475 research outputs found

    Deadlock prevention and deadlock avoidance in flexible manufacturing systems using petri net models

    Get PDF
    Deadlocks constitute an important issue to be addressed in the design and operation of FMSs. It is shown that prevention and avoidance of FMS deadlocks can be implemented using Petri net models. For deadlock prevention, the reachability graph of a Petri net model of the given FMS is used, whereas for deadlock avoidance, a Petri-net-based online controller is proposed. The modeling of the General Electric FMS at Erie, PA, is discussed. For such real-world systems, deadlock prevention using the reachability graph is not feasible. A generic, Petri-net-based online controller for implementing deadlock avoidance in such real-world FMSs is developed

    Transient analysis of manufacturing system performance

    Get PDF
    Includes bibliographical references (p. 28-34).Supported by the INDO-US Science and Technology Fellowship Program.Y. Narahari, N. Viswanadham

    A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems

    Get PDF
    Global competition has made it necessary for manufacturers to introduce such advanced technologies as flexible and agile manufacturing, intelligent automation, and computer-integrated manufacturing. However, the application extent of these technologies varies from industry to industry and has met various degrees of success. One critical barrier leading to successful implementation of advanced manufacturing systems is the ever-increasing complexity in their modeling, analysis, simulation, and control. The purpose of this work is to introduce a set of Petri net-based tools and methods to address a variety of problems associated with the design and implementation of flexible manufacturing systems (FMSs). More specifically, this work proposes Petri nets as an integrated tool for modeling, simulation, and control of flexible manufacturing systems (FMSs). The contributions of this work are multifold. First, it demonstrates a new application of PNs for simulation by evaluating the performance of pull and push diagrams in manufacturing systems. Second, it introduces a class of PNs, Augmented-timed Petri nets (ATPNs) in order to increase the power of PNs to simulate and control flexible systems with breakdowns. Third, it proposes a new class of PNs called Realtime Petri nets (RTPNs) for discrete event control of FMS s. The detailed comparison between RTPNs and traditional discrete event methods such as ladder logic diagrams is presented to answer the basic question \u27Why is a PN better tool than ladder logic diagram?\u27 and to justify the PN method. Also, a conversion procedure that automatically generates PN models from a given class of logic control specifications is presented. Finally, a methodology that uses PNs for the development of object-oriented control software is proposed. The present work extends the PN state-of-the-art in two ways. First, it offers a wide scope for engineers and managers who are responsible for the design and the implementation of modem manufacturing systems to evaluate Petri nets for applications in their work. Second, it further develops Petri net-based methods for discrete event control of manufacturing systems

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    Petri Nets at Modelling and Control of Discrete-Event Systems with Nondeterminism - Part 2

    Get PDF
    Discrete-Event Systems (DES) are discrete in nature. Petri Nets (PN) are one of the most widespread tools for DES modelling, analyzing and control. Different kinds of PN can be used for such purposes. Some of them were described in [3], being the first part of this paper. Here, the applicability of Labelled PN (LbPN) and Interpreted PN (IPN) for modelling and control of nondeterministic DES, especially with uncontrollable and/or unobservable transitions in the models, will be pointed out. Moreover, another kinds of nondeterminism in DES (errors, failures) will be modelled, and the possibilities of the error recovery of failed system will be presented

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Specification and use of component failure patterns

    Get PDF
    Safety-critical systems are typically assessed for their adherence to specified safety properties. They are studied down to the component-level to identify root causes of any hazardous failures. Most recent work with model-based safety analysis has focused on improving system modelling techniques and the algorithms used for automatic analyses of failure models. However, few developments have been made to improve the scope of reusable analysis elements within these techniques. The failure behaviour of components in these techniques is typically specified in such a way that limits the applicability of such specifications across applications. The thesis argues that allowing more general expressions of failure behaviour, identifiable patterns of failure behaviour for use within safety analyses could be specified and reused across systems and applications where the conditions that allow such reuse are present.This thesis presents a novel Generalised Failure Language (GFL) for the specification and use of component failure patterns. Current model-based safety analysis methods are investigated to examine the scope and the limits of achievable reuse within their analyses. One method, HiP-HOPS, is extended to demonstrate the application of GFL and the use of component failure patterns in the context of automated safety analysis. A managed approach to performing reuse is developed alongside the GFL to create a method for more concise and efficient safety analysis. The method is then applied to a simplified fuel supply and a vehicle braking system, as well as on a set of legacy models that have previously been analysed using classical HiP-HOPS. The proposed GFL method is finally compared against the classical HiP-HOPS, and in the light of this study the benefits and limitations of this approach are discussed in the conclusions
    corecore