0.6 for
a given electrode during both the thumb and middle flexion
cued movement periods. Overall, most of the electrodes with
significant MCC values are in the sensorimotor areas for all
three participants.

To further examine the location of electrodes with high
temporal correlation, a functional network map was created.
Electrodes within 3 mm of the cortical surface were snapped to
the nearest point on the surface of the brain and shown on an
inflated standard brain based on the Yeo 7 network atlas. As
shown in Figure 8, most of the electrodes with high temporal
correlation (MCC > 0.6) are located in the somatomotor,
dorsal/ventral attention, and frontoparietal regions. Only two
electrodes in the second subject (P2/green) have a high MCC
value, but these are the only two electrodes implanted in this
region (as confirmed by the lack of spherical green symbols).
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FIGURE 3 | Predominantly phasic neural activity for sustained hand and finger movements in SEEG and ECoG recordings. Representative set of composite
temporal responses across three study participants and different hand and finger movements are shown. In both the SEEG (depth) and HD ECoG (surface)
recordings, the responses across a wide range of frequency bands are predominantly phasic in nature. The MCC (repeatability metric) was greater than 0.6 for all
plots in this figure except in P1_02 where it was 0.5 for “Close hand (SEEG)” and 0.4 for “Thumb Flexion (HD ECoG).”

FIGURE 4 | Amplitude modulation and electrode placement in P3_01 (SEEG electrodes). (A) Composite temporal patterns of amplitude modulation in various
frequency bands for motor and sensory tasks. (B) Electrode placement in various regions of the brain.

Decoding results are shown in Table 1 for motor tasks where
the participant performed sustained hand and finger movements
including open (wide open of hand with splayed fingers), close

hand (make a fist), and finger flexion (sustained flexion of
individual fingers). The decoding accuracies achieved in SEEG
recordings for open-close hand movements were comparable
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FIGURE 5 | Amplitude modulation and electrode placement in P3 (ECoG and strip electrodes). (A) Averaged (across trials) temporal patterns of amplitude
modulation in various frequency bands for motor and sensory tasks. (B) Electrode placement in various surface regions of the brain.
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FIGURE 6 | Decoding accuracies for different architectures during thumb and middle finger flexion task. Independent test sets results are shown for four different
decoding architectures tested offline with SEEG and ECoG recordings in participant P3: the first row results are for a multi-class non-linear SVM using a gaussian
kernel without feature selection, the second row are results for an architecture that performs repeatability-based feature selection (MCC > 0.6) and SVM, the third
row shows results for a LSTM recurrent neural network without feature selection, and the last row shows results for an architecture using feature selection as
described and a LSTM recurrent neural network.
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FIGURE 7 | Electrode locations (right hemisphere) mapped to standard brain based on the Yeo 7 atlas for participants P1_01 (red), P2_02 (green), and P3_01 (blue).
(A) Sagittal view from lateral perspective. (B) Coronal view from anterior perspective. (C) Transverse view from inferior perspective. The colored electrodes had high
temporal correlation (MCC > 0.6) during a cued finger task including sustained thumb and middle flexion movements, separately, and the symbols mark which
movement(s) had high MCC values: thumb flexion (cross), middle finger flexion (asterisk), or both (diamond). Note: electrodes are sometimes not inserted fully by the
surgeon, therefore some contacts are located outside the brain (as seen in this figure).

(with notably fewer recording sites for SEEG). For open-close
hand movements, the sampling frequency for recordings in
participant P1 was 1,024 Hz rather than the default 10 kHz rate
due to system limitations at the time of the recordings. This
reduced sampling rate was used for both SEEG and HD-ECoG
recordings, therefore allowing direct comparison. In the thumb-
middle flexion tasks, the decoding accuracy for SEEG recordings
in participant 1 was significantly higher than that of the HD
ECoG based recordings, even when the SEEG sampling rate was
reduced to match the HD ECoG recording. In participant P3
for the thumb-middle flexion task the data (as noted previously)
was reprocessed to remove the additional finger (index) cue to
match the SEEG task for a more direct decoding performance
comparison. The decoding accuracy in this task was found to be
higher for the SEEG as compared to the HD-ECoG recording.
Another interesting finding was that many SEEG electrode sites
with high temporal correlation (MCC > 0.6), and therefore
selected for decoding, were found to be in white matter. In fact,
for the open-close hand task, over fifty percent of these sites were
in white matter for two of the three participants (16 of 27 sites for
P2_02, 9 of 16 sites for P3_01, and 3 of 19 sites for P1_03).

During the tactile stimuli task where a mechanical filament
was used to repeatedly tap the pads of digits 1, 2, and 3, decoding

results were obtained for SEEG and/or HD ECoG recordings. The
decoding accuracies when using an LSTM based algorithm with
temporal correlation-based feature selection for these different
recording modalities and the three different participants are
shown in Table 2. To allow decoding performance comparisons
with an equal number of cues, the HD ECoG data sets for
P1_03 and P3 were reprocessed to remove additional tapping
locations. The decoding accuracy results for SEEG recordings
were significantly lower in participant P1_03 than those obtained
with HD ECoG recordings, however, 28 of the 31 recording
sites were located outside the sensory area of the brain. In
participant P3, the decoding accuracy for SEEG-based recordings
were slightly lower as well, but with fewer recording sites (21
versus 30 required for decoding of the HD ECoG recording).

DISCUSSION

In this study we showed minimally invasive SEEG electrodes
can record stable and information-rich neural signals related to
movement and tactile sensation. Using a temporal correlation-
based feature selection method, we identified and extracted
repeating neural patterns that consistently occurred during
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A B

FIGURE 8 | Electrode site locations with respect to functional networks for participants P1_01 (red), P2_02 (green), and P3_01 (blue). (A) Sagittal view from lateral
perspective. (B) Sagittal view from medial perspective.

TABLE 1 | Decoding performance (mean ± SD) for sustained hand movements when using a recurrent neural network (LSTM type) with repeatability-based
feature selection.

Participant Open-close hand Thumb-middle flexion

SEEG HD ECoG SEEG HD ECoG

P1 77.48 ± 3.65%1(19 sites, 3 in sensorimotor) 79.98 ± 0.48%1(30 sites) 83.92 ± 2.25%2(39 sites) 70.06 ± 1.35%2(22 sites)

P2_02 91.61% ± 1.29%(27 sites) N/A 84.29% ± 1.46%(33 sites) N/A

P3 92.04 ± 1.51%(16 sites) 88.41 ± 3.36%(43 sites) 91.69 ± 0.49%(37 sites) 87.40 ± 1.03%(60 sites)

1The sampling rate used was 1,024 Hz (due to system limitations at time of recording).
2The sampling rate used was 512 Hz (due to system limitations at time of recording).
MCC threshold ranged from 0.55 to 0.6, the number of hidden units ranged from 400 to 600, and the patience ranged from 2 to 7.

TABLE 2 | Decoding performance (mean ± SD) for tactile stimuli (tapping) applied to thumb, index, and middle finger pads when using a LSTM type recurrent neural
network with a feature selection algorithm based on temporal correlation.

Participant SEEG HD ECoG

P1_03 62.21 ± 1.50%1(31 sites) 70.04 ± 2.86%1(45 sites)

P2_02 80.64 ± 1.64%(9 sites) N/A

P3 78.64 ± 0.64%(21 sites) 83.49 ± 0.72%(30 sites)

1Sampling rate used was 1,024 Hz (due to system limitations at time of recording).

motor and sensory events. These features were used as inputs to
a LSTM type recurrent neural network which was able to reliably
and accurately predict finger movement and focal tactile stimuli
presented at the pads of the fingers.

High decoding accuracy was demonstrated while using SEEG
methods in multiple participants across multiple tasks and shown
to be comparable to the decoding performances achieved with
HD ECoG. This was unexpected given the relatively low spatial
resolution of SEEG electrodes (4.43 mm site spacing) and that

there were fewer electrodes placed in the sensorimotor area as
compared to the HD-ECoG grid electrodes. Furthermore, very
few studies have demonstrated the application of SEEG in neural
decoding and in the BCI field. In fact, the authors are not
aware of any other previous study demonstrating the use of
SEEG/depth electrodes for neural decoding of both motor and
sensory stimuli events.

During this study it was readily observed that the neural
responses were largely phasic in nature, despite the sustained
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hand and finger movements performed. This motivated our use
of a LSTM network since it can produce sustained outputs while
receiving transient inputs (due to the memory cells inherent in
their network structure). The delta, theta, alpha/mu, and beta
bands exhibited a decrease in amplitude, along with an increase in
the gamma band, during the pre-movement phase. These results
were expected, however, some increases in feature amplitudes in
the lower frequency bands for participant (P3) occurred which
may be due to some of the raw evoked potential component
(0 Hz) being incorporated in the low frequency band processing.

Another interesting finding in this study is that many
electrode sites producing useful features for decoding were
in white matter. This was surprising since white matter does
not contain neurons and is usually considered electrically
neutral. Other studies, however, have found that recorded
white matter signals contain a mixture of activity which
appears to be from both nearby and distant gray matter
activity (Mercier et al., 2017). High density EEG studies have
also shown that sources involving sensorimotor processing
can be located in white matter areas (Melnik et al.,
2017). Furthermore, recent studies have also shown SEEG
recording sites located in white matter can contribute to
accurate decoding (Huang et al., 2019, 2021). We feel this
area is ripe for further exploration and plan to perform
more recordings that include electrode sites in the white
matter in the future.

This study had limitations including the number of
participants and small task differences. In the future,
expanding the study to include additional participants will
allow further mapping of sulcal and white matter areas
which are less charted than the gyri. In the current study
reported here, not all tasks were completed for all participants
due to session time constraints, therefore some decoding
performance comparisons are not available. Despite this,
the data suggest SEEG recordings, combined with the
methods presented, can achieve high decoding accuracies
using relatively few electrode sites. Furthermore, patients
were taken off of their anti-seizure medications before
recording/decoding sessions were started, however, residual
effects may have reduced neuronal activity and impacted
reaction times. Lastly, the brain atlas we used for producing
Figure 8 did not delineate between motor and sensory
areas, so we therefore plan to utilize an alternate atlas
in future studies.

With the clear advantage of being minimally invasive,
SEEG electrodes may be a viable option for use in
brain-computer interface systems and specifically in a
bidirectional neural bypass for paralysis applications.
Although SEEG electrodes have been limited to acute
use, similarly constructed depth electrodes, such as those
used in deep brain stimulation for Parkinson’s disease,
which have been implanted for multiple years, and
some investigational devices have recording electrodes
such as the SummitTM RC + S developed by Medtronic
(Stanslaski et al., 2018).

The temporal correlation feature selection method
was also found to identify locations within the brain

involved in processing sensory stimuli that corresponded
to the locations identified through cortical stimulation
methods (Chandrasekaran et al., 2020). Passive methods
such as this that do not involve electrical stimulation are
attractive for mapping procedures in epileptic patients as
they reduce the risk of inducing a seizure. The methods
demonstrated in this study have many potential applications
in mapping, movement and sensory restoration, and
augmentative communication for patients living with paralysis,
sensory loss, ALS, epilepsy, brain injury, and many other
neurological conditions.

CONCLUSION

Here we explored the viability of using minimally invasive
SEEG methods and electrodes for decoding neural activity
related to motor and sensory events. As observed in ECoG
recordings, neural signals produced by SEEG electrodes
are primarily phasic (transient) in nature, even during
sustained motor tasks. When a feature selection method
based on temporal correlation (a measure of feature
repeatability) was implemented, decoding accuracy increased
with both SVM and LSTM type recurrent neural network
approaches. Furthermore, the overall decoding accuracy
for SEEG recordings was comparable to the performance
observed in ECoG recordings. Our findings support that
SEEG can be an effective approach for neural decoding
and for use in brain-computer interface systems. Finally,
this minimally invasive approach reduces risk and may
become the preferred approach for many BCI applications
including restoration of movement and tactile sensation
in impaired users.
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