
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Fall 1994

A petri-net based methodology for modeling,
simulation, and control of flexible manufacturing
systems
Venkatesh Kurapati
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Kurapati, Venkatesh, "A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems" (1994).
Dissertations. 1104.
https://digitalcommons.njit.edu/dissertations/1104

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1104?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A PETRI-NET BASED METHODOLOGY FOR MODELING, SIMULATION,
AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

by
Venkatesh Kurapati

Global competition has made it necessary for manufacturers to introduce such

advanced technologies as flexible and agile manufacturing, intelligent automation, and

computer-integrated manufacturing. However, the application extent of these

technologies varies from industry to industry and has met various degrees of success. One

critical barrier leading to successful implementation of advanced manufacturing systems

is the ever-increasing complexity in their modeling, analysis, simulation, and control.

The purpose of this work is to introduce a set of Petri net-based tools and methods to

address a variety of problems associated with the design and implementation of flexible

manufacturing systems (FMSs). More specifically, this work proposes Petri nets as an

integrated tool for modeling, simulation, and control of flexible manufacturing systems

(FMSs). The contributions of this work are multifold. First, it demonstrates a new

application of PNs for simulation by evaluating the performance of pull and push

diagrams in manufacturing systems. Second, it introduces a class of PNs, Augmented-

timed Petri nets (ATPNs) in order to increase the power of PNs to simulate and control

flexible systems with breakdowns. Third, it proposes a new class of PNs called Real-

time Petri nets (RTPNs) for discrete event control of FMS s. The detailed comparison

between RTPNs and traditional discrete event methods such as ladder logic diagrams is

presented to answer the basic question 'Why is a PN better tool than ladder logic diagram

7 and to justify the PN method.

Also, a conversion procedure that automatically generates PN models from a

given class of logic control specifications is presented. Finally, a methodology that uses

PNs for the development of object-oriented control software is proposed. The present

work extends the PN state-of-the-art in two ways. First, it offers a wide scope for

engineers and managers who are responsible for the design and the implementation of

modern manufacturing systems to evaluate Petri nets for applications in their work.

Second, it further develops Petri net-based methods for discrete event control of

manufacturing systems.

A PETRI-NET BASED METHODOLOGY FOR MODELING, SIMULATION,
AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

by
Venkatesh Kurapati

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Mechanical and Industrial Engineering

January 1995

Copyright 1995 by Venkatesh Kurapati

ALL RIGHTS RESERVED

APPROVAL PAGE

A PETRI-NET BASED METHODOLOGY FOR MODELING, SIMULATION,
AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

Venkatesh Kurapati

Di. MengChu Zhou, Dissertation Adviser 	 I 	 Date
Assistant Professor of Manufacturing Engineering,
Electrical and Computer Engineering, NJIT

Dr. Reggie J. Caudill, Committee Chairman, Dissertation Co-Adviser 	 Date
Profe so of Mechanical and Industrial Engineering, NJIT

Dr. Anthony Robbi fYDate
Professor of Electrical and Computer Engineering, NJIT

Dr. Zhiming Ji
Assistant Professor of Mechanical and Industrial Engineering, NJIT 	 Date

Dr. Ernest Geskin 	 	 Date
Professor of Mechanical and Industrial Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Venkatesh Kurapati

Degree: Doctor of Philosophy in Mechanical Engineering

Date: January 1995

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mechanical Engineering
New Jersey Institute of Technology, Newark, NJ, 1995

• Master of Science in Manufacturing Systems Engineering
Florida Atlantic University, Boca Raton, FL, 1993

• Master of Technology in Mechanical Engineering
Indian Institute of Technology, Madras, India, 1991

• Bachelor of Technology in Mechanical Engineering
S.V. University, Tirupati, India, 1988

Major: Manufacturing Engineering

Presentations and Publications:

Kurapati, Venkatesh, Kaighobadi Mehdi, MengChu Zhou, and Reggie Caudill,
"Augmented Timed Petri Nets for Modeling of Robotic Systems with
Breakdowns," Journal of Manufacturing Systems, Vol. 13, No. 4, 1994, pp. 289-
301.

Kurapati, Venkatesh, MengChu Zhou, and Reggie Caudill, "Comparing Ladder Logic
Diagrams and Petri Nets for the Design of Sequence Controllers Through a
Discrete Manufacturing System," (in press) IEEE Transactions on Industrial
Electronics, Vo. 41, No. 6, 1994.

Kurapati, Venkatesh, MengChu Zhou, Kaighobadi Mehdi, and Reggie Caudill, "A Petri
Net Approach to Investigating the Performance of Push and Pull Paradigms in
Flexible Factory Automated Systems using Petri Nets," (in press) International
Journal of Production Research.

iv

Zhou, MengChu, and Kurapati Venkatesh, "Modeling, Simulation, and Control of
Flexible Manufacturing Systems: A Petri Net Approach," World Scientific
Publishing, London, UK, to appear in 1995.

Kurapati, Venkatesh, MengChu Zhou, and Reggie Caudill, "Evaluating the Design
Complexity of Ladder Logic Diagrams and Petri Nets for Design of Sequence
Controllers in Flexible Automation," Proc. of SeikenlIEEE Symposium on
Emerging Technologies in Flexible Automation, Kyoto, Japan, November 6-10,
1994, pp. 428-435.

Kurapati, Venkatesh, MengChu Zhou, and Reggie Caudill, "Automatic Generation of
Petri Net Models from Logic Control Specifications," Proc. of the 4th Int. Conf.
on Computer Integrated Manufacturing and Automation Technology, Troy, NY,
October 10-12, 1994, pp. 242-247.

Kurapati, Venkatesh, MengChu Zhou, Reggie Caudill, and E.B. Fernandez, "A Control
Software Design Method for CIM Systems," Proc. of the Computer Integrated
Manufacturing in Process Industries, New Brunswick, NJ, April 15-17, 1994, pp.
565-579.

Kurapati, Venkatesh, MengChu Zhou, and Reggie Caudill, "Comparison of Petri Nets
and Ladder Diagrams for Sequence Control of Discrete Manufacturing Systems,"
Proc. of IEEE Regional Conf. in Control Systems, New Jersey Institute of
Technology, Newark, NJ, August, 1993, pp. 73-76.

This dissertation is dedicated to
my father, Sankara Narayana and mother, Sree Lakshmi

vi

ACKNOWLEDGMENT

The author expresses his deep sense of gratitude to his adviser, Dr. MengChu

Zhou, for his invaluable guidance, friendship, and moral support throughout this research.

Dr. Zhou's untiring help is sincerely appreciated.

Special thanks to his adviser Dr. Reggie Caudill for his encouragement,

mentorship, and suggestions. The author is grateful to Professors Anthony Robbi,

Zhiming Ji, and Ernest Geskin for their suggestions and constructive comments. Their

service as committee members is appreciated.

The research assistantship provided by Department of Mechanical and Industrial

Engineering during Spring 1993, the financial support by Center for Manufacturing

Systems from Summer 1993 to Fall 1994, and the tuition fee by Manufacturing Systems

Engineering Program during Fall 1994 is sincerely acknowledged. The author expresses

his gratefulness to Dr. Rong Chen for his constant support, encouragement, and guidance.

The author acknowledges The Robotics Center, Florida Atlantic University, Boca

Raton for providing the equipment needed to illustrate the use of Real-time Petri nets and

to perform the bench-mark study between Petri nets and ladder logic diagrams.

The author also appreciates Rutgers Computer Services and Machine Vision and

Microsystems Laboratory at NJIT for the computer facilities. The author also wants to

extend his special thanks to Hamwantee Singh, the reference librarian at NJIT for her

suggestions and help in finding the literature related to PNs.

The author is thankful to his sisters, brother-in-law, Kamela Mohammed, and

Amita Bhatnagar for their constant support and cooperation throughout this research.

Finally, the author wishes to express his sincere gratitude to his parents and the

God for giving the knowledge, the determination, and the strength to complete this

dissertation and paving the way to lead to the intellectual life.

vii

TABLE OF CONTENTS

Chapter	 Page

1. INTRODUCTION 	 1

1.1. Background and Motivation 	 1

1.2. Goals and Objectives 	 3

1.3. Organization 	 6

2. FLEXIBLE MANUFACTURING SYSTEMS: AN OVERVIEW 	 8

2.1. Introduction 	 8

2.2. Definitions of FMS 	 9

2.3. Impetus for Change 12

2.4. Installation, Implementation, and Integration of FMSs 15

2.5. Applications of FMSs 19

2.6. Problems in Installation and Implementation of FMSs 	 21

2.6.1. Managerial Problems 	 21

2.6.2. Technical Problems 	 23

2.7. Summary 	 34

3. PETRI NETS AS AN INTEGRATED TOOL AND METHODOLOGY IN
FMSs 	 36

3.1. Concepts and Terminology of Petri Nets 	 36

3.2. Applications of PNs in FMSs 	 41

3.2.1. Simulation and Performance Evaluation 42

3.2.2. Breakdown Modeling 	 44

3.2.3. Discrete Event Control 	 45

3.2.4. Control Software Development 	 47

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4. PERFORMANCE EVALUATION OF PUSH AND PULL PARADIGMS
IN FLEXIBLE AUTOMATION 	 49

4.1. Introduction	 49

4.2. Application Illustration 	 52

4.2.1. System Configuration and Assumptions 	 53

4.2.2. PNM Formulation and Analysis 	 57

4.3. Procedure for PN Modeling and Analysis and Simulation results 	 66

4.3.1. FMS with the Pull Paradigm 	 68

4.3.2. FAS with the Pull Paradigm 	 69

4.3.3. FMS with the Push paradigm 	 70

4.3.4. FAS with the Push Paradigm	 71

4.3.5. Summary of Results 	 72

4.4. Summary 74

5. AUGMENTED TIMED PETRI NETS FOR MODELING BREAKDOWN
HANDLING 76

5.1. Introduction 	 76

5.2. Augmented-timed Petri Nets (ATPNs) 	 78

5.3. Application Illustration: A Flexible Assembly System 	 84

5.3.1. ATPN Modeling of the System 87

5.3.2. Simulation and Analysis of the ATPN Model 	 91

5.4. Summary 	 94

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6. REAL-TIME PETRI NETS FOR CONTROL AND SIMULATION 	 96

6.1. Introduction 	 96

	

6.2. Real-time PNs 96

	

6.3. Real-time PNs and Other PN Extensions for Control 101

6.4. Example: An Automatic Assembly System 	 105

	

6.5. A case study: An Electro-Pneumatic System 108

6.6. Software Description to Execute Real-time Petri Nets 	 111

7. COMPARISON OF REAL-TIME PETRI NETS AND LADDER LOGIC
DIAGRAMS 	 114

	

7.1. Introduction 114

7.2. Comparison Criteria for Control Logic Design by PNs and LLDs 	 116

	

7.3. Comparison Through an Electro-pneumatic System. 120

7.3.1. Sequence Controller Design for a Given Sequence 	 120

7.3.2. Control for Other Sequences 	 122

	

7.3.3. Discussions 126

7.4. Analytical Formulas to Evaluate the Complexity of PNs and LLDs 	 130.

7.4.1. Logical AND, Logical OR, and Sequential Modeling 	 131

7.4.2. Timed logical AND, Timed Logical OR, and Timed Sequential
Modeling 	 134

7.4.3. Other formulas for Estimating Basic Elements in PN or LLD 	 137

7.5. Methodology to Use the Analytical Formulas 	 141

7.6. Illustration of the Methodology Through Examples 	 145

7.6.1. An Automatic Assembly System 	 145

TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.6.2. An Electro-pneumatic System Without Sustained Signals 	 146

7.6.3. An Electro-pneumatic System with Sustained Signals 	 149

7.7. Summary 	 154

8. CONVERSION OF LOGIC SPECIFICATIONS INTO PETRI
NET MODELS 	 156

8.1. Introduction 	 156

8.2. Illustration of the Formulation of PN Model 	 157

8.2.1. Single Path Sequences with no Repetitive Actions 	 157

8.2.2. Single Path Sequences with Repetitive actions 	 164

8.2.3. Multi-path Sequences with Simultaneous Parallel Paths 	 166

8.2.4. Multi-path Sequences with Alternative Parallel Paths 	 167

8.2.5. Multi-path Sequences with Option of Bypassing Nodes 	 168

8.2.6. Multi-path Sequences with Option of Repeating Nodes 	 169

	

8.3. Merging of Common places in a PN Model 169

8.4. Summary 	 173

9. AN OBJECT-ORIENTED DESIGN METHODOLOGY FOR
DEVELOPMENT OF FMS CONTROLSOFTWARE 	 174

9.1. Introduction 	 174

9.2. Methodology for FMS Control Software Development 	 179

9.2.1. Methodology 	 179

9.2.2. Fundamentals of OOD 	 182

9.2.3. Object Modeling Technique Diagram as a Static Modeling Tool 	 184

9.2.4. Petri Nets as a Dynamic Modeling Tool 	 186

xi

TABLE OF CONTENTS
(Continued)

Chapter	 Page

	9.3. Illustration of the Methodology with an FMS 188

9.3.1. OMT Diagram and PNM of the FMS 	 190

9.3.2. Complete Structure of Objects with Their Static and Dynamic
Relations 	 198

9.3.3. Reusability, Extensibility, and Modifiability of the Design 	 200

	

9.4. Summary 202

10. CONCLUSIONS 	 205

	

10.1. Contribution 205

10.1.1. Simulation and Performance Evaluation 	 206

10.1.2. Breakdown Modeling 	 207

10.1.1. Discrete-Event Control 	 208

	

10.2. Limitations 211

10.3. Further Research 	 214

APPENDIX A 	 217

SOFTWARE PACKAGE TO EXECUTE TPN AND ATPN 	 217

APPENDIX B 	 227

SOFTWARE PACKAGE TO EXECUTE RTPN 	 227

	

REFERENCES 246

xii

LIST OF TABLES

Table Page

2.1. Comparison of how machine and work-parts spend their time in the
shop of a conventional system and in an FMS using optimistic-
pessimistic format (Salomon and Biegel 1984) 	 14

2.2. Classification of Manufacturing Systems and FMS 	 16

2.3. Cross-references to research related to problems in FMS 	 33

3.1. Major applications of PNs in FMSs 	 43

4.1. Conventions of Petri net modeling 	 53

4.2. Conveyance time matrix in the system for production of PR1 and
PR2 (time units) 	 54

4.3. Processing times and the sequence of parts in the system (time units).. 55

4.4. Variation of moving lot size with respect to number of AGVs and
assigned tasks) 	 56

4.5. Explanation of typical places and transitions in the PNMs shown in
Figs. 4.4 and 4.5) 63

4.6. FFAS functioning as FMS with the pull paradigm 	 68

4.7. System functioning as FAS with the pull paradigm (the same legend
as Table 4.6's) 	 69

4.8. System functioning as FMS with the push paradigm (the same
legend as Table 4.6's) 	 70

4.9. System functioning as FAS with the push paradigm (the same legend
as Table 4.6's) 	 71

4.10. Solution sets for FMS and FAS (the same legend as Table 4.6's) 	 73

5.1. MTBFs of Robots in the FAS (minutes) 	 86

5.2. Time and breakdown sequence of robots for various robot
breakdown rates 86

5.3. Interpretation of places and transitions used in Fig. 5.5 	 89

5.4. Performance of the assembly system with and without breakdown
of robots 	 91

LIST OF TABLES
(Continued)

Table Page

5.5. Optimum number of assembly fixtures required for various robot
breakdown rates 	 93

6.1. Various methods of Petri net based sequence control 	 101

6.2. The input mapping table where Xi is input channel number	 106

6.3. The output mapping table where Yi is number sent to the digital
output interface 	 107

6.4. Attributes of places and transitions in the RTPN 	 107

6.5. The input mapping table where Xi is input channel number	 109

6.6. The output mapping table 110

6.7. Attributes of transitions modeling actions 	 110

7.1. Representations by Petri nets and ladder logic diagrams 	 117

7.2. Comparison of the basic elements in LLD and PNs 126

7.3. Required basic elements to control the system in Fig. 6.3 	 146

7.4. Required basic elements to control the system in Example 2 	 147

7.5. Required basic elements to model the Sequence 1 using PN 	 149

7.6. Required basic elements to model the Sequence 1 using LLD 	 152

8.1. Required basic elements to model the Sequence 1 using PN 	 162

8.2. Comparison of the basic elements in LLD and PNs obtained by two
methods 	 163

9.1. Research related to 00D, PNs, and Ada 	 178

9.2. Interpretation of typical places and transitions in PNMs shown in
Figs. 9.9 and 9.10 192

xiv

LIST OF FIGURES

Figure Page

3.1. (a) A simple assembly cell, (b) Petri net model 39

3.2. Timed Petri net model of the assembly cell
(a). Before firing of transition 1 (before assembly started)
(b). After firing of transition 1 (after assembly started)
(c). During firing of transition 2 (during assembly)
(d). After firing of transition 2 (after assembly finished) 	 40

4.1. Layout of the manufacturing system investigated 	 54

4.2. PNM for production of parts A and B under pull paradigm 	 58

4.3. PNM for production of parts A and B under push paradigm 	 62

4.4. PNM of the FMS under pull paradigm 64

4.4. PNM of the FMS under push paradigm 	 65

4.6. Procedure for PN modeling and analysis 	 66

4.7. Performance of the system with different configurations 	 74

5.1. An Example of a Timed Petri net Model 	 79

5.2. Example of an ATPN model 	 83

5.3. Layout of the flexible assembly system	 84

5.4. ATPN model for breakdown handling of Robot 3 	 87

5.5. ATPN model of flexible assembly system with breakdown handling 	 90

5.6. Effect of MTBF on production volume	 92

5.7. Effect of MTBF on average robot utilization 	 92

5.8. ATPN model for real-time control 	 95

6.1. Procedure for formulating a RTPN based controller 	 99

6.2. Controlling a system using a RTPN based controller 100

6.3. Schematic of an automatic assembly system 	 106

6.4. RTPN model for the system 108

xv

Figure Page

6.5. Schematic of an electro-pneumatic system considered 	 109

6.6. RTPN for sequence 1: ST, A+,B+,{C+,A-}, {13-,C- } 	 111

7.1. (a) LLD and (b) PN for Sequence 1: ST, A+, B+, {C+, A- }, {B-, C-} 	 121

7.2. (a) LLD and (b) PN for Sequence 2 123

7.3. (a) LLD and (b) PN for Sequence 3 125

7.4. LLD for Sequence 4 127

7.5. PN for Sequence 4 128

7.6. PNs and LLDs modeling logical AND 131

7.7. PNs and LLDs modeling logical OR 	 132

7.8. PNs and LLDs for sequential modeling 	 133

7.9. PNs and LLDs for timed logical AND 	 134

7.10. PNs and LLDs for timed logical OR 	 135

7.11. PNs and LLDs for timed sequential modeling 	 136

7.12. Typical cylinder-actuating circuit (Pessen 1989b)
(a).requiring sustained solenoid signals
(b). not requiring sustained solenoid signals 	 138

7.13. PNs and LLDs modeling emergency stop 	 139

7.14. PNs and LLDs modeling counter	 140

7.15. LLD modeling a relay 141

7.16. Method to estimate basic elements 142

7.17. LLD model for the system shown in Fig. 6.3 146

7.18. (a) PN and (b) LLD for sequence:{A+, B+},{A-, D+},{B - , D - ,
C+ },C 148

8.1. PN model for the Sequence 1 158

LIST OF FIGURES
(Continued)

xvi

LIST OF FIGURES
(Continued)

Figure	 Page

8.2. PN model for the Sequence 2 	 159

8.3. PN model for the Sequence 3 	 160

8.4. PN model for the Sequence 4 	 161

8.5. PN model corresponding to the sequence in Example 1 	 164

8.6. PN model corresponding to the sequence in Example 2 	 165

8.7 	 (a) Control flow consisting multipath sequence with simultaneous
parallel paths, (b) Simplified PN modeling multipath sequence with
simultaneous parallel paths 	 166

8.8. (a) Control flow consisting multipath sequence with alternative
parallel paths, (b) PN modeling the multipath sequence with
alternative parallel paths 	 167

8.9. (a) Control flow consisting multipath sequence with option of
bypassing nodes, (b) PN modeling the multipath sequence with
option of bypassing nodes 	 168

8.10. (a) Control flow consisting multipath sequence with option of
repeating nodes, (b) PN modeling the multipath sequence with
option of repeating nodes 	 169

	

8.11. PN model after merging of common places in Fig. 8.5 170

8.12. PN model after eliminating conflicts in Fig. 8.11 	 171

8.13. PN model (a) after merging the common places in Fig. 8.6, (b) after

	

eliminating conflicts 172

9.1. Proposed systematic methodology for FMS control software
development 	 181

9.2. Principle of object-oriented design of FMS control software 	 182

9.3. A class definition in OMT 	 184

	

9.4. OMT diagram for Generalization 184

9.5. OMT diagram for Aggregation 	 185

xvii

LIST OF FIGURES
(Continued)

Figure Page

9.6. OMT diagram for Association 	 186

9.7. The configuration of FMS 	 189

9.8. OMT diagram of the FMS 191

9.9. PNM of machine 1 (MC 1) 	 191

9.10. PNM of the FMS under push paradigm 	 193

9.11. PNM for the FMS control system 	 194

9.12. PNM of exception handling by main controller	 196

9.13. Class definitions of important object classes in FMSs 	 198

9.14. The expanded configuration of FMS 201

9.15. OMT diagram for the expanded FMS 202

9.16. PNM of the FMS under pull paradigm 	 203

xviii

CHAPTER 1

INTRODUCTION

In this chapter, the background, motivation, and contributions of this work are stated. The

organization of this dissertation is outlined.

1.1. Background and Motivation

Global competition has made it necessary for manufacturers to introduce such advanced

technologies as flexible and agile manufacturing, intelligent automation, and computer-

integrated manufacturing. However, the application extent of these technologies varies

from industry to industry and has met various degrees of success. One critical barrier

leading to the successful implementation of flexible manufacturing and related advanced

systems is the ever-increasing complexity in their modeling, analysis, simulation, and

control. Further more, the current literature on advanced manufacturing systems indicate a

need for developing modeling tools that are useful for developing integrated manufacturing

control software (Chaar et al. 1993a,b).

Integrated control software is aimed not only to control the system but also to

simulate and analyze the performance of the system (Chaar et al. 1993a,b). The present

research is mainly motivated by the fact that there is a growing need to use advanced and

formal methodologies for modeling, simulation, and control of flexible manufacturing

systems (FMSs). Research and development over the last three decades have provided

new theory and formal tools based on Petri nets (PNs) and related concepts for the design

of supervisory controllers. Furthermore, object-oriented software engineering methods

combined with PNs have great potential to develop integrated control software. However,

in order to promote the industrial applications of PNs for modeling, simulation, and control

of FMSs, there is a need to enrich the theory and applications of PNs, and to justify the

Petri net-based control methods over traditional ladder logic diagrams-based control.

1

2
The purpose of this work is to introduce a set of Petri net-based tools and methods

to address a variety of problems associated with design and implementation of FMS s.

The motivation for the present work is described below:

• Even though PNs have been successfully applied to various problems related to

FMSs (Murata 1989, Silva and Valette 1990, DiCesare and Desrochers 1991,

Cecil et al. 1992, Zhou and DiCesare 1993), there are still some areas where the

power of PNs has not been exploited. For example, the application of PNs to

study the performance of push and pull paradigms (Sarkar 1989) is not reported

in the available literature. Such studies should help to select between push and

pull paradigms and to widen the application of PNs to develop integrated

control software.

• Even though there are several types of PNs available for discrete control

(Crockett et al. 1987, Murata et al. 1986, Stefano and Mirabella 1991, Valette et

al. 1983), there is a need for developing new classes of PNs that are simple,

easy to understand, and handy to model factory floor operations. Furthermore,

there is a need to enhance the power of timed PNs to realistically model the

breakdown situations in FMSs. There are several types of PNs with a varying

degree of complexity are available for supervisory control of FMSs. However,

new class of PNs closer to ordinary PNs is to be developed because they are

easy to understand.

• Even though there are several studies on the application of PNs for supervisory

control of FMSs (Valette et al. 1983, Murata et al. 1986, Crockete et al. 1987,

Boucher et al. 1989, Stefano and Mirabella 1991, Jafari 1992, Zhou et al.

1992a,b, Zhou and DiCesare 1993), there is a need to demonstrate the

advantages of the application of PNs compared with traditional techniques such

as ladder logic diagrams. Comparison studies showing their relative strengths

help establish PNs as a standard tool to design sequence controllers.

3
• Even though PNs have been applied to design supervisory controllers for a long

time (Chocron and Cerny 1980, Murata et al. 1986, Zhou et al. 1992a,b,

Ferrarini 1993, Jafari 1992, Zhou and DiCesare 1993) there is a need for

developing systematic methodologies that aid development of integrated control

software. Such methodologies should span all control levels. The lowest level

of control is at machine or cell level, where each component in the machine or

cell is synchronized with other. At this level, there is a need to develop

methodologies that design PN models from a given logic control specification.

At the highest level of control the function of control software is not only to

synchronize the activities of several cells but also to analyze the system

performance. There is also a need for a methodology for development of

control software using an advanced software engineering technique, object-

oriented design based upon PNs. The use of PNs in object-oriented design is

of immense help because PNs are very useful for modeling dynamic relations in

object-oriented design.

1.2. Goals and Objectives

The present research advances the state-of-the-art in the areas discussed in the previous

section. The primary goal of this work is to develop a PN-based approach to modeling,

simulation, and control of FMSs. The particular sub-goals and the corresponding

objectives are given next. In the following, first a sub-goal is stated and then the objectives

needed to achieve that goal are presented.

1. To analyze the state of research in FMSs and problems faced by the firms

implementing FMS and to explore the benefits ensued from successful

implementation of FMS.

The objective is to review the relevant research on:

• The definition of the term "Flexible Manufacturing System,"

• The impetus for change from the traditional manufacturing systems to the

FMS, and

• The major concepts, analytical models, and application and implementation

problems in FMSs.

2. To show PNs as a powerful tool in investigating difficult problems in the

production management arena by investigating a complex problem often faced in the

management of FMSs, i.e., comparing the performance of a push system with that

of a pull system.

The objectives are:

• To present a PN approach to address a typical operations management

problem stated earlier,

• To formulate PN models (PNMs) considering important parameters in a

manufacturing system example such as processing times at work cells,

number of AGVs, routings of AGVs and their travel times among work

cells, production and moving lot sizes, machine setup times, and machine

loading/unloading times, and

• To analyze PNMs to compare the performance of a manufacturing system

operating under either a push or a pull paradigm.

3. To formulate graphically models that clearly capture the details of breakdown

handling in flexible automated systems.

The objectives are:

• To introduce a new class of PNs called Augmented-timed Petri nets

(ATPNs) aimed to model conveniently breakdown handling in

manufacturing systems,

• To illustrate a methodology to formulate ATPN models for breakdown

handling, and

4

5
• To model, simulate, and analyze a flexible assembly system using ATPNs

for estimating the optimum number of assembly fixtures for various robot

breakdown rates.

4. To compare the traditional control technique of ladder logic diagrams (LLDs) with

PNs when they are used to design discrete event controllers for manufacturing

systems.

The objectives are:

• To introduce the Real-time PN (RTPN) which closely resembles an

ordinary PN as an integrated tool to develop discrete event controllers,

• To identify the criteria to compare LLDs with RTPNs for design of

sequence control,

• To compare LLDs and RTPNs in designing sequence controllers that

respond to specification changes,

• To formulate mathematical formulas to calculate the number of basic

elements to model certain building blocks of logic models using both PNs

and LLDs, and

• To present a methodology that synthesizes analytical formulas for estimating

the total number of basic elements required to design sequence controllers

using PNs and LLDs.

• To present a conversion procedure to design PN models from logic control

specifications.

5. To formulate an object-oriented design (00D) methodology for developing

reusable, extendible, and modifiable control software for FMSs using object

modeling technique (OMT) diagrams and PNs.

6
The objectives are:

• To present an OOD methodology combining the concepts of OMT

diagrams, and PNs by discussing the rationale for and advantages of

selecting OOD, PNs and Ada respectively,

• To emphasize the use of PNs as a dynamic framework for OOD by

discussing the advantages of PNs over earlier used dynamic models,

• To demonstrate how PNs can support the concepts of reusability and

extensibility by adopting the bottom-up approach of FMS modeling, and

• To illustrate the methodology by developing object modeling technique

(OMT) diagram and PN model of an FMS, and

• To demonstrate the benefits of the methodology to support reusability,

modifiability, and extendibility of the software system when the

configuration and specifications of the FMS are subject to change.

1.3. Organization

The next chapter presents an overview of FMSs and indicates the need for integrated

modeling tools. Chapter 3 contains the discussion of the fundamentals of PNs and its

applications as an integrated tool and methodology in FMS. Even though PNs have been

applied for a long time to FMS, there is a need to enrich the theory and application of PNs

in order to support their industrial applications in modeling, simulation, and control of

FMSs. Chapter 4 shows the modeling power of PNs for performance evaluation of both

push and pull paradigms in FMSs. During this performance evaluation it is assumed that

breakdowns do not occur.

However, breakdown modeling is essential for the design and operation of FMSs.

Hence, Augmented-timed Petri nets (ATPNs) that model breakdowns are introduced in

Chapter 5. Real-time Petri nets (RTPNs) intended for real-time control of FMSs are

introduced in Chapter 6. The procedure to use RTPNs for control of FMSs is illustrated

7
through an automatic assembly system and an electro-pneumatic system. In order to justify

the PN-based control over traditional LLD-based control, comparison of RTPNs and LLDs

is presented in Chapter 7. The design complexity of RTPNs and LLDs is also

quantitatively evaluated through the design of different sequence controllers. Chapter 7

concludes that PNs offer an efficient approach to design sequence controllers. However,

the first step to develop RTPN-based controller is the design of PN model for a given logic

control specification. Chapter 8 is devoted to develop a conversion procedure to design PN

models from a class of given logic control specification. After the power of PNs for

simulation is shown in Chapters 4 and 5, and the efficacy of PNs for control is emphasized

in Chapters 6-8, Chapter 9 proposes a methodology to design control software that

integrates the applications of PNs for both simulation and control. It presents an object-

oriented methodology for developing manufacturing control software highlighting PNs as a

dynamic modeling tool. Finally, Chapter 10 contains a discussion on the contributions and

limitations of this research along with suggestions for further research.

CHAPTER 2

FLEXIBLE MANUFACTURING SYSTEMS: AN OVERVIEW

2.1. Introduction

Increasing global competition has made many business leaders and policy makers turn their

attention to such critical issues as productivity and quality. Businesses seek new

approaches to production processes and manufacturing techniques and explore new

boundaries of technology. One of the frequently prescribed remedies for the problem of

decreased productivity and declining quality is the automation of factories. More

specifically, technologies such as computer integrated manufacturing (CIM), robotics, and

Flexible manufacturing systems (FMSs) are the focal points of much research and

exploration. Such views as shown in the following "official" statements are representative

of the new attitude toward advanced technologies:

"FMS can help our economic recovery... Flexible manufacturing systems

can bring tremendous economic advantages to batch manufacturers.

Beyond the attraction of increased efficiency, companies must automate if

they are to compete in foreign and domestic markets with companies in

Japan, Germany and other foreign countries, which are automating their

manufacturing operations vigorously " (Goldhar 1984).

Other similar views are held by business leaders on factory automation in general

and FMS in particular (Goldhar 1984). Despite rapid world-wide growth of FMS

installation (Darrow 1987), many manufacturers still shy away from these advanced

technologies. What has kept the manufacturers from getting serious about flexible

manufacturing systems is probably the improper performance evaluation criteria used to

evaluate managers (Buffa 1984). While there is little disagreement about the necessity of

rapid movement toward the automation of manufacturing processes and the establishment

of such systems as FMS (Buffa 1984), there is also a great deal of confusion about the

8

9

fundamental approaches necessary to do so. The same is true about FMS technological

complexities and the barriers to its application, implementation, and particularly, integration

of FMS with rest of the operations.

The purpose of this chapter is to present an overview and a survey of research in

FMS.

The objective is to review the relevant research on:

• The definition of the term "flexible manufacturing system"

• The impetus for change from the traditional manufacturing systems to the FMS

• The major concepts, analytical models, and application and implementation

problems in the FMS

This chapter is organized as follows. In the next section, various definitions of

FMSs are discussed. Section 3 elaborates the impetus for change from conventional

manufacturing systems to FMSs. Section 4 deals with the issues related to installation,

implementation, and integration of FMSs. Some of the important real-life installations of

FMSs and their applications are detailed in section 5. In section 6, more emphasis is given

to installation and implementation of FMSs are detailed in greater depth. Finally, in the last

section, some general conclusions are drawn from the reviews and analyses and a cross-
,

reference framework.

2.2. Definitions of FMS

Despite all of the interest in flexible manufacturing systems (FMSs), there is no uniformly

agreed upon definition of the term FMS. The main distinguishing feature of FMS from

traditional manufacturing systems is "flexibility" (Gupta and Buzacott 1989) which does

not have the precise definition. One of the most referred to definition of FMS is by Ranky

(Ranky 1983), who defines an FMS as a system dealing with high level distributed data

processing and automated material flow using computer controlled machines, assembly

cells, industrial robots, inspection machines and so on, together with computer integrated

10

material handling and storage systems. In fact, the scope and variety of flexible

manufacturing is commonly disputed and are the focus of many research efforts.

However, the components and characteristics of an FMS, as described by different authors

and researchers, are generally as follows (Davis et al. 1989):

• Potentially independent NC machine tools,

• An automated material handling system, and

• An overall method of control that coordinates the functions of both the machine

tools and materials handling system so as to achieve flexibility.

The specific manufacturing situations that would be suitable for the adoption of

FMSs were identified as early as 1973. The following are the production situations that are

encompassed by FMS (Darrow 1987):

• A variety of high precision parts are machined (typically job shop)

• A relatively large number of direct numerical control (DNC) machines are

required.

• Some form of automated material handling system (MHS) is used to move the

work pieces into, within, and out of the FMS.

• On-line computer control is used to manage the entire FMS under conditions of

varying parts production mixes and priorities.

It can be concluded from the above that an FMS involves a number of machine

centers and material handling systems integrated by a hierarchy of computer control.

Furthermore, FMS is capable of randomized routing of parts instead of running parts in

straight line through work stations. The term CMS (Computerized Manufacturing

System) and Variable Mission Manufacturing (VMS) have also been synonymously used

with FMS. In a flexible manufacturing system numerically controlled (NC) machines are

controlled by computers; parts are handled by robots; and finished products are carried to

specific destination via automatically guided vehicles (AGVs). Tool magazines and

automatic tool changing systems are utilized, and as engineering or design changes occur in

11

the product, they are incorporated into the computer programs or data base. According to

Klahorst (1981) FMS is a group of machines and related equipment brought together to

completely process a group of or family of parts and includes the following primary and

secondary components for a complete FMS:

Primary components:

• Machine tools

• A material handling system

• A supervisory computer control network

Secondary Components:

• Numerical control (NC) process technology

• Spindle tooling

• Work-holding fixtures

• Operations management

Klahorst (1981) indicates that the precise semantics of these components depends

on the type of application problems to which the intended FMS will be applied. For

instance, the primary components of FMS machining modules may include head changer,

machining center, maxi machining center, vertical turning lathe, NC milling, NC turning,

and head indexer, while the primary components for typical material handling FMS module

would include roller conveyer, in/out shuttle, through shuttle, guided vehicle, shuttle car,

and tow line. What seems to be the differentiating point in these definitions and

elaborations is where one places the emphasis on flexibility. Some place it on flexibility in

changing machine configurations which permits change of product designs without much

delay. Others place the emphasis on the flexibility in handling of materials. The former

group sees the FMS's potential in adaptability to demand for different product designs and

the benefits of low inventory due to made-to-order production, while the latter finds the

advantages in maximizing machine utilization (Mullins 1984). The nature of flexibility in

terms of affecting the definition of an FMS is well treated in (Yilmaz and Davis 1987). Of

12

course, these two points of emphasis are not mutually exclusive or in conflict. Rather they

can be supportive of each other. In defining FMS what is important is "understanding of

what FMS represents conceptually, and what it means to a company in terms of

manufacturing strategy" (Hughes and Hegland 1983).

2.3. Impetus for Change

The average annual growth rate of the U.S. market for FMSs was projected to be 27% over

the years 1989-1992. The growth is due to the increased desire for change and increased

interest in the automated factory. According to Robert J. Mailer of Deere & Co. two issues

will preoccupy the minds of manufacturing managers in the coming decades: the concern

for quality and concern for cost reduction. Manufacturers will be able to pursue two goals

which have traditionally been considered as conflicting and irreconcilable; low volume and

low cost production in response to rapid market changes (Yilmaz and Davis 1987).

However, it should be noted that this interest in the automation of factories is not new

(Buffa 1984). Accordingly, there was a period of interest in automated factories during the

1950s. Then this phase of interest declined and rose again in early 1960s. Another decline

followed and by 1973 there was little interest shown in the era. Now, again in the 1990s

the headlines of the press represent the renewal of interest in automated factory concept.

But this time the dream of the factory of the future seems to be closer to reality than ever,

thanks to new technological advancements in computers, robotics, fixtures and other

components of advanced manufacturing technologies. The main reason behind this new

surge of attention directed to FMS and other forms of the automated factory is increased

competition, particularly international. The main incentive is reduced cost in production

and adaptability to an ever changing environment. Automated systems such as FMSs, have

the potential to improve the position of firms on both counts.

13

Other reasons that account for the renewal of interest in advanced technologies

include "truncation of product life cycle, and increasing complexity of products" (Goldhar

1984). For example, those companies that have installed FMS have reported the following

results (Klahorst 1981):

• Benefits related to cost reduction programs (55%)

• Benefits related to market response improvement (30%)

• Benefits related to flexibility in production (15%)

Salomon and Biegel (1984) compare FMS with conventional manufacturing

technology under various states of risk and show that FMS provide substantial productivity

improvement. Table 2.1 summarizes these findings. The entries in the first column of this

table signify the productivity improvement. The subsequent columns compare how

machine and work-parts spend their time in the shop of a conventional system and in an

FMS using optimistic-pessimistic format. As revealed from the table, FMS outperforms

the conventional system in terms of productivity improvement.

The case of unwanted dedicated machinery explains why FMS is a necessity rather

than a luxury for some manufacturers in the face of world-wide competition. R&D comes

up with the operating principle for a different kind of widget. Design sets to the drafting

tables and graphics terminals and arrives at part prints. Sales takes a look and projects

requirements of 10,000 every year. And manufacturing, unable to economically produce

the new widget on presently installed machinery, tools up to meet the exiting demand by

installing the latest in high volume, hard automation machine tools. The widget in our

story flops, however, as introductory products often do, and manufacturing faces the

question "What do we do with all that dedicated machinery.

14

Table 2.1 Comparison of how machine and work-parts spend their time in the shop of a
conventional system and in an FMS using optimistic-pessimistic format
(Salomon and Biegel 1984)

FMS Performance

Parameter

Conventional
System

Performance Pessimistic Most Likely Optimistic
Percentage of machine
time the machine spends
without parts

50 35 20 5

Percentage of machine
time that there is a part
on the machine

50 65 80 95

Percentage of time that
the part is not being
worked on while on the
machine

70 35 21 7

Percentage of time that
the part is being worked
on while on the machine 30 65 79 93
Percentage of
manufacturing lead time
that the part spends
either moving or waiting

95 92.5 90 85

Percentage of
manufacturing lead time
that the part spends on
the machine

5 7.5 10 15

Apart from these kinds of internal problems, external factors such as changes in

demand pattern and consumer tastes, changing regulatory environment and labor force, and

changes in competitive policies of other firms, all contribute to the renewed efforts of

manufacturers to willingly embrace new options. There seems, however, to be some

over-correction of past errors. For example, some companies spend huge amounts of

capital on equipment without proper justification or knowledge of how to take advantage of

their potentials (Buffa 1984). Based on extensive search and analysis of empirical studies,

Yilmaz and Davis (1987) presented some propositions regarding issues of flexibility,

productivity, and quality. From their investigation, major findings support the premise that

FMS investment leads to reduced labor cost, increased output, decreased manufacturing

cost, increased flexibility, and reduced production lead time.

15

2.4. Installation, Implementation, and Integration of FMSs

It is estimated that 75% of machined parts produced in the U.S. are in lots of 50 units or

less (Gilbert and Winter 1986). The need for small lot production has justified installation

of the FMS in a number of manufacturing companies (Harvey 1984, Attaran 1992, Jan

1991, Ram and Yash 1991, Kakati and Dhar 1991). But the installation, implementation

and integration of FMS create unique issues and problems. However, as a study reported

in 1988 shows (Darrow 1987), only 64 FMSs have been installed in the U.S. and 253

world-wide, with the majority being in metal-cutting operations. This number, though

small, has helped bring to the surface many issues regarding the installation and operation

of FMS s. Subsequently more researchers and practitioners addressed these issues and

made the installations of FMS easier and lucrative. Due to the concentrated research

efforts in the area of FMS, the number of FMS installations have been sharply increased.

A study reported in (Dimitrov 1990) shows that approximately 750 FMSs are installed in

26 countries. Another case study shows how traditional machine tools can be integrated

into FMS (Kwok 1988).

Appropriateness of FMS to a given production environment is extremely important

and has to be established before investment commitments are made. To help determine

their fitness, the type of FMS has to be considered. Classification of manufacturing

systems (with respect to their type, degree of flexibility, and volume-handling capability)

helps to determine when and where an FMS is most beneficial. Flexible Manufacturing

Systems can be broadly classified into dedicated FMS, sequential FMS, and manufacturing

cells. Table 2.2 shows various classes FMS and the range of production volume for each

classification. Klahorst (1981) provides a clear analysis of the installation/integration

process of an FMS and provides some insightful guidelines drawn from the experiences of

the Kearney and Trecker Company (a major producer of FMS equipment).

16

Table 2.2 Classification of Manufacturing Systems and FMS

Type of Manufacturing
System _

Level of
Flexibility

No. of Parts
in Product

Family
Average Lot

Size

Transfer Lmes Low 1-2 7,000 & Up
Dedicated FMS 	 - Medium 3-10 1,000-10,000
Sequential or Random
FMS

Medium 4-50 50-2,000

Manufacturing Cell Medium 30-500 20-500
Stand-alone NC Machine High 200 & Up 1-50

Some of the questions raised in this analysis with respect to the installation of

FMSs are: who should do it, when should it be done, and what are the responsibilities of

final users. For instance, Klahorst (1981) argues that since 50% of an FMS project value

is related to machines, industrial engineers are the primary people who should be involved

in the process of FMS design and installation from the start. The circumstances under

which installation of FMS should be installed are obviously significant factors. According

to Klahorst (1981), FMS should be installed:

• when part size and mass exceed "jib crane" standards.

• when production volume is in excess of two parts per hour.

• when processing needs more than two machine types to complete a work piece.

• when more than five machines are required.

• when phased implementation is planned so that material handling provisions can

be considered in the initial phases and bad habits can be avoided from the start.

The conclusion is that the more of the above conditions exist, the more incentive there is for

transforming a conventional system into an FMS.

Blumenthal and Dray (1985) caution manufacturers that factory automation such as

FMS is still in its infancy and need to be focused in research. Given the fact that there are

numerous uncertainties present in FMS installation, the need for an effective way to

uncover the potential problems in such decisions is obvious. A very useful approach to

17

discover the potential problems with a system's operation is to simulate the system and

pinpoint such problems. Simulation, in the case of an FMS, will a) substantially trim

installation costs, b) ensure that the design of the system is accurate, and c) help spell the

FMS design. Some of the major simulation studies and models related to FMS are explored

in subsequent sections.

The cooperation between users and vendors has been frequently emphasized both

by researchers and users/vendors of FMS as a major factor of success in implementation of

FMS. For example, Hughes and Hegland (1983) observe that an FMS:

"requires a level of cooperation and exchange of sensitive business planning

information between vendor and user heretofore unheard of in typical capital

manufacturing equipment acquisitions." They see the relationship between the

vendor and the user as a permanent one and call it "long-term partnership in

productivity."

They argue that one of the most important factors contributing to the success of an

FMS installation and implementation is the degree of commitment the potential company

must make to be successful with FMS. Contrary to common belief, installation of an FMS

is not limited to large corporations with vast financial resources. Mullins (1984) reports

cases where small firms have installed FMSs that have been successful. But regardless of

size, the magnitude of commitment needed is enormous.

Introducing an FMS into an organization has significant strategic implications, such

as replacing "economies of scale" with "economies of scope" (Goldhar 1984). The fact

that such technologies have strategic implications does not mean that their implementation

has to be wholesale installation and that the FMS has to be a full-fledged system with

extensive risk involved. FMS can be installed incrementally and such a move can be made

through employment of stand-alone machines or the utilization of manufacturing cells.

Whether FMS introduction is wholesale or incremental, "understanding the characteristics

of different manufacturing systems will help recognize the potential problems associated

18

with the installation and implementation of them." Black (1983) provides a useful and brief

explanation of such characteristics and elaborates on different aspects of each

manufacturing system that could help decide the implementation approach. Black's work is

a ground work for identifying potential issues related to FMS installation. Regardless of

size and scope, the question of whether an FMS is useful has significant strategic

implications. Jukka and Iouri (1990) provides some guidelines for economics and success

of FMSs. From a list of case studies of FMSs, they analyze costs and relative benefits of

several hundred FMSs in the world. Primrose and Leonard (1991) provide a helpful

overview of flexible manufacturing transfer and present a framework for investment

consideration in FMS. They emphasize the significance of financial evaluation in adopting

FMS and not relying only on "hopes" for future benefits. They provide guidelines as how

to identify benefits related to FMS. In the same venue, Krinsky et al (1991) provide an

analytical model for the evaluation of FMS investment, using the von Neuman-

Morgenstern theory of utility together with the mean-variance approach of portfolio

analysis. They identify a measure that takes into consideration both the capital cost of the

new technology (FMS) and the monetary value of its output.

Analytical model building of FMS is a significant area which has to be cleared

before a successful installation, integration, and implementation of the FMS is achieved.

Currently, there are numerous studies related to various theoretical aspects of FMS. Stecke

(1983) tackles the analytical issues related to production planning problems of FMS. The

problems of grouping and loading for FMS production planning are examined in detail and

formulated as mixed integer programs. Similarly, Buzacott and Yao (1986) review the

basic features of FMSs and develop models for determining the production capacity of such

systems. These models show the desirability of a balanced work load, the benefit of

diversity in job routing if there is adequate control of the release of jobs, and the superiority

of common storage for the system over local storage at machines. There are numerous

simulation and analytical models dealing with various aspects of FMSs. Among them are:

19

perturbation analysis, queuing networks, artificial intelligence, and more recently Petri

nets. However, the exploration of all these models is beyond the scope of this chapter.

Interested readers are referred to the some of the following chapters connected with these

models: simulation (Schroer and Tseng 1985, Rolston 1985); perturbation analysis (Surf

and Dille 1985); queuing networks (Suri and Diehl 1985); artificial intelligence (Dhar

1991); and Petri nets (Silva and Valette 1990, Venkatesh 1990, Raju and Chetty 1993,

Zhou and DiCesare 1993). This thesis is dedicated to exploration of PN-based approaches

to modeling, simulation, and control of FMSs.

2.5. Applications of FMSs

There are numerous reports and case histories about the installation of FMSs. However,

accurate statistics about the application of these systems are difficult to obtain and

determining the extent of FMS installations throughout the machine-tool industry is not a

clear-cut task and entails many confounding issues both statistically and methodologically

(Ranky 1983).

Despite these impediments, a number of trade and professional journals report

case studies of FMS installation and experiences gained through them. Some of the better

known firms where either partial or complete FMSs have been installed and are operational

include:

• General Electric,

• Ingersall Milling Machine Company,

• GM's Pontiac Division and Saturn plant and locomotive plant in Erie,

Pennsylvania,

• Chrysler's Toronto plant,

• Cadillac's Livonia engine plant,

• Ford's Sterling Heights transmission and chassis-axle plant,

• GM's Buick City,

2©

• Hughes aircraft plant in El Segundo, California,

• Pratt and Whitney's plant in Columbus GA, and

• Allen Bradley.

What could be generalized from the reports on FMS is that in almost all cases there

have been reported improvements in quality, reductions in labor and inventory costs, and

increased responsiveness to the changes in the market place. An interesting report by Kaku

(1992) indicates that a number of installed FMSs are "under-utilized" in the sense that the

flexibility inherent in the systems installed are being used. The author, in his visit to eight

establishments with installed and running FMS, only a few were utilizing the full

"flexibility" of their system and the rest used the FMS as a dedicated transfer line.

Cooperative and close relationship with the suppliers has already been discussed as

a main factor in successful FMS implementation. Several case studies point to the signs

that suppliers of FMS are more welcome now when they approach potential clients than a

few years ago. In a round-table discussion reported by Dallas (1984), all participants

agreed that FMS can succeed if:

• it is functioning in the right economic context,

• the company's organizational structure has been redesigned to accommodate the

special requirements of FMS,

• there is closer cooperation between vendors and users of the technology, and

• the management understands that the rules of the game have changed.

The last requirement is particularly important since it entails the mind-set

reorientation of managers with respect to performance evaluation, capital rationing criteria,

and human resources management. The more difficult aspects of making FMS work are the

issues associated with management and organization of the systems (Klahorst 1981). A

more detailed discussion of FMS implementation issues follows in the next section.

21

2.6. Problems in Installation and Implementation of FMSs

An FMS poses several problems in its implementation, particularly in its integration. These

problems can be classified into two sets of inter-related problems: technical and managerial

problems. Technical problems arise due to the complexity of the technology and technical

and analytical decisions to be made in introducing advanced manufacturing systems. The

managerial resistance to change is the primary reason for most of managerial problems and

thus add to the complexity of implementing FMSs. Furthermore, managerial problems

include "infrastructure" complexity created by such advanced technologies. Even though

there are many earlier reports on problems related to FMSs (Harvey 1984, Attaran 1992,

Anthony 1991, Ismael 1991), a few explore both the technical and managerial problems.

The proposed approach of classifying problems connected with FMS into technical and

managerial areas helps to comprehend the prominence of the combined role played by both

management and technology in FMSs, and to aid researchers and practitioners in FMSs, in

focussing on their specific interest. In this section, first the managerial and then the

technical problems are discussed.

2.6.1. Managerial Problems

A number of studies have been devoted to the management of FMSs. National Institute of

Standards Technology broadly addresses three main aspects of problems in FMS (Goldhar

1984). These are:

• How the control architecture can be simplified

• Why FMSs are difficult to configure

• What can be done to ensure a consistently high level of quality in the products

Harvey (1984) believes that the major barriers to the efficient factory of the year

2000 are financial, human, institutional, and technological. Accordingly, executives must

be open to new ways to be able to financially justify investment in the factory of the future.

Human and institutional barriers need to be discussed together. Among these barriers are

2 2

communication and education. The key to technological barriers, according to Harvey

(1984), is integrating the individual parts of the factory, which can be accomplished

through Computer Integrated Manufacturing (hence the relationship between FMS and

CIM). Harvey (1984) provides a four-step procedure as a guideline to building a

supportive organizational climate for the factory of the future:

1. Educate senior management,

2. Set goals and develop strategies,

3. Establish a corporate-wide culture, and

4. Develop an unified communication structure

Fear of change is another problem associated with implementation of FMS.

Kiesler (1983) deals with this issue under the broad subject of the impact of new

technology on the work place. In a broader sense, French (1984) discusses problems and

issues concerning the CIM. Several of these issues are applicable to FMS as well.

According to French (1984) the following are the major problems faced by manufacturers

that may lead to failure in CIM (or FMS) implementation.

• Inadequate measurement system

• Partially obsolete facilities

• Inadequate data base

• User hostility

• Shortage of technical skill

• Incompatibility between systems

• Management generation gap

• Changes in management philosophy

• Facilities with mixed processing

• Dynamic volume and mix

• Outdated organization

• Varieties of process options

2 3

• Loss of superior/subordinate support

Similarly, Scalpone (1984) considers the lack of education in both management and

technical staff to be one of the major factors contributing to the failure of advanced

technologies. In summary, the main managerial bathers of successful implementation of

an FMS seem to be concentrated in few major areas. These areas include:

• Lack of top management commitment and support

• Inadequate training and education of the personnel involved

• Improper evaluation of the situation/environment which presumably justified

installation of the FMS

• Lack of long-term and committed relationship with the vendors of both raw

material and the FMS equipment

• Lack of total commitment to the installation and implementation of the FMS

• Existence of misconceptions about FMSs (such as FMS being good only for

large companies and only applicable to large scale production).

2.6.2. Technical Problems

The smooth and economical functioning of any FMS depends upon the effectiveness of

strategies for designing, controlling and monitoring of FMS. This section briefly describes

the typical and important technical problems encountered in the successful implementation

of FMS. In the following section, selected past and current research concerned with each

of these problems are summarized and some suggested solutions are reviewed. Since

problems related to FMSs crosses the boundaries of manufacturing engineering, industrial

engineering, computer engineering, computer science, electrical engineering, and

operations management, it is difficult to cover each and every problem in great detail. The

approach adopted in this section is based on presenting a synopsis of some selected

chapters and major results. However, numerous references are provided for the readers

who desire to pursue more detailed coverage of specific problems.

2 4

Even though some researchers have broadly divided problems of FMS into

planning, designing, and controlling (Surf and Dille 1985, Stecke 1989), and yet others

(Imman 1991) generally discuss issues relating to FMS implementation, much specific and

detailed scrutiny of such problems is still needed. Understanding of the problems

associated with the successful implementation of FMS requires a closer look at each and

every problem more specifically and in greater depth. In order to address the specific

problems in FMS, the following three step approach is adopted:

1. Considering all of the functional subsystems constituting FMS and

understanding the prominence of each subsystem.

2. Addressing problems related to each subsystem.

3. Analyzing the impact of each subsystem on the system as a whole.

This section details some of the most common and important functional subsystems present

in an FMS:

• CNC/DNC machine tool technology

• Tool management

• Automated material handling

• Communication network to integrate elements present in the FMS (real-time

control issues are also included here)

The problems related to CNC/DNC machine tools require deeper understanding of

the machine tool technology itself and falls beyond the scope of the present work.

Therefore, problems specific to CNC/DNC machine tools are not discussed here.

Tool management

The various definitions of tool management available in the literature may be due to

diversified aspects by which the tool management is viewed. Some researchers define it in

terms of four distinct sets of activities: 1) stock control and administration, 2) functional

control, 3) handling and transportation, and 4) programming (Gray and Stecke 1988). It is

also defined as a strategy which aims at resolving problems related to various tool

2 5

activities, including: a) acquisition, b) storage, c) database development, d) selection and

allocation, e) inspection, f) presetting, g) delivery, h) loading, i) monitoring, j)

replacement, k) requirement planning, and inventory control of tools (Reddy et al.

1990a). Despite the various orientations and approaches, there are some common goals in

tool management. These goals are discussed in the following paragraphs.

Tooling is one element in FMS that is most prone to change due to external factors

and may often cause discrepancy in FMS functioning. In other words, the probability of

change in the tooling due to change in one or all of the external requirements (see Section

3), is much greater than the probability of changing any of the other internal elements. The

changes in tooling include changes either in the number of each tool type and/or number of

different tool types, and/or tool position in FMS (tool crib, magazines, etc.). The extent of

individual or combined effect of external factors on tooling changes with respect to its

number of tools of each type and the variety of tools can be enormous due to the huge

tooling (several number of tools of several tool types) in most of the FMSs. Further, the

influence of any external factor on tooling with respect to its position can become more

complicated by tool flow from tool crib to inspection, to presetting stations, to tool

magazine, and finally to the machine spindle. The constant wear and tear on tools adds to

the complexity of the situation mainly when FMS is operating for a long period of time.

Hence, tools are more prone to replacements during the long time functioning of FMS.

Due to the factors and importance of tool management explained above, tooling is the most

dynamic and critical facility in FMS and requires keen attention.

Tool management is a very complicated task and is often stressed by FMS users

and researchers (Gray and Stecke 1988, Reddy et al. 1990a,b). Despite such complexity,

there are successful working FMSs whose performance have been considerably augmented

with efficient tool management (Gaymon 1986, Tomek 1986). Tool management also

attains paramount significance considering its economic impact, since tooling accounts for

25-30% of the fixed costs of production in automated machining environment (Tomek

2 6

1986, Cumings 1986). Several firms have recently developed integrated tool management

systems with tremendous encouraging results (Tomek 1986). In fact, the centralized tool

management has introduced the fifth generation of FMS environment, indicating that tool

management is one of the important subsystem in the FMS which influences the whole

structure and operation of the FMS (Heywood 1988).

Owing to the complexities in tool management, Maccarini et al (1987), have

suggested different tool room layouts comparing their performances and have identified the

parameters which describe better tool room behavior while the production process is being

developed. However, the recent literature reveals that there are still many tool management

problems to be solved (Reddy et al. 1990b, Zavanella et al. 1990), . This is mainly due to

the lack of comprehensive understanding of tool management which is necessary before

attempting any tool related activities such as development of algorithms for tool

optimization, development of control software, design of a tool delivery system, and

framing of a new storage or tool flow strategy. Modeling of the tool management can be of

critical help in this respect and aids in understanding of complex asynchronous concurrent

interactions/tasks in tool management (Venkatesh and Chetty 1992). A more recent survey

on tool management in FMSs is made by Veeramani et al. (1992). They have examined

tool management related research efforts in academia and outlined the characteristics of

comprehensive tool management systems that are being used in industry.

Automated material handling

Recently, automated guided vehicle systems (AGVSs) have received increased attention by

the designers and engineers of automated manufacturing systems (Gould 1990). An

AGVS may consists of multiple automated guided vehicles (AGVs) and computers to

control them. AGVs are unmanned vehicles that carry workpieces among the workstations

following guide paths. They are usually controlled either by on-board computers or by a

central computer. The communication between an AGV and its controller is generally

established through dedicated wiring embedded in the floor, although some recent AGVSs

2 7

utilize wire-less communication. AGVSs are widely used in FMSs as they provide

flexibility in routing parts among elements present in the system. These systems are highly

complex and expensive due to the dynamic environment in which FMS functions.

Furthermore, if the AGVS is not efficient, the whole system performance may be impaired

by the possible starvation of machines in the system.

A variety of analytical methods have been proposed by researchers for the design

and control of AGVSs. Egbelu and Tachoco (1986), Mahadevan and Narendran (1990),

Maxwell and Muckstadat (1982), and Wysk et al. (1987) have proposed alternate

procedures for estimating the number of AGVs required. Hodgson et al. (1987) devised

an analytical control strategy for scheduling AGVs which was extracted from Markov

decision process optimal control policies. King et al. (1989) evaluated heuristic control

strategies for a system under varying arrival patterns. Bozer and Srinivasan (1989)

suggested a tandem configuration for reducing software and control complexity of an

AGVS. Malmborg (1990) developed an analytical modeling strategies that can be applied

for both design of AGVS and performance evaluation of FMS s. The application of these

analytical methods is limited due to their restrictive assumptions and hence they can not

effectively be used for controlling the FMS under investigation. This is because the above

mentioned analytical approaches can not predict the dynamic behavior of the AGVS with

respect to time. Often simulation studies are preferred over analytical approaches as they

provide more insight into the problem and they are not hindered by too many assumptions.

A number of simulation studies have been conducted to evaluate the effect of different

parameters such as number of AGVs, number of pallets, buffer sizes, dispatching rules,

bi-directional flows etc. (Egbelu and Tachoco 1984, 1986, Newton 1985, Ozden 1988,

Vosniakos and Mamalis 1990). Vosniakos and Mamalis (1990) have also addressed

design issues of AGVSs for FMSs such as zone blocking, loading/unloading, and traffic

control. Schroer and Tseng (1985) have demonstrated the use of GPSS in modeling AGV

based FMSs. The main limitation of the available simulation methods are that they are time

2 8

consuming and need large computer memory. Hence, they are limited in their practical

usefulness for on-line monitoring of AGVS.

Owing to the limitation of the available analytical and simulation methods, there is a

need for a single and versatile tool for addressing both design and operational control

issues of AGVSs. Petri Nets (PNs), a powerful modeling tool in the context of FMSs

have been successfully used for such analyses. Alanche et al. (1984) modeled AGV

movements with Petri nets (PNs) and qualitatively investigated the deadlocks and possible

vehicle collisions. Davis et al. (1989) used PNs to formalize rules for allocating and

dislocating the zones in an AGVS. Archetti and Sciomachen (1989) have analyzed an

AGVS quantitatively using PNs. Occena and Yokota (1991) modeled an AGV system in a

Just-In-Time environment and introduced a new dispatching rule to have better inventory

and transport control, compared to the traditional dispatching rules available. From their

study they concluded that traditional dispatching rules such as shortest processing time,

first-in-first-served, etc. do not perform well in the FMS environment. Hence, they

concluded there is no specific rule that performs better in an FMS that is operating under

Just-In-Time environment. This is mainly because in such systems, processing on

machines starts only when there is a demand and processed parts are dispatched only when

the successive machine is ready to take the part from its preceding machines.

Although there is extensive literature on hardware issues, research concerning the

design and control issues of AGVSs for FMSs is limited. In order to fully exploit the

increased flexibility and adaptability by AGVSs, an in-depth study of the design and

control issues is essential. Also, for the realistic analysis of AGV-based FMSs, both the

machine scheduling and AGV scheduling have to be simultaneously investigated

(Sabuncuoglu and Hommuertzheim 1986).

2 9

Control system development among elements present in the FMS

A fundamental building block of FMS is data communications. Communication

development in FMSs is probably the single largest and most troublesome problem area

encountered by users and suppliers of factory automation systems. A study by General

Motors revealed that upto 50% of the cost for new automation projects was directly

attributed to communication and control devices (Balph and Vittera 1985). This is because,

the complete flexibility and efficiency of any FMS can be realized only when a systematic

and reliable control system is developed to coordinate and monitor different activities taking

place at the different levels in the system hierarchy (Jones and McLean 1986). Even with

adequate automation equipment, an FMS may not live up to its performance potential due to

the lack of appropriate integration and control of the FMS operations (Maimon 1987).

Furthermore, this area of factory automation has become a test bed for establishing various

network architectures, protocols, access methods, communication media, and band widths

for many computer vendors. Hence, communication and control system development

among various elements in FMS is very important. However, development of such

systems in FMS is a complicated task because:

• An FMS is a complex distributed processing system where each element in an

FMS has a data base and there are several such elements in FMS that have to

communicate for the manufacturing of a finished product.

• Communication and compatibility among the equipment of different vendors is

critical. These equipment include computers, local area networks (LANs), cell

controllers, programmable logical controllers (PLCs), robots, machine tools,

and similar digital control devices.

To alleviate the complexity of communication development, many efforts are

underway in Europe and the USA to develop a common set of vendor-independent

communication protocols which would be usable by all types and brands of factory

automation equipment. Towards this aim, Manufacturing Automation Protocol (MAP) has

30

recently been developed. The objective of MAP is to make communication possible

between mainframe systems, cell controllers, workstation terminals, programmable logic

controllers, material handling systems, robots and other types of factory equipment. MAP

has received some criticism by researchers and users because of its complexity. For

example, MAP specification is suitable at plant level communications, but many times

becomes too heavy at cell level.

Typical static data sets in an FMS include configurations of machines, AGVs, and

robots and their characteristics and process plans. Common dynamic data sets include

status of machines, AGVs, and robots that change with respect to real time. The control

algorithms act as an interface between the static and dynamic data sets at different levels of

hierarchy in the FMS. Maimon (1987) extensively discussed the tasks of the operational

control in such an interface. He also presented a generic hierarchical control system and

illustrated the development procedure with an example of flexible manufacturing cell to

carry out the FMS integration from the production requirements to the actual operation of

the machines.

However, the last task of the operational control system, namely, continuous

monitoring and handling of breakdowns is not detailed. For example, there is no mention

of about how tool wear is monitored in real time. Tool wear monitoring is essential to

achieve uninterrupted machining and to schedule tool replacements when the limit on tool

life is reached. The complexity of tool wear monitoring and its significance in the context

of FMS functioning is highlighted by Masory (1991) and Venkatesh et al. (1994).

Handling of machine and/or robot breakdowns in manufacturing systems is also essential

to minimize the system down time and thereby not impairing the system performance. In

case of breakdowns, there are many concurrent actions to be taken to bring back the system

to normal functioning.

31

Furthermore, some design parameters such as the number of assembly fixtures

required to achieve maximum production rate may change with and without consideration

of breakdowns in the system as addressed later in this work. In addition, some important

control and monitoring issues have to be addressed in detail during breakdown handling.

However, there are a few reported studies that consider breakdown handling in the analysis

of a manufacturing system.

For example, the importance of breakdown handling is highlighted and breakdown

of work stations is considered in modeling of flexible manufacturing system by Barad and

Sipper (1988) and Sheng and Black (1990). However, neither of these papers present the

detailed modeling and analysis of the system with breakdowns.

Jafari (1992) presented an architecture for a shop-floor controller using Petri nets.

However, the proposed control system architecture is not applicable to assembly systems.

Many authors (Jones and McLean 1986, Maimon 1987, Jafari 1992, Ghosh 1989) have

developed hierarchical control structures for FMS control as it supports information

collapsing and data abstraction at different levels in the factory. The major objectives of

the communication network in FMS are resource and information sharing. The design of

computer networks for FMS is treated by Ghosh (1989).

In the same paper, Ghosh developed a methodology for performance evaluation of

a network. Ghosh illustrated the design and performance evaluation methodology for three

different configurations of networks, namely, direct numerical control (DNC), computer

numerical control (CNC), and multi-level control hierarchy with local area network. Zhou

et al. (1994), presented an overview of various models for performance evaluation of

communication networks in manufacturing. They also presented a Petri net method for

modeling and performance of token bus local area networks.

32

There are a few studies that propose heterarchical control structure for automated

manufacturing systems. Duffie et al. (1988) presented a heterarchical control structure after

describing the limitations of hierarchical control structure. They illustrated the heterarchical

control scheme with an experimental manufacturing system.

Even though the proposed scheme in Duffie et al. (1988) is simple and easy to

understand, it can not be easily expanded when the FMS grows in complexity (several

machines, robots, and AGVs). Jones and McLean (1986) proposed a hierarchical control

model for automated manufacturing systems, which serves as a research test bed to aid in

the identification, design and testing of standards for the automated factories of the future.

They also emphasized that a standard factory model must address all of the necessary

functional, control, data flow, and interface issues.

This chapter has shown that the research on FMS is vast and growing. In order to

help the readers focus on their area of interest, the research reviewed in the present chapter

has been classified and the results are shown in Table 2.3. Although the references cited

in Table 2.3 overlap in various areas of FMS (such as managerial , tool management, etc.),

the primary focus of the papers reviewed has been used as the classification criterion.

The existing research in the area of FMS indicates the need for developing

integrated tools to address not only all the technical problems discussed above but also help

solve all the managerial problems discussed earlier. Such integrated tools would be of

immense help to integrate the efforts of both technical and managerial personnel which is

very essential for the full realization of FMS benefits.

Tools that are useful to specify, model, design, evaluate, control, and monitor

FMSs are urgently required. Such tools serve as a common medium among several

personnel involved in the above activities. Hence, using such tools the integration between

the people and between the tasks of the system can be easily achieved. The integration

between people in FMSs is of paramount importance for the success of such systems.

33

Table 2.3 Cross-references to research related to problems in FMS

Managerial
Problems

Related Research
References:

Technical
Problems

Related Research
References:

Installation,
implementation,
and integration
issues

Goldhar (1984),
Darrow (1987),
Klahorst (1981),
Mullins (1984),
Hughes (1983),
Gilbert (1986),
Harvey (1984),
Attaran (1992), Jan
(2992), Ram (1991),
Dimitrov (1990),
Kwok (1988),
Bluementhal (1985),
Black (1983), Jukka
(1990), Primrose
(1991), Krinsky
(1991), Stecke
(1983), Buzacott
(1986), Kaku (1992),
Kiesler (1983),
French (1984), and
Scalpone (1984).

Tool management ' Gaymon (1984,
1987), Reddy
(1990a,b,c), Gray
(1988), Tomek
(1986), Cumings
(1986), Heywood
(1988), Maccarini
(1987), Zavanella
(1990), and
Venkatesh (1992),
Veeramani (1992).

Automated material
handling

Davis (1989), Schroer
(1985), Gould
(1990), Egbelu (1984,
1986), Mahadevan
(1990), Maxwell
(1982), Wysk (1987),
Hodgson (1987),
King (1989), Bozer
(1989), Malmborg
(1990), Newton
(1985), Ozden
(1988), Vosniakos
(1990), Alanche
(1984), Archetti
(1989), Occena
(1991), and
Sabuncuoglu (1986)
Balph (1985), Jones
(1986), Maimon
(1987), Masory
(1991), Barad (1988),
Sheng (1990),
Venkatesh (1992,
1994), Jafari (1992),
Ghosh (1989), Duffle
(1988), and Zhou
(1994)

Control system
development
among elements
present in the FMS

3 4

2.7. Summary

In this chapter the literature on definitions of FMS, reasons for change from conventional

systems to FMS, installation and implementation issues of FMS, applications issues, and

finally problems of FMS were briefly reviewed. The FMS-related problems were

categorized into two major areas -managerial and technical. Both managerial and technical

problems are discussed along with the earlier research. There is a vast source of materials

on the subject, although the interest and the technology of the field is relatively recent.

There are a number of predictions and forecasts in regard to the future of FMS. For

example, Hughes and Hegland (1983) reported the result of a Delphi study with regard to

the future of FMS. This report predicted major advances in various areas of FMSs such as:

• The level of application of automated fixturing and holding devices on

numerically controlled machines,

• Reliable and practical sensing strategies for implementing adaptive control in all

current metal-cutting operations.

• Extension of flexible production systems to machine tool industry,

• In-process adaptive control of surface roughness in machining,

• Non-contact high-speed on-line inspection systems with closed loop feedback

to the machine control system, and

• Increased application of diagnostic components in FMSs

Many of these predictions are close to reality or have already been realized.

Whenever an FMS is installed the experiences gained through the installation,

implementation, and integration of the system are shared by the industry making the growth

rate self-accelerating. However, despite these predictions and growth, the myopic views of

some managers toward capital expansion in such areas as FMS have caused delay in

widespread utilization of these systems (Hays and Wheelwright 1984). On the other hand,

there are some positive trends.

35

The use of flexible machining cells will be of primary concern throughout most of

the manufacturing industries. Integrated modeling tools that address both technical and

managerial problems are essential for the success of manufacturing systems. This chapter

has made a solemn attempt to comprehensively highlight the issues and problems related to

FMSs starting from their planning to implementation. There is an increasing need for

integrated modeling tools for the development of control systems in FMSs. PNs are

claimed to be ideal integrated modeling tool in the area of FMSs (Cecil, et al. 1992, Proth

1992, Zhou and DiCesare 1993). The next chapter introduces the concepts of PNs and

presents a survey of PN applications in FMSs.

CHAPTER 3

PETRI NETS AS AN INTEGRATED TOOL AND
METHODOLOGY IN FMSs

Petri nets(PNs) are a powerful graphical and mathematical modeling tool to solve many

problems related to asynchronous concurrent systems (Murata 1989). They have gained

popularity as a versatile tool for addressing design issues related to FMSs (Silva and

Valette 1990). In this chapter the fundamentals of PNs and its applications in FMSs are

discussed.

3.1. Concepts and Terminology of Petri Nets

A PN is defined as a bipartite graph containing places (pictured by circles) and transitions

(pictured by bars). Places and transitions are connected by directed arcs (pictured by arcs

with arrows). Places contain tokens (pictured by black dots). The distribution of tokens in

the places of a PN is called its marking. Sometimes, weights (pictured as labels on the

arcs) may also be used to facilitate the modeling. If there is no weight on an arc, unit

weight is assumed. Places can model different entities comprising the system, such as

robots, machines, and AGVs; and different intermediate states of the system, e.g., Robot

_i_is_ready_to_load_part_j. Transitions can model activities involved in the system, e.g.,

Robot i _loads fart j. Directed arcs model information, material, and control flow in the_ _

system. A token in a place represents the true value of the conditions modeled by the place.

All places that have arcs leading into (out of) a transition are said to be that

transition's input (output) places. A transition is said to be enabled if each of its input

places has at least a number of tokens equal to the weight of the arc leading from that place

to the transition. An enabled transition fires by removing a number of tokens equal to the

weight of the corresponding input arc from each of its input places and depositing a number

of tokens equal to the weight of the corresponding output arc in each of its output places.

36

37

Hence, firing a transition changes the token distribution over some places, which in turn

changes the marking of the PN. Each marking of PN models a unique state of the system.

Hence, as each transition in the PN fires, each unique state of the system can be easily

determined by observing its PN. For example, if there are 40 tokens in a place modeling

the buffer between _machines_i and j, the work-inprocess-inventory between these two

machines is said to be 40. The fundamentals of PNs can be seen in (Murata 1989,

DiCesare and Desrochers 1991, Silva and Valette 1990, Zhou and DiCesare 1993). To

maintain consistency the following PN definitions are given.

Formally, a PN Z is a five tuple, Z = (P,T, I, O, m) where

1. P is a finite set of places;

2. T is a finite set of transitions with P

3. I: PxT -->N, is an input function that defines the set of directed arcs from P to

T where N = {O, 1, 2,}

4. 0: PxT -->N, is an output function that defines the set of directed arcs from T

to P;

5.m: P 	 is a marking whose ith component represents the number of tokens in

the ith place. An initial marking is denoted by mo .

The execution rules of a PN include enabling and firing rules:

1. A transition t ET is enabled if and only if m(p) „?..1(p, t), Vp E P

2. Enabled in a marking m, tfires and yields a new marking m' following the rule:

m'(p) = m(p) + O(p,t) - 	 V p E P.

The marking m' is said to be reachable from m. Given Z and its initial marking m o,

the reachability set is the set of all markings reachable from m o through various sequences

of transition firings. Important PN properties related to stability, repetitiveness, and

absence of deadlocks can be defined and their implications for the system behavior are

reported in (Narahari and Viswanadham 1985, Zhou and DiCesare 1993).

38

Timed Petri Nets

Association of time with transitions in the PN described above results in Timed PN.

Formally, a Timed PN (TPN) is a net Z in which each transition is associated with either a

deterministic or random firing delay time. Note that the random time delays may follow

standard probabilistic distributions. There are two events for a transition firing, i.e.,

start_firing and end _firing. Between them, the firing is active. The removal of tokens

from a transition's input place(s) occurs at start_firing. Their deposition to a transition's

output place(s) occurs at end firing. While a transition's firing is active, the time to end

firing, called the remaining firing time decreases, from firing duration to zero at which its

firing is completed. Instantaneous description (ID) (Venkatesh et al. 1990) defining a state

of a TPN is a four tuple ID = (m,F ,Q,A) where:

1. m is a marking;

2. F is a binary selector function, F: T ---o [0,1). If F(t) = 1, t is enabled,

otherwise disenabled;

3. Q: T —> R+, is remaining firing time function. If Q(t) = q, there is q amount of

time to complete firing t. Q is a cumulatively decreasing time function;

4. A: T R+, is active time function . If Q(t) = 	 t is said to be active for q'

amount of time. A is a cumulatively increasing time function.

ID is useful for the quantitative and behavioral analysis of the system. To illustrate

the PN concepts, an assembly cell shown in Fig. 3.1 (a) is modeled. It contains 2 part

feeders (PF1 and PF2) and a robot (R). Feeders supply parts for assembly and robot does

assembly operations. PF2 feeds a part to the empty assembly area automatically. The

system operates as follows: 1) to start a cycle, robot (R) and parts must be available, 2) R

transfers a part from PF1 to assembly area and starts assembly, timing duration is one time

unit, and 3) R assembles the parts, and transfers the finished product to the output buffer,

the time is two units. Figure 3.1 (b) shows the PN model for this assembly cell.

Figure 3.1 (a) A simple assembly cell (b) Petri net model

Figure 3.2 shows various TPN models in a chronological order. At time zero (see

Fig. 3.2(a)), initial marking models the initial condition; F-function indicates that ti is

enabled; Q-function models that there is one time unit necessary to finish ti's firing; A-

function means that there is no transition active.

After one time unit (i.e. after assembly starts), the change in marking is shown in

Fig. 3.2(b) indicating that R is not ready because it is doing assembly, PF1 and PF2

contains one and two parts respectively, assembly is in progress, and there is no finished

product. F-function shows that t2 is enabled, Q-function shows that t2 needs two time

units to complete its firing, and A-function shows that t1 is active for one time unit.

Similar explanations can be given for PN models in Figs. 3.2(c) and 2(d). The software

package developed in (Venkatesh et 1992) for the simulation of PN models is used in

this work. This is developed in Ada and is presented in Appendix A.

39

40

Figure 3.2 Timed Petri net model of the assembly cell
(a). Before firing of transition 1 (before assembly started)
(b). After firing of transition 1 (after assembly started)
(c). During firing of transition 2 (during assembly)
(d). After firing of transition 2 (after assembly finished)

3.2. Applications of Petri Nets in FMSs

Tools such as queuing networks, Integrated computer aided manufacturing DEFinition

(IDEF), perturbation analysis, mathematical programming, and simulation packages like

SIMAN, SLAM, and XCELL can offer solutions for the problems related to manufacturing

system design. This work instead explores PNs to address the same issues. More

recently, Kochikar and Narendran (1994) classified the main approaches for modeling and

analysis of FMSs. They evaluated the available models against certain criteria such as:

modeling and decision power, ability to model at different levels, model verifiability, ability

to represent system evaluation, efficacy on computational considerations, quality of results,

interactivity, and ease of understandability and use.

Based on these criteria, Kochikar and Narendran (1994) concluded that PNs and

their extensions score highly among the available models. The advantages of PNs over

other tools include: hierarchical graphical modeling, direct generation of control code from

the models, validation of control code with either analytical or simulation methods,

qualitative property analysis, performance analysis, and real-time control and monitoring

(Stecke 1989, Vernon and Zahorjan 1987, Thou, et al. 1992, DiCesare and Desrochers

1991, and Kaighobadi and Venkatesh 1994). The disadvantage of PNs is that the models

become bigger when complex systems are modeled. However, in order to eliminate this

disadvantage "colored PNs" (Murata 1989) can be used. Another disadvantage of PNs is

the absence of a standard class of PNs that can address all the issues related to modeling,

simulation, and control of FMSs.

Many surveys dealing with the implementation of FMS projects report that the

integration between people working on the projects is as much as essential as integrating

different activities of production (Huang and Sakurai 1990). System designers,

manufacturing managers and industrial, software, and production engineers are the typical

personnel involved in designing and implementing the FMS projects. Since these

personnel have different backgrounds, powerful, versatile, and easier modeling tools are

needed to achieve successful integration among their efforts and objectives. That PNs offer

such a tool to achieve this purpose is evident from its diversified applications in FMSs.

Typical applications of PNs in manufacturing include performance evaluation (Al-

Jaar and Desrochers 1990); modeling, validation, and analysis (Narahari and Viswanadham

1985, Venkatesh 1990); specification and implementation (Courvoisier et al. 1989);

discrete event control design (Zhou et al. 1992a,b, and Zhou 1993); and simulation and

scheduling (Valavanis 1990, Venkatesh 1992). They were used to address tool

management issues (Reddy et al. 1992), model Automated Storage/Retrieval Systems

(Knapp and Wang 1992), design of Automated Guided Vehicle Systems (Raju and Chetty

41

42

1993), and to determine the optimal number of kanbans in Just-In-Time manufacturing

systems (Jothishankar and Wang 1992). Table 3.1 summarizes the typical applications of

PNs in FMSs. Moreover, the enthusiasm of various researchers in FMSs has shown that

large scale industrial application of PNs is close (Berchi and Frosi 1988). Realizing the

potentials of PNs, many researchers are actively exploring the new applications of PNs in

FMSs. In the following paragraphs, the applications of PNs and the further scope of PNs

in each specific application area are summarized. It is noted that all the applications

discussed below are important to demonstrate the use of PNs as a tool for modeling,

simulation, and control.

3.2.1. Simulation and Performance Evaluation

Mascolo et al. (1991) analyzed the limitations of the available models and used PNs to

model various types of kanban systems. They have modeled single kanban systems and

dual kanban systems using PNs and concluded that PNs are suitable for performance

evaluation of manufacturing systems operating with JIT principles. However, they have

not presented the quantitative performance results of the manufacturing systems that were

modeled by PNs. Sheng and Black (1990) modeled a cellular manufacturing system

operating with JIT principles using PNs.

Jothishankar and Wang (1992) determined the optimal number of kanbans in JIT

manufacturing using stochastic PNs. Kochikar and Narendran (1992) proposed modified

colored PNs to enhance the power of ordinary PNs and built compact PN models of

FMSs. Their proposed modifications render the PN to be more dynamic to reflect the

currently selected system parameters. Venkatesh et a/. (1992) applied timed PNs for

scheduling of robots in an FMSs operating with JIT principles. Raju and Chetty (1993)

used another extension of PNs, called Priority nets to model FMSs that utilize AGVs for

material handling.

Table 3.1 Major applications of PNs in FMSs

Applications of PNs in
FMSs

- Typical personnel involved - Typical references

Specification of system
requirements, model
development and validation

'Industrial engineers	 '
and system designers

Courvoisier et al. (1989),
Venkatesh (1990)

System simulation Manufacturing, industrial Valvanis (1990);
and system engineers Righini (1993);

Venkatesh et al. (1990)

System design and
performance evaluation

Industrial engineers and
system designers/analysts

Raju and Chetty (1993),
Chan and Wang (1993),
Venkatesh et al. (1994a)

Scheduling of machines, Production engineers Venkatesh et al. (1992),
AGVs, and robots and Operation managers and Raju and Chetty (1993)

Formal specification tool for
software design and
development

Software, industrial, and
manufacturing engineers

Guha et al. (1987),
B ooch (1990),
Venkatesh et al. (1994c)

Database and communication Computer hardware and Murata (1989)
development software engineers

Real-time control,
monitoring, and diagnostics

Control and manufacturing
engineers

Zhou and DiCesare (1989),
1993, Srinivasan and Jafari
(1991), Venkatesh et al.
(1994b)

Management of facilities in a Operation and system Reddy et al. (1992)
system 	 _ managers

By assigning attributes to the places which can be dynamically changed depending

upon the tasks of AGVs, they have provided a dynamic scheduling algorithm to schedule

AGVs in FMSs. Using Priority nets, they have also analyzed the performance of FMS

corresponding to various scheduling rules and product mixes.

Reddy, et al. (1993) used timed PNs for modeling tool management systems in

FMSs. Using timed PNs, in a centralized tool crib management environment, they have

compared the performance of a FMS with and without tool sharing among machining

centers. Chan and Wang (1993) combined the concepts of high level PNs and stochastic

43

44

PNs and constructed PN models for the performance evaluation of an FMS. Righini

(1993) introduced 'modular PNs' for simulation of FMSs and presented an algorithm that

allows automatic composition of subnets into a larger model. Wang and Hafeez (1994)

used generalized stochastic PNs to investigate the different policies followed in the traffic

management of automated guided vehicles (AGVs) in FMSs. Using stochastic PNs they

have compared the performance of tandem and conventional AGV systems in FMS. Hsieh

and Shih (1994) also used modularized floor-path nets to model AGV systems in FMSs

and presented rules for combining PN models to preserve the desirable properties of PNs.

Kochikar and Narendran (1994) proposed a new class of PNs, called Conditional

Predicate/Transition nets by modifying high level PNs and illustrated their use for the

simulation of FMSs. Conditional Predicate/Transition nets allow dynamic switching of

arcs to facilitate the dynamic selection of operating policies.

However, none of the above papers showed the suitability of PNs to investigate the

design and performance issues of FMSs functioning under either push or pull paradigms.

Also, earlier works of PNs in FMSs addressing push and pull paradigms (Mascolo et al.

1991, Jothishankar and Wang 1992, Venkatesh et al. 1992, Yim and Linn 1993) have not

explicitly presented (i) the differences between PN modeling of push and pull paradigms,

and (ii) modeling of production and moving lot sizes. Chapter 4 investigates the

application of PNs for performance evaluation of push and pull paradigms in FMSs.

3.2.2. Breakdown Modeling

Although PNs are proved as a tool to solve a variety of problems relating to manufacturing

systems, their full application to address design and analysis issues of FAS with

breakdowns remains to be explored. PN modeling of breakdowns was considered (Barad

and Sipper 1988, Sheng and Black 1990). Barad and Sipper (1988) used timed PNs for

modeling breakdown of a machine considering issues such as the rerouting flexibility of

45

assembly fixture and repair and maintenance of the breakdown machine. The focus of their

paper was to illustrate the PN model considering a machine breakdown while illustrating

the flexibility of modeling a flexible manufacturing system (FMS) with PNs. However,

they have not presented the performance evaluation of a manufacturing system considering

breakdowns of machines. Sheng and Black (1990) modeled a PN for machine breakdown

while demonstrating the application of PN in a cellular manufacturing system. They have

considered the failure of a tool as a breakdown of machine and modeled how such

situations can be easily modeled with PNs. However, they have not presented the

quantitative analysis indicating the effect of the failure rate of tools on the production rate

and buffer sizes of the system. In addition to the above authors, Huang and Chang (1992)

also modeled the breakdowns in an FMS using an inhibitory arc concept.

The performance of a transfer line was analyzed by considering the breakdown of

machines using stochastic PNs (Al-Jaar and Desrochers 1990). Stochastic PNs are also

used for the performance analysis of a flexible assembly system considering various robot

failure rates (Zhou and Leu 1991). None presented the detailed breakdown handling

procedures and optimization issues for various machine/robot breakdown rates.

Furthermore, all earlier researchers considered only breakdowns that arrive before

starting of an activity. However, in the real life situations breakdowns may arrive when an

activity is in progress. This restricts their accuracy for analysis of a realistic assembly

system. Chapter 5 investigates the application of PNs for breakdown modeling.

3.2.3. Discrete-Event Control

Recently, Petri nets (PNs) have been increasingly applied to design discrete-event control

systems for manufacturing systems. Zhou and DiCesare (1989) proposed different error

recovery schemes to ensure uninterrupted production in automated manufacturing systems.

Jafari (1992) proposed an architecture for controlling FMSs using colored PNs. Bruno

46

and Marchetto (1986) proposed a new class of PNs for the rapid prototyping of process

control systems. Boucher et al. (1989) illustrated the method of controlling a simple

manufacturing cell using PNs. Hitachi developed a commercial product based on an

enhanced PN that interacts with the physical system to control (Murata et al. 1986). PNs

have been also applied to model and implement local area networks in FMSs (Venkatesh

and Ilyas 1995). The reasons for the increase in the use of PNs for FMS control are

discussed in (Boucher et al. 1989, Zhou et al. 1992).

Realizing the potential of PNs for control, in France, GRAFCET - a PN like

representation tool is proposed as a standard specification of sequence controllers (David

and Alla 1992). Its international standard version is called sequential function charts

(Falcione 1993). More details and advantages of PNs for controlling manufacturing

systems can be found in (Boucher et al. 1989, and Zhou and DiCesare 1993). More recent

studies of PNs for discrete event control can be seen in (Ferrarini 1992, Venkatesh et al.

1993, 1994, Zhou et al. 1992a, 1992b, Zhou and DiCesare 1993). However, none of the

earlier studies have in detail compared ladder logic diagrams (LLDs) and PNs for the

design of sequence controllers. Boucher, et al. (1989) used LLDs and PNs to control the

same manufacturing system and reported the graphical representation by PNs makes the

controller more tractable than that of LLDs. However, they have not formally quantified

the comparison between PN and LLDs to design sequence controllers. The sequence

controller in this work means a class of discrete event controllers without choices in

executing the operations/activities. The detailed comparison of LLDs and PNs is very

important in realizing their advantages and disadvantages and, particularly, in establishing

PNs as an emerging design technique for effective sequence control of industrial automated

systems. Chapters 6 and 7 introduces Real-time PNs (RTPNs) and compares PNs and

LLDs, respectively.

47

One critical task in the development of PN based controller is to design PN models

given the sequence control specifications. Also, one of the factors for the comprehensive

comparison of PNs and LLDs in discrete event control is the availability of standard

procedures for designing controllers. There exists systematic design procedures for

designing LLDs (Pessen 1989). Even though there exist several methods to formulate a

PN model using bottom-up, top-down, hybrid (Zhou et al. 1992a, and Zhou and DiCesare

1993), and incremental approaches (Ferrarini 1992), they are difficult to directly apply to

generate automatically the PN models from certain logic control specification. Hence, for

the large scale application of PNs in industry, there is a need for systematic design

procedures for developing PN models. Chapter 8 presents a procedure to formulate a PN

model from a given class of logic control specification.

3.2.4. Control Software Development

Excellent reviews are presented on recent methods for developing manufacturing control

software and concluded that current methodologies are not sufficient to support planning,

scheduling, and monitoring activities involved in manufacturing (Chaar et al. 1993a,b).

Realizing the inherent complexity in controlling a flexible manufacturing system, object-

oriented programming is proposed for control software development (Hsu 1992).

Venkatesh and Fernandez (1992) combined the concepts of PNs, OOD, and Ada to develop

control software for FMSs. Haidar, et al. (1994) combined PNs and OOD approaches to

develop control software for FMSs. They use statecharts of FMSs to develop PNs from

which they develop a hierarchy of controllers. In all the earlier studies that used OOD for

control software development the benefits of OOD such as reusability and extendibility of

the software system were not sufficiently demonstrated (Glassey and Adiga 1990, Hsu

1992). Also, the earlier researchers (Chaar et al. 1993b, Glassey and Adiga 1990, Hsu

1992) have not paid much attention to describing the dynamic behavior of the objects

48

present in the software system and to analyze the system performance. Furthermore,

earlier OOD studies lack systematic OOD methodologies which help select the data

structures and operations of objects and models the dynamic behavior of objects. Even

though PNs and OOD are separately used for developing control software, there is a need

for systematic methodology that emphasize the role of PNs as a dynamic modeling tool in

OOD.

Hence, keeping in mind the limitations of PNs and their further scope in the above

applications, the following chapters not only introduce new classes of PNs but also

develop methodologies that support the modeling, simulation, and control of FMSs using

PNs.

CHAPTER 4

PERFORMANCE EVALUATION OF PUSH AND PULL
PARDIGMS IN FLEXIBLE AUTOMATION

4.1 Introduction

Even though PNs have been successfully applied to various problems related to FMSs

(Murata 1989, Silva and Valette 1990, DiCesare and Desrochers 1991, Cecil et al. 1992,

Zhou and DiCesare 1993), there are still some areas where the power of PNs has not been

exploited. For example, the application of PNs to study the performance of push and pull

paradigms is not reported in the available literature. Such studies not only help to select

between push and pull paradigms but also aid to widen the application of PNs for modeling

and simulation of flexible manufacturing systems.

This chapter shows PNs as a powerful tool to investigate the problem often

encountered in manufacturing systems management, namely comparing the performance of

a factory automated system operating under push and pull paradigms. The difficulty in

solving this type of problem is compounded by many parameters such as processing times

at work cells, number of automated guided vehicles and their routings, lot sizes, and setup

times. The PN method to solve such a problem is illustrated by considering a

manufacturing system. Its PN models are formulated and then analyzed to compare the

performance of system with push and pull paradigms. The results show that for the

particular system and operational parameters, the push paradigm outperforms the pull one.

Manufacturing systems consist of machines, robots, and automated guided vehicles

(AGVs) that are controlled by computers. Numerous asynchronous concurrent actions

involved in these systems make their analysis difficult. This chapter focuses on the

modeling and analysis issues related to manufacturing systems that are operated according

to either push or pull paradigms.

49

50
The primary goals of a manufacturing system are to minimize the work in process

inventory (WIP), and maximize the system utilization and output rate (Stecke and Solberg

1981, Suri 1984, Chang et al 1985, and Maione et al 1986). In the manufacturing arena,

it is well known that low WIP can be achieved by implementing just-in-time (JIT) which is

based on a pull production paradigm. However, implementation of JIT may lead to

lower system utilization (Monden 1981). In contrast to the pull paradigm push production

paradigm results in maximum system utilization and output rate, at the expense of higher

WIP (Monden 1989, Sarkar and Fitzsimmons 1989).

Even though it is popular to divide production control systems into push and pull

systems, there are no generally accepted definitions for these systems (Spearman, et al.

1990). However, several authors distinguished push and pull paradigms (Kimura and

Terada 1981, Schonberger 1983, Spearman, et al. 1990). For example, Kimura and

Terada (1981) discussed them as mechanisms of production orders. According to them, in

push system production and inventory control is based on the forecast value. In pull

system, a certain amount of inventory is held at each stage and its replenishment is ordered

by the succeeding process at the rate it has been consumed. Also, there are several ideas to

implement push and pull systems (Schonberger 1983, Spearman, et al. 1990, Lee 1987).

Schonberger (1983) described the implementation of a pull paradigm using kanban

techniques, and stated that push was simply a schedule based system which could be

implemented using a master production schedule that was exploded by a computer into

detailed schedules.

Spearman, et al. (1990) stated that push systems scheduled the start of jobs

whereas pull system authorized the production. They reported that pull systems were not

applicable to production environments which were controlled by job orders. Motivated by

this, they described a pull-based production system called CONWIP and presented its

advantages over push and some pull systems. Lee (1987) presented a parametric appraisal

of a JIT system and concluded that, unlike the traditional push method, raising the pull

51
demand in a JIT system did not ensure a high process utilization level. The details of

differences between the push and pull ones were also discussed in detail by Sarkar and

Fitzsimmons (1989). In this chapter, we regard push and pull paradigms as operational

paradigms. In a push system, a preceding machine produces parts without waiting for a

request from the succeeding machine. On the other hand, in a pull system a preceding

machine produces parts only after it receives a request from the succeeding machine. The

difference in modeling such systems is described in detail in subsequent sections.

To minimize WIP and maximize the system utilization and output rate of

manufacturing systems simultaneously, it is often difficult to select between push and pull

paradigms. This is because for certain system configurations and operational parameters,

push may perform better than pull and vice versa. To make the best decision, detailed

design and performance analysis of a system has to be performed.

Another reason that adds to the difficulty of the present problem is the inadequacy

of research on JIT in the area of flexible manufacturing systems (FMSs). In other words,

even though there is much reported research in both the areas of JIT (in conventional

manufacturing systems) and FMSs individually, there are only a few research studies on

implementing JIT in FMSs (Venkatesh et al. 1992a). Huang (1984) emphasized the

uncertain consequences of the system output, the sensitivity in performance of a JIT

production system to lot size, the impact of setup time reduction on the efficiency, and the

effect of variability of processing times on the JIT implementation and its subsequent

performance. Sarkar and Fitzsimmons (1989) investigated the effects of variations in

processing times on the performance of conventional push and pull systems. Yim and Linn

(1993) analyzed an FMS with Petri nets and concluded that there was no significant

difference in output rate between push and pull based AGV-dispatching rules for a busy

FMS. However, none of the earlier chapters have presented any methodology for studying

the effects of variations of lot sizes and processing times on the performance of push and

pull systems. This chapter presents PNs as a suitable tool to answer these questions.

52

The unique features of this work compared to earlier works on PNs in

manufacturing systems are presented in subsequent sections. The primary goal of this

chapter is to show PNs as a powerful tool in investigating difficult problems in production

management arena. It investigates a complex problem often faced in the management of

manufacturing systems, i.e., comparing their performance functioning under push and pull

paradigms. The specific objectives of this work are:

1. To present a PN approach to address a typical operations management problem

stated earlier,

2. To formulate PN models (PNMs) considering important parameters in a

manufacturing system example such as processing times at work cells, number of

AGVs, routings of AGVs and their travel times among work cells, production and

moving lot sizes, machine setup times, and machine loading/unloading times, and

3. To present the detailed analysis of PNMs to design and compare the performance

of manufacturing systems operating under either push or pull paradigms.

4.2. Application Illustration

For the performance evaluation of the system, timed PNs are used in this chapter.

Instantaneous description (ID) of timed PNs described in Chapter 3 is used here for the

quantitative analysis of the system. A PN approach to analyzing a system consists of two

parts: modeling with PN and analysis of the PNM by either analytical methods (Narahari

and Viswandaham 1985) or simulation (Dubois1989 and Valvanis 1990). The simulation

method is applied in this chapter with the software package presented in Appendix A. The

detailed conventions of PN modeling useful for the design, performance evaluation, and

monitoring of manufacturing systems are shown in Table 4.1.

53
Table 4.1 Conventions of Petri net modeling

Implementation issue PN modeling
Setup time Firing duration of the transition modeling

setup activity

Conveyance time Firing duration of the transition modeling
conveyance activity

Moving lot size or production lot size Weight of the directed arc modeling the
function of moving or production kanban

Routing of an AGV Firing sequence of transitions

Number of AGVs for a transportation task,
work stations and pallets

Initial marking in the corresponding places
modeling AGVs, workstations and pallets

Values of inprocess inventories Number of tokens deposited in the places
modeling input and output buffers of work-
stations

Utilization times of workstations, robots, Active time durations of transitions
AGVs modeling the activities of work stations,

robots, AGVs

Production volume Number of tokens deposited in the place
modeling 'counter for production volume'

Dynamic system state useful for design,
performance analysis, and monitoring and

Marking of the PNM giving the token
distributions, F, Q, and A functions giving

control of the system the status of transitions with respect to time

4.2.1. System Configuration and Assumptions

A manufacturing system example as shown in Fig. 4.1 contains four workcells (WCs) and

an assembly shop (AS). Each WC consists of a machining cell (MC), an assembly cell

(AC) and a robot (R). AGV(s) are present in the system to transport parts and

subassemblies among work cells and the assembly shop (AS). The track layout of AGVs is

also shown in Fig. 4.1. The conveyance times among work centers and assembly shop to

produce products 1 and 2 (PR1 and PR2) are shown in Table 4.2. There is a need for

producing two product varieties, PR1 and PR2, both in the quantity of seventeen each (the

demand of seventeen products is chosen arbitrarily). PR1 requires parts A, B, C, and D in

the quantities of 2, 1, 3, and 2, respectively.

54

Figure 4.1 Layout of the manufacturing system investigated

Table 4.2 Conveyance time matrix in the system for production of PR1 and PR2 (time
units)

WC1 WC2 WC3 WC4 AS
WC1 - 4 3 - -

WC2 - - 5 5 -

WC3 5 - - 4 6
WC4 5 3 5 - -

AS 7 - 2 - -

These parts are machined by MC1, MC2, MC3, and MC4. PR2 requires

subassemblies SA, SB, SC, and SD in the quantities of 2, 1, 3, and 2, assembled by AC1,

AC2, AC3, and AC4 respectively. The machining/assembly sequence of above parts and

subassemblies is same as shown in Table 4.3 along with the corresponding times. The

values in parentheses in Table 4.3 show the assembly times for PR2. Since PR1 requires

only machining operations, the manufacturing system becomes a flexible manufacturing

system (FMS) when it is producing PR1.

55

Similarly, the system is actually a flexible assembly system (FAS) when it is

producing PR2. This identification schema allows for generally comparing the

performance of FMS and FAS when both of them function under similar system

configuration but with different processing times.

Table 4.3 Processing times and the sequence of parts in the system (time units)

Part Sequence MC1 (AC1) MC2 (AC2) MC3 (ACS MC4 (AC4)
A (SA) MC1--MC3 (AC1--AC3) 35 (8) — 42 (6) —
B (SB) MC1--MC3 (AC1--AC3) 46 (10) — 38 (9) --
C (SC) MC2--MC4 (AC2--AC4) — 26 (7) — 34 (11)
D (SD) _ MC2--MC4 (AC2--AC4) — 30 (9) — 40 (12)

The assumptions made about this system are as follows:

1. The outer path of the AGV track is unidirectional and the inner one is bi-

directional.

2. The setup time for any MC or AC and loading/unloading a MC or AC is one

time unit and sequence independent.

3. If there are more than one AGV in the system, the delays due to traffic are

negligible.

4. There are no breakdowns in the system during its operation. However, detailed

breakdown handling is possible with 'Augmented-timed PNs' (Venkatesh, et

al. 1994a) as described in the next chapter.

Statement of the problem

The manufacturing system considered performs in four different system configurations,

namely, FMS and FAS with the pull paradigm and FMS and FAS with the push one. In

each configuration there are several parameters to be studied. The parameters whose

impact on the system performance has to be investigated in this study are production lot

sizes (PLSs), number of unique transportation tasks (N) which decides the moving lot size

(MLS), and the number of AGVs assigned for each unique different transportation task (n).

For example, PLS of Part A is defined as the number of A parts that are processed on MC1

56

before changing the setup of MC1 to produce another different part (here Part B). MLS is

defined as the number of parts that an AGV carries corresponding to each unique

transportation task. The routing of an AGV and the variation of MLS with respect to N are

shown in Table 4.4. The goals are minimization of work-in-process-inventory and

maximization of system utilization and output rate. To achieve these goals, PNMs of

system for the four different configurations have to be formulated and the influence of the

parameters on the goals has to be investigated. Also, the optimum values of N, n, and

PLSs have to be determined for each system configuration. Finally, the performance of

system under push and pull paradigms has to be compared.

Table 4.4 Variation of moving lot size with respect to number of AGVs and assigned
tasks

Number of unique
different trans-
portation tasks (N)

Task of AGV and its routing Moving lot size (MLS)

AGV1: Starts from work cell 1 (WC1), delivers parts 2 + 1 + 3 + 2 = 8
1 from WC1 and WC2 to WC3 and WC4, delivers parts

to assembly shop (AS) and returns to WC1
Routing: WC1-WC2-WC3-WC4-WC3-AS-WC1

2 AGV1: Starts from WC1, delivers parts from WC1
and WC2 to WC3 and WC4 and returns to WC1

2 + 1 + 3 + 2 = 8

Routing: WC1-WC2-WC3-WC4-WC1

AGV2: Starts from WC4, delivers parts from WC4
and WC3 to AS and returns to WC4 2+1+3+2=8
Routing: WC4-WC3-AS-WC4

3 AGV1: Starts from WC1 and delivers parts to WC3
and returns to WC1

2 + 1 = 3

Routing: WC1-WC3-WC1

AGV2: Starts from WC2, delivers parts to WC4 and
returns to WC2

3 + 2 = 5

Routing: WC2-WC4-WC2

AGV3: Starts from WC4, delivers parts from WC4
and WC3 to AS shop and returns to WC4

3 + 2 + 2 + 1 = 8

Routing: WC4-WC3-AS-WC4

57

4.2.2. PNM Formulation and Analysis

PNM for pull paradigm

To illustrate the concepts of PN modeling Fig. 4.2 shows the PNM for MCI and MC3

operating with the pull paradigm to produce parts A and B corresponding to PR1. In Fig.

4.2, dotted arcs model the pull paradigm. The modeling of production of parts C and D by

MC2 and MC4 is similar to production of parts A and B by MC 1 and MC3 except that the

PLSs for C and D are different. However, the variation of PLSs can be easily modeled by

changing certain weights in the PNM as illustrated in Fig. 4.2 and discussed in next

paragraphs. Hence, the discussion on modeling production of parts C and D is omitted

here. Also, to simplify the modeling process, in Fig. 4.2, it is assumed that there is AGV1

which transfers parts from MC1 to MC3 and AGV2 which transfers parts from MC3 to

assembly shop. Since time duration of operations in the system are deterministic,

transitions are associated with deterministic firing durations (from Tables 4.3 and 4.4).

Processing of Part A ,

It is assumed that initially Part A has to be loaded on to MC1. This requires MC1 to be

setup to process A modeled by depositing a token in place

setup _for _MC1_to_process_part_A. Setup time is one unit of time and associated with t1

modeling the activity machine_setup. After one time unit the completion of setup is

modeled by firing t1 and depositing the number of tokens equal to the production lot size

(PLS) of part A in place MCI _ready_to _process _part_A. PLS is modeled as a weight on

the output arc from t1 to place MC1_ready_to_process _part_A. Since MC1 is functioning

with the pull paradigm, MC1 cannot start processing until there is a demand for Part A

from MC3. Hence, MC1 has to wait till MC3 requests MC1 to process Part A. The

request for Part A at MC1 arrives when MC3 completes processing of Part A. The

completion of processing Part A at MC3 is modeled by t1 8 ,

number_of_parts_as_specified_in_final_assembly_are_ready_in_MC2's_output_buffer.

Figure 4.2 PNM for production of parts A and B under pull paradigm

58

59

Hence, the request for MC1 to process Part A from MC3 is modeled by an output

arc from t18 to place demand_for_part_A_on_MC1. However, before the system begins

production at MC1, i.e. before the processing of Part A by MC3 (before firing of t18),

demand for Part A should be present. This is modeled by depositing a certain number of

tokens in place demand_for_part_A_on_MC1. The number of tokens in this place is

controlled by production lot size (PLS) of Part A. Since, the PLS for Part A is 2, the initial

marking of place demand_for_part_A_on_MC1 is also two. Once the production starts, to

continuously model the pull from MC3 to MC1, the output arc from t18 to place

demandjor_part_A_on_MC1 is drawn with weight two (PLS for Part A).

Whenever MC3 completes processing it fires t18 and sends a request for MC1 to

produce two parts of A. The raw material before MC1 is modeled by depositing sufficient

number of tokens in place input_buffer_of_MC1_with_parts_ready_to_feed_MC1 as its

initial marking.Now processing of Part A on MC1 can start since there is demand for Part

A, MC1 is ready to process Part A, and raw material is available. But, since robots are

used to load the machining cells, MC1 starts processing as soon as Robot 1 (R1) loads the

raw material. This is modeled by t2, loading_by_robot. After R1 completes loading, Part

A is loaded onto the MC1's table. This is modeled by firing t2 and depositing a token in

place part A_loaded_on_MC1's_table. The completion of processing of Part A on MC1 is

modeled by firing t3, completion_of_part_processing and putting a token in place

processed_part_A_on_MC1's_table. The unloading operation of the processed Part A by

R1 is modeled by firing t4, unloading_by_robot and depositing a token in place

processed_part_A_is_ready_at_MC1. MC1 continues to produce another Part A since

there is still one token left in place demand_for_part_A_on_MC1. When MC1 finishes

processing of second Part A, there would be two tokens present in place

processed_part_A_is_ready_at_MC1. Hence, there are two processed parts of A as

specified in the final assembly (for the production of PR1, two parts of A are required

according to the bill of materials of PR1) are available at the output buffer of MC1. This is

60
modeled by firing t5, with an input arc from processed_part_A_ready_at_MC1 with weight

two and depositing two tokens in place output buffer of MC1_ready_with_parts &and_

B. The state changes in the system can be simulated and visualized by token movements in

the PNM.

Processing of Part B

Upon the completion of processing two parts of A, MC1 starts to process Part B. This

requires changing the setup of MC1 which is modeled by an output arc from the t5 to place

setup_for_MC1_to_process_part_A. The modeling methodology for processing Part B is

similar to that of Part A. Once Part B is processed, MC1 has to produce again Part A and

the change-over for the setup is modeled by an output arc from t10 to place

setup_for_MC1_to_process_part_A. After the completion of processing of Part B, the

output buffer of MC1 contains two parts of A and one part of B.

This is modeled by firing t10 and depositing a token in place

output_buffer_of MC1 _ready_with_parts_A_and_B. Now, these parts have to be

transferred to MC3 for further processing. AGV1 is used to unload the parts from the

output buffer of MC1 and transport to MC3. The presence of AGV1 at MC1, is modeled

by depositing a token in place AGV1_ready_at MC1.

Since, AGV1 cannot move till the output buffer of MC1 contains two parts of A

and one part of B, the input arc for t11 modeling AGV1_unloads_and_starts_at MC1 is

labeled with weight three (summation of the PLSs of parts A and B). As soon as place

output_buffer_of MCl_ready_with_parts_A_and_B contains three tokens, AGV1 starts

conveying parts from MC1 to MC3. This is modeled by firing t11 and depositing a token

in place AGV1_travelling_from_MC1_MC3. After the conveyance time between MC1 and

MC3, AGV1 reaches MC3 and unloads the parts at the input buffer of MC3. This is

modeled by firing t12 and putting three tokens in the place

input_buffer_of MC3_with_parts_ready_to_feed_MC3.

61

The modeling methodology for processing of parts A and B by MC3 is similar to

MC1 except that the demand for parts at MC3 is generated by the assembly shop and

AGV3 is used to transfer parts between MC3 and the assembly shop (AS). Observe that

PNMs model the functions of production and moving kanbans in HT. For example, in the

PNM shown in Fig. 4.4, only after MC3 finishes the processing of Part A (t18), it gives a

signal (moving kanban function modeled by the output arc from transition to the place

DAM 1) to MC1 to start processing. Then t2 gives a signal (production kanban function) to

MC1 to start production.

PNM for push paradigm

Fig. 4.3 shows the PNMs for MC1 and MC3 operating with push paradigm for parts A

and B. In Fig. 4.3, dotted arcs model the push paradigm. The modeling methodology for

push paradigm is similar to that of the pull one except the way tokens are deposited in

places demand_for_part_A_on_MC1 and demand_for_part_B_on_MC1. The same PNM

used for the pull paradigm (shown in Fig. 4.2) is slightly modified to analyze the system

operating with the push paradigm and is shown in Fig. 4.3. Notice that in Fig. 4.3 the

dotted arcs represent the only change compared to Fig. 4.2. That is, output arcs from t18

and t23 in Fig. 4.2 are removed and attached at t11 in Fig. 4.3. Also, output arcs from t25

in Fig. 4.2 are removed and attached at t24. In the push paradigm MC1 produces parts

without waiting for a request from downstream machine. Hence, as soon as AGV1

leaves MC1, MC1 starts processing. This is modeled by each output arc from t11 to place

demand_for_part_A_on_MC1 and demand_for_part

Similarly, MC3 produces parts without waiting for a request from AS. Hence, as

soon as AGV2 leaves MC3, MC3 starts processing which is modeled by two output arcs

from t24 as shown in Fig. 4.3. The PNM for whole manufacturing system is obtained by

duplicating the similar modeling methodology to MC2 and MC4.

62

Figure 43 PNM for production of parts A and B under push paradigm

63

The transportation of material among workcells is unique depending on the value of

N and hence as N changes the routing of AGV changes as specified in Table 4.4, which in

turn slightly changes the PN modeling of material transfer among workcells in the system.

The number of AGVs for each unique transportation task, n is modeled by varying the

initial marking of places, AGV ready_at the_output buffer of MC.

To avoid redundancy, only the PNM of the system functioning as FMS under the

pull paradigm with the values of both N and n equal to one is shown in Fig. 4.4. The

interpretations of places and transitions are shown in Table 4.5. Figure 4.5 shows the

PNM corresponding to the system functioning with the push paradigm. Initial marking is

shown in all PNMs. The PNMs used for FMS can also be used when System functions as

FAS. In such a PNM, the only difference is that the machining times associated with

transitions are replaced by assembly times.

Table 4.5 Explanation of typical places and transitions in the PNMs shown in Figs. 4.4
and 4.5

Place Explanation
DAM1 Demand for Part A on MCi
IM1 Input buffer of MC1 with parts ready to feed MC1
SM1A Setup for MC1 to process Part A
M1RA MC1 ready to process Part A
AM1 Part A loaded on MC1's table
PAM1 Part A is being unloaded by R1
PARM1 Part A is ready at the MC1
0M1 Output buffer of MC1 ready with parts A and B
AGM1 AGV at the output buffer of MC1
AM12 AGV traveling from MC1 to MC2
AM1 AGV at the input buffer of MC1
AMO3 AGV at the output buffer of MC3
AlASM1 AGV1 traveling from AS to MC1

Transition
1,6,14,19,28,33,39,44 Signal for machine setup
2,7,15,20,29,34,40,45 Robot finishes the loading operation
3,8,16,21,30,35,41,46 Completion of part processing
4,9,17,22,31,36,42,47 Robot finishes the unloading operation
5,10,18,23,32,37,43,48 Number of parts as specified in final assembly are ready in

MC's output buffer
11,13,25,27,38,49 AGV starts from MC
12,24,26,50,51,52 AGV reaches its destination

64

Figure 4.4 PNM of the FMS under pull paradigm

65

Figure 4.5 PNM of the FMS under push paradigm

66
4.3. Procedure for PN Modeling and Analysis and Simulation results

Figure 4.6 presents the procedure for PN modeling and analysis that is adopted to compare

the performance of push and pull paradigms.

Figure 4.6 Procedure for PN modeling and analysis

67

From this figure it can be inferred that a PNM formulated for N = 1 can be slightly

modified to study the performance of push and pull performance for both FMS and FAS

cases corresponding to various values of N, n, and PLSs. This shows the reusability of

the PNM obtained for a given value of N. Hence, PNs offer a powerful solution.

Simulation results

The software package developed in Venkatesh, et al. (1992) is used for the quantitative

analysis of PNMs. For each configuration of the system there exist twelve different

combinations of the parameters, PLSs, N, and n. This is because there are three different

values of N, two different values of n, and two different combinations of PLSs. The

explanation for the various values of N is already discussed earlier (refer to Table 4.4).

The results corresponding to two values of n only are presented because during simulation

it is found that when n takes a value more than two, there is no improvement in system

performance. The details of two combinations of PLSs are explained below.

There are two different combinations of PLSs for parts A, B, C, and D namely, 2,

1, 3, 2 and 1, 1, 1, and 1. In the first combination parts (subassemblies) A(SA), B (SB),

C (SC), and D (SD) are produced in the lot sizes equal to their exact requirement as in the

bill of materials of PR1 (PR2). In the second case, these are produced in unit lot sizes. In

other words, the first combination corresponds to the loading sequence 1A, 1A, and 1B on

MC1 and 1C, 1C, 1C, and 1D, 1D on MC2. The second combination corresponds to 1A

and 1B on MC1 and 1C and 1D on MC2. It is clear that in the former case, the setup time

required to produce one finished product is less compared to the latter. However, the work

in process inventory in the former may be more compared to the latter. Further, PLSs

affect the utilization of machines, robots, and AGVs.

The combination of the N, n, and PLSs, which results in the lowest minimum

work-in-process inventory, the highest feasible utilization, and the highest output rate, is

regarded as the optimal solution set for the system. In the following paragraphs, the results

corresponding to four different configurations of the system are discussed.

68
4.3.1. FMS with the pull Paradigm

Table 4.6 shows the system performance when the system functions as an FMS with the

pull paradigm. Consider PLSs of 2,1,3, and 2. In this case N = 1 and n = 1 is the

Table 4.6 System functioning as FMS with the pull paradigm

N n
I Time Units 	 (34/n)

AM
(%)

AVU ARU
(%)

BS1 I BS2

PLS for A, B, C, and D: 2, 1, 3, and 2
1 9898 0.00343 54.07 11.83 1.55 3 5

1
2 9898 0.00343 54.07 5.92. 1.55 3, 5
1 9898 0.00343 54.07 5.95 1.55 3 5

2
2 9898 0.00343, 54.07, 2.98 1.55 3 5
1 9708 0.00350 55.13 3.80 1.58 3 5

3
2 9708 0.00350 55.13 1.90 1.58 5

PLS for A,B,C and D: 1, 1, 1, and 1
1 5446 0.00624 51.15 21.50 1.43

1
2 5446 0.00624 51.15 10.75 1.43 3 5
1 5446 0.00624 51.15 10.80 1.43 3 5

2
2 5446 0.00624 51.15 5.40 1.43 3 5

1 5175 0.00657 53.89 11.12 1.49 3 5
3

2 5175 0.00657 53.89 5.56 1.49 3 5

Legend:
N	 Number of unique different transportation tasks
n	 Number of AGVs assigned for each unique transportation task
It	 Time required for production of 17 products of each PR1 and PR2
OR	 Output rate (parts/time unit)
AMU	 Average machine cell utilization
AVU	 Average AGV utilization
ARU	 Average robot utilization
BS1,BS2	 Maximum input buffer sizes at MC3 and MC4 respectively

solution set. This is because with an increase in either N or n or both, output rate, average

machine cell utilization (AMU), and average robot utilization (ARU) are slightly increased,

but average vehicle utilization (AVU) is significantly decreased. Now, consider the PLS s

of 1,1,1, and 1. In this case, due to the same reasons stated above, N = 1 and n = 1 is

the solution set. After observing the system performance corresponding to the above two

69

solution sets, it can be stated that the solution set corresponding to PLSs 1, 1, 1, and 1

results in the solution set. This is because with a decrease in the PLSs from 2, 1, 3, and 2

to 1, 1, 1, and 1, output rate is improved by 82%; AVU is increased by 82%; AMU and

ARU are not much affected. Hence, when the system functions with the pull paradigm,

PLSs of 1,1,1, and 1 with N = 1 and n = 1 is the optimal solution set.

4.3.2. FAS with the pull Paradigm

Table 4.7 shows the system performance when the system functions as an FAS with the

pull paradigm.

Table 4.7 System functioning as FAS with the pull paradigm (the same legend as Table
4.6's)

N n I 	 it
Time Units

OR 	 I
(34/π)

	

AAU 	 I

	

%) 	 I
AVU 	 I
(%) 	

ARU 	 1
(%) 	 I

BS1 BS2

PLS for A, B, C, and D:2,1,3,and 2
1 3717 0.00915 36.95 31.61 4.15 3 5

1
2 3495 0.00973 39.40 16.81 4.40 3 5
1 3495 0.00973 39.29 16.88 4.38 3 5

2
2 3495 0.00973 39.29 - 8.44 4.38 3 5
1 3305 0.01030 41.52 11.18 4.66 3 5

3
2 3305 0.01030 41.52 5.59. 	 -

4.66 3 5
PLS for A,B,C and b: 1, 1, 1, and 1

1 2409 ' 	 0.01410 28.75 48.61 3.19 3 5
1

2 1854 0.01830 37.35 31.74 4.22 3 5
1 1854 0.01830 37.35 31.88 4.15 3 5

2
2 1854 0.01830 37.35 15.94 4.15 3 5
1 1657 0.02050 41.80 34.72 4.65 3 5

3
2 _ 	 1657 0.02050 41.80 17.36 4.65 _ 	 3

Here again, when PLSs are 2, 1, 3 and 2, N = 1 and n = 1 is a solution set due to the

same reasons listed above. But in the case of PLSs - 1, 1, 1, and 1, when N = 1, an

increase in n from 1 to 2 resulted in the following: output rate is increased by 30%; AAU

and ARU are increased by 30% and 32%, respectively; and AVU is decreased by 34.71%.

70

With a further increase in either N or n or both, output rate, ARU, and average assembly

cell utilization (AAU) are not much affected. Therefore, N = 1 and n = 2 is a solution

set for PLS values of 1,1,1, and 1. Now, it can be concluded that with a decrease in PLSs

from 2, 1, 3, and 2 to 1, 1, 1, and 1, output rate is improved by 100%; AAU, AVU, and

ARU were slightly increased. Hence, for this case, PLSs of 1,1,1, and 1 with N = 1 and

n = 2 is the optimal solution set.

4.3.3. FMS with the push paradigm

Table 4.8 shows the system performance of the FMS functioning with the push paradigm.

In this case, the solution set when PLSs are 2,1,3, and 2 is N = 1 and n = 2. This is

because an increase in n from 1 to 2 (without changing N), improves the output rate by

19%; AMU by 19%; AVU by 20%; and ARU by 21%. Beyond this, with an increase in

either N or n or both, output rate is not affected; AVU is reduced significantly; ARU,

AMU increased slightly and buffer sizes increased significantly.

Table 4.8 System functioning as FMS with the push paradigm (the same legend as
Table 4.6's)

N I n 	 1 I
Time

it 	 OR 	 I
Tune Units 	 (34/7r) 	 1

AMU 	 I
(9'0)

AVU
(%)	

1 	 ARU 	 I
(To)

BS1 BS2

PLS for A, B, C, and D: 2, 1, 3, and 2
1 8566 0.00397 62.63 13.67 1.80 3 5

1
2 7234 0.00470 74.56 16.37 2.18 3 5
1 7234 0.00470 85.11 9.65 2.49 36 60

2
2 7234 0.00470 85.51 4.84 2.50 36 60
1 7229 0.00470 88.46 6.33 3.52 66 60

3
2 7229 0.00470 88.46 3.16 2.73 66 60

PLS for A,B,C and D: 1, 1, 1, and 1
1 4410 0.00771 63.46 26.55 1.75 3 5

1
2 3485 0.00975 80.51 33.97 2.24 3 5
1 3337 0.01020 84.20 17.89 2.34 3 5

2
2 3337 0.01020 84.20 8.95 2.34 3 5
1 3325 0.01020 91.73 12.46 2.60 3 32

3
2 3325 0.01020 92.290 6.23 2.61 3 32

In the case of PLSs - 1,1,1, and 1, when N = 1, with an increase in n from 1 to

2, output rate is increased by 26%; AMU by 27%; AVU by 28%; and ARU by 28%.

Again due to the same reasons stated above, N = 1 and n = 2 is the solution set. Based

on the system performance corresponding to the above two solution sets, it can be

concluded that with a decrease in PLSs from 2, 1, 3, and 2 to 1, 1, 1, and 1 output rate and

AVU are improved by 107% and 107% respectively. Also, there are slight increases in

AMU and ARU but buffer sizes do not change. Hence, when the system functions as an

FMS with the push paradigm, PLSs of 1,1,1, and 1 with N = 1 and n = 2 is the optimal

solution set.

4.3.4. FAS with the push paradigm

Table 4.9 shows the system performance of FAS functioning with the push paradigm. In

this case, the solution set when PLSs are 2,1,3, and 2 is N = 1 and n = 2.

Table 4.9 System functioning as FAS with the push paradigm (the same legend as Table
4.6's)

N n it
Time
Units

OR
(34M)

AAU
(%)

AVU
(%)

ARU
(%)

BS1 BS2 -

PLS for A,13} C, and D: 2, 1, 3, and 2
1 	 3717 0.00915 37.00 31.50 4.66 3 5

1
2 	 2385 0.01420 58.49 24.82 6.59 3 5 ,
1 	 2385 0.01420 69.18 31.11 7.93 51 82

2
2 	 2385 0.01420 69.46 15.60 7.96 51, 82
1 	 2380 0.01420 75.63 21.94 11.65 122 82

3
2 	 2380 0.01420 75.63 _	 21.94 11.65 122 82

PLS for A,B,C and D: 1,1,1, and 1
1 	 2409 0.01410 28.75 93.82 3.19 3 5

1
2 	 1262 0.02690 55.74 48.61 6.22 3 5
1 	 1077 0.03150 72.45 62.91 8.01 20 17

2
2 	 1077 0.03150 72.45 31.45 8.01 20 17
1 	 1065 0.03190 74.70 40.53 8.41 19 27

3
_	 2 	 1065 0.03190 74.70 20.27 8.41 19 27

71

72

This is because with an increase in n from 1 to 2 (without changing N), it results

an increase in the output rate by 55%; an increase in AAU and ARU by 58% and 41%

respectively; and a decrease in AVU by 21%. Beyond this, with an increase in either N or

n or both, output rate is not affected. AVU shows decreasing trend; AAU and ARU are

slightly increased; and buffer sizes are significantly increased. In the case of PLSs - 1,1,1,

and 1, also when N = 1, with an increase in n from 1 to 2, output rate, AAU and ARU

are increased by 91%, 94%, and 95% respectively; but AVU decreased by 48%. Again,

due to the same reasons stated above, N = 1 and n = 2 is the solution set. Based on the

system performance corresponding to the above two solution sets, it can be concluded that

with a decrease in PLSs from 2, 1, 3, and 2 to 1, 1, 1, and 1, output rate and AVU are

improved by 89% and 96% respectively; AAU and ARU are very slightly decreased and

buffer sizes remains same. Hence, when the system functions as an FAS with the push

paradigm, PLSs of 1,1,1, and 1; N = 1 and n = 2 is the optimal solution set.

4.3.5. Summary of Results

From Tables 4.6 and 4.7 when FMS and FAS function with the pull paradigm, the buffer

sizes are minimum and constant irrespective of the values of PLS, N, and n. However,

with the push paradigm from Tables 4.8 and 4.9, they increase with either PLS and/or N.

For a given PLS combination with constant N, n does not affect the buffer sizes. This

observation confirms to the general notion that higher lot sizes result in higher buffer sizes.

When this system functions under the pull paradigm, the buffer sizes are same in both FMS

and FAS. However, under the push paradigm when N is greater than one, the buffer sizes

in case of FAS are larger compared to the FMS case because assembly times in FAS are

less than processing times in FMS. Hence as the processing times vary, buffer sizes also

vary in case of the push paradigm for higher values of N. The optimal solution sets for

FMS and FAS functioning with push and pull paradigms are shown in Table 4.10.

73

Table 4.10 Solution sets for FMS and FAS (the same legend as Table 4.6's)
N = 1 and PLS = 1,1,1, and 1, Demand: 17 products,
OR (production volume/time units) = (17/n)

Operation

Paradigm

it OR

(34M)

n AMU or AAU AVU ARU BS1 BS2

FMS case

PUSH 3485 0.00975 2 80.51 33.97 2.24 3 5

PULL 5446 0.00624 1 51.15 21.50 1.42 3 5

FAS case

PUSH 1262 0.02690 2 55.74 48.61 6.22 3 5

PULL _	 1854 _ 0.01830 _	 2 37.35 31.74 4.22 3 5

It is concluded that for both FMS and FAS, the optimal solution value of N = 1

is same for both push and pull paradigms. In the case of FAS, n = 2 is the best solution

for both push and pull paradigms. But, in the case of FMS, the solution values of n are

different for push and pull paradigms. In other words, the push paradigm in FMS requires

two AGVs, but the pull paradigm requires only one AGV. Figure 4.7 shows the

performance of FMS and FAS for solution sets listed in Table 4.10. In both cases, the

push paradigm yields better performance.

This is because, in case of FMS (FAS), push paradigm results in an increase in

output rate, AMU (AAU), AVU, and ARU by 56 (47)%; 57 (49)%; 58 (53)% and 58

(47)% respectively and buffer sizes remain same as shown in Table 4.10. Hence, for the

particular system considered, the push paradigm helps achieve the goals of implementing

JIT in flexible factory systems. Therefore, before adopting either pull or push as

operational strategy for a particular system, it is important to evaluate thoroughly the

system performance for both cases with an aim not only to reduce inventories but also to

increase system utilization.

74

Figure 4.7 Performance of the system with different configurations
Legend: OR OR * 5,000 (finished product/time unit)

AMU Average machine cell utilization (%)
AAU Average assembly cell utilization (%)
ARU Average robot utilization

4.4. Summary

The performance of a particular FMS was evaluated using timed Petri nets by changing

different operational parameters in the system operating under push and pull paradigms.

The performance criteria are the buffer sizes, output rate, utilization of machines, AGVs,

and robots. The configuration that results in the minimum buffer sizes, maximum system

utilization and output rate is considered as the optimal solution. The manufacturing system

considered is investigated as both FMS and FAS, by changing the production lot sizes, the

number of unique transportation tasks (which decides moving lot sizes), and the number of

AGVs for each transportation task. To achieve this, PNMs of the system are formulated

and analyzed quantitatively through a PN driven simulation package. The analysis shows

that in both cases of FMS and FAS, the push paradigm performed better than the pull one

75
for this system. This is because unlike the general notion that only pull paradigm results in

minimum WIP, push may result not only in minimum WIP but also maximum system

utilization and output rate for certain configurations and operation parameters. The results

may change if some of the system parameters such as processing and/or assembly times

change. From the simulation results it can be observed that the utlizations of system

elements are generally low. This may be due to the parameter settings of machining and

conveyance times. In other words, by changing these values, the system utilziation can be

increased. The same PNMs can be used by associating the new time values with the

corresponding transitions modeling such activities. It is concluded that 1) before adopting

either push or pull paradigm, the system should be evaluated with goals to reduce

inventories and increase system utilization and output rate, and 2) PNs can be a very useful

tool to perform such evaluation.

From the simulation results, many inferences are useful for the operations

managers, system designers, manufacturing, industrial and software engineers. For

example, the results show that average robot utilization is very low in all the cases studied

in this chapter. This is because there is a dedicated robot for each work cell. To increase

robot utilization, the possibility of sharing a common robot between two work cells should

be studied further. However, scheduling of robot movements should be done to prevent

impairing the performance of other system elements. This issue is another interesting topic

for research in manufacturing systems (Venkatesh et al 1992). PNs can be used also to

generate the supervisory control code of the systems as illustrated for manufacturing

systems (Zhou et al. 1992, Srinivasan and Jafari 1991). The further enhancement of this

work is to implement the discrete controller based on the control logic embedded in the

PNMs as shown in the Chapter 9. Hybrid push-pull paradigms can be studied by changing

the dotted output arc (in Fig. 4.4) from t32 to t29. In this chapter, during the simulation of

the system breakdowns are assumed not to occur. A class of PNs that are useful for

detailed breakdown modeling and simulation are proposed next.

CHAPTER 5

AUGMENTED-TIMED PETRI NETS FOR MODELING
BREAKDOWN HANDLING

5.1 Introduction

Flexible manufacturing and assembly systems consist of machines, robots, and automated

guided vehicles, aiming to meet the dynamically changing needs of the market. Numerous

asynchronous concurrent actions involved in these systems make their analysis difficult.

Breakdowns of the system components further complicate the investigation of the issues

related to their design, performance optimization, and control. Furthermore, detailed

breakdown handling helps implement the real-time shop-floor controller as reported by

Zhou and DiCesare (1989). Even though there are several types of PNs available for

discrete control (Crockett et al. 1987, Murata et al. 1986, Stefano and Mirabella 1991,

Valette et al. 1983) there is a need for extending PNs to model realistically the operations in

factory floors. More specifically, there is a need to enhance the power of timed PNs to

realistically model the breakdown situations in FMSs.

This chapter proposes a new class of modeling tools called Augmented-timed Petri

nets (ATPNs) for modeling and analyzing manufacturing systems with breakdowns.

These models aid designers in better understanding of concurrency, synchronization, and

sequential relations involved in breakdown handling and in system simulation for

performance analysis.

A flexible assembly system consisting of three robots with various breakdown rates

is used to illustrate modeling, simulation and analysis with ATPNs. ATPN models for

breakdown handling are presented and analyzed for estimating the system performance and

designing the optimum number of assembly fixtures. The ATPN models can also be used

for the real-time control of the system. In case of a breakdown many design and control

issues have to be addressed. Considering the importance of breakdowns in production

control, Gershwin and Berman (1981) presented the analysis of transfer lines consisting of

76

77

two unreliable machines with random failures. Groenevelt et al. (1992) investigated issues

related to the estimation of economic lot size and safety stock levels for an unreliable

manufacturing system with a constant failure rate. Glassey and Hong (1993) presented a

model for the analysis of behavior of an unreliable n-stage transfer line with finite size

buffers.

Most of the above researchers studied conventional manufacturing systems by

estimating the economic safety stocks to handle breakdown situations. However, to

implement Just-In-Time manufacturing and to increase the level of automation, there is a

need to handle breakdowns by reducing the safety stock levels and implementing efficient

breakdown handling procedures. Due to breakdowns, the optimal system operational

parameters that are designed for the system without considering breakdowns have to be

changed. Furthermore, these parameters may differ as the component breakdown rates

vary. The issues to be specifically addressed when considering a system with breakdowns

are detailed breakdown handling to ensure uninterrupted production, and estimation of the

new optimum design parameters for different breakdown rates. Estimation of the new

optimum design parameters for various breakdown rates aids system designers and

production managers in achieving optimal system performance and is the focus of this

chapter.

Although PNs are proved as a tool to solve a variety of problems relating to

manufacturing systems, their full application to address design and analysis issues of FMS

with breakdowns remains to be explored. PN modeling of breakdowns was considered in

(Barad and Sipper 1988, Sheng and Black 1990). The former presented a PN model

considering a machine breakdown while illustrating the flexibility of modeling a flexible

manufacturing system (FMS) with PNs. The latter modeled a PN for machine breakdown

while demonstrating the application of PN in a cellular manufacturing system.

Performance of a transfer line was analyzed by considering the breakdown of machines

using stochastic PNs (Al-Jaar and Desrochers 1990). Stochastic PNs is also used for the

78

performance analysis of a flexible assembly system considering various robot failure rates

(Zhou and Leu 1991). None of the above presented the detailed breakdown handling

procedures and performance optimization issues for various machine/robot breakdown

rates. Furthermore, they considered only breakdowns that arrive before starting of an

activity. However, in the real life situations breakdowns may arrive when an activity is in

progress. In their models the transition time delays either follow either exponential

distribution or are instantaneous. This restricts their accuracy for analysis of a realistic

assembly system.

The goal of this chapter is to formulate graphical models that clearly capture the

details of breakdown handling in FMS s to address issues related to their design,

performance, and control. The objectives of this chapter are to:

1. introduce a new class of PNs called Augmented Timed Petri nets (ATPNs)

aimed to model conveniently breakdown handling in manufacturing systems,

2. illustrate a methodology to formulate ATPN models for breakdown handling,

and

3. model, simulate, and analyze an FAS using ATPNs for estimating the optimum

number of assembly fixtures for various robot breakdown rates.

5.2. Augmented Timed Petri Nets

Before introducing Augmented-timed PNs, consider a timed PN modeling a machining

operation as shown in Fig. 5.1. In Fig. 5.1 (a) before machining is started, machine, part,

and tool availability are modeled by depositing tokens in places machine_ready, part ready,

and tool ready. This triggers machining by absorbing the input tokens and firing the

transition modeling the activity machining. During machining, machine and tool are busy

and there is no processed part available, as modeled in Fig. 5.1 (b).

Figure 5.1 An example of a Timed Petri net model

Once the machining is completed, the part is processed and machine and tool are

ready to process another part. This is modeled in Fig. 5.1 (c) by depositing each token in

the places processed_part_ready, machine _ready, and tool_ready. Timed PN described

above cannot easily model breakdowns in manufacturing systems. There exists an

extension of PNs with inhibitor arcs which can model the breakdowns. However, they can

only model breakdowns that arrive before the start of an activity. In real-life situations

breakdowns may come at any time. Unlike the previous classes of PNs, ATPNs are

proposed to model breakdowns which may occur before an activity starts and/or during an

activity. Breakdowns may not only result due to the power or interface failure but also due

to the subcomponent failure in a component. For example, a machine breakdown may

result due to a fault in cutting fluid lubrication or tool handling system and a robot may

79

80

breakdown because of an error in its gripper. To model breakdowns, the following new

constructs are added to TPNs, leading to ATPNs:

1. Deactivation place: This is used to model the message that is sent from cell controller

to stop the operation of the breakdown component and start the standby component.

Deactivation places are pictured by two concentric circles.

2. Deactivation transitions: Two kinds of deactivation transitions are introduced. The

former models the activity - change-over from the breakdown component to standby

one and vice versa. The latter models an activity that is being executed by the

component and immediately stopped at the time of breakdown. These transitions are

pictured as shaded ones.

3. Input and output deactivation arcs: These are used to model the control and

information flow among component and cell controllers. The input arc models control

flow from cell controller to the breakdowns component's controller (to stop its

operation). The output arc models control flow from cell controller to the standby

component's controller (to start the operations of breakdown component).

4. Secondary arc: This is used to model the conditions that exist before and after

change-over from one component to another. It is pictured by a dotted arc.

Formally, an ATPN, Z" is an eleven tuple, Z" = (P, T, I, 0, m, D, Pd, Td, I d ,

Od, Is) where the last five tuples are the new tuples proposed in this chapter as an addition

to TPN. They are defined as follows:

1. Pd c P is a finite set of deactivation places. pd E Pd connects the two transitions

defined in Td which is described next.

2. Td is a finite set of deactivation transition pairs. Each pair consists of two transitions:

deactivating, ti (generating the deactivation command), and deactivated, 11" (the

transition that gets deactivated). Denote

81

where

3. Id: Pd)erd' s (0,1), input function defining a set of deactivation arcs from Pd to

Td ",

4. pd: Pd>erd i---> (0,1), output function defining a set of deactivation arcs from Td' to

P

5. Is: PxT (0,1), secondary input function defining a set of secondary arcs from P

to T.

When a system is working normally without breakdowns, the initial marking of pd

E Pd is always zero. The firing rule of ti' is same as a normal transition while that of ti" is

different. The firing rule of ti" is same as a normal transition till the pid contains a token.

As soon as pid contains a token, the firing of ti" is stopped (the activity modeled by ti" is

stopped). When ti" is stopped because of pid, it does not deposit the tokens in its output

places in P. In other words, the tokens that ti" has taken from its input places for its

normal firing are absorbed by ti".When a place is connected to a transition by Is, the

enabling rule of the transition is same. However firing rule is different from normal firing

rule in updating the new marking. That is, if place pi is connected to h by Is, firing h does

not take any token from pi. In other words, during execution of h, pi contains a token.

Summarizing the above concepts, the firing rules of ATPN are given as follows:

1. A transition t ET-Td" is enabled if and only if m(p) .?_1(p, t) and m(p) Is(p, t), Vp

e P.

A transition t e 7 is enabled if and only if m(p) I(p, t) and m(p) 	 t), V p e

P, and V pd e Pd.

2. Transition t e Td" immediately terminates its firing, if 3pd e Pd, Id(pd,t)=1 and

m(pd)=1.

3. Enabled in a marking m, tfires and results in a new marking m' following the rule:

m'(p) = m(p) + 0(p,t) - I(p,t) VpE P and if during the firing process 3pd e Pd 3

82

is not marked.

and

if during the firing process pd e pd Id(pd,t)= 1 and pd is marked.

The instantaneous description (ID) of ATPN is the same as that of TPN. Figs. 5.2

shows an example of ATPN. Fig. 5.2 (a) models machining before breakdown . The

breakdown generation is modeled by the place breakdown_generation. Assume that the

breakdown occurs four minutes after machining is started. This is modeled by associating

4 minutes to transition breakdown_of tool_occuring. Fig. 5.2 (b) models the system

when machining is in progress. Since the arc connecting place

signal_for_machine_to_do_its_task and transition machining is secondary arc, there is

token present in this place during machining. Four minutes after the machining started, the

tool breakdown arrives and hence machining should be stopped. This is modeled in Fig.

5.2 (c) by removing a token from place breakdown_generation and depositing in the place

tool_breakdown. The actions involved to stop machining is represented transition

stop_machining which removes tokens from places signal_for_machine_to_do_its_task

and tool breakdown and deposits a token in message_to_stop_machining. Once this place

contains a token, it sends a message to machine controller to immediately stop machining.

In the above example, breakdown time (four minutes) is assumed. However,

breakdowns may occur at random in shop-floor. To consider the random occurrence of

breakdowns in the analysis, the breakdowns times should be generated by assuming proper

probability distributions. Also, strategies to minimize the down time during the period of

breakdowns should be modeled during the analysis. These issues and other related

breakdown handling issues are elaborately addressed and modeled in the PNMs that are

presented in the subsequent sections. For the analysis of ATPN model, simply referred to

as Petri net model (PNM), a software package was developed using the principles of

ATPNs and is presented in Appendix A. Note that RTPN is a special case of ATPN.

Figure 5.2 Example of an AWN model

83

The package presented in Appendix A gives the following information with respect

to real time:

• Marking of each place in the PNM

• Active time of each transition

• Remaining time of each transition

• Transitions which are enabled

• Conflicts between transitions (a conflict results when a single resource is required

to serve more than one customer simultaneously).

5.3. Application Illustration: A Flexible Assembly System

An FAS is investigated to show the application of ATPNs. The system can be used for

assembling a variety of products as shown in Fig. 5.3.

84

Figure 5.3 Layout of the flexible assembly system

85

In order to focus the objective, only one product, plastic ratchet assembly is

considered. The system consists of 3 robots and an inspection station to do assembly and

inspection and is controlled by a cell controller. Each robot is controlled by its own

controller. The functions of the cell controller are to give signals to robots to do their tasks

and also signals to stop their functioning at the time of breakdown and change-over.

The system described here is similar to industrial systems as Westinghouse robot

assembly systems (Nof 1985). The assembly operation is split into tasks performed by

three robots as follows:

Robot 1 (R1): Picks up and places a shaft in the assembly fixture; picks up and presses

a plastic gear on the shaft; and picks up and presses a ratchet gear on the shaft.

Robot 2 (R2): Picks up and transfers the subassembly from position 1 to position 2.

Picks up and keeps a lever in assembly fixture, and inserts a rivet in lever and rivets

lever to the gear.

Robot 3 (R3): Transfers assembly to rotary table and inspects position and operations

of lever. After R3's operation, assembly fixture returns to R1 to start the assembly of a

new product. Assembly time for R1, R2, and R3 are thirteen, eighteen, and ten

minutes respectively.

Various robot breakdown rates are considered to analyze the FAS. The system is

evaluated for four values of mean time between failure (MTBF). The ranges of MTBFs are

chosen randomly. The values of MTBFs are obtained by assuming that they follow

uniform distribution within the given range.

These ranges and the values of MTBFs for R1, R2, and R3 for different cases are

shown in Table 5.1. Table 5.2 shows the exact time and breakdown sequence of robots

for four different cases with different breakdown rates.

Table 5.1 MTBFs of Robots in the FAS (minutes)

Breakdown
number

Robot 1
range: 1000 to

Robot 2
range: 4000 to

Robot 3
range: 6000 to

10000 8000 14000
1 2,900 4,860 9,080
2 3,350 4,900 11,300
3 6,860 6,020 12,580
4 8,390 6,380 13,780

Table 5.2 Time and breakdown sequence of robots for various robot breakdown rates

Case number Time (minutes) and breakdown sequence of robots
1 R1 at 2,900 R2 at 4,860 R3 at 9,080
2 R1 at 3,350 R2 at 4,900 R3 at 11,300
3 R2 at 6,020 R1 at 6,860 R3 at 12,580
4 R2 at 6,380 R1 at 8,390 R3 at 13,780

In each case, given the MTBF, the actual breakdown time is assumed to follow a

truncated normal distribution to avoid negative values for time. Based on our experience,

data with coefficient of variation below 20% are usually reliable and hence, we have

assumed the standard deviation in normal distribution to be 10% of the mean.

The following assumptions are made in this model of the FAS to focus on the

objectives of the chapter. All the parts required for assembling the product are always

available in automatic part feeders and there always exist demand for the finished product.

There is a standby robot for each robot in the system that will come on-line when the

corresponding robot fails. With this planning approach, unexpected manual intervention

and subsequent productivity loss can be precluded. Moreover, it helps for the smooth

control of system during breakdown situations. Maintaining a standby robot for each robot

may not be economically feasible. However, to demonstrate the application of ATPNs in

the case of breakdown handling a standby robot is assumed for each robot. Change-over

time is the time required to transfer the programs concerned with the breakdown robot to

the standby robot (to carry subsequent assembly operations), and to remove the unfinished

part from the assembly area of the breakdown robot. It is same for all robots and is

87

assumed 20 minutes. The repair time for all robots is assumed to be the same and equal to

100 minutes. These time durations can be changed to random variables depending on the

system under consideration,

5.3.1. ATPN Modeling of the System

Breakdown handling involves many concurrent actions like passing information to a

standby robot or an operator, scheduling the unfinished part, repairing the breakdown

robot, etc. Fig. 5.4 shows an AWN model (PNM) for breakdown handling of R3.

Figure 5.4 ATPN model for breakdown handling of Robot 3

88

The modeling methodology of ATPN is explained and the activities modeled and

controlled by the PNM are chronologically listed here. The initial state of the FAS is

modeled by the initial marking shown in Fig. 5.4. The time durations for the activities in

the system are modeled by associating times to the transitions modeling corresponding

activities. These are shown on the left hand side of each transition. At the start of the

system, R3 is ready to do its task (modeled by depositing a token in place R3_ ready) and

the cell controller gives the signal to R3 to do its task (modeled by depositing a token in

place signal_for_R3_to_do_its_task). R3 functions normally till a breakdown occurs.

Breakdown occurs after a random time called breakdown time (BT, obtained from Table

5.2) which is associated to the transition breakdown_of_R3_occuring. When it occurs, a

token will be deposited in place breakdown_of R3. Then, after a change-over time from

R3 to R6 (standby for R3) the following concurrent operations are executed by the cell

controller:

1. Sending a signal to the R3's controller to stop the operation and R6's to start. This is

modeled by depositing a token in place message_tostart_R6_and_stop_R3 and

removing the token from the place signal_for_R3_to_do_its_task. As soon as place

message_to_stop_R3 gets token it stops the functioning of R3 by deactivating the

transition assembly_by R3.

2. Activating the working of R6 by depositing a token in place R6_ready. The change-

over between R3 and R6 is modeled by removing a token from place

signal_for_R3_to_do_its_task and depositing it in place

signal_for_R6_to_do_its_task.

3. Sending a message to the controller at the higher level to repair R3. This is modeled

by depositing a token in place R3_in_repair.

During the repair of R3, R6 performs assembly operations. After certain time, R3 is

repaired, modeled by firing the transition repair_of R3. This resumes R3's operation,

modeled by place R3 _ready_to_resume. Now, the cell controller has to send signals for

89

change-over from R6 to R3. Its functions for the change-over from R6 to R3 are similar to

previous change-over and hence the modeling is also similar. The various breakdown rates

can be modeled by associating various values of time duration to transition

breakdown_of R3 _occurimg.

The above ATPN model for breakdown handling is exactly the same when a skilled

operator is used to replace the functions of a standby robot. Furthermore, the same ATPN

modeling approach can be extended for the breakdown handling of other robots, machines,

AGVs, and cell controllers in a manufacturing system or other production interruption.

ATPN model for designing the optimum number of assembly fixtures

ATPN models can be used to address various design issues. As an example, this chapter

determines the optimal number of assembly fixtures for various robot breakdown rates. To

this end, FAS has to be modeled using ATPNs considering the breakdowns of all robots.

Then, the obtained model has to be quantitatively analyzed to determine the effect of

various MTBFs on the system performance. The ATPN model of FAS is shown in Fig.

5.5 and is obtained by duplicating the model shown in Fig. 5.4 for R 1, and R 2. The

interpretation of places and transitions used in the PNM are listed in Table 5.3.

Table 5.3 Interpretation of places and transitions used in Fig. 5.5

Place Interpretation
AF Assembly fixture(AF) before robot 1 ready, where n is number of AFs
BGRi Breakdown generation for robot i (i =1 to 3)
RiB Robot i breakdown
Ri Robot i ready
MSRji Message to start robot j and stop robot i (j = 4 to 6)
SRi Signal for robot i to do its task
RiIR Robot i in repair
RiR Robot i ready to resume
AFk Assembly fixture ready after robot k's operation (k = 1 to 2)
Counter Counter for noting production output

Transition
BRiA Breakdown of robot i occurred
CRij Change-over from robot i to robot j
RRi Repair of robot i
ASRi Assembly by robot 1 (I = 1 to 6)

90

Figure 5.5 ATPN model of the assembly system with breakdown handling
n = Number of assembly fixtures

91

In case of a breakdown the assembly fixture is removed from the FAS, the

unfinished part is removed from the assembly fixture, and the assembly process starts

again from R 1. This is modeled by output arcs from six transitions that are modeling

changeovers to place AF (assembly_fixture_ready_before_R1). Once, a finished product

is transferred by R3 to rotary table, the assembly fixture is to be send back to R1. This is

modeled by output arcs from two transitions, one from R3 and another from R6 to place

AF (assembly_fixture_ready_before_R1).

5.3.2. Simulation and Analysis of the ATPN Model

The system is simulated for 20,000 time units. The execution of ATPN for one set of

parameters takes approximately two minutes CPU time on a VAX system. Table 5.4

shows the performance of the system with and without breakdown of robots for different

values of MTBFs and the number of assembly fixtures. During simulation, number of

assembly fixtures is increased till the increase in production output is less than 1%. Fig.

5.6 and 5.7 shows the effect of MTBF on production volume and utilization.

Table 5.4 Performance of the assembly system with and without breakdown of robots

No. of
Production output

Average Robot Utilization (%)
Assembly No Robot Breakdown of Robots
Fixtures Breakdown Case 1 Case 2 Case 3 Case 4

1 1333
33.33

1302
16.33

1308
16.37

13180
16.50

1318
16.50

2 2499
62.49

1562
19.57

1571
19.67

1645
20.60

1664
20.83

3 2499
62.50

1873
23.45

1887
23.62

2353
29.44

2077
26.83

4 2499
62.50

2135
23.45

2147
26.87

2478 '
31.08

2417
30.25

5 2499
62.50

2425
30.36

2439
30.53

2484
31.08

2479
31.03

6 2499
62.50

2469
30.92

2473
30.10

2484
31.08

2483
31.08

7 2499
62.50

2476
31.13

2476
31.10

8 2499
62.50

2477
31.03

Figure 5.6 Effect of MTBF on production volume

Figure 5.7 Effect of MTBF on average robot utilization

93

From the simulation results the following conclusions are drawn. When there is no

breakdown in the system, there is a significant increase in production output when the

number of assembly fixtures is changed from one to two. However, after it increases to

more than two, there is no increase either in production output or average robot utilization

due to the deterministic nature of the FAS. Hence, the optimum number of assembly

fixtures required without any breakdown in the FAS is two. Figs. 5.6 and 5.7 also

indicate the sensitivity of the production output and average robot utilization for different

cases when there are robot breakdowns.

In the presence of breakdowns, to achieve the maximum production rate more

assembly fixtures are required than that without breakdowns. The number of assembly

fixtures does not increase linearly with the increasing value of MTBF. This is the

conclusion drawn by observing the values of optimum assembly fixtures for various cases

of MTBFs as shown in Table 5.

Table 5.5 Optimum number of assembly fixtures required for various robot breakdown
rates

Case number Time and breakdown sequence of robots nopt
1 R1 at 2,900 R2 at 4,860	 - R3 at 9,080 -	 6
2 R1 at 3,350 R2 at 4,900 R3 at 11,300 6
3	 ' R2 at 6,020	 ' R1 at 6,860 R3 at 12,580 4
4 R2 at 6,380 R1 at 8,390 R3 at 13,780 5

nopt Optimum number of assembly fixtures

From the results it can be inferred that the system performance depends not only on

the MTBF but also on the exact breakdown sequence of robots. Even though the value of

MTBF increases from Case #1 to case #4, the number of assembly fixtures decreased from

Case #1 as well as Case #2 to Case #3 and increased from Case #3 to Case #4.

94

5.4. Summary

A new class of modeling tools called Augmented Timed Petri nets (ATPNs) are introduced

to model breakdown handling in manufacturing systems. ATPNs can model their

operations in detail considering the breakdowns of various components. The methodology

for formulating the ATPN models is illustrated by considering a flexible assembly system.

Also, the application of ATPNs for optimization and design is shown by investigating the

optimum number of assembly fixtures for the system under various robot breakdown rates.

The methodology proposed in this chapter can be extended to deal with breakdowns of

several machines, AGVs, and cell controllers and other production interruptions. ATPNs

provide rapid, flexible, and realistic modeling.

ATPN models can be extended for the real time control. In such cases, the

transition modeling the occurrence of breakdown is not associated with random breakdown

times. Instead, the sensors/limit switches that recognize the breakdown in the system are

modeled as input places for this transition. When there is a breakdown in the system, these

places get tokens and thus immediately fire the transition, modeling the occurrence of

breakdown. Fig. 5.8 shows an ATPN model intended for real-time control.

When the system contains several components, the size of ATPN models may

grow. In such cases, colored PNs can be combined with the principles of ATPNs to

formulate concise graphical models. This research can be extended to study some

important issues such as robot scheduling during breakdowns when only a single robot

exists as a standby to all three robots, system performance when several product varieties

are produced simultaneously in the system with random routing of parts, and cost

consideration for standby robots and breakdown handling. The effect of random

distributions of repair and change-over times on the system performance can also be

investigated by associating various time values to the transitions modeling repair and

change-over activities.

Figure 5.8 ATPN model for real-time control

95

CHAPTER 6

REAL-TIME PETRI NETS FOR CONTROL AND
SIMULATION

6.1. Introduction

Several types of Petri nets (PNs) are available for supervisory control of FMSs. PNs have

been augmented and implemented in a variety of ways to achieve real-time control

(Chocron and Cerny 1980, Valette et al. 1983, Murata et al. 1986, Crockett et al. 1987,

Boucher et al. 1989, Stefano and Mirabella 1991). The classification of various PN-based

control schemes is described later in this chapter. New class of PNs for discrete-event

control that closely resemble ordinary PNs is of the paramount importance for the

development of control software because ordinary PNs are relatively simple and easier to

understand.

Due to the close resemblance of ordinary PNs and ladder logic diagrams (LLDs),

ordinary PNs are useful for the design recovery of ladder logic diagrams. In other words,

LLDs can be converted into ordinary PNs. However, the design recovery of LLDs using

earlier classes of PNs (Chocron and Cerny 1980, Valette et al. 1983, Murata et al. 1986,

Crockett et al. 1987, Boucher et al. 1989, Stefano and Mirabella 1991) is relatively difficult

as they do not closely resemble LLDs. The importance of design recovery of LLDs is

emphasized in (Falcione and Krogh 1993). Motivated by these facts and based on the

research in PN control literature, a new class of PNs called Real-time PNs (RTPNs) is

proposed for sequence controller design.

6.2. Real -time Petri Nets

RTPNs can be obtained by associating timing, and I/O sensory information to the untimed

PNs. It is an eight tuple and defined as: RTPN=(P, T, I, 0, m, D, X, Y) where:

1. P is a finite set of places;

2. T is a finite set of transitions with

96

3. I: P x T —> N, is an input function that defines the set of directed arcs from P to T

where N = {0, 1, 2,);

4. 0: P x T —> N, is an output function that defines the set of directed arcs from T to

P;

5. m: P -4 N, is a marking whose ith component represents the number of tokens in

the ith place. An initial marking is denoted by m o;

6. D: T	 R+, is a firing time function where R+ is the set of non-negative real

numbers;

7. X: P	 (-, 0,1,2,K) and X(pi) X(pj), i j, is an input signal function, where

K is the maximum number of input signal channels, and "-" is the dummy attribute

indicating no assigned channel to the place.

8. Y: T —> L, is an output signal function, where L is a set of integers.

In a RTPN, the first five tuples represent the untimed PN and the last three are

extensions added to it and explained below:

1. Timing vector (D) is intended to associate time delays to transitions modeling the

activities in the system,

2. Input signal vector (X) reads the state of the input signals from digital input

interface. X associates attributes to every place. Xi=X(pi) and is an attribute

associated with place pi, representing the input channel number associated with pi.

For example, if pi models a limit switch, the RTPN reads the status of that switch

from the digital input interface through the channel number represented by Xi. The

initial marking, m o(pi) is considered as the first attribute of pi and Xi is the second

one. The contents of any input channel Xi are either 0 or 1.

3. Output signal vector (Y) is intended to send output signals through digital output

interface. Y associates attributes to every transition. Yi=Y(ti) and is the attribute

associated to transition ti which represents the number that is to be sent to the digital

output interface. For example, ti may model the activity "send signal to actuate

97

solenoid A," or "execute a procedure to control a robot." Each solenoid is activated

by writing a specific number on to the digital output interface. During execution of

the program, when a transition fires, RTPN writes the decimal number

corresponding to the output channel to digital output interface. The contents of any

output channel are either 0 or 1. The usage of this vector is later detailed in the

example system.

There are two events for a transition firing, start firing and end_firing. Between

these the firing is in progress. The removal of tokens from a transition's input place(s)

occurs at startfiring. The deposition of tokens to a transition's output places(s) occurs at

the endfiring.

While transition firing is in progress, the time to end firing, called the remaining

firing time, decreases from firing duration to zero at which its firing is completed. The

execution rules of a RTPN include enabling and firing rules:

1. A transition t E T is enabled iff V p E P and I(p,t) 0, m(p) I(p, t) and X(p) has

content 1.

2. Enabled in a marking m, tfires and results in a new marking m' following the rule:

m'(p) = m(p) + O(p,t) - I(p,t), V p E P.

In the first rule, the first condition, m(p) I(p, t), ensures that the marking of each

input place of a transition should be either equal to or greater than the input arc weight, and

the second condition, 'X(p) has content 1' ensures that for each input place of a transition,

the second attribute of that place is 1 indicating that the input signal modeled by that place is

true. The second rule, after firing of a transition, updates the marking of its output places

and is the same as in ordinary PNs. The design procedure for formulating a RTPN based

controller is shown in Fig. 6.1 and is briefed in the following five steps:

98

99

Figure 6.1 Procedure for formulating a RTPN based controller

1. Model the control sequence using PNs to obtain the PN model of the sequence

controller.

2. Assign input channels to inputs of the system such as limit switches, sensors, etc.

to formulate an input mapping table.

3. Assign output channels to outputs of the system such as solenoids, switches etc.

Also, identify timing information for activities to obtain an output mapping table.

4. Using the input mapping table assign input channel number to each place (limit one

channel per place) in PN based controller. The initial state of the system decides the

initial marking of RTPN. In the PN model some places do not represent the inputs

of the system as they represent the intermediate states of system or logical places to

model counters in the sequence. Hence, no channel is assigned to these places,

represented by "-".

5. Using the output mapping table and the action(s) that are modeled by a transition,

assign a number to each transition in a PN based controller. The operations and the

time delays given in the sequence to be controlled decide firing time function of

RTPN. In the PN model some transitions may represent concurrent actions.

Hence, care should be taken to assign the numbers for such transitions.

By following the above procedure a RTPN based controller can be formulated for a

given sequence. The instantaneous description (ID) defined earlier in the case of timed

PNs can also be extended for RTPNs. Observe that RTPNs can also be used for

simulation and performance evaluation by associating times with transitions and dummy

attributes for places modeling input signal information, and transitions modeling output

signal information.

There are several ways to use PNs to perform the sequence control. One is based

on "token game" (Zhou et al. 1992a) and the other converts the net into either

Programmable Logic Controllers (Valette et al. 1983) or control code directly (Zhou and

DiCesare 1993). The first scheme, as illustrated in Fig. 6.2, is used here.

100

Figure 6.2 Controlling a system using a RTPN based controller

6.3. Real-time PNs and Other PN Extensions for Control

There are several types of PNs for control with various implementation schemes as shown

in Table 6.1. The implementation schemes differ in terms of the extensions added to

ordinary PNs in order to model timers, counters, input/output signal information, process

status functions, method of execution of PN model, the hardware on which the PN is

executed, and the level of sophistication.

Table 6.1 Various methods of Petri net based sequence control

101

102

Even though RTPNs and earlier classes of PNs for control share similar principles,

some of the differences between them are listed below:

1. Earlier studies use a variety of places to model timers and counters (Murata et al.

1986). This might make the model difficult to understand. In RTPNs neither new

places nor transitions are introduced for modeling them. In order to find the

process I/O and process status, Murata, et al. (1986) uses new functions, in the

definition of their PNs which are called as C-nets. Also, Murata, et al. (1986)

define a new place called 'act box' to define process I/O functions. However, in

RTPNs such new functions are not included in order to keep the definition of

RTPN simple and easy to understand. In order to find the process I/O and process

status, attributes are included in RTPN. C-nets are more suitable at the higher level

of cell control. For example, C-nets have a new place called 'receive box' to detect

the request signal to start a job and to generate a numbered token corresponding to

each job variety. In other words, C-nets can distinguish the part-varieties that enter

into the system. RTPNs do not have that level of sophistication. C-nets can

resolve conflicts by using a new place called 'conflict box' and the 'process status

function'. RTPNs do not allow conflicts in the PN model. C-nets introduce a new

transition 'count gate' to count the repetitive cycles. In RTPNs, ordinary

transitions and places with multiple weights on arcs model such repetitive cycles.

C-nets use a new place called 'timer box' to model timing. In RTPNs, timing is

modeled by assigning it as a second attribute to a transition.

2. In (Stefano and Mirabella 1991) new sets of places are introduced for modeling I/O

signals which increases the number of places in PN model. In RTPNs, I/O signals

are modeled as attributes for places and transitions respectively. Places are

assigned with input signals because they model the limit switches. Transitions are

assigned with output signals because they actuate solenoids or motors. Hence, due

to the use of attributes RTPNs have fewer nodes and links compared to PNs in

103

(Murata et al. 1986, Stefano and Mirabella 1991), thereby reducing the net size and

hence the graphical complexity.

3. In earlier works (Chocron and Cerny 1980, Boucher et al. 1989, Stefano and

Mirabella 1991), the resetting of timers, counters, and emergency stop are not

explicitly modeled. Furthermore, often they use additional functions to model and

implement timers and counters (Stefano and Mirabella 1991). Using RTPNs all

these features can be clearly modeled. The automatic resetting of timers and

counters is also embedded in the execution of RTPNs.

4. In Crockett, et al. (1987), actions (output signals) are associated with places and

events (input signals) are with transitions. Macro places are introduced to model

sub-PN, and switching places are introduced to resolve conflicts. In RTPNs, sub-

PNs are modeled by ordinary places and transitions. Also, RTPNs do not allow

conflicts. Crockett, et al. (1987) have not mentioned how their PNs can be used

for both control and simulation without changing the original PN that is aimed for

control only.

5. Valette, et a/. (1983) and Chocron and Cerny (1980) used PN description

languages which are input to the translator or compiler. The translator or compiler

generates the control tables that drive the actuators. In Valette, et al. (1983), the

description language consists of instructions. These instructions specify 1)

declarations of places and transitions and arcs among them, 2) VAR allowing

variable declarations including input and output addresses corresponding to sensors

and actuators and timer values, and 3) specification of boolean conditions attached

to transitions and the operations that have to be executed. RTPNs can be

implemented by a simple implementation scheme. For example, RTPNs eliminate

the usage of description languages used in (Chocron and Cerny 1980, Valette et al.

1983) since the RTPN model can be directly used for control with the help of a

token player. By adopting this implementation scheme, the need to translate the PN

104

model to higher level net description language and the generation of control tables is

avoided. The actual implementation of the token player in RTPNs is transparent to

the users and hence their only task to control a system is simplified to model the

control logic. Zhou, et al. (1992a) also used simple PN descriptive language as

input to the PN controller. Descriptive languages are efficient in terms of the

memory requirements. For a given PN model, RTPNs need more memory space

than other classes of PN that use descriptive languages because in case of RTPNs,

the PN model is stored in the form of input and output matrix and thereby

consumes more memory space.

6. Even though Boucher, et al. (1989) reported PN based control by associating

output signals to transitions, no explicit comments are made how the input signal

information is mapped into their PN model. They also used ordinary PNs without

the addition of new places and transitions. The details on the method of PN

execution are not given in Boucher, et al. (1989).

7. Zhou, et al. (1992a) used ordinary PNs for control. They also assign both input

and output signal information to transitions. Even though, they use attributes for

each place and transition, their attributes do not explicitly mention about how the

input and output signal information is mapped on to places and transitions. Also,

explicit modeling of timing information is not given in their PN implementation. In

RTPNs such mapping is made clear because of the attributes to places and

transitions, and time can be modeled as the second attribute of a transition. Hence,

like any timed PNs, the deterministic delays given in a control sequence can be

clearly modeled in RTPNs.

8. Sheng and Black (1989) also used ordinary PNs and expert systems to control a

manufacturing cell. They modeled the cell using PNs and generated the cell control

rules from the firing sequence of the PN using the concept of forward chaining

approach in expert systems. However, the details of the mapping of the

105

input/output signal information and modeling of timers and counters are not

reported. The differences between RTPNs and others are summarized below.

RTPNs are suitable at the lowest level of system control since they model the system more

realistically by naturally mapping the limit switches, start, and stop buttons as places with

attributes and actuators as transitions with attributes. RTPNs are easy to understand and

require a simple procedure to implement. Since RTPNs and ordinary PNs have the same

graphical representation, RTPNs are useful for the design recovery of ladder logic

diagrams. This is because ladder logic diagrams can be converted into ordinary PNs which

in turn can be converted into RTPNs by assigning proper attributes to places and

transitions. However, using earlier classes of PNs the design recovery is difficult. This is

because they (Chocron and Cerny 1980, Valette et al. 1983, Murata et al. 1986, Crockett et

al. 1987, Stefano and Mirabella 1991) have special symbols for places and transitions to

represent various functions in discrete-event control. The disadvantages of RTPNs

include: 1) restriction of not allowing conflicts in the PN model, 2) lack of facility to

distinguish product varieties, and 3) requirement of more memory space to store the

structure of PN model because of the usage of input and output matrix.

6.4. Example: An Automatic Assembly System

In order to illustrate the control by RTPNs a simple assembly system shown in Fig. 6.3 is

considered. It consists of a pallet storage station, assembly station, an inspection station,

an AGV, and a robot. Two workpieces are assembled by the robot at the assembly station.

After the assembly is completed, the robot unloads the finished product on a work table.

The AGV transports empty pallets from pallet storage station to the assembly station. A

Robot is also used to unload the finished product from work table and place it on the pallet

which is on the AGV. Finally, the AGV transports the finished product loaded on pallet to

inspection station for inspection. The availability of Workpieces 1 and 2 is sensed by two

sensors A and B (not shown in figure), respectively.

Figure 6.3 Schematic of an automatic assembly system

Limit switches D, E, and F sensing the presence of AGV are at pallet storage

station, assembly station, and inspection station respectively. Sensor C recognizes the

loading of finished product on work table by robot. Basically there are three operations to

be executed in this system as follows:

1. Robot's assembly and transfer of the finished product on to work table,

2. AGV's travel from pallet storage station to assembly station, and

3. AGV's travel from assembly station to inspection station.

Assume the time duration for operation 'i' is 'Ti' time units and is executed when

output relay 'i' is high. There is a digital I/O interface to control this system with details as

shown in Tables 6.2 and 6.3.

Table 6.2 The input mapping table where Xi is input channel number.

Limit
switch/Sensor

AB C D E F

Xi 0 1 2 3 4 5

106

107

Table 6.3 The output mapping table where Yi is number sent to the digital output
interface.

Assume this system is controlled by PN with places A, B, C, D, E, and F modeling

the corresponding sensors, and transition ti modeling operation i. The attributes of places

and transitions for this RTPN are listed in Table 6.4. The first and second attributes of a

place are initial marking and assigned input channel number, respectively. For a transition

the first attribute is time duration and the second attribute is the number to be sent to the I/O

interface to activate the corresponding output relay.

Table 6.4 Attributes of places and transitions in the RTPN

Place 1st
attri
bute

2nd
attn
bute

Tran-
sition

Out-
put

relay

Output
channel to

be activated
(x)

1st
attri
bute

2nd
attribute

MO

A 1 0 ti 1 0 τ1 1
B 1 1 t2 2 1 T2 2

C 0' 2 t3 3 2 13 4

D 1 3
E 0 4
F 0 5

Following the procedure illustrated in Fig. 6.1, the RTPN model obtained is shown

in Fig. 6.4. Observe that time durations for these transitions need not be known to execute

RTPN (or to control the system). However, they are needed when the same RTPN model

is used for performance evaluation.

Figure 6.4 RTPN model for the system

6.5. A case study: An Electro-Pneumatic System

This section demonstrates the use of RTPNs for the control of concurrent tasks, through a

practical electro-pneumatic system located in The Robotics Center, Florida Atlantic

University. The system considered in this chapter is shown in Fig. 6.5. It consists of four

pneumatic pistons (A, B, C, and D) which are operated by spring-loaded five ports and

two-way solenoid valves. Each piston has two normally open limit switches. For

example, when the end of piston A contacts limit switch a0 (al), a0 (al) is closed

indicating that the piston A is at the end of its return stroke (forward stoke). The time that a

piston takes for completion of either forward or backward stroke is one second. In

manufacturing, typical functions of these pistons can be to load/unload the part from the

machine table, to extend/retract a cutting tool spindle, etc.

Three push buttons are provided to start the system (switch SW 1), to stop the

system normally (switch SW2) and to stop the system immediately in emergency (switch

SW3, ES). The system has 11 inputs corresponding to 8 limit switches (two for each

piston) and 3 push buttons. The system has 6 outputs corresponding to 4 solenoid valves

and two lights that indicate the status of the system. In this work, PNs are implemented

through IBM PC and digital I/O interface as shown in Fig. 6.5.

108

Figure 6.5 Schematic of an electro-pneumatic system considered

The procedure given in Fig. 6.1 is followed to design the control logic by PNs. Tables 6.5

and 6.6 show the I/O mappings of the system to PN respectively. For more hardware

details on this system and its implementation with PNs refer to (Venkatesh et al. 1993).

Table 6.5 The input mapping table where Xi is input channel number

Switch al b1 c1 a0 b0 c0 SW1 ES
Xi 0 1

-
4

-
5 6 8 10

109

Table 6.6 The output mapping table

' Solenoid
or Light

Output Channel
number

Yi
NA 	 ND

A 0 1 -1
B 1 2 -2
C 2 4 -4
D 3 8 -8
Light 1 4 32 ' -32
Light 2 5 64 -64

Note: 1. Yi is number sent to the digital output interface.
2. NA (ND) means the number that is to be written on digital output interface to

activate (deactivate) the solenoid/light

Sequence controller design

Consider that the system has to be controlled to execute the following sequence:

'START, A+, B+, (C+, A-), (B-, C-)', where A+ represents that the piston has to do

forward stroke and A- return one. (C+, A-) represents two concurrent actions taking place

simultaneously: Piston C to do forward stoke and Piston A to do return one. Fig. 6.6

shows the RTPN corresponding to this sequence. Note that in the RTPN, a place has

attributes [111, n2] where n1 is the first attribute representing initial number of tokens and

n2 is the second one mapping input channel number. Similarly, a transition has attributes

(n l', n2') where n1' is the firing duration and, n2' is the number to be written on the

digital output interface. When concurrent actions such as IC+, A-) are to be modeled, care

should be taken to associate the second attribute to transitions as shown in Table 6.7.

Table 6.7 Attributes of transitions modeling actions

Action Output
channel to be
activated

Output
channel to be
deactivated

Transition
modeling
action

Second
attribute of
transition

do A+ 0 - t2 20 = 1
do B+ 1 - t4 2 1 =2
do (C+, A-) 2 0 t6 22 - 20 = 3
do (B-, C-) - 1, 2 t8 -.2 1 - 22 = -6

110

Figure 6.6 RTPN for sequence 1: ST, A+,B+, (C+,A- } , [B-,C- }

6.6. Software Description to Execute Real-time Petri Nets

The software package developed to execute ATPNs is written in C and presented in

Appendix B. The sample input and output for an RTPN is also presented in this Appendix.

The current software package runs on IBM compatible PCs by interacting with the digital

input/output interface and the system under control. The biggest PN model that can be

controlled using this package contains one hundred places and one hundred transitions.

However, larger nets can be controlled when this software package is installed in a

workstation with more memory. The software package has five major modules with their

functions described below.

111

112
Read Petri net

This module reads an input file that specifies the structure of the PNM; transition timing

durations and output signal vector; initial marking and the input signal vector. The

structure of the PNM means the connectivity between places and transitions including the

weights on the connecting arcs. It is given as an input and output matix as shown in the

sample input presented in Appendix B.

Enabled transitions

This module generates an F-function as on output function. It scans the whole PNM at

each instant of time and finds the transitions that are ready to fire. Thus, the F-function

indicates the transitions that are enabled to fire with respect to real-time. The F-function is

the input for modules "Conflict", "New_marking", and "Main".

Conflict

This module determines the transitions that are in conflict and stops the program execution

until the conflict is resolved. Once the conflict is resolved, the program execution is

resumed. A conflict in PNM results when an element is shared by two other elements of

the system (e.g. a single robot serving two machines that demand service at the same time).

In such cases, the module detects the conflicts and interactively resolves it based on the

criteria entered by the user.

Minimum time

This module scans the whole PNM and detects the transition that has minimum time to fire.

As there can be more than one transition with minimum time, the outputs from this module

are both the number of transitions with minimum time and their identity. This module is

important for simulation and performance evaluation but not for real-time control.

New marking

This module contains two submodules: 1) "Read_marking" checks for the second attributes

of all places that are inputs for enabled transitions. 2) "Update_marking" fires the

transitions and changes the current marking. Read_marking uses F-function as input. If a

transition ti is enabled it checks for the second attribute of all input places of 4. If the

second attribute of an input place is high it sets the variable "flag" corresponding to that

place as TRUE. After flags corresponding to all the input places of ti are set to TRUE, it

removes the tokens from these places and sends a signal to "update_marking" to fire

After receiving the signal corresponding to the transition to be fired from "read_marking",

"update_marking" sends the second attribute of the transition to be fired to the digital output

interface and deposits tokens in all the output places of the transition fired.

Main

This module coordinates the functioning of above modules and generates a status report of

the system elements. The report is stored in an output file which is updated whenever a

transition is fired in the PNM. Whenever an event occurs in the system, the output file is

appended by the time at which the event occurred, marking of the PNM, F-function, Q-

function, and A-function. Recall that marking, F, Q, and A functions are described earlier

in Chapter 3 while defining the 'instantaneous description' of timed PN.

By including dummy value for the second attribute of each place and associating

timing values to each transition, this package can also be used for performance evaluation.

The functional objective of this package and the package included in the Appendix A is the

same except that latter can do only simulation but not real-time control.

113

CHAPTER 7

COMPARISON OF REAL-TIME PETRI NETS AND LADDER LOGIC
DIAGRAMS

7.1 Introduction

According to a given logic specification, a sequence controller in a manufacturing system

synchronizes and coordinates the operations of these units. The sequence controller in this

chapter means a class of discrete event controllers without choices in executing the

operations/activities. Design methods for sequence controllers play a prominent role in

advancing industrial automation. A comparison of Real-time Petri nets (RTPNs) and

ladder logic diagrams (LLDs) is presented in this chapter.

Traditionally, LLDs are used to capture the sequence of operations executed by the

system's control software. They specify the I/O procedures of the Programmable Logic

Controller (PLC) that drive and perform the repetitive operations of the system. These

diagrams grow so complex that locating the cause when a problem is detected becomes

extremely difficult (Chaar et al. 1991). Furthermore, their usage is limited to control the

system; they can not analyze and evaluate the qualitative and performance characteristics.

They often need significant changes as the specification changes resulting in difficult

maintenance problems.

The increasing complexity and varying needs of modem discrete manufacturing

systems have challenged the use of LLDs for programmable logic controllers. The

methodologies based on research results in computer science have recently received

growing attention by academic researchers and industrial engineers in order to design

flexible, reusable, and maintainable control software. Particularly, Petri nets (PNs) are

emerging as a very important tool to provide an integrated solution for modeling, analysis,

simulation, and control of industrial automated systems. However, in order to establish

PNs as alternative to LLDs there is a need for benchmark studies to formally compare

them.
114

115
It is observed that none of the earlier studies on PN based control has compared

LLDs and PNs for the design of sequence controllers in detail and formally. Boucher, et

al. (1989) used LLDs and PNs to control a same manufacturing system and reported the

graphical representation by PNs makes the controller more tractable than that of LLDs.

However, they have not formally quantified the comparison between PN and LLDs to

design sequence controllers. Some of the problems associated to compare PNs and LLDs

are: (1) unlike in case of LLDs, there exist several classes of PNs with various

implementation schemes for discrete control as shown in Table 6.1, and (2) identification

of the criteria with respect to which the comparison should be performed.

The contribution of this chapter is two fold. First, certain criteria are identified to

compare LLDs and PNs in designing sequence controllers subject to the changing control

requirements. The comparison is performed through a practical industrial automated

system. Secondly, some analytical formulas and a methodology are developed to estimate

the number of basic elements used in the PN and LLD designs prior to their constructions.

The results will be useful for researchers and engineers to design control systems for

complex industrial automated systems.

The goal of this chapter is to compare LLDs and PNs when they are used to design

discrete event controllers for manufacturing systems. The objectives of this chapter are:

1. To identify the criteria to compare LLDs and RTPNs for design of sequence

control,

2. To compare LLDs and RTPNs in designing sequence controllers that respond to

specification changes,

3. To formulate mathematical formulas to calculate the number of basic elements to

model certain building blocks of logic models using PNs and LLDs, and

4. To present a methodology that synthesizes these analytical formulas for estimating

the total number of basic elements required to design sequence controllers using

PNs and LLDs.

116
The comparison criteria between LLDs and RTPNs are identified in Section 3. The

comparison between LLDs and RTPNs is performed through a practical system as a case

study in Section 4. Section 5 presents analytical formulas to estimate the basic elements

required to implement certain building blocks of control logic. A methodology that uses

these formulas to estimate the number of basic elements required to implement a given

control logic specification using PNs and LLDs is presented in Section 6. in Section 7,

this methodology is illustrated through two examples and the case study considered in

Section 4. Finally summary of this chapter is presented in Section 8.

7.2. Comparison Criteria for Control Logic Design by PNs and LLDs

The application of LLDs for sequence control is widely known as they are used by several

industries (Pessen 1989, Michel 1990). Graphically, RTPNs are same as PNs except that

in the former, places are given attributes to model input sensory information and transitions

are associated with attributes to model output and timing information. Hence, the

comparison presented in this chapter corresponds to RTPNs which are referred to PNs

hereon for short. In order to start an operation in a system some conditions have to be

fulfilled which are called as pre-conditions. Upon its completion, an operation results in

some conditions which are called as post-conditions. A transition in a PN models an

operation. The input and output places of a transition model the pre-. and post- conditions

respectively.

In LLDs as shown in the previous section, an operation is modeled by activating an

output coil corresponding to a relay or a solenoid. In addition to an output coil a relay

consists of number of contacts, some normally open (N.0) and some normally closed

(N.C). In order to energize the output coil of a relay, the corresponding contacts of that

relay should be switched, i.e., an N.O. contact closes, while an N.C. one opens. The

LLD also uses various input and output elements. A typical output element is a solenoid

which is usually used to actuate pneumatic or hydraulic solenoid valves. Push-button and

limit switches constitute input elements.

117

The contacts of relay along with the input elements constitute pre-conditions. The

solenoids and output coils are referred to as post-conditions. The logic and other basic

building blocks used in sequence control are modeled by PNs and LLDs as shown in Table

7.1. The explanations for these symbols is given below.

Table 7.1 Representations by Petri nets and ladder logic diagrams

118

The first four rows show the basic PN elements to model conditions, status,

activity, information and material flow, and resources. Note that LLDs do not have the

corresponding explicit representations. Logical AND and logical OR can be easily modeled

by both PN and LLD with similar complexity. Other important concepts, e.g.,

concurrency, time delay, and synchronization are also illustrated in Table 7.1. The

systematic methods to formulate PN models can be seen in (Zhou et al. 1992b, Zhou and

DiCesare 1993) and the methods of developing LLDs can be seen in (Pessen 1989, Michel

1990). Two of the important factors for comparison of PN and LLD for discrete event

control are identified as design complexity and response time.

Design Complexity

Design complexity is defined as the complexity associated in designing the control logic for

a given specification. Since it is influenced by many factors, e.g., the experience of

designers, size of control program, and number of dynamic steps necessary for coding or

changing control program, it is very hard to formally quantify. However, it can be

characterized by two factors namely graphical complexity and adaptability for change in

specification.

Graphical complexity: It is mainly determined by the number of nodes and links for a

given graphical control logic design. Graphical complexity influences the understandability

of control logic by people who do not have knowledge of either PN or LLD. Hence, it is

an important factor in designing the logic at the initial stages and subsequently debugging

the errors during its implementation. The graphical complexity in terms of the net size is a

major issue in manufacturing systems (Zhou, et al. 1992a) and it was reported that the

simpler the graphical representation of control logic, the easier to track the controller

(Boucher, et al. 1989). Graphical complexity may also influence response time as

described later. For example, in the case of LLD, the response time depends on the size of

the LLD because as the number of rungs increases scan time also increases. Hence, a

shorter LLD results in a faster controller (Pessen 1989).

119
Adaptability to change in specifications: This factor is gaining much importance in the

context of agile manufacturing in which control sequences need to be changed often to meet

the dynamically changing requirements of the market. The control software should be

easily adaptable to changes in specifications in order to improve the software productivity

and thus keep minimal development time. One of two designs is said to be more adaptable

if it needs fewer changes compared to another in order to fulfill a specification change.

Response Time

Response time is termed as scan time in LLD literature and execution time in PN.

Response time can be defined as the minimum time that a control model takes to respond to

an external event. Its importance to control real-time systems is clear since it decides how

fast the control system responds to an event in the system/process under control.

An important factor that influences graphical complexity and adaptability is the

physical appearance (size) of the model, whereas the response time is influenced by not

only physical appearance but also the method of implementation. Methods of

implementation constitute the software and hardware used to control the system using either

PNs or LLDs. Graphical complexity and adaptability cannot be quantified whereas

response time can be measured accurately, given a logic design and implementation.

However, since there are several ways to implement PNs as shown in Table 6.1 and LLDs

(Michel 1990, Pessen 1989) both in terms of hardware and software, it is very difficult to

make a fair comparison of LLDs and PNs solely on the basis of response time criterion.

Hence, we propose some common measures that give an idea about the graphical

complexity, adaptability, and response time. One such measure is the number of nodes and

links used in a control logic model. For PNs nodes are places and transitions and links are

arcs; whereas in LLDs, nodes are normally opened/closed switches, timers, counters,

relays, and push buttons, and links are connections. If more nodes and links are used in a

design, it is graphically more complex and thus may need more response time. In the

similar manner, a control logic is more adaptable if it needs fewer changes in the number of

120
nodes and links compared to another logic to meet a change in specification. Hence, this

study uses the number of nodes and links in an LLD and a comparable PN as a measure to

compare their design complexity and response time. For the sake of convenience, nodes

and links are called as basic elements.

7.3. Comparison Through An Electro-Pneumatic System

One effective way to perform the comparison between LLDs and PNs is through an actual

industrial automated system. The system shown in Fig. 6.5 is used for this comparative

study. The same input/output mapping tables used in Chapter 6 are used in this chapter

also.

7.3.1. Sequence Controller Design

Sequence 1: START, A+, B+, {C+, A-}, {B-, C-)

Consider that the system has to be controlled to execute the above sequence where A+

represents that the piston has to do forward stroke and A- return one. {C+, A-} represents

two concurrent actions taking place simultaneously: Piston C a forward stoke and Piston A

a return one. Fig. 7.1 (a) shows the LLD and Fig. 7.1 (b) shows the PN corresponding to

this sequence. Note that in the PN, a place has attributes [n1, n21 where n1 is the first

attribute representing initial number of tokens and n2 is the second one mapping input

channel number. Similarly, a transition has attributes (n1', n2') where ni' is the firing

duration and, n2 is the number to be written on the digital output interface.

As discussed earlier, basic elements in a LLD or PN are nodes and links. In LLD,

nodes are push buttons, normally opened switches, normally closed switches, output relay

coils, timers, and counters and links are connections which connect these nodes. In PN,

nodes are places and transitions and links are arcs connecting them. The LLD shown in

Fig. 7.1 (a) has 58 basic elements (24 nodes and 34 links), whereas the PN shown in Fig.

7.1 (b) has 50 basic elements (21 nodes and 29 links).

Figure 7.1 (a) LLD and (b) PN for Sequence 1: ST, A+,B+,{C+,A-}, {B-,C-)

121

122
Even though PN uses fewer basic elements, it looks more complex due to the fact

that all loops have to be closed to represent repetitive processes. This complicates the

graphical appearance of PN compared to LLD. However, when the specification is

changed the complexity of LLD grows faster than PN and this is illustrated below.

7.3.2. Control for other sequences

In order to compare the LLDs and PNs various sequences with increasing complexity are

considered. These sequences will involve emergency stop, counters for counting the

number of repetitive operations, and timers for providing delays between certain

operations. In order to highlight the changes in a model (PN or LLD) from one sequence

to next sequence, given a model for a sequence, the additional basic elements needed to

model the next sequence are shown by bold lines.

Sequence 2: START, 5 [A+, B+, (C+, A-},{B+, C-}] (with emergency stop and

counter)

Now, consider that the specification is changed such that the new control sequence is

indicated as above. In this sequence, there is a need to provide emergency stop and a

counter.

Both the LLD and the PN are implemented such that when emergency stop switch,

ES is pressed, the whole system including the active elements are immediately stopped. In

other words, when switch ES is pressed all the solenoids are immediately deactivated.

However, there exists several ways of modeling an emergency stop. Fig. 7.2 (a) shows

the LLD and Fig. 7.2 (b) the PN corresponding to this sequence. In order to incorporate

emergency stop, PN uses a place p13 with an inhibitory arc as an input place for t2-t9

whereas LLD uses an output coil CR-5. When ES is pressed, CR-5 would become active

and deactivates the coils CR-1, CR-2, and CR-3 which drive pistons A, B, and C

respectively.

123

Figure 7.2 (a) LLD and (b) PN for Sequence 2

124
In the PN, when the ES is pressed, the output transition corresponding to the place

modeling ES writes an integer on the digital output interface which deactivates all the

solenoids. The LLD shown in Fig. 7.2 (a) has 87 basic elements (37 nodes and 50 links),

whereas the PN shown in Fig. 7.2 (b) has 64 basic elements (24 nodes and 40 links).

Notice that there is no significant change in the physical appearance of LLD or PN

compared to Sequence 1.

Observe that LLD needs more additional basic elements compared to the PN. This

is because the PN needs only one place p14 with an arc as an input to t2 to implement the

counter. The counter resetting is modeled by t10. In contrast to this, LLD additionally

needs two normally opened switches b0, c0 as inputs for counter, four normally closed

switches (SW1 as a reset signal for counter, and switch R6 as an input for CR-1, CR-2,

and CR-3), a counter, and 16 more links to implement this sequence.

Sequence 3: START, 5 [A+, B+, (C+, A-), 5 sec, {B+, C-)] (with emergency stop,

counter, and timer)

The sequence is changed such that there is a need to incorporate a timer in the control logic

to provide 5 seconds delay in between {C+, A-} and {B+, C-} . Fig. 7.3 (a) shows the

LLD and Fig. 7.3 (b) the PN accordingly. The LLD shown in Fig. 3 (a) has 94 basic

elements (40 nodes and 54 links), whereas the PN shown in Fig. 7.3 (b) is same as the one

shown in Fig. 7.2 (b) with 64 basic elements. It is observed that LLD needs more

additional basic elements compared to the PN. This is because the same PN used in the

earlier sequence is used without changing the physical appearance. In the PN shown in

Fig. 7.2 (b), only the first attribute of t8 is changed to obtain the PN shown in Fig. 7.3 (b)

to incorporate time delay of 5 seconds in the sequence. On the other hand, LLD needs

additionally two normally closed switches, a timer, and four links to implement this

sequence.

125

Figure 7.3 (a) LLD and (b) PN for Sequence 3

126

Sequence 4: START, 3[A+, B+, {C+, A-), 5 sec, [13+, C-)], 10 sec, 2[A+, B+, [C+,

A-), 5 sec, {B+, C- }] (with emergency stop, counters, and timers)

This new sequence represents a complex one in which Sequence 3 is divided into two

segments (one with three cycles and another with two cycles) with 10 seconds time delay

between them. The LLD shown in Fig. 7.4 has 130 basic elements (54 nodes and 76

links), whereas the PN in Fig. 7.5 has 69 basic elements (26 nodes and 43 links). In this

case also note that LLD needs more additional basic elements compared to PN. This is

because the PN needs only one additional transition t11 with an input arc from a new place

p15 and an output arc to pm to reset the counter.

7.3.4.	 Discussions

As mentioned in Section 2 the number of basic elements is a common measure that gives an

idea about graphical complexity, adaptability, and response time. It is observed that as the

specification changes, PN requires fewer changes compared to LLD.

Table 7.2 summarizes how the number of basic elements increases in LLD and PN

as the complexity of sequence control specifications increases.

Table 7.2 Comparison of the basic elements in LLD and PNs

Sequence
#

Basic elements
in LLD

Basic elements
in PN

Nodes Links Total Nodes Links Total
1 '	 24 34 5 8 21 29 5 0
2 37 50 87	 ' 24 40 64
3 40 54 '	 9 4 24 40 6 4
4 54 76 130 26 43 6 9

It can be inferred that the PN shown in Fig. 7.1 (b) used to execute the first

sequence is slightly modified to get the PN shown in Fig. 7.5 corresponding to the last

sequence. However, the LLD shown in Fig. 7.1 (a) is significantly modified to get the

LLD shown in Fig. 7.4.

127

Figure 7.4 LLD for Sequence 4

Figure 7.5 PN for Sequence 4

128

129
The modifications in terms of basic elements can be quantified using Table 7.2.

Also, observe that the physical appearance of PN is preserved (with slight modifications)

starting from the first sequence to the last one. This is not true in the case of LLDs as in the

previous figures. Furthermore, this case study reveals that PNs and LLDs do not differ

much when the control sequence is relatively simpler as seen in the first sequence.

In fact, PN model may appear more complex than LLD at the first sight as shown

for the first sequence. However, when this sequence is gradually modified to result in a

complex one, PNs are more easily modifiable and hence maintainable than LLDs.

Ease in modifiability and maintainability yields several advantages such as

improvement in readability, understandability, and reliability as concluded in (Murata, et al.

1986). In LLDs, nodes appear multiple times which may lead to difficulty in

understanding the logic and cause errors in developing the logic. LLDs needs more basic

elements to model timers and counters compared to PNs. In addition to these findings, the

following points are experienced during the design and implementation of sequence

controllers using LLDs and PNs:

1. Using PNs the control logic can be qualitatively analyzed to check properties such

as absence of deadlocks and presence of reinitilizability in the system. Using LLDs

qualitative analysis is not possible until it is simulated or implemented.

2. During implementation of control Sequences 3 and 4 it is found that debugging of

the control logic with LLDs is difficult compared to PN. This is because PNs help

to dynamically track the system with the help of the states of places and transitions

(Venkatesh and Ilyas 1995).

3. Using PNs, the initial state of the system can be directly represented by its initial

marking.

4. The reason for the compleity of LLD and the difficulty in debugging is that, in an

LLD, a node appears more than once in the diagram. Due to this, tracking of

control from one node to other becomes very difficult.

130
7.4. Analytical Formulas to Evaluate the Complexity of PNs and LLDs

In general, the fewer the basic elements in a controller, the better the model used to

implement the controller (Boucher et al. 1989, Pessen 1989a,b). The number of basic

elements decides the length of the control model. A shorter model uses less number of

basic elements and is usually easier to understand, check, diagnose, and maintain. It also

takes less time to enter the controller/computer (Pessen 1989, Venkatesh et al. 1994).

Moreover, when low cost controllers with short memory are used it is possible that they

may run out of memory if the control model is too large (Pessen 1989). Counting of basic

elements in a PN or LLD becomes cumbersome when their control specification becomes

complex. Also, before physically modeling the given control logic with either LLD or PN,

there is a need for a method that can help control engineers select between PN and LLD by

estimating the basic elements used in these two models.

Motivated by these reasons, this section presents some analytical formulas to

estimate the basic elements used in a PN or LLD.Most of the control specifications can be

modeled by using the logic constructs such as logical AND (NAND), logical OR (NOR),

sequential model, and timed sequential model. It is obvious that AND/OR basically

requires the same number of basic elements as NAND/NOR. Hence, the analytical

formulas presented for AND/OR can also be applied to NAND/NOR cases. The

formulation of these analytical formulas consists of their derivation and verification. This

is done by physically modeling each logic construct using PN and LLD as described

below.

For the sake of convenience, the number of basic elements used in PN and LLD are

represented by a and respectively. a is the summation of an and al, where an and

al represent the number of nodes and links used in PN respectively. Similarly, /3 is the

summation of fin and pi. . We also define a function 4 which is defined as 4 =a - 13

which helps to decide whether PN is better or LLD is better in terms of design complexity.

131

For example, if A is negative, PN is preferred as it uses a smaller number of basic

elements. On the other hand LLD is preferred when A is positive. In all the formulas

presented in this chapter, m stands for number of pre-conditions, and n for number of post-

conditions.

7.4.1. Logical AND, Logical OR, and Sequential modeling

Logical AND

Figure 7.6 shows the PNs and LLDs for deriving the formulas to obtain a and J3 for

logical AND. They are given as follows:

For PN:

For LID:

Figure 7.6 PNs and LLDs modeling logical AND

Here, A = 1 - n. This indicates when n =1, both PN and LLD yield the same

number of basic elements and if n > 1, PN is preferred.

Logical OR

Figure 7.7 shows the PNs and LLDs for deriving the formulas to obtain a and 13 for

logical OR.

132

Figure 7.7 PNs and LLDs modeling logical OR

They are given as follows:

For PN:

For LLD:

Sequential modeling

A condition is called a sequential condition when it acts as a pre-condition for its output

operation (say operation i+1 and post conditions for its input operation (say operation i).

The assumption here is that all operations except the first and last operations in the

sequence have only one pre-condition and post-condition.

133

For sequences that violate this assumption, number of basic elements can be found

by decomposing the sequence with logical AND where some portions of the sequences

have n =1 and others have n > 1. Figure 7.8 shows the PNs and LLDs to derive the

formulas to obtain α and β for sequential models.

Figure 7.8 PNs and LLDs for sequential modeling

For PN:

Here, n' represents the number of sequential conditions.

For LLD:

7.4.2. Timed logical AND, Timed logical OR, and Timed sequential model
Timed logical AND

In this model delays are associated with operations of the logical AND considered before.

Figure 7.9 shows the PNs and LLDs to derive the analytical formulas to obtain a and /3

for timed logical AND. They are given as follows:

134

Figure 7.9 PNs and LLDs for timed logical AND

For PN:

For LLD:

This indicates that PN is always preferred to model timed logical AND.

Timed Logical OR

In this model it is assumed that for each timer there is only one reset signal. Figure 7.10

shows the PNs and LLDs to derive the analytical formulas to obtain a and /3 for timed

logical OR.

135

Figure 7.10 PNs and LLDs for timed logical OR

a and /3 are given as follows:

For PN:

In this chapter d represents the number of delays in the sequence.

For LLD:

This indicates that for d and n values which satisfy 5d + 2n > dn, PN is preferred.

For d and n values that do not satisfy the above condition, LLD is preferred. For example,

for the pairs, d = 3, n = 4; and d = 4, n = 3, PN is preferred.

On the other hand for d = 7, n = 8, LLD is preferred. Similar analysis can be

performed for any given d and n values using A function.

Timed Sequential Modeling

In this model it is assumed that for each timer there is only one reset signal. Figure 7.11

shows the PNs and LLDs to derive the analytical formulas to obtain a and 13 for this case.

136

Figure 7.11 PNs and LLDs for timed sequential modeling

137

a and l3 are given as follows:

For PN:

For LLD:

A indicates that PN is always better than LLD.

7.4.3. Other Formulas for Estimating Basic Elements in PN and LLD

The models presented till now are common for both PNs and LLDs. However, there are

certain models that are specific to PN or LLD. For example, the implementation of timer

and counter is similar in LLDs. In PNs, timer is implemented by associating delays to

certain transitions and hence the implementation of timer and counter are not the same.

Hence, there is a need for separate formulas to estimate the number of basic elements to

model a counter in case of a PN.

Also, to control certain systems, relays have to be used in LLDs. This is explained

here. A discrete event system can be controlled by controlling two types of elements: those

that require sustained actuating signals, and those that need only a momentary or pulsed

actuating signal (Pessen 1989b). The first type of elements can be exemplified by an on-

off solenoid valve with return spring and shown in Fig. 7.12 (a). As long as the solenoid

is actuated, the valve remains open (or closed, as the case may be). As soon as the

solenoid is released, the return spring returns the valve to its original position. Hence, the

solenoid needs a sustained actuating signal to keep the valve open. This requires the use of

relays in LLDs. The second type of elements can be exemplified by a solenoid valve with

two opposing solenoids but without a return spring and is shown in Fig. 7.12 (b).

138

Figure 7.12 Typical cylinder-actuating circuit (Pessen 1989b)
(a). requiring sustained solenoid signals
(b). not requiring sustained solenoid signals

Here, a momentary solenoid signal is sufficient to shift the valve into its other

position, and the valve will remain there until the opposing solenoid is actuated. It is

strictly not allowed to actuate both solenoids at the same time. Actuating both solenoids

simultaneously results in an undefined state and termed as 'interlock' as the two solenoids

fight each other causing heat up and burn out. Using a single PN model, both types of

systems in Fig. 7.12 can be controlled. This can be accomplished by changing the

corresponding attributes for transitions as reported in PN based control using Real-time

PNs. However, when using ladder logic diagrams, two separate design procedures have

to be followed to design two separate diagrams as shown in (Pessen 1989b). The formulas

presented earlier are relatively simple compared to the ones described below.

Emergency stop modeling

Emergency stop can be implemented in two different ways. In the first, when the push

button corresponding to emergency stop is pushed, all the operations that are in progress

and those that are ready to start are immediately stopped. In other words, the pistons

executing the operations are stopped at the position where they are. In the second

implementation, when the push button is pushed, the system is brought to initial condition.

That is, all the pistons that are executing operations are retracted. The second method of

139
implementing emergency stop is very common and hence it is implemented and studied in

this work. Denote the number of basic elements needed to model emergency stop (ES)

modeling by PN and LLD as αES and βES respectively. In a PN, emergency stop is

modeled by a place and inhibitory arcs from this place to transitions that model execution of

actions. Fig. 13 shows the implementation of ES using PN and LLD.

Figure 7.13 PNs and LLDs modeling emergency stop

Given any sequence, the additional basic elements needed are shown with bold

lines. αES is given as αES = 1 + k F where k = 1 if each action is modeled by one

transition, and k = 2 if each action is modeled by two transitions (one to represent start and

second to represent end) and F stands for number of actions in a given specification. β ES

is given as βES = 5 + 2k'' where k' = 1 if each action is executed by sustained actuating

signal, and k' = 2 if each action is executed by a pulsed actuating signal and F' stands for

number of pistons in a given specification.

Basic elements needed to model a counter

Irrespective of the given sequence, the implementation of a counter is unique as shown

in Fig. 7.14.

140

Figure 7.14 PNs and LLDs modeling counter

In Fig. 7.14, given any sequence, the additional basic elements to implement a

counter are shown with bold lines. As it can be observed from this PN model three new

arcs and two new nodes are needed to incorporate a counter in a sequence. Hence, the

number of basic elements needed to model a counter using PNs is five. In LLDs, even

though the implementation of timer and counter are similar, the output of counter may have

to be used as a precondition to execute certain actions. This is usually done by adding the

output of counter as a precondition for certain actions with normally closed contact. This

results to include an extra node and a link for each action. Hence, The number of basic

elements to implement counter in LLD is given as f3 = (2m + 3n + 2r + 2k'Γ + 3) where r

= number of reset signals, k' = 1, if each action is executed by sustained actuating signal

141

and k' = 2, if each action is executed by a pulsed actuating signal and r stands for number

of pistons in a given specification.

Basic elements needed to model a relay

When LLDs are used to control a system with sustained actuating signals, relays are needed

to implement the sustained actuating signals. Fig. 7.15 shows the implementation of a

relay. It can be observed that the number of basic elements needed to model a relay as 2m

+ 2r + 6 where r = number of reset signals.

Figure 7.15 LLD modeling a relay

7.5. Methodology to use the Analytical Formulas

Figure 7.16 illustrates the method to obtain the total number of basic elements to model a

given control logic using the analytical formulas.

Most of the control logics can be represented using the basic building blocks of

logic constructs described in the earlier section. Hence, in order to find the basic elements

to model a given control logic using the models developed, first it has to be decomposed

into the logic constructs or segments. Then for each segment, the corresponding analytical

formula is applied to find the number of basic elements.

Figure 7.16 Method to estimate basic elements

The basic elements corresponding to all such segments are then added to obtain the total

number of basic elements (8) needed to model the given control logic using a LLD.

where f3 = Total number of basic elements to model the control logic using PN and pi =

Number of basic elements in segment i, and k = Total number of segments.

142

143

The final step (as shown in Fig. 7.16) is slightly different in the case of PN due to

its physical model. This is because when modeling a control logic, intersegment conditions

and connections exist in a PN model. They are explained below. For some cases in the

given control logic, the output condition for segment i may be one of the input conditions

for segment j. These conditions are called as intersegment conditions. In LLD, such

conditions are separately modeled in both segments i and j. Even though such conditions

appear in more than one segment, the place modeling such condition physically appears

only once in the PN. Therefore, in case of PN to account for the repetitive count of these

intersegment conditions, the total number of such conditions has to be subtracted from the

summation of basic elements in all segments.

For some control specifications it may possible that an output condition of segment

i causes an action which produces an input condition(s) for segment j. That means

intersegment connections exist between segments i and j. Basically, intersegment

connections model the power/control flow from one segment to another. In LLD these

connections need not be explicitly modeled since the vertical line at the left hand side of

LLD always models the existence of electric power. Depending upon the logic of each

rung, the current flows from this power line and energizes the output of rung connected to

the right hand side line in LLD. However, in case of PN the power flow (called as control

flow in PN terminology) across segments is modeled by the movement of tokens in PN.

Since, transition firings cause the flow of tokens through arcs, the intersegment

connections have to be explicitly modeled. The total number of basic elements to model

intersegment connections is estimated as shown below.

Let 01 j = The number of basic elements used to model intersegment connections

between segments i and j

Nodes (typically transitions) used to model intersegment connections

between segments i and j

144

= Links used to model intersegment connections between segments i and j, then

= q, where q represents the total number of output conditions in segment i

producing inputs for segment j.

Sometimes, it may happen that an action corresponding to the output condition in segment i
produces several inputs for segment j. Considering this, qij1 is given as follows:

where wr represents the number of inputs for segment j produced by output condition r in

the segment i. The first term in Ow corresponds to the output arcs from the places

modeling output conditions in segment i and the second term corresponds to the input arcs

to the places modeling input conditions in segment j. Hence, eij is given as:

The total number of basic elements modeling intersegment connections in the whole control

logic is then given as follows:

Considering intersegment connections, in case of PN, the total number of basic

elements used to model the total number of intersegment conditions have to be added for

the summation of basic elements in all segments. Hence, considering both intersegment

conditions and connections, the total number of basic elements needed to model the control

logic using PN is termed as a and given as follows:

where, ai = Number of basic elements in segment i,

= Total number of segments,

= Total number of intersegment conditions,

= Total number of basic elements needed to model intersegment connections.

145

Once, a and /3 are known, we can select PN or LLD based on 3 = a — /3. If A is

positive LLD is preferred, otherwise, PN is preferred from the design complexity view

point.

7.6. Illustration of the Methodology Through Examples

In order to make the application of the methodology more clear this section presents three

examples. In the first example, the PN has intersegment conditions without intersegment

connections. In the second example, the PN has intersegment connections without

intersegment conditions. Also, to control this system using LLDs sustained signals are not

required. Finally, the electro-pneumatic system earlier considered in Section 3 is dealt in

Example 3. The PN models of this system have both intersegment connections and

intersegment conditions. Also, to control this system using LLDs sustained signals are

needed. The systems considered in these examples are very common in flexible

automation.

7.6.1. An automatic assembly system

Consider the automatic assembly system shown in Fig. 6.3. The functions of the elements

present in the system have to be synchronized by a control logic. With an objective to use

smaller control program, we need to find which one between PN and LLD is better to

model this control logic. The methodology described in the above section is used to

estimate the number of basic elements needed for PN and LLD. Table 7.3 shows the

results obtained.

Here, 0 = 2, since C and E are intersegment conditions, and 8= 0 since there are

no intersegment connections. Hence, a = 7 + 5 + 7 - 2 = 17; /3 = 12 + 10 + 12 = 34, and

A = a — p = -17. This indicates for this system, PN gives 50 % shorter model than LLD.

This can also be validated by manually counting the basic elements after formulating the

physical models of PN and LLD.

Table 7.3 Required basic elements to control the system in Fig. 6.3

146

The PN and LLD to control the system is shown in Figs. 6.4 and Fig. 7.22

respectively. It can be easily observed that PN and LLD uses 17 and 34 total basic

elements to model the control logic.

Figure 7.17 LLD model for the system shown in Fig. 6.3

7.6.2. An Electro-Pneumatic System Without Sustained Signals

Now, consider another system where intersegment connections exist in the control

specification. Low cost automated systems with hydraulic/pneumatic pistons actuated by

solenoids exhibit such type of intersegment connections. This is illustrated in this example.

147

The system consists of four pneumatic pistons (A, B, C, and D) which are to be sequenced

by double activated five ports and two-way solenoid valves. Each piston has two normally

open limit switches. Also, consider that all pistons are of the type shown in Fig. 7.12 (b),

which require momentary actuating signals. When the end of piston X contacts limit

switch xl (x0), xl (x0) is closed indicating that the piston X is at the end of its forward

stroke (return stoke). A push button, START is provided to start the system. It is given

that pistons A, B, C, and D have to be sequenced according to the following sequence:

START, (A+, B+), (A-, D+), (B-, D-, C+), C-.

The methodology earlier described is followed to estimate the number of basic

elements needed for PN and LLD. Table 7.4 shows the results obtained.

Table 7.4 Required basic elements to control the system in Example 2.

Here, 0 = 0, since there are no intersegment conditions. 9 is calculated as follows:

Upon observation it can be seen that intersegment connections exist between Segments 1

and 2; 2 and 3; 3 and 4; and 4 and 1. For example, A+ and B+ in Segment 1 results in a+

and b+ in Segment 2. Therefore, for Segments 1 and 2, q = 2. Assuming A+ is action 1

and B+ as 2, 012 = 2q + wl + W2 = 2.2 + 1 + 1 = 6. Similarly, for Segments 2 and 3,

923 = 6. For Segments 3 and 4 assuming B-, D-, C+ as first, second, and third actions,

034 = 2q + w1 + w2 +W3 = 2.3 + 1 + 1 + 1 = 9. For Segments 4 and 1, 041 = 2q + w1

= 2.1 + 1 =3. Hence, 0 = 012 + 023 + 034 +041= 6 + 6 + 9 + 3 = 24.

148

Hence, a ,/3, and 4 are given as follows:

a = (9 + 9 + 11 + 9) + 24 = 62, = 10+ 10+ 13 + 9 = 42, and 4 = a — = 20. This

indicates for the example system considered, LLD gives 32.25 % shorter program than

PN. This can also be validated by manually counting the basic elements after formulating

the physical models of PN and LLD. The PN and LLD for to control the system is given

Fig. 7.18 (a) and (b) respectively.

Figure 7.18 (a) PN and (b) LLD for sequence:{ A+, B+},{A-,	 D+},

149
After counting the basic elements, it can be easily observed that PN and LLD uses

62 and 42 total basic elements to model the control logic. This indicates that when the

system contains only pneumatic pistons that do not require sustained signals for solenoids,

LLD would yield a shorter program than PN.

However, if time delays are added in the above sequence, PN structure will not be

changed as time can be modeled as an attribute to a transition. On the other hand the length

of LLD will be increased to incorporate the timers.

7.6.3. An Electro-Pneumatic System with Sustained Signals

The electro-pneumatic system considered in Section 3 is considered here.

The number of basic elements in PNs and LLDs is estimated instead of manual

counting in Section 3.

Estimation of the number of basic elements in PNs

Table 7.5 presents the calculations to estimate the number of basic elements in the PN

modeling Sequence 1.

Table 7.5 Required basic elements to model the Sequence 1 using PN.

(a) Basic elements in each segment without considering 0 and 0

150

(b)Basic elements representing intersegment conditions
Segmen

ts
j and k

Intersegment
condition

00

1 and 2 a0 1
1 and 3 b0 1
1 and 4 c0 1
1 and 5 a0 1
5 and 6 (13-, C-) 1

(c)Basic elements representing intersegment connections
Segmen

ts
j and k

Intersegment
connection

-	 Values of
variables

θjk

2 and 3 A+ --> al q = 1, w1 = 1 2q+ w1 = 3
3 and 4 B+ --> b1 q = 1, w1 = 1 2q+ w1 = 3
4 and 5 C+, A- --> c1,

a0
q = 1, w1 = 2 2q+ w1+ w2

= 4
5 and 3 B- --> b0 q= 1, w1 = 1 2q+ w1 = 3
5 and 4 C- --> c0 q= 1,w1 = 1 2q+ w1 =3

In calculation, observe that x0 is a precondition to execute action X+ where x and X

stands for corresponding limit switch and piston identity. For simplicity, denote the

number of basic elements in PN corresponding to Sequence i as α si. Now, following the

formulas presented earlier, αsi can be estimated as follows:

as/ = (9+5+7+7+7+5) - (1+1+1+1+1) + (3+3+4+3+3) = 40 - 5 + 16 = 51.

Observe that a0 is presented as a precondition in both Segments 2 and 5. However,

in PN each limit switch appears physically once (with several input and output arcs).

Hence, to compensate this the previous value of as/ has to be subtracted by one. Then,

the final value of is 50 which exactly matches with the value obtained in Section 3.

Sequence 2 is obtained by adding a counter and emergency stop to Sequence 1.

Hence, as2 can be obtained by adding the basic elements needed to model a counter (ac)

and emergency stop (αES) to as/ . Then, αs2 = as/ αC + αES • By following the

models presented earlier, ac = 5. The number of basic elements to model ES can be

calculated using the earlier developed formula. Since there are four actions (recall that

151
{C+,A-} and {B-,C-) are treated as two concurrent actions) present in the sequence and

each action is modeled by two transitions (one to start and second to end), α ES = 1 + kΓ=

1 + 2.4 = 9. Therefore, as2 = 58+5+9 = 64 as obtained earlier in Section 4.

Sequence 3 is obtained by adding delay before {B-,C-) of Sequence 2. However,

in PNs this delay is implemented by changing the second attribute of transition modeling

'do {C+,A-}'. Hence, there is no need for extra basic elements. In other words, as3

as2 = 64 as given in Section 4. Sequence 4 is obtained by adding a counter and timer to

Sequence 3. Again, we know that ac = 5, and there is no need for extra basic elements to

model timer. Hence, αs4 = as3 + ac = 64 + 5 = 69 as obtained in Section 4.

Estimation of the number of basic elements in LLDs

When sustained actuating signals are used, the following simple three step procedure is

developed to estimate f3.

1. Assign a relay for each segment in the given sequence except the segment

containing 'Start' command,

2. Identify set and reset signals for each sustained signal implemented by relay. Note

that, setting (resetting) of a relay executes forward (return) stroke of a piston,

3: Treat set signals for relay as preconditions, and apply the formulas to calculate the

number of basic elements.

For the case study considered in Section 4, the results obtained after each step by

following the above procedure are as follows:

After Step 1: Relay 1 (R1), R2, R3, and R4 are assigned to A+,B+,{C+,A-}, and {B,C,

respectively.

After Step 2: Set signals for the sustained signal by R1 are ST, a0, b0, c0, R1. Since A-

is in Segment 3, R3 is a reset signal for R1. Since R2 has to wait till R1

completes all of its actions, set signals corresponding to R2 are al and R2

and reset signal is R4 because B- is in Segment 4. Similarly set signals for

152
R3 are b1 and R3 and reset signal is R4 because C- is in Segment 4. Set

signals for R4 are c1 and a0.

After Step 3: Table 7.6 shows the calculations to estimate 13.

Table 7.6 Required basic elements to model the Sequence 1 using LLD.

Segment Description of logic construct Model to be applied 13
1(a) ' ST.a0.b0.c0.R3 --> R1 Relay

m= 4,r= 1
. 2m+2r+6 = 16

1(b) R1 --> A+ Logical AND
m = 1, n = 1

2m+3n = 5

2(a) a1.R4 --> R2 Relay
m= 1, r = 1

2m+2r+6 = 10

2(b) R2 --> B+ Logical AND
m=1,n=1

2m+3n = 5

3(a) b1.R4 --> R3 Relay
m= 1,r= 1

2m+2r+6 = 10

3(b) R3 --> C+ Logical AND
m= 1, n = 1

2m+3n = 5

4 c1.a0 --> R4 Logical AND
m = 2, n = 1

2m+3n = 7

From the table, βs1 = 16+5+10+5+10+5+7 = 58. In Sequence 2 counter and

emergency stop are added to Sequence 1. Denote Pc and βES the number of basic

elements needed to model a counter and emergency stop, respectively . 13y- βs2 = Ss] βc

+	 Pc and βES are calculated by using the derived formulas as follows:

m is 2 because b0,c0 resulting from executing the last action in the given sequence

are to be taken as set signals for the counter. n is 1 because there is only one output from

the counter. r is 1 because start switch ST can be taken as a reset signal for the counter. k'

is 1 because in the system under study each action that drives the piston forward is

executed by sustained actuating signal and I" is 3 because three pistons are present.

Hence, Pc = 2m + 3n + 2r + 2k'Γ + 3 = (2.2 + 3.1 +2.1+ 2.1.3 + 3) = 18. its = 5 +

2k'Γ = 5 + (2)(1)(3) = 11. Hence, βs2 = 58 + 18 + 11 = 87 which is exactly the same as

obtained in Section 4. Sequence 3 is obtained by including a delay after (C+, A- } in

153

Sequence 2. Hence, the timer is to be set with el and a0 as input signals and b0 and c0 as

reset signals. There is only one output from timer. Hence, m = 2, n =1, and r = 2. The

number of basic elements needed to implement the timer, βT = 2m + 3n + 2r + 3 = 2.2 +

3.1. + 2.2. + 3 = 14. Segment 4 in Table 7 already contains the elements and links

corresponding to c1, a0, and R4. Hence, to compensate these, β s3 = βs2
-

/34 where

/34 =7 denotes the number of basic elements in Segment 4. Therefore, 13 s3 = 87 + 14 - 7

= 94 as obtained in Section 4.

Since Sequence 4 is obtained by adding a counter and delay to Sequence 3, it can be

implemented by adding a counter and timer to the LLD of Sequence 3. Even though the

number and identity of set and reset signals for the new counter and timer are different from

those used in the earlier sequences, as an approximation we can still use the number of

basic elements that were calculated earlier here. In other words, PA = 13c + PT. Since,

RC and 13T are 18 and 14 respectively, βs4 = 94 + 18 + 14 = 126 which is very close to

130 as obtained in Section 4.

Even though we could accurately estimate the number of basic elements in the last

case by accurately identifying the set and reset signals for timer and counter, it may take

significant effort to analyze the logic. However, the motivation behind proposing the

formulas presented here is to not to exactly calculate the number of basic elements to match

that result from manually counting an LLD or PN, but to give an idea of how many basic

elements are needed to model the control logic. Using the approach shown here these

formulas can be incrementally applied even for complex sequences consisting of timers and

counters. In other words, they are first applied to a simple sequence to estimate the number

of basic elements. Then the number of basic elements needed for counters and timers is

estimated and added to the previous value. Applying these formulas allows designers to

select between systems that use sustained actuating signals and momentary/pulse actuating

signals as well as PNs and LLDs. For example, for the system considered in Example 2,

consider that the pistons are controlled by solenoids that require sustained actuating signals.

154
Then by applying the formulas as shown earlier, the number of basic elements in LLD can

be found as 76. Recall that when momentary/pulse actuating signals are used, the basic

elements in LLD are earlier calculated as 42. Also, recall that PN required 62 basic

elements. Hence, by using the formulas and following the proposed methodology to

estimate the basic elements, control engineers can select between PN and LLD even before

they start to build the control model in detail.

7.7. Summary

Development of flexible, reusable, and maintainable control software is important to

implement advanced industrial automated systems. Traditional methods of using ladder

logic diagrams (LLDs) to design sequence controllers are being challenged by the needs in

flexible and agile manufacturing systems. On the other hand, Petri nets (PNs) are an

emerging tool that needs to be established for the control of discrete manufacturing

systems. A class of PNs called real-time PNs that resemble ordinary PNs were introduced

to design sequence controllers. This chapter identified design complexity and response

time as the criteria to compare LLDs and PNs. Design complexity is defined and

characterized by two factors namely graphical complexity and adaptability to meet changes

in control specifications. By designing and implementing the control of an industrial

automated system subject to changing control requirements, LLDs and PNs are compared

in terms of a common measure namely, the numbers of basic elements, which signify both

design complexity and response time.

Motivated by the fact that any sequence controller can be designed by synthesizing

the building blocks of logic models, this chapter proposed analytical formulas to estimate

the number of basic elements to model the most commonly used building blocks of logic

modeling by both PN and LLD. Furthermore, a methodology that uses the developed

analytical formulas to estimate the total number of basic elements to model a control logic

even before physically modeling it using PNs and LLDs is presented. The concepts

155

developed in this chapter are demonstrated by considering several examples of sequence

controllers. The examples considered here demonstrate the potential for practical application

of the research results.

The methodology presented provides an accurate quantitative comparison of PN

and LLD in terms of basic elements. By precluding the need for physically building the

controllers by either PN or LLD, this methodology serves as an effective aid for a control

engineer to select between PN and LLD even before starting to write the control program.

The methodology developed is simple and straightforward to apply. However, in case of

complex control specifications, decomposing the control specification in terms of the logic

constructs may be difficult. This problem can be solved using the traditional methods such

as Karnaugh maps, Huffman method, etc. Other factors which have impact on the

selection of LLDs and PNs should also be explored in the future work. For example,

similar to graphical complexity, irrespective of the implementation scheme an effort to

quantify the response time complexity should be made.

CHAPTER 8

CONVERSION OF LOGIC CONTROL SPECIFICATIONS INTO
PETRI NET MODELS

8.1 Introduction

In the last chapter, ladder logic diagrams (LLDs) are shown inefficient to develop control

software and difficult to debug and maintain. Motivated by the disadvantages of LLDs,

Petri nets (PNs) were demonstrated as an effective tool for logic controller design by

several researchers and industrial practitioners (Valette et al. 1983, Murata et al. 1986,

Ferrarini 1992, Zhou and DiCesare 1993, Venkatesh et al. 1993). One critical task in this

development is to design Petri net models given the sequence control specifications.

Development of such PN model is the first step to develop Real-time Petri net (RTPN)

based controller. Also, one of the factors for the comprehensive comparison of PNs and

ladder logic diagrams in discrete event control is the availability of standard procedures for

designing controllers.

There exists systematic design procedures for designing ladder logic diagrams

(Pessen 1989). However, for the large scale application of PNs in industry, there is a

need for systematic design procedures for developing PN models.

The conversion procedure to formulate PN models from sequence control

specifications is very straight forward and simple. This procedure is explained below and

illustrated in this chapter.

1. Assign a place for each action in the given sequence,

2. Assign an input transition for each place to execute the corresponding action,

and assign time delay, if any, as a second attribute to the transition,

3. Connect all the places according to the precedence/concurrency relations given

in the specification via transitions,

4. For each place, assign an attribute corresponding to the limit switch that is

triggered due to the completion of action modeled by that place. In other

156

words, following the notation given in Chapters 6 and 7, if a place p, models

action X+, and the completion of this action is sensed by limit switch x1, then

assign the attribute to p corresponding to xl,

5. For each transition, assign an attribute corresponding to the action that is to be

executed after firing that transition, and

6. Model emergency stop and counters, if any.

8.2. Illustration of the Formulation of PN Model

A typical logic control specification usually consists of sequence of discrete events

with/without delays in between delays (David 1992, Pessen 1989). In order to illustrate

the above procedure to formulate PN model various types of sequences are considered. A

logic specification with single-path sequence may or may not contain concurrent actions,

but, do not contain choice actions. Specifications with multi-path sequences may or may

not contain choice actions. Again, in certain logic specification, a sequence may or may not

consist of repetitive actions. Hence, sequences in logic specifications can be broadly

classified as four types. They are: 1) single path sequences with no repetitive actions, 2)

single path sequences with repetitive actions, 3) multi path sequences with no repetitive

actions, and 4) multi path sequences with repetitive actions.

The conversion procedure developed in this chapter can be applied to all four kinds

of sequences. In the subsequent sections, the conversion procedure is applied to design

PN models corresponding to the sequences reported in (Pessen 1989). These sequences

represent the classical discrete event sequence control problems in manufacturing systems.

8.2.1. Single Path Sequences with no Repetitive Actions

The sequences considered in Chapter 7 can be used to illustrate the conversion

procedure . Following this procedure, the PN model corresponding to the Sequence 1:

Start, A+, B+, {C+, A-}, C-) is given in Fig. 8.1.

157

Figure 8.1 PN model for the Sequence 1

Observe that the PN model shown in Fig. 8.1 is far simpler and smaller than the

corresponding one shown in Fig. 7.1. This is because, in Fig. 7.1, limit switches are

separately modeled by places due to the following reasons: 1) to closely emulate the

system physically, and 2) to follow the similar notion of ladder logic diagrams which

clearly models the limit switches with normally open switches. In other words, the PN

model shown in Fig. 7.1 clearly models the status of limit switches and actions separately.

However, in the PN model generated by following the conversion procedure, places

modeling limit switches are eliminated by associating the input signal information with

places modeling corresponding actions.

158

This drastically reduces the net size and yields a compact PN model. Even though

the places in this PN model do not explicitly distinguish between the actions and limit

switches, it is simpler compared to the PN model presented in Chapter 7. Following the

conversion procedure, PN models corresponding to the Sequences 2, 3, and 4 that are

described in Chapter 7 are given in Figs. 8.2, 8.3, and 8.4, respectively. Observe that the

inhibitory arc from the place modeling emergency stop is given only to transitions (t1, t2,

t3, and t4) that model actions.

159

Figure 8.2 PN model for the Sequence 2

Figure 8.3 PN model for the Sequence 3

160

Figure 8.4 PN model for the Sequence 4

Estimation of basic elements in PN models

In order to compare the design complexity of the PN models obtained using the conversion

procedure and the PN models presented in Chapter 7, the methodology presented in

Chapter 7 is used to the estimate the number of basic elements. Table 8.1 presents the

calculations to estimate the number of basic elements in the PN modeling Sequence 1.

161

Table 8.1 Required basic elements to model the Sequence 1 using PN.

(a) Basic elements in each segment without considering 6 and 0

162

(b) Basic elements representing intersegment connections

Observe that there are no intersegment conditions in this PN model. This is

because the places modeling limit switches are eliminated in this model. Had they been

such places, completion of A+ results in marking a place modeling the limit switch, al

which result intersegment conditions. For simplicity, denote the number of basic elements

in PN corresponding to Sequence i as αsi. Now, following the formulas presented earlier,

αsi can be estimated as as/ = (5+5+7+9+7) - (0) + (1+1+2+2) = 27 - 0 + 6 = 33. This

value exactly matches with the manual count of the basic elements in the PN shown in Fig.

8.1. In contrast to this, the PN model corresponding to Sequence 1 shown in Fig. 7.1 (b)

has 50 basic elements.

Sequence 2 is obtained by adding a counter and emergency stop to Sequence 1.

Hence, as2 can be obtained by adding the basic elements needed to model a counter (ac)

and emergency stop (aEs) to αs1 . Then, as2 = as! ac ass . By following the

models presented earlier, ac = 5. The number of basic elements to model ES can be

calculated using the earlier developed formula. Since there are four actions (recall that

{C+,A-) and {B-,C-) are treated as two concurrent actions) present in the sequence and

each action is modeled by one transition, αES = 1 + kΓ= 1 + 1.4 = 5. Therefore, as2 =

33+5+5 = 43 which exactly matches with the number obtained by manually counting basic

elements in Fig. 8.2.

Sequence 3 is obtained by adding delay before {B-,C-) of Sequence 2. However,

in PNs this delay is implemented by changing the second attribute of transition modeling

'do { C+,A-)'. Hence, there is no need for extra basic elements. In other words, αs3 =

as2 = 43. Sequence 4 is obtained by adding a counter and timer to Sequence 3. Again,

we know that ac = 5, and there is no need for extra basic elements to model timer. Hence,

αs4 = as3 αC = 43 + 5 = 48 which is the same as the number of basic elements

obtained by manually counting the elements in Fig. 8.4.

Table 8.2. compares the number of basic elements in the PN models presented in

this chapter with the corresponding models in Chapter 7.

Table 8.2 Comparison of the basic elements in LLD and PNs obtained by two methods

From Table 8.2, it can be said that the PN models obtained by following the

conversion procedure yields simpler PN models. Even though the PN model obtained for

Sequence 1 using the conversion procedure is much shorter than the PN model presented in

Chapter 7, this difference will not change when timers and counters are added to the

specification.

163

Also adding the emergency stop to the PN model obtained using the conversion

procedure requires less basic elements compared to the PN model shown in Chapter 7.

This is because, using the conversion procedure, each action is modeled by one transition,

whereas in Chapter 7 each action is modeled as two transitions.

8.2.2. Single Path Sequences with Repetitive Actions

To illustrate the formulation of PN models corresponding to single path sequence with

repetitive actions, two examples are considered. The former has a sequence without

concurrent actions and the latter has a sequence with concurrent actions.

Example 1

Consider that four cylinders A, B, C, and D are to be controlled according to the sequence:

START, A+, B+, C+, C-, A-, D+, A+, D-, B-, A-. The PN model obtained by following

the conversion procedure is shown in Fig. 8.5. For simplicity, the place and transition

attributes are not shown in the PN models.

164

Figure 8.5 PN model corresponding to the sequence in Example I

Example 2

Now, consider that four cylinders A, B, C, and D according to the sequence: START, A+,

B+, C+, {C-, A-), {D+, A+}, {D-, B-), A-. Following the conversion procedure the

PN modeling the above sequence is shown in Fig. 8.6. Merging of the common places in

the PN models shown in Figs. 8.5 and 8.6 is considered later.

165

Figure 8.6 PN model corresponding to the sequence in Example 2

8.2.3. Multi-path Sequence with Simultaneous Parallel Paths

Figure 8.7 (a) shows the graphical representation of the control specification that involves

the control flow consisting of multi-path sequences with simultaneous parallel paths. In

this figure, the block dots represent nodes and i, j, and k represent positive integers. Each

node may be a typical controller such as computer, programmable logic controller, or a flip-

flop. The control flow consists multi-paths sequences because after the node i completes

its actions, it transfers the control simultaneously to paths A and B. As shown in each path

there exists several nodes. The control is transferred to node i + 1 after all the controllers in

paths A and B complete their actions. The PN modeling the control flow in Fig. 8.7 (a) is

shown in Fig. 8.7 (b).

166

Figure 8.7
(a). Control flow consisting multipath sequence with simultaneous parallel paths
(b). Simplified PN modeling multipath sequence with simultaneous parallel paths

8.2.4. Multi-path sequence with Alternative Parallel Paths

Figure 8.8 (a) shows the graphical representation of the control specification that involves

the control flow consisting of multi-path sequences with alternative parallel paths. In this

figure, there exist two paths after node i. After node i completes its assigned actions, it

transfers the control to either path A or path B depending upon the input signal Xp set by

the environment. If X = 1 (0), control is transferred to path A (B). This X signal can be

set manually to select the desired path or automatically depending on environment

conditions. In other words, the place Xp or Xp being marked with a token depends upon

the environment or other conditions instead of the sequence controller.

167

Figure 8.8
(a). Control flow consisting multipath sequence with alternative parallel paths

(b). PN modeling the multipath sequence with alternative parallel paths

Once either path A or B has been completed (OR function), the system continues

with step i + 1. The PN modeling the control flow in Fig. 8.8 (a) is shown in Fig. 8.8 (b).

An arc with an arrow at both ends represents a self-loop.

8.2.5. Multi-path Sequences with Option of Bypassing Nodes

Figure 8.9 (a) shows the graphical representation of the control specification that involves

the above form of control flow. After the completion of node i, if X p is 1, the system goes

through nodes A1 to A. and then transfers control to node i + 1.

If Xp is 0, the nodes Al to Ai are bypassed and the control jumps directly from

node i to node i + 1. The PN modeling the control flow in Fig. 8.9 (a) is shown in Fig.

8.9 (b).

168

Figure 8.9
(a). Control flow consisting multipath sequence with option of bypassing nodes

(b). PN modeling the multipath sequence with option of bypassing nodes

8.2.6. Multi-path Sequences with Option of Repeating Nodes

Figure 8.10 (a) shows the graphical representation of the control specification that involves

the above form of control flow. After the completion of node i, the system continues from

node A1 to Ai to i + 1 when Xp is 1. If, Xp is 0, the control is transferred back to A 1.

Thus the operations assigned to nodes A1 to Aj are repeatedly executed until Xp is 1. The

PN model corresponding to the control flow in Fig. 8.10 (a) is shown in Fig. 8.10 (b).

169

Figure 8.10
(a). Control flow consisting multipath sequence with option of repeating nodes

(b). PN modeling the multipath sequence with option of repeating nodes

8.3. Merging of Common Places in a PN Model

In a PN modeling a sequence that consists of repetitive actions, places modeling repetitive

actions may appear more than once in a PN model. Even though merging of such common

places is theoretically and physically possible, the resulting PN model after merging may

become complex and hence occupies more space as illustrated later.

Hence, merging of such places modeling repetitive actions is not recommended.

This is illustrated in the following examples.

Example 1

Consider the PN shown in Fig. 8.5 that modeled a sequence with repetitive actions. Since,

A+ and A- appears two times in the given sequence, the PN model in Fig. 8.5 has two

places for representing A+, and two places for modeling A-. Such common places

representing repetitive actions are merged as shown in the PN model shown in Fig. 8.11.

170

Figure 8.11 PN model after merging of common places in Fig. 8.5

Observe that the PN model shown in Fig. 8.11 has conflicts. In this PN model

when the place, A+ is marked, conflict results to execute either B+ or D-. Similarly, when

A- is marked, conflict results to execute either D+ or Stop. Hence, in the PN model shown

in Fig. 8.12, conflicts are eliminated by introducing two new places prc1, Prc2
, Prc3 , and

Prc4•

Figure 8.12 PN model after eliminating conflicts in Fig. 8.11

For even the simple sequence considered here, it can be easily seen that the PN

shown in Fig. 8.12 is more complex than the one shown in Fig. 8.5. This complexity

grows enormously when the given sequence is large contains many repetitive actions.

Hence, merging of such common places is not recommended.

Example 2

Now, consider the PN shown in Fig. 8.6 that also modeled a sequence with repetitive

actions. Since, A+ and A- appears two times in the given sequence, the PN model in Fig.

8.6 has two places for representing A+, and two places for modeling A-. Hence, such

places are merged as shown in Fig. 8.13 (a). The conflicts resulted due to this merging are

eliminated in the PN model shown in Fig. 8.13 (b).

171

Figure 8.13 PN model (a) after merging the common places in Fig. 8.6, (b) after
eliminating conflicts

Again, it can be easily seen that the PN model shown in 8.13 is more complex than

the one shown in Fig. 8.6. Hence, while following the conversion procedure presented in

this chapter to develop PN, merging is not recommended in the case of PN that models

repetitive actions.

172

8.4. Summary

This chapter has presented a simple conversion procedure to formulate PN models from a

given logic control specification. The PN model developed using the conversion procedure

is simple and easy to understand. The conversion procedure is applied to design PN

models corresponding to the classical control sequences that exist in discrete event control

of manufacturing systems. This procedure is illustrated for several types of logic control

specifications, single and multi path sequences, with and without repetitive actions. The

number of basic elements in the PN model obtained by following the conversion procedure

is compared with that obtained in Chapter 7. The comparison clearly indicates that the PN

models presented in this chapter have less design complexity compared to those in Chapter

7. It is also concluded that in case of formulating PN models corresponding to sequences

with repetitive actions, merging of common places increases the complexity of the PN due

to the need to introduce additional places and arcs to keep the decision-freeness. Hence,

merging of places in such situations is not recommended.

Using the same PN model, both types of systems namely, systems that require

sustained actuating signals and the systems that require only a momentary or pulsed

actuating signals can be controlled. This can be accomplished by changing the

corresponding attributes for transitions as reported in PN based control using Real-time

PNs. However, when using ladder logic diagrams, two separate design procedures have

to be followed to design two separate diagrams as shown in (Pessen 1989).

173

CHAPTER 9

AN OBJECT-ORIENTED DESIGN METHODOLOGY FOR
DEVELOPMENT OF FMS CONTROL SOFTWARE

9.1 Introduction

In order to develop integrated control software, there is a need for integrated tools and a

systematic design methodology to utilize those tools. The integrated tools should aid in not

only real-time control but also simulation. The systematic design methodology should aim

to develop reusable, modifiable, and extendible control software in order to meet the

changing control specifications. Earlier chapters have shown the application of Petri nets

(PNs) for both real-time control and simulation. This chapter makes an attempt to

introduce PNs into object-oriented design (OOD) of integrated control software

development.

A flexible manufacturing system (FMS) consists of machines, robots, automated

guided vehicles, programmable logic controllers, and computers, all of which can be

viewed as objects in OOD. The system control software has to be designed to meet the real

time constraints of a production line and the dynamically changing needs of the market.

Because of the complexity, systematic software development is very important to realize the

full benefits of agile and flexible manufacturing. This chapter highlights the difficulties in

developing such software and proposes a systematic OOD methodology for its

development using object modeling technique (OMT) diagrams and Petri nets (PNs). OOD

is used to design reusable and easily maintainable software. OMT diagrams are used to

represent explicitly different kinds of static relations such as generalization, aggregation,

and association among the objects in FMS. PNs are used as a tool to model the dynamic

behavior of the objects and FMS. By adopting the bottom-up approach of PN modeling,

this chapter shows that PNs can support important characteristics of OOD, namely,

reusability, extendibility, and modifiability. They are also used for the FMS performance

analysis. Furthermore, with PN models, a method to identify the data structures and
174

175

operations of objects is presented. The proposed methodology is illustrated through an

example of FMS. The issues related to the reusability, extendibility, and modifiability of

the resulting control software are also discussed by changing the initial specifications of the

FMS and thus its OMT diagram and PN model.

Background

Flexibility in the functioning of FMSs is mainly imparted by the use of computers and

robots which are programmable according to the shop floor needs. Systematic control

software development for FMSs is very important to realize agile and flexible production

(May 1986, Marinov and Todorov 1988). Control software that not only supports

simulation but also helps in FMS implementation is of paramount importance to exploit the

full benefits of FMSs (May 1986). The advantages and the importance of integrated

software packages that can be used for both simulation and control are discussed in (Bruno

and Marchetto 1986, May 1986, Glassey and Adiga 1990, Venkatesh et al. 1991, Johnson,

et al. 1992).

Traditionally the function of FMS control software was to coordinate and control

different elements in a manufacturing system. However, recently there are several efforts

to integrate the control software and simulation software in order to expedite the

development of control software and system design (Naylor and Voltz 1987, Chaar, et al.

1991, 1993a,b, Venkatesh, et al. 1991, Johnson, et al. 1992). Changes in the production

facilities may also require redesign and rewriting of large amount of software. The

difficulty in developing the FMS control software is further compounded by the inherent

complexity of FMS execution since it is a complex asynchronous concurrent system aiming

to produce several product types with different production processes. Hence, the

traditional definition of control software has been extended to handle simulation, planning,

monitoring, rapid prototyping, and scheduling (Jain 1986, Naylor and Voltz 1987, Chaar,

et al. 1991, 1993a,b, Venkatesh, et al. 1991).

176

A design methodology for FMS control software should at least deal with the issues

related to 1) modeling, simulation, and analysis, and 2) real-time control implementation of

FMS. The first one typically involves building models of an FMS and estimating measures

of system performance such as throughput rate, utilization of robots, machines, and queue

lengths at each machine. The aim of this activity is to suggest the optimum configuration of

FMS for the given specifications. The optimum configuration may include the layout of the

FMS, the routings of automated guided vehicles (AGVs) among machines, the machine

scheduling polices, and other tasks. The second one is to implement effective real-time

control of FMS which typically involves coordinating, on-line scheduling and monitoring

of system resources. The functional objective of control software is to maintain high

system utilization and throughput as well as to satisfy the real-time production deadlines.

In addition to this in FMSs, it is very common to find similar machines and robots grouped

in cells which function in a similar way. The only difference between the functioning of

these cells from discrete control point of view is the routing of parts among machines in

cells. Hence, the control software should be written for a cell such that it can be used to

control another cell with minimum or no change.

Based on the above discussion, it can be concluded that the control software should

be reusable, modifiable, and extendible to: 1) adapt to changes in the system configuration

and specifications, and 2) to deal with a complex shop-floor system which often consists of

numerous similar components. A systematic design methodology is obviously needed to

develop such FMS control software (Naylor and Voltz 1987,Glassey and Adiga 1990,

Chaar et al. 1993b, Venkatesh and Fernandez 1993).

Literature review and motivation

Realizing the importance and complexity of FMS software many researchers are

investigating different issues related to it. Naylor and Voltz (1987) proposed an approach

for designing integrated manufacturing system control software. They use three software

concepts, the use of software components extended to include hardware, a common

177

distributed language environment, and generic software. Smith and Joshi (1992) described

reusable software concepts for developing scaleable FMS control architecture, automatic

generation of control code, and object-oriented design of equipment controllers. Hsu

(1992) described how object-oriented programming is used for FMS control software

development along with its advantages.

Stuznebecker (1991) proposed extensions to C++ language with an aim to

formulate it as a base language for developing object-oriented environment for distributed

manufacturing software. Char et al. (1991, 1993a,b) presented excellent reviews on recent

methods for developing manufacturing control software and concluded that current

methodologies are not sufficient to support planning, scheduling, and monitoring activities

involved in manufacturing.

Another research area related to FMS control software is the application of Ada as

an implementation language. An approach is proposed for rapid prototyping of control

software using Ada and PNs (Sahraoui and Ould-Kaddour 1992). Ada is used for building

reusable software components and PNs for specifying task communication and

synchronization. Ould-Kaddour and Courvoisier (Ould-Kaddour and Courvoisier 1989)

presented a method for real-time software prototyping using PNs for specification, Ada for

specification description, and Modula-2 for implementation. Ada was selected as a suitable

language for software development of fully automated manufacturing systems (Voltz, et al.

1984, Venkatesh et al. 1991).

The research on FMS control software has been concentrated on combining OOD

concepts, PNs, and Ada as shown in Table 9.1. The benefits of OOD such as reusability,

extendibility, and modifiability of the software system were not sufficiently demonstrated

with a particular example of FMS in previous works (Glassey and Adiga 1990,

Sturzenbecker 1991, Graham, et al. 1991, Hsu 1992). They did not discuss in detail the

relations among several objects present in an FMS, which are essential for OOD.

178

Table 9.1 Research related to OOD, PNs, and Ada

Research related to: Selected references
FMS and OOD Garg (1985), Glassey and Adiga

(1990), Graham, et al. (1991),
Sturzenebecker (1991), Hsu
(1992), Smith and Joshi (1992)

FMS and PN Bruno and Marchetto (1986),
Cecil, et al, (1992), Jafari (1992),
Proth (1992), Venkatesh and
Ilyas (1995), Zhou and DiCesare
(1989), Zhou, et al. (1991),
Zhou, et al. (1992)

FMS and Ada Voltz, et al. (1984), Venkatesh, et
al. (1991)

Ada and PNs Murata, et al, (1989)
FMS, OOD and PN ' Bruno and Marchetto (1986),

Ould-Kaddour and Courvoisier
(1989), Booch (1991), Sahraoui
and Ould-Kaddour (1992)

FMS, OOD and Ada Chaar, et al. (1993b), Naylor and
Voltz (1987)

FMS, OOD, PN, and
Ada

Venkatesh and Fernandez (1993)

Furthermore, the earlier research (Glassey and Adiga 1990, Sturzenbecker 1991,

Graham, et al. 1991, Hsu 1992, Char, et al. 1993b) that used OOD for design of FMS

software has not paid much attention to describing the dynamic behavior of the objects

present in the software system and to analyze quantitatively the system performance.

Realizing the importance of these issues, Venkatesh and Fernandez (1993) first proposed

an approach for object oriented simulation and control of FMSs using timed PNs and Ada.

Subsequently, Fernandez and Han (1993) illustrated the concepts of OOD design by

developing Object Modeling Technique (OMT) diagram of a simple assembly cell and show

how OOD can adapt to changing conditions in the manufacturing cells. However, there is a

need for a systematic methodology that integrates the OOD concepts, OMT diagrams, PNs,

and Ada to address problems related to FMS control software. The goal of this chapter is

to formulate an OOD methodology for developing reusable, extendible, and modifiable

control software for FMSs using OMT diagrams and PNs. The objectives of this work are:

179

1. To present a OOD methodology combining the concepts of OMT diagrams and

PNs by discussing the rationale and advantages of selecting OOD and PNs

respectively,

2. To emphasize the use of PNs as a dynamic tool in OOD by discussing the

advantages of PNs over earlier used dynamic models,

3. To demonstrate how PNs can support the concepts of reusability and

extendibility by adopting the bottom-up approach of FMS modeling,

4. To illustrate the methodology by developing object modeling technique (OMT)

diagram and PN model of an FMS example, and

5. To demonstrate the benefits of the methodology to support reusability,

modifiability, and extendibility of the software system when the configuration

and specifications of the FMS are subject to change.

9.2. Methodology for FMS Control Software Development

9.2.1. Methodology

It is assumed that a reader has basic knowledge on OOD (Booch 1991, Rumbaugh, et al.

1991). While the advantages of OOD and PNs are shown in Fig. 9.1 and will be

discussed later, the rationale why they are combined is discussed here. The motivation for

combining OOD and PNs is that in a broader sense they are complementary to each other to

achieve the goal of system development at incremental stages.

OOD is an appropriate design methodology to support system design (Booch 1991,

Rumbaugh, et al. 1991). PNs are a versatile hierarchical modeling tools that support all the

stages of system development including its specification, planning, design, evaluation,

monitoring, control, and implementation (Zhou and DiCesare 1989, Zhou, et al. 1991,

Proth 1992).

180

Earlier techniques of OOD that do not use PNs (Glassey and Adiga 1990, Booch

1991, Rumbaugh, et al. 1991, Smith and Joshi 1992) have some disadvantages since they

cannot explicitly represent detailed dynamic interactions that involve concurrency and

synchronization among objects present in the system. Also, they are difficult to consider

timing information in the design for qualitative analysis and performance evaluation of an

FMS. PNs can be used to augment the applicability of OOD by eliminating these

disadvantages because they are primarily a tool that models and analyzes complex

asynchronous concurrent interactions in distributed systems. They can also help select data

structures and operations for objects. On the other hand, PNs have some disadvantages

since they cannot clearly represent the static relationships among objects, which is essential

for reusable software development (Garg 1985, Boucher, et al. 1989, Rumbaugh, et al.

1991, Venkatesh and Fernandez 1993). However, these relationships can be modeled by

using object modeling technique (OMT) diagrams in OOD (Rumbaugh, et al. 1991).

Hence, by using OMT to represent the static relations and PNs to represent dynamic

relations, a powerful OOD methodology for the development of FMS control software can

be developed. The methodology proposed is illustrated in Fig. 9.1. In this approach,

OOD is used as a software design tool and PNs are selected mainly as a dynamic modeling

and performance evaluation tools. The methodology is explained in the following steps:

1. Apply OOD concepts to find objects in an FMS and to show the explicit

relations among them by developing an object modeling technique (OMT)

diagram (Rumbaugh, et al. 1991). The objective of an OMT diagram is to

show the static relations among objects in the FMS.

2. Use PNs for modeling the FMS in order to show the dynamic relations among

objects. The objective of a PN model (PNM) is multifold.

3. Use the formulated PNM in the above step to analyze, simulate, and evaluate

the FMS performance. The performance criterion can be production rate,

system utilization, work-in-process inventory, etc.

Figure 9.1 Proposed systematic methodology for FMS control software development

181

182

At this stage, if its performance is found unsatisfactory, it should be improved

by changing some parameters, the system configuration, and/or operational

policies. After the analysis of the final PNM is completed, the design

parameters of specific interest in controlling FMS can be decided. Furthermore,

with the aid of PNM, data structures and operations for objects present in FMS

can be systematically identified.

4. Combine OMT and PNM to design the complete structure of objects with their

static and dynamic relations. Select an appropriate language such as Ada, C++,

or Smalltalk to implement the objects and control of the FMS.

9.2.2. Fundamentals of OOD

Each unit in an FMS interacts with several other objects to complete a set of production

tasks. Further, objects can be added or removed from the FMS thereby demanding the

software to be extensible, modifiable, and reusable. This makes OOD particularly suitable

for designing FMS control software. Fig. 9.2 shows how the concepts of OOD can be

used for developing FMS control software.

Figure 9.2 Principle of object-oriented design of FMS control software

183

Using OOD techniques, a software system can be developed by mapping the real-

world entities into objects and transformed to predict the behavior of the model. This

approach to software development results in an implementation that is understandable and

therefore useful in managing the FMS complexity. From Fig. 9.2, it can be observed that

the closer the solution space maps to the concepts of the problem space, the easier is to

achieve all the goals of the software system such as modifiability, extendibility, and

reusability. An interested reader is referred to (Booch 1991, Rumbaugh, et al. 1991) for

further discussion on the development of OOD and its advantages. The following

paragraphs present a brief discussion on the OOD concepts used in this chapter.

The fundamental building block of OOD is an object that contains both a data

structure and a collection of related procedures. Procedures are also called as operations or

methods. Objects interact with each other by sending messages or by calls to their

interfaces. Objects with the identical data structure (attributes) and behavior (operations)

can be grouped into a class. Each object is an instance of its class. An important feature of

OOD is inheritance. Inheritance is a mechanism whereby one class of objects can be

defined as a special case of another class, automatically including the data structure and

behavior of that class. The special cases of a class are known as subclasses. For example,

machine_controller (subclass) is a special class of controller (superclass). Polymorphism,

another important feature of OOD is a property in which the same operation may behave

differently on different classes. For example, an operation called process_part behaves

differently on two different classes, milling_machine, and drilling_machine. There are

several approaches to develop OOD systems (Booch 1991, Rumbaugh, et al. 1991).

The complete OOD methodology consists in developing three orthogonal models

(Rumbaugh, et al. 1991):

1. Object model: It divides the application into object classes and shows the static data.

The relationships (interfaces) among the classes are described by the class structure.

The behavior of the objects are defined by operations associated with the object class.

184

1 Dynamic model: It shows the way the system behaves with internal and external

events by capturing the time-dependent behavior of the system.

3. Functional model: It shows how to process the data flow in the system during each

event or action.

Since the functional model deals with the lower level implementation of a software

system, it is not considered here. This chapter uses object modeling technique (OMT)

diagram (Rumbaugh, et al. 1991) as an object model and PNs as a dynamic model. There

are few other approaches for object modeling (Monarchi and Puhr 1992, Booch 1994).

Even though the notations used in these methods are different, they are conceptually similar

in their way to represent the object structure.

9.2.3. Object Modeling Technique Diagram as a Static Modeling Tool

Figure 9.3 shows the definition of a class with three separate areas: class name, class

attributes, and operations. In the following figures some of the details are omitted if they

are not of particular interest in the chapter. The OMT diagram [291 allows three basic types

of relations among classes, i.e., generalization, aggregation, and association which are

explained below:

Figure 9.3 A class definition in OMT Figure 9.4 OMT diagram for Generalization

1. Generalization implies the definition of a superclass that collects the common

characteristics of several subclasses. It describes an "is-a" association between

a subclass and its superclass. The symbol for generalization is a triangle. For

example, in Fig. 9.4, the superclass conveyance equipment is a generalization

of the classes robot, conveyor, and AGV; robot in turn is a generalization of

mobile robot.

2. Aggregation implies the description of a class in terms of its constituent parts.

The concept of aggregation defines an "is-a-part-of' relationship between a

subclass and its superclass. For example, Fig. 9.5 shows that an assembly

system consists of assembly cells, which in turn consists of robots and part

feeders. Aggregation is denoted by a diamond. The black dot indicates

multiplicity, e.g., an assembly system is composed of several assembly cells,

an assembly cell is composed of several robots, and part feeders.

3. Association describes how objects belonging to different classes are related to

each other. The OMT symbol for an association is a line connecting two classes

labeled with the association name. Associations can be binary, ternary, or even

higher order, and can have any number of attributes. For example, in Fig. 9.6,

sensor monitors machine, and machine machines part.

185

Figure 9.5 OMT diagram for Aggregation

186

Figure 9.6 OMT diagram for Association

Associations can have attributes, e.g., cutting temperature, cutting force in Fig.

9.6. Since a machine can process several parts, and a part can be processed by

several machines, block dots are present at the both ends of link connecting

machine and part.

For more details on developing OMT refer to (Rumbaugh, et al. 1991). After the

OMT diagram is developed, the next step is to formulate the dynamic model of FMS. State

diagrams were used to develop a dynamic model (Rumbaugh, et al. 1991). However, they

are not convenient to deal with timing aspects and the dynamic behavior of objects in FMS

which must be considered (Rumbaugh, et al. 1991, Fernandez and Han 1993).

Furthermore, they cannot explicitly represent important features such as concurrency and

synchronization in FMS which makes it difficult to visualize the functioning of FMS. The

state diagrams become complex in case of FMS (Crockett, et al. 1987, Zhou and DiCesare

1993). Hence, PNs are chosen to develop a dynamic model of FMS as discussed next.

9.2.4. Petri nets as a Dynamic Modeling Tool

In this chapter PNs are used as a dynamic model in object-oriented design (00D). In

contrast, other researchers use two different kinds of diagrams for representing the

dynamic behavior of objects. Rumbaugh, et al. (1991) uses state diagrams and event trace

diagrams; Booch (1994) uses state transition diagrams and interaction diagrams. State/state

transition diagrams are used to represent how objects respond to the internal and external

events in the system. Event trace/interaction diagrams are used to study the

synchronization aspects and to trace the execution of events in the system.

187

However, in order to develop systematic control software for FMSs, a more formal

dynamic modeling tool is needed. This is because the coordination of the individual units

in FMSs is important. Hence, a dynamic modeling tool should model in detail the

concurreny and synchronization in the system with respect to time. Furthermore, such tool

should help to analyze the system behavior to check for aspects such as deadlocks. Since it

is very common in FMSs to share certain resources (e.g. a robot is shared by more than

one machine to load/unload), a dynamic modeling tool should represent these aspects to

analyze the conflicts during the system execution. In addition to all these requirements, a

dynamic modeling tool should support the system designer for system performance

evaluation and assist control engineer to control and monitor the FMS. PNs have all these

capabilities and hence are suitable as dynamic modeling tool irrespective of the various

methods used for object model (Rumbaugh et al. 1991, Monarchi and Puhr 1992, Booch

1994). Also, unlike previous works which use two different kinds of diagrams for

representing system states and tracing events (Rumbaugh et al. 1991 and Booch 1994),

PNs can be used as a single tool to represent both the system states and to trace the events

in the system when time durations of activities are associated with transitions.

Compared with previous techniques for a dynamic model in 00D, PNs have the

following advantages:

1. PNs can explicitly and realistically represent concurrent operations,

synchronization activities, and conflicts.

2. They can be easily associated with timing information for performance analysis

of the system. Both analytical and simulation methods are available depending

on the system complexity and accuracy needed.

3. They allow to check the system behavioral properties such as deadlock and

capacity overflow.

4. By using PNs, a more compact model can be obtained and thus avoiding the

painstaking enumeration of all the states at the design stage.

188

5. The developed PN models can also be extended for real-time control and

monitoring.

6. The attributes and operations of potential objects can be selected from Petri net

models (PNMs) of the FMS. This advantage of PNs reaches far significance

when the quote from (Rogers 1991) is recalled: "the potential of OOD is

impeded due to the lack of an established methodology for object

identification."

After the OMT diagram and PN model (PNM) of FMS are developed, the software

system can be implemented by selecting a proper computer language. Some researchers use

Ada (Bruno and Marchetto 1986, Naylor and Voltz 1987, Venkatesh, et al. 1991, Sahraoui

and Old-Kaddour 1992) and others prefer C++ for implementing OOD (Sturzenbecker

1991, Smith and Joshi 1992). Detailed comparison between Ada and C++ for OOD

implementation of FMS control software falls beyond the scope of this work and can be an

interesting topic for further research.

9.3. Illustration of the Methodology with an FMS

To illustrate the proposed methodology, the FMS discussed in the Chapter 4 is considered.

The FMS is assumed to function under push paradigm. In this section the system

description is given first. Next, the OMT diagram of the FMS is developed. Then, the

PNM is formulated and finalized after the quantitative analysis of the system. OMT

diagram and the final PNM are combined to identify objects and the static and dynamic

relations among them.

System description

The FMS considered is shown in Fig. 9.7 and consists of four machines. In this system

each machine is served by a robot and processes either raw material or intermediate parts.

Once a part is processed, the machine setup is needed to process another part type. The

activities of the robots are to load tools and parts to and unload used tools and processed

189

parts from the machines. Input and output buffers are provided at machines to store raw

material, the work-in-process inventory, and processed parts. Sensors monitor the

functioning of machines and robots. For example, if the temperature during machining

exceeds its maximum value, the sensor monitoring the corresponding machine will send a

signal to the cell controller to stop machining. AGVs are used to convey parts and

subassemblies among the machines and to the assembly shop (AS).

Figure 9.7 The configuration of FMS

The AGV track layout is shown in Fig. 9.7 and can be unidirectional (with an

arrow at one end) and bi-directional (arrows at both ends) where the corresponding travel

time units are marked. The system is used to produce finished product, PR1 that has been

considered in Chapter 4. A machine and a robot constitute one flexible manufacturing cell

called "cell" for short.

There is a cell controller responsible for controlling the operations in each cell.

There may be one or more PLCs to coordinate the sequencing of different elements present

in each cell. Each PLC may control more than one machine, robot, and sensor. It receives

signals from sensors and accordingly controls the functions of robots and machines. There

is a main controller for the FMS to control the cell controllers and schedule production

tasks among cells. During the production if any malfunction/exception occurs at the PLC

level (due to the factors such as breakdown of tool and excessive machining temperature)

an exception is raised by the PLC and passed to the cell controller. Then the cell controller

handles that exception and passes the resume signal to PLC to continue the cell operations.

Similarly, if malfunction/exception occurs at the cell controller level (due to the factors,

e.g., entering of a new product variety), it raises an exception and sends to the main

controller. Then the main controller handles that exception and passes the resume signal to

cell controller. There is also a business host which is on the top of the main controller to

deal with higher level issues, e.g., production control and corporate policies.

9.3.1. OMT diagram and PNM of the FMS

OMT diagram of the FMS

Fig. 9.8 shows the OMT diagram corresponding to the FMS under investigation. Even

though the OMT diagram appears complex, the design shown is believed to be realistic and

captures the relevant real world properties of the objects and their functions in this FMS.

For example, this diagram models that the FMS produces many finished products,

interacts with a business host, and consists of a main controller, several flexible

manufacturing cells, an automated warehouse, and a material handling system. This OMT

diagram can be easily extended or modified when the configuration of FMS changes, as

shown later.

190

Figure 9.8 OMT diagram of the FMS

PNM of the FMS

To formulate the PNM of FMS, first the PNM corresponding to a machine 1 (MC1) is

formulated as shown in Fig. 9.9. The interpretation of its places is listed in Table 9.2.

191

Figure 9.9 PNM of machine 1 (MC1)

192

Table 9.2 Interpretation of typical places and transitions in PNMs shown in Figs. 9.9
and 9.10

Place Interpretation
DAMi (i =1 and 3) Demand for Part A on Mi
IM1 Input buffer of Mel with parts ready to feed MC1
SM1A MC1 being setup to process Part A
M1RA MC1 ready to process Part A
R1 R1 ready to load/unload
AM1 Part A loaded on MC1's table and MC1 processing part
PAM1 MC1 finished processing Part A and Part A is being

unloaded by R1
PARM1 Part A is ready at the MC1
0M1 Output buffer of MC1 ready with parts A and B
AGM1 AGV at the output buffer of MC1
AMij (i,j = 1, 2, 3, and 4) AGV traveling from 'MCI' to 'MCj'
AMi (i=1) AGV at the input buffer of `MCP
AMOi (i = 1, 2, 3, and 4) AGV at the output buffer of 'MCi'
A1ASM1 AGV traveling from AS to MC1

Transition
1,6,14,19,28,33,39,44 Signal for machine setup
2,7,15,20,29,34,40,45 Robot finishes the loading operation
3,8,16,21,30,35,41,46 Completion of part processing
4,9,17,22,31,36,42,47 Robot finishes the unloading operation
5,10,18,23,32,36,43,48 Number of parts as specified in final assembly ready in

M's output buffer
11,13,25,27,38,49 AGV starts from MC
12,24,26,50,51,52 AGV reaches its destination

For simplicity, objects like business host, automated warehouse, and sensors are

not considered in our models. Here, a bottom-up approach is adopted to construct the

PNM of FMS.As the functioning of all machines is almost similar, the same PN modeling

methodology can be duplicated to formulate the PNMs of other machine cells. After

formulating the PNMs of all cells, they are connected to each other according to the process

sequence of parts (given in Chapter 4) as shown in the Fig. 9.10. Observe that transferring

of parts in between cells is also modeled in Fig. 9.4. Since, the functioning of all cells is

similar, the same PN modeling methodology can be duplicated to formulate the PNMs of

other cells in FMS. Figure 9.11 shows the PNM of FMS control system. In the PNMs of

Figs. 9.10 and 9.11, some places are pictured as concentric circles. The reasons and

motivation for this are discussed later.

Figure 9.10 PNM of the FMS under push paradigm

193

Figure 9.11 PNM for the FMS control system

194

195

In PNMs shown in Figs. 9.9 and 9.10, places and transitions represent different

states and operations related to each object respectively. It can be observed that these

PNMs clearly model the dynamic interactions among the objects in the FMS. While

modeling MC3, the PN model of MC1 shown in Fig. 9.9 is reused. In case of modeling

MC2 and MC4, the PN model of MC1 is not only reused but also extended to model the

machining of a different part variety. In the actual implementation of control software, the

PNM corresponding to MC1 (shown in Fig. 9.9) can be treated as a software module and

can be reused and extended to produce software modules corresponding to MC2, MC3,

and MC4. These modules are then combined to generate the software module

corresponding to the FMS. Similarly, the control software corresponding to this FMS can

be reused and extended to produce software modules of other systems.

From this example, it can be said that the PN modeling of similar components in

FMS supports the concepts of reusability and extendibility which are two essential

characteristics of the software generated by OOD methodology (Meyer 1988, Rumbaugh et

al. 1991). Reusability and extendibility are defined and illustrated in the next section.

Figure 9.11 shows the PNM for the FMS control system for normal production

cases (without breakdowns). It models the hierarchical control of the FMS. For simplicity

sake, during modeling it is assumed that there is a main controller (M), a cell controller

(CC), and a PLC to control the FMS considered. In this PNM, the places and transitions

represent different states and operations related to each object respectively. It can be

observed that this PNM clearly models the dynamic interactions among the objects in the

control system. It can be easily extended to consider more cell controllers and PLCs.

The execution principles of the PNM fulfill the requirements of system operations.

For example, in Fig. 9.10, consider "transition 2 (t2)" that models the activity "Robot

finishes the loading operation". In other words, t2 models an activity: Robot 1 (R1) loads

Part A on MC1. The constraints that have to be fulfilled to fire t2 (to enable the activity

modeled by t2) are modeled by the input places corresponding to t2. For example, marked

196

places: "M1RA" models the condition that "MC1 should be ready to process Part A",

"DAM1" there should be demand for Part A, "IM1" there should be raw material needed to

produce Part A, finally "R1" should be ready to load the tool on MC1. The time that R1

takes to finish this operation is assumed as 1 time unit and associated with t2 (shown at the

right hand side of t2 in Fig. 9.10).

From the preceding discussion, objects involved in firing t2 can be easily

recognized as R1, Ml, and Part A. A similar discussion can be given for other places and

transitions in this PNM, i.e., there is an one-to-one correspondence between the actions in

the FMS and transitions, and thus the execution of the PNM precisely specifies the

operations involved in FMS. In Figs. 9.10 and 9.11 modeling of exception handling is not

shown. However, exceptions do occur sometimes during production. Hence, Fig. 9.12

shows the PNM for exception handling by the main controller (M).

Figure 9.12 PNM of exception handling by main controller

197

In this PNM, an exception is raised by a cell controller (CC) and handled by the

main controller. This net clearly shows the conditions and activities involved in this kind

of exception handling. Similarly, another PNM similar to this can be developed to model

the exception handling by CC when an exception is raised by a PLC.

Formulating the final PNM by analyzing the performance of FMS

As discussed in the last chapter, the final PNM can be formulated by analyzing it to

evaluate the performance of FMS. Estimating the number of AGVs and selecting their

routings are important since they affect both the performance and control of FMS. By

analyzing the FMS performance and deciding the number of AGVs and their routings,

appropriate data structures and operations for AGV objects can be selected in the control

software. Another design issue that affects both performance and control of FMS is

production lot size (PLS) and moving lot size (MLS). By determining the optimum PLS,

signals for changing the setup of machines can be appropriately given during the control of

FMS. In the FMS considered, there are two different combinations of PLSs for parts A,

B, C, and D namely, 2, 1, 3, 2 and 1, 1, 1, and 1.

In the first combination parts A, B, C, and D are produced in the lot sizes equal to

their exact requirement as in the bill of materials of product 1. In the second case, these

parts are produced in unit lot sizes. For example, with respect to MC1 and MC2 and based

on the process sequences of parts in FMS (shown in Table 4.3), the first combination

corresponds to the loading sequence 1A, 1A, and 1B on MC1 and 1C, 1C, 1C, and 1D,

1D on MC2. The second combination corresponds to 1A and 1B on MC1 and 1C and 1D

on MC2. It is clear that in the former case, the setup time required to produce one finished

product is less compared to the latter. However, the work in process inventory in the

former may be more compared to the latter. Further, PLSs may affect the utilization of

machines, robots, and AGVs. The quantitative analysis of PNM allows to quantify the

influence of PLSs on system performance. For more details on the results of performance

evaluation, refer to the Chapter 4.

198

9 . 3 .2 .	 Complete Structure of Objects with Their Static and Dynamic
Relations

After finalizing the PNM, the OMT diagram is combined with it to design the complete

structure of object classes with their static and dynamic relations as shown in Fig. 9.13.

Figure 9.13 Class definitions of important object classes in FMSs

199

A simple and systematic methodology for selecting objects, their attributes and

operations from the PNM is described in this section. As mentioned earlier, PNs can aid

to identify the potential objects and their corresponding data structures and operations.

Places in PNM aid to identify objects and their data structures, and transitions aid to find

operations for objects.

Generally objects are identified when developing the OMT diagram for an FMS.

The attributes and operations of the objects can be formulated with aid of its Petri net

model. For the FMS example, MC, CC, PLC, machine, AGV, robot, part, and buffer are

selected as potential object classes from the OMT diagram. For convenience, those places

corresponding to the objects are shown as concentric circles in Figs. 9.10 and 9.11.

The places that represent the intermediate states of objects such as command sent

(for MC in Fig. 9.11) and loaded_with_part (PAM1 for Machine 1 in Fig. 9.10); and the

places that model conditions of processes such as waiting and monitoring_in_progress (for

MC in Fig. 9.11), and AGV_travelling_from_machine_1_to machine_2 (AM12 for AGV

in Fig. 9.10) aid in selecting the data structures for the objects.

In Figs. 9.10 and 9.11, this type of places are shown as normal circles and aid in

selecting the data structures (also called as data attributes) as shown in Fig. 9.13. The

values of these attributes are represented by the presence of the tokens in the corresponding

places modeling them. Normally, the value of these attributes are of boolean type.

In the PNM transitions represent the activities corresponding to objects such as

send command to _CC and receive_ acknowledgment (in Fig. 9.10), AGV starts_ ro

machine (in Fig. 9.11). Transitions corresponding to each object are selected as its

operations as shown in Fig. 9.13. It shows the class definitions of important object classes

and their data structures and operations. These classes are essential for development of

object-oriented control software. A software engineer can understand the logic structure of

the whole system by looking at these classes. Hence, these object classes are the

fundamental building blocks of an object-oriented software system.

200

9.3.3. Reusability, Extendibility, and Modifiability of the Design

Reusability and extendibility are two of the important characteristics of the software

generated by using OOD (Meyer 1988, Rumbaugh et al. 1991) which makes easily

adaptable and maintainable software. Reusability is the ability to reuse a module or

component developed for a given design, in a new design (Meyer 1988, Rumbaugh et al.

1991). To illustrate the reusability, extendibility, and modifiability of the design, consider

now that the designer decides modifying FMS as follows:

1. Include a flexible assembly cell (FAC) consisting of two new machines, MC5

and MC6; two new robots, R5 and R6 for pick and place operations, and two

part feeders,

2. Include a mobile robot with the additional tracks in FAC to transport material

among machines and robots, and

3. Change the operation management strategy of the FMS from push to pull during

the production of finished product considered earlier. In other words, machines

process parts only when there is a demand.

The new configuration of the FMS is shown in Fig. 9.14. The OMT diagram

corresponding to the new FMS is shown in Fig. 9.15. It omits the OMT diagram portion

that has not changed in Fig. 9.8. It is noticed that the earlier OMT diagram is reused by

extending it to include the elements newly added to the FMS. The third new modification

stated above changes the dynamic relations among objects in FMS and may affect the

system performance. To accommodate this modification, we redefine the PNM as shown

in Fig. 9.16. Observe that the same PNM (Fig. 9.10) used earlier to study the push

paradigm is reused to study the pull paradigm with slightly modification. This modification

is shown as the dotted arcs modeling the pull paradigm. The system performance can be

evaluated again as discussed in Chapter 4. The control software developed earlier for the

FMS need not be much changed due to the modularity in OOD. Since the PNMs modeling

the FMS corresponding to both push and pull paradigms are basically same, the data

structures of objects need not be changed to include the new specifications of FMS.

Hence, this section has briefly illustrated how the proposed design methodology supports

reusability, extendibility, and modifiability concepts in developing control software.

201

Figure 9.14 The expanded configuration of FMS

202

Figure 9.15 OMT diagram for the expanded FMS

9.4. Summary

Development of integrated FMS control software that can be used for planning, scheduling,

monitoring, simulation, and control is difficult and hence attracting the growing attention of

researchers and practitioners. To ease the task of developing FMS control software, a

systematic design methodology is proposed by combining the OOD concepts, OMT

diagrams, and PNs. An FMS example is used to illustrate the methodology. OMT

diagram for the FMS is developed to find the objects and the static relationships among

them. PNM is formulated to study the performance of the system. The PN based method

to help identify the data structures and operations of FMS objects is also illustrated. The

reusability, extendibility, and modifiability of control software system using this

methodology are also illustrated by augmenting the original OMT and PNM to satisfy the

new specifications of the FMS. The traditional methods for discrete event dynamic

systems in OOD include state/state transition diagrams and event trace/interaction diagrams.

They have been proved ineffective for large FMS projects.

Figure 9.16 PNM of the FMS under pull paradigm

203

204

This chapter emphasized PNs as the dynamic model in OOD and results in the

following advantages: 1) By adopting the bottom-up approach of PN modeling, PNs can

support two important characteristics of software generated by OOD namely reusability and

extendibility; 2) PN models offer a systematic method to identify the data structures and

operations of objects in the software system; 3) PNs can be used as an integrated tool to

both control the system and analyze the system performance.

The significance of this chapter is two fold. From the OOD point of view, this

chapter has embedded PNs as a dynamic modeling tool in an OOD approach to achieve the

objectives never before possible, e.g., explicit description of concurrency and

synchronization among objects and performance analysis of FMS. From the practice point

of view, this chapter has offered an effective systematic methodology to design modifiable,

extendible, and reusable control software and helped further establish OOD, OMT

diagrams, and PNs for industrial applications.

In the future, OMT diagrams and PNs needs to be extended to deal with such issues

as real-time monitoring and fault tolerance, and communication among various objects in

FMS. The class definitions of objects presented in this work need to be extended in order

to address problems related to material requirement planning, computer aided process

planning, and computer aided design. The future studies include standardization of PN

techniques in OOD and implement a laboratory system considering the real time control and

breakdowns of system components. A bench mark study using traditional methods and

proposed method should be useful. The results presented in this chapter represent a good

beginning towards the above objective.

CHAPTER 10

CONCLUSIONS

10.1 Contribution

Petri nets are being increasingly studied world-wide by several researchers and industrial

practitioners to address a variety of issues related to FMSs starting from their

specification, modeling, designing, performance evaluation, and scheduling to real-time

control and monitoring. Even though PNs and related technologies have been

successfully applied in European and Japanese industries, their acceptance in American

industry is rather sluggish. However, by demonstrating the efficacy of PN-aided

approaches to solving the related problems in FMS, industrial applications of PNs can be

promoted. Motivated by these facts, the present work explores the application of PNs

and proposes PNs as a tool and methodology for modeling, simulation, and control in

FMS s.

First, this research work makes a survey on FMSs and explores related problems

in their implementation. Then, convinced by the suitability of PNs to solve a variety of

problems in FMSs, it makes a survey on the application of PNs as an integrated tool and

methodology in FMS. Simulation and performance evaluation, breakdown modeling, and

discrete event control are found to be three potential areas for exploring both the theory

and application of Petri nets. By studying various problems in the above areas with Petri

nets, this research makes an attempt to establish PNs as an integrated tool for modeling,

simulation, and control of FMSs.

The present work contributes not only to the existing theory of PNs but also to the

application spectrum of PNs. In theory, this work proposes extensions to the available

classes of PNs and introduces new classes of PNs for modeling breakdown situations and

designing discrete event controllers. In practice, it demonstrates the power of PNs, 1) to

evaluate and compare the performance of push and pull paradigms in FMSs, 2) to design

205

206

reusable, modifiable, and extendible sequence controllers, and 3) to develop object-

oriented control software. This research work also gives an insight look at the application

of PNs for discrete-event control and answers certain basic questions such as "Why a PN

model is better suitable than LLD". Through a practical system, a bench-mark study to

compare ladder logic diagrams and PNs for discrete-event control is presented. From the

results of this study, the advantages and disadvantages of both LLDs and PNs are

explored.

The present work widens the knowledge of PN literature in two ways. First, it

will allow engineers and managers who are responsible for the design and the

implementation of modern manufacturing systems to evaluate Petri nets for applications

in their work . Second, it will provide sufficient breadth and depth to allow development

of Petri net-based methods for discrete event control of manufacturing systems. Thus this

research will foster further research and applications of Petri nets in aiding the successful

implementation of advanced manufacturing systems.

In the following paragraphs the specific contributions of this research in

simulation and performance evaluation, breakdown modeling, and discrete-event control

are detailed.

10.1.1. Simulation and Performance Evaluation

Earlier research works on PNs have not demonstrated the suitability of PNs for

investigating the design and performance analysis issues of FMSs functioning under

either push or pull paradigms. Also, earlier reported works of PNs in FMSs addressing

push and pull paradigms have not explicitly presented (i) the differences between PN

modeling of push and pull paradigms, and (ii) modeling of production and moving lot

sizes. This work investigates the application of PNs for performance evaluation of push

and pull paradigms in FMSs using timed PNs by changing different operational

parameters in the system operating under push and pull paradigms.

207
The performance criteria are the buffer sizes, output rate, utilization of machines,

AGVs, and robots. The configuration that results in the minimum buffer sizes, maximum

system utilization and output rate is considered as the optimal solution.

The manufacturing system considered is investigated as both FMS and flexible

assembly system, by changing the production lot sizes, the number of unique

transportation tasks (which decides moving lot sizes), and the number of AGVs for each

transportation task. To achieve this, PN models of the system are formulated and

analyzed quantitatively through a PN-driven simulation package developed by the author.

The analysis shows that in both cases of FMS and flexible assembly system (FAS), the

push paradigm performed better than the pull one for this system. This is because unlike

the general notion that only pull paradigm results in minimum WIP, push may result not

only in minimum WIP but also maximum system utilization and output rate for certain

configurations and operation parameters. The results may change if some of the system

parameters such as processing and/or assembly times change. The same PNMs can be

used by associating the new time values with the corresponding transitions modeling such

activities. It is concluded that 1) before adopting either push or pull paradigm, the system

should be evaluated with goals to reduce inventories and increase system utilization and

output rate, and 2) PNs can be a very useful tool to perform such evaluation.

From the simulation results, many inferences are useful for the operations

managers, system designers, manufacturing, industrial and software engineers. For

example, the results show that average robot utilization is very low in all the cases

studied in this thesis. This is because there is a dedicated robot for each work cell.

10.1.2. Breakdown Modelin g

Earlier research studies have not presented the detailed breakdown handling procedures

and performance optimization issues for various machine/robot breakdown rates.

Furthermore, they considered only breakdowns that arrive before starting of an activity.

208

However, in the real life situations breakdowns may arrive when an activity is in

progress. This restricts their accuracy for analysis of a realistic assembly system.

Thus thesis introduces a new class of tools called Augmented Timed Petri nets

(ATPNs) to model breakdown handling in manufacturing systems. ATPNs can model

their operations in detail considering the breakdowns of various components. The

methodology for formulating the ATPN models is illustrated by considering a flexible

assembly system. Also, the application of ATPNs for optimization and design is shown

by investigating the optimum number of assembly fixtures for the system under various

robot breakdown rates. The methodology proposed in this thesis can be extended to deal

with breakdowns of several machines, AGVs, and cell controllers and other production

interruptions. ATPNs provide rapid, flexible, and realistic modeling.

10.1.3. Discrete-Event Control

Development of flexible, reusable, and maintainable control software is important to

implement advanced industrial automated systems. Traditional methods of using ladder

logic diagrams (LLDs) to design sequence controllers are being challenged by the needs

in flexible and agile manufacturing systems. On the other hand, PNs are an emerging

tool that needs to be established for the industrial discrete-event control of manufacturing

systems. A new class of PNs that closely resemble ordinary PNs is of the paramount

importance for the development of control software because ordinary PNs are simple and

relatively easier to understand.

This work proposes a class of PNs called Real-time PNs (RTPNs) for sequence

controller design. A simple and straight-forward procedure is demonstrated to implement

them. The detailed differences between earlier classes of PNs that are aimed for control

and RTPNs are discussed.

In order to compare RTPNs and LLDs, this thesis identifies design complexity

and response time as the criteria. Design complexity is defined and characterized by two

factors namely graphical complexity and adaptability to meet changes in control

209

specifications. By designing and implementing the control of an industrial automated

system subject to changing control requirements, LLDs and PNs are compared in terms

of a common measure, namely, the number of basic elements, which signify both design

complexity and response time.

Motivated by the fact that any sequence controller can be designed by

synthesizing the building blocks of logic models, this work also proposed analytical

formulas to estimate the number of basic elements to model the most commonly used

building blocks of logic modeling by both PN and LLD. Furthermore, a methodology

that uses the developed analytical formulas to estimate the total number of basic elements

to model a control logic even before physically modeling it using PNs and LLDs is

presented. The concepts developed in this chapter are demonstrated by considering

several examples of sequence controllers. The examples considered here demonstrate the

potential for practical application of the research results.

The methodology presented provides an accurate quantitative comparison of PN

and LLD in terms of basic elements. By precluding the need for physically building the

controllers by either PN or LLD, this methodology serves as an effective aid for a control

engineer to select between PN and LLD even before starting to write the control program.

The methodology developed is simple and straightforward to apply. One critical task in

the development of PN based controller is to design PN models for given the sequence

control specifications. Also, one of the factors for the comprehensive comparison of PNs

and LLDs is the availability of standard procedures for designing controllers. There

exists systematic design procedures for designing ladder logic diagrams. However, for

the large scale application of PNs in industry, there is a need for systematic design

procedures for developing PN models.

This thesis presents a simple conversion procedure to formulate PN models from

a given logic control specification. The PN model developed using the conversion

procedure is simple and easy to understand. The conversion procedure is applied to

210

design PN models corresponding to the classical control sequences that exist in discrete

event control of manufacturing systems. This procedure is illustrated for several types of

logic control specifications, single and multi path sequences, with and without repetitive

actions. The number of basic elements in the PN model obtained by following the

conversion procedure is compared with that obtained previously in this thesis. The

comparison clearly indicates that the new PN models have less design complexity.

It is also concluded that while formulating PN models corresponding to sequences

with repetitive actions, merging of common places may increase the complexity of the

PN. Hence, merging of places in such situations is not recommended. Using the same

PN model, both types of systems namely, systems that require sustained actuating signals

and the systems that require only a momentary or pulsed actuating signals can be

controlled. This can be accomplished by changing the corresponding attributes for

transitions as reported in PN based control using Real-time PNs. However, when using

ladder logic diagrams, two separate design procedures have to be followed to design two

separate diagrams.

Development of integrated FMS control software that can be used for planning,

scheduling, monitoring, simulation, and control is difficult and hence attracting the

growing attention of researchers and practitioners. The FMS control software should be

reusable, modifiable, and extendible to: 1) adapt to changes in the system configuration

and specifications, and 2) to deal with a complex shop-floor system which often consists

of numerous similar components. A systematic design methodology is obviously needed

to develop such FMS control software.

To ease the task of developing FMS control software, this thesis proposes a

systematic design methodology by combining the OOD concepts, object modeling

technique diagrams (OMT) diagrams and PNs. Its necessity and value through the use of

OOD as a design methodology, OMT diagrams as a static modeling tool, and PNs as a

dynamic modeling and performance tool is demonstrated. An FMS example is used to

211

illustrate the methodology. OMT diagram for the FMS is developed to find the objects

and the static relationships among them. PNM is formulated to study the performance of

the system. The PN based method to help identify the data structures and operations of

FMS objects is also illustrated. The reusability, extendibility, and modifiability of control

software system design using this methodology are also illustrated by augmenting the

original OMT and PNM to satisfy the new specifications of the FMS.

This thesis emphasizes PNs as a dynamic model in OOD and illustrated the

following advantages: 1) by adopting the bottom-up approach of PN modeling, PNs can

support two important characteristics of software generated by OOD namely reusability

and extendibility; 2) PN models offer a systematic method to identify the data structures

and operations of objects in the software system; and 3) PNs can be used as an integrated

tool to both control the system and analyze the system performance.

10.2. Limitations

The concepts and approaches presented in this work are implemented only partially . The

application of RTPNs and its comparison with LLDs is practically implemented using the

facilities at The Robotics Center, Florida Atlatnic University, Boca Raton. The other

concepts in this work are not practically implemented. However, integration and

implementation of all the concepts proposed in this work through a practical system is an

interesting task. In order to focus the objectives of this research, several assumptions are

assumed while modeling, simulating, and controlling the systems considered in the

examples. However, those assumptions may not be always true and may not allow to

draw general conclusions on the investigations presented. The specific limitations of this

research are presented below:

1. During the performance evaluation of FMS and flexible assembly system, a

dedicated robot is assumed. However, this not only requires huge investment

cost but also results in under-utilization of robots. Also, the reported values of

212

utilizations of system elements are generally low. Hence, an attempt to

increase these utilizations by changing the system parameters should be made.

2. While comparing the performance of push and pull paradigms, machine setup

times are assumed to be sequence independent. However, this may not be true

when a machine needs to produce several part varieties.

3. The delays due to the traffic of AGVs are assumed to be negligible in this

thesis. However, in an FMS employing several AGVs, system performance

would be affected due to the AGV waiting times at control zones.

4. In this work, comparison between push and pull paradigms is done by

considering a particular system. Hence, it is not possible to draw general

conclusions depending upon the results provided to select between push and

pull.

5. Issues related to tool handling are not modeled in this work because tools are

assumed to be always available at machine. However, detailed modeling of

tool handling procedures is essential for realistic system modeling.

6. While studying the performance of push and pull paradigms, breakdown of

machines, robots, AGVs, and tools is not assumed.

7. In this work, each workstation is served by a dedicated robot. This is not true

in practice as it requires huge investment and result in under-utilization of

robots.

8. While modeling the system with ATPNs, each robot is assumed to have a

standby robot. This increases the investment cost and result in under-

utilization of robots.

9. During modeling a system with ATPNs, the values of repair time and change-

over time for all robots are assumed to be the same. This may not be true

because repair time depends upon the type of robot and change-over time on

the function of robot.

213

10. When the system contains several components, the size of ATPN models may

grow.

11. In modeling of the assembly system, the assembly sequence is assumed to be

sequential. However, in a more complicated flexible assembly system part

flow among assembly stations may be random.

12. Control of a system through digital input/output interface is only one of the

several implementation methods. Different implementation methods of RTPN

based control are not illustrated. The uniqueness of the output attributes of

transitions should be maintained carefully. For e.g. the second attribute for

transition, say 8 can be obtained by many ways, e.g. (24 - 23) or (23). In the

first case, channel 4 is activated and channel 3 is deactivated. In the second

case, channel 3 is activated. So, to avoid this kind of confusion, two bits may

need to be checked. The fist bit should check whether the state of a channel

should be changed or not. The second attribute does the actual activation or

deactivation. It is like checking a parity.

13. Theoretical analysis of ATPNs to check the properties of liveness, boundness,

and reversibility are not studied.

14. RTPNs are particularly more suitable at the lowest control level of FMSs as

they do not have constructs to model intercommunication among workstations

present in a system. For example, they can not recognize the different part

varieties entering the cell.

15. Even though, RTPNs and ATPNs can be combined for the real-time control of

a system with breakdowns, such procedure is not clearly illustrated.

16. The software classes developed for the FMS are not implemented.

214

17. During the development of OOD based control software, class definitions of

objects presented in this work did not address problems related to material

requirement planning, computer aided process planning, and computer aided

design.

10.3. Further Research

In order to eliminate the limitations of this work, the following guidelines are given for

further research:

1. During the performance evaluation of FMS and flexible assembly system, in

order to avoid the huge investment costs and increase the utilization of robots,

the possibility of sharing a common robot between two work cells should be

studied further. However, scheduling of robot movements should be done to

prevent from impairing the performance of other system elements.

2. Sequence dependent setup times have to be considered while comparing the

performance of push and pull paradigms.

3. By modeling a tandem FMS, delays that arise due to traffic conjestion can be

avoided. Furthermore, grouping of machines in such systems and comparing

the performance of push and pull paradigms will be an interesting topic for

further research.

4. Analyzing the performance of push and pull paradigms considering several

systems will provide suggestions for selecting between push and pull. Also,

hybrid push-pull paradigms should be studied.

5. The simulation studies presented in this work can be extended by modeling

tool handling procedures such as tool delivery, tool loading, and tool sharing

among machines. Such studies will provide realistic estimates of system

performance under more dynamic conditions that exist at the shop-floor.

6. Breakdown of machines, robots, AGVs, and tools has to be considered while

comparing the performance of push and pull paradigms.

215

7. This research can be extended to study some important issues such as robot

scheduling during breakdowns when only a single robot exists as a standby to

all three robots, system performance when several product varieties are

produced simultaneously in the system with random routing of parts, and cost

consideration for standby robots and breakdown handling.

8. While modeling a system with ATPNs, the effect of random distributions of

repair and change-over times on the system performance can be investigated

by associating various time values to the transitions modeling repair and

change-over activities.

9. When modeling a complex system, colored PNs can be combined with the

principles of ATPNs to formulate concise graphical models.

10. Modeling of a system with random part flow among workstations may provide

new insights into the design of optimum number of assembly fixtures.

11. Theoretical analysis of ATPNs to check liveness, boundness, and reversibility

should be done.

12. Illustrating the use of RTPNs for various implementation methods will expose

the advantages and disadvantages of RTPNs.

13. RTPNs can be extended by adding more attributes to places and transitions in

order to control complex hierarchical manufacturing systems that use

advanced communication protocols and several computers for control.

14. The method of integration of RTPNs and ATPNs for the real-time control of a

system with breakdowns can be demonstrated using a practical system in

order to realize the benefits of ATPNs and RTPNs. In such cases, the

transition modeling the occurrence of breakdown is not associated with

random breakdown times. Instead, the sensors/limit switches that recognize

the breakdown in the system are modeled as input places for this transition.

When there is a breakdown in the system, these places get tokens and thus

216

immediately fire the transition, modeling the occurrence of breakdown.

Again, while modeling the emergency stop, instead of using inhibitory arcs in

RTPNs, the concept of deactivating transitions from ATPNs can be applied.

15. Micro-controllers based on RTPNs can be developed in order to develop

adaptable discrete-event controllers that can be easily reused, modified, and

extended. This will foster the industrial application of PNs.

16. Other factors which have impact on the comparison and selection of LLDs

and PNs should also be explored in the future work. For example, similar to

graphical complexity, irrespective of the implementation scheme an effor to

compare the response time in terms of response time complexity should be

made. Furthermore, comparison of the response time of PN and LLD on the

same hardware using different implementation schemes would be useful to

commercially develop and market PN based controllers.

17. In the future, OMT diagrams and PNs needs to be extended to deal with such

issues as real-time monitoring and fault tolerance, and communication among

various objects in FMS.

18. The software classes developed for the FMS should be implemented using

such languages as Ada, Smalltalk, and C++ to select the best candidate for the

development of OOD based-control software.

19. During the development of OOD based control software, class definitions of

objects presented in this work need to be extended in order to address

problems related to material requirement planning, computer aided process

planning, and computer aided design.

20. The future studies should consider standardization of PN techniques in OOD

and implement a laboratory system considering the real time control and

breakdowns of system components.

APPENDIX A

SOFTWARE PACKAGE TO EXECUTE TPN AND ATPN

This Appendix contains the source code for executing Timed Petri net and Augmented-

timed Petri net models.

Source code

-- PROGRAM FOR EXECUTING TIMED-PETRI NET MODEL AND
AUGMENTED-TIMED PETRI NET MODEL.

HARDWRE REQUIRED: Worstation/terminal

SOFTWAE REQUIRED: ADA Compiler in VMS operating system.

with TEXT_IO;

procedure TAIWAN is

use TEXT_IO;
package INT_IO is new INTEGER_IO(INTEGER);
use INT_IO;
Inpt,OTPT: FILE_TYPE;
type MATRIX is array (1..99,1..99) of INTEGER; --
type ROW_MATRIX is array (1..99) of INTEGER; --
type MAT is array (1..100) of INTEGER;
type SIMP is array (1..2) of INTEGER;
type SIM is array (1..10) of SIMP;
INF,OTF: MATRIX;
DT : SIM;
F,FF,R,M,D,DD,ATM: ROW_MATRIX; 	 --D(i) transition duration

--R(i) remaining time of a transition
--ATM(i) active time of a transition

A,AX,RA: MAT;	 --A(i) transition to be disabled

NT,NDT,NP,T,X,Q,MIN,TMIN,COUNT,CT,H,PT,BX,BY : INTEGER; -- x No. of
transitions to be disabled

-- COUNT time the system to be simulated

procedure ENABLED_TRANSITIONS (INM: in MATRIX; Z: out ROW_MATRIX) is
begin

for i in 1..NT loop

for j in 1..NP loop
if (M(J) -abs(INM(I,J))) < 0 then

GOTO SPOT;
end if;

217

end loop;

if DD(i) > 0 then
z(i):=0;

else
z(i):=1;

end if;
«SPOT>> null;

end loop;

end;

procedure CONFLICT (DX: in ROW MATRIX; Ql:out INTEGER) is

KJ,KK: INTEGER;
C: array(1..NT) of INTEGER;

begin

KK:=0;
KJ:=0;
Q1:=0;
for I in 1..NT loop

if DX(I) > 0 then
KK:= KK + 1;
C(KK):=I;

end if;
end loop;

for I in 1..KK-1 loop

for J in I+1..KK loop
for K in 1..NP loop

if INF(C(I),K)>=1 and INF(C(J),K)>=1 then
NEW_LINE;
PUT("TIME AT CONFLICT:");
PUT(T,7);
NEW_LINE;
PUT(OTPT,"TIME AT CONFLICT: ");
PUT(OTPT,T,7);
PUT(OTPT, "	 "),

PUT("CONFLICT :");
PUT(C(I),2);
PUT(OTPT,"CONFLICT: ");
PUT(OTPT,C(I),2);
PUT(",");
PUT(OTPT,",");
PUT(C(J),2);
PUT(OTPT, C(J),2);
PUT(" ");
PUT(OTPT, " ");
NEW_LINE(OTPT,1);

218

KJ:=KJ+1;
Q1:=KJ;
GOTO PLACE;

end if;
end loop;

<<PLACE>> null;
end loop;

end loop;

end;

procedure MINIMUM (DY: in out ROW_MATRIX; mini:in out INTEGER;
tmini: in out integer;rr:in out MAT;hh:in out INTEGER) is

TX,TY: array (1..NT) of INTEGER;
L : INTEGER;
tmn,mn:integer;
begin

L:=0;
hh:=0;
for i in 1..100 loop

rr(i):=0;
end loop;

for i in 1..NT loop

if DY(i) > 0 then
L:= L + 1;
TX(L):=DY(i);
TY(L):=I;

end if;

end loop;

tmn:= TX(1);
for i in 1..L loop

if TX(i) <= tmn then
tmn:=TX(i);
mn:=TY(i);

end if;

end loop;
tmini:=tmn;
mini:=mn;

for j in 1..L loop

if TX(j)=tmn then
hh:=hh+1;

219

rr(hh):=TY(j);
end if;

end loop;

end;

procedure NEW MARKING (MM: in out ROW MATRIX) is

k:integer;
b: array (1..k) of integer,

begin

k:=0;

for i in 1.. NT loop
if F(i) > 0 then
k:=K + 1;
b(k):=i;

end if;
end loop;

for i in 1..k loop
for j in 1..NP loop

if INF(b(i),j) > 0 then
MM(j):=MM(j) - INF(b(i),j);

end if;
end loop;

end loop;

end;

begin

OPEN(Inpt,IN_FILE,"indat");
create(OTPT,OUT_FILE,"OUTDAT");
GET(inpt,NT);
GET(inpt,NP);
PUT("NUMBER OF TRANSITIONS: ");
PUT(NT,2);
PUT(OTPT,"NO: OF IRAN: ");
PUT(OTPT,NT,2);
NEW_LINE; NEW_LINE(OTPT,1);
PUT("NUMBER OF PLACES: ");
PUT(NP,2);
PUT(OTPT,"NO: OF PLACES: ");

PUT(OTPT,NP,2);

220

NEW_LINE;
NEW_LINE(OTPT,1);

for i in 1..99 loop
for j in 1..99 loop

inf(i,j):=0;
otf(i,j):=0;

end loop;
end loop;

BX := 0;BY := 0;

for i in 1..10 loop
DT(i)(1) := 0; --(transition generating deactivation pulse)
DT(i)(2) := 0; --(transition to be deactivated)

end loop;

for i in 1..NT loop
for j in 1..NP loop

GET(Inpt,INF(i,j));

end loop;
end loop;

for i in 1..NT loop
for j in 1..NP loop

GET(Inpt,OTF(i,j));
end loop;

end loop;

PUT("TRANSITION DURATIONS: ");
PUT(OTPT,"TRANSITION DURATIONS : ");

for i in 1..NT loop
GET(Inpt,D(i));
PUT(D(i),7);
PUT(",");
put(otpt,D(i),7);
put(otpt,",");
if (i mod 10 = 0) then

NEW_LINE;
NEW_LINE(OTPT,1);

end if;
end loop;

NEW_LINE; NEW_LINE(OTPT,1);
PUT("INITIAL MARKING: ");
PUT(OTPT,"INITIAL MARKING: ");

for i in 1..NP loop
GET(Inpt,M(i));
PUT(M(i),3);PUT(",");
PUT(OTPT,M(I),3);PUT(OTPT,",");

221

if (i mod 10 = 0) then
NEW_LINE;
NEW_LINE(OTPT,1);

end if;
end loop;

GET(Inpt,NDT);
for i in 1..NDT loop

GET(Inpt,DT(i)(1));
GET(Inpt,DT(i)(2));

end loop;

NEW_LINE;
PUT("HOW LONG THE SYSTEM HAS TO BE SIMULATED: ");
NEW_LINE;
PUT("GIVE TIME UNITS : ");
GET(COUNT);
PUT(OTPT, "TIME OF SIMULATION: ");
PUT(OTPT, COUNT,7);
NEW_LINE(OTPT,1);
NEW_LINE;

PUT("COMING UP TO HERE:");

PUT("GIVE BX&BY ");
GET(BX);
GET(BY);
put(otpt,"BX");
PUT(OTPT,BX,5);
NEW_LINE(OTPT,1);
PUT(OTPT,"BY");
PUT(OTPT,BY,5);
NEW_LINE(OTPT,1);

for i in 1..99 loop
DD(i):=0;
R(i):=0;
F(i):=0;
FF(i):=0;
ATM(i):=0;

end loop;

T:=0;
CT:=0;
min:=0;
tmin:=0;
H:=0;
PT:=0;

222

for i in 1..10 loop
RA(i):=0;

end loop;

«dot>> for i in 1..nt loop
f(i):=0;
ff(i):=0;

end loop;

ENABLED_TRANSITIONS(INF,F);

for i in 1..NT loop
if F(i) > 0 then
FF(i):= D(i) + T;

end if;
end loop;

for i in 1..NT loop
DD(i):=DD(i) + FF(i);

end loop;

NEW_LINE;
PUT("TIME: ");
PUT(T,7);
NEW_LINE;
NEW_LINE;

PUT("MARKING: ");
for i in 1.. NP loop

PUT(M(I),3);
PUT(" ,");

end loop;

NEW_LINE;

CONFLICT(DD,Q);

if Q > 0 then
PUT("GIVE NUMBER OF TRANSITIONS TO BE DISABLED : ");
GET(X);
NEW_LINE;
PUT("GIVE TRANSITONS TO BE DISABLED:");
PUT(OTPT,"TRANSITIONS DISABLED ARE:");

for i in 1..X loop
GET(A(i));

PUT(OTPT,A(I),2);
PUT(OTPT, ",");

end loop;
PUT(OTPT, " ");

for i in 1..X loop
DD(A(i)):=0;
F(A(i)):=0;

223

end loop;
end if;

if T > BX then

BX := BX+BY;
PUT("F-VECTOR : ");

PUT(OTPT, "TIME: ");
PUT(OTPT, T, 7);
NEW_LINE(OTPT,1);

PUT(OTPT, "MARKING: ");

for i in 1..NP loop
PUT(OTPT,M(I),3);
PUT(OTPT,",");
if (i mod 10 = 0) then

NEW_LINE;
NEW_LINE(OTPT,1);

end if;
end loop;

NEW_LINE(OTPT,1);

PUT(OTPT,"F-VECTOR : ");

for i in 1..NT loop
PUT(F(i),2);
PUT(OTPT,F(i),2);
PUT(",");
PUT(OTPT,",");

if (i mod 10 = 0) then

NEW_LINE(OTPT,1);
end if;

end loop;
NEW_LINE(OTPT,1);
PUT("R-FUNCTION: ");
PUT(OTPT,"R-FUNCTION: ");
for i in 1..NT loop

PUT(R(i),2);
PUT(OTPT,R(I),2);
PUT("");
PUT(OTPT,",");
if (i mod 10 = 0) then

NEW_LINE(OTPT,1);
end if;

end loop;
NEW_LINE(OTPT, 1);
PUT(OTPT,"ACTIVE TIME VECTOR: ");
for i in 1..NT loop

224

PUT(OTPT,ATM(i),5);
PUT(OTPT,",");

if (i mod 10 . 0) then
NEW_LINE(OTPT,1);

end if;
end loop;

NEW_LINE(OTPT,1);

end if;

for i in 1..nt loop
if F(i) = 0 and R(i) = 0 then

PUT(" ");
else

GOTO CONT;
end if;

end loop;
NEW_LINE;

PUT("*****DEAD STATE*****");
PUT(OTPT,"*****DEAD STATE*****");
GOTO POINT;

« CONT >> CT := CT + 1;

if T > COUNT then
goto POINT;

end if;

MINIMUM(DD,min,tmin,ra,h);
PT:=t;
t:=tmin;

for i in 1..h loop
DD(ra(i)):=0;
ATM(ra(i)):=ATM(ra(i))+tmin-PT;

end loop;
for i in 1..NT loop

R(i):=0;
end loop;

for i in 1.. NT loop
if DD(i) > 0 then

R(i):= DD(i) - T;
ATM(i):=ATM(i)+tmin-PT;

end if;
end loop;

NEW_MARKING(M);

for j in 1..h loop
for k in 1..NDT loop

if ra(j) = DT(k)(1) then
DD(DT(k)(2)) := 0;
R(DT(k)(2)) := 0;

225

end if;
end loop;

end loop;

for j in 1..h loop
for i in 1..NP loop

M(i):=M(i) + OTF(ra(j),i);
end loop;

end loop;

GOTO DOT;

<<POINT» NEW_LINE;

PUT("EXECUTION TERIMINATED: ");
PUT(OTPT,"EXECUTION TERIMINATED");

CLOSE(Inpt);
CLOSE(OTPT);

end;

APPENDIX B

SOFTWARE PACKAGE TO EXECUTE RTPN

This Appendix contains the source code for executing a Real-time Petri net (RTPN). In

order to illustrate its usage, an example of RTPN is presented. The sample input to run

this PN and the output of this program are also given.

Source code

/***
THIS PROGRAM IS AN INTEGRATED SOFTWARE SOLUTION FOR BOTH
SIMULATION AND CONTROL OF AN INDUSTRIAL AUTOMATED SYSTEM.

HARDWARE REQUIRED:	 IBM compatible PC and digital input/output
interface

SOFTWARE REQUIRED:	 Borland C

The program contains following modules with their functions explained below:

NAME OF THE MODULE 	 PURPOSE OF THE MODULE

1. Read_petri_net	 Stores the structure of the Petri Net

2. Enabled_ transitions 	 Gives an output vector containing
the transitions that can be fired

3. Conflict	 Resolves the conflict between
two enabled transitions sharing
common place

4. Minimum	 Gives the number of transition(s), and
identity of transition(s) that
has (have) minimum firing duration

5. New_marking	 It reads the status of inputs and
removes tokens from corresponding
places when the transitions is fired

6. Main	 It is the main program that
coordinates the functions of all the
above modules and send output
signals for relays

**/

227

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
#include <time.h>

FILE *input;
FILE *output;
FILE *fp;

typedef int matrix[99][99];
typedef int row_matrix[99];
typedef int mat[100];
typedef int simp[2];
simp sim[10];
simp dt[10];
row matrix f,ff,r,m,d,dd,atm;
matrix inf,otf;
int i,j,k;
mat a,ax,ra;
int nt,ndt,np,t,x,q,min,tmin,count,ct,h,pt,bx,by;
char input_file[20], output_file[20];
int limit_bit_num[99];
int output_value[99];
int input_channel[16],output_channel[16],output_array[16],input_array [16] ;
long num,numl;
long end_num;
int emergency_stop;

extern int digital_output(long num);
extern int digital_input(long *adl);
extern int binary_decimal(long *num,int aryl [16]);
extern int decimal_binary(long num,int aryl [16]);

int read_petri_net();
int enabled_transitions(matrix inm, row_matrix z);
int conflict (row_matrix dx, int q1);
int minimum(row_matrix dy, int mini, int tmini, mat rr, int hh);
int new_marking (row_matrix mm);

/*int read_petri_net(int inf[99][99],int otf[99][99], int dt[10], int d[99],
int m[99])

*1
int read_petri_net()

printf("\nPlease enter the input file : ");
scanf("%s", &input_file);
printf("\nPlease enter the output file : ");

228

scanf("%s", &output_file);

input=fopen(input_file, "r");
output=fopen(output_file, "a");
fscanf(input,"%d", &nt);
printf("Number of transitions are: %d\n", nt);
fprintf(output, "Number of transitions are: %d\n", nt);

fscanf(input,"%d", &np);
printf("Number of places are: %d\n", np);
fprintf(output,"Number of places are: %d\n", np);

for (i=1; i<=99; i++)
for (j=1; j<=99; j++)

otf[i][j]=0;

bx=by=0;

for (i=1; i<=10; i++)
{

dt[i][1]=0;
dt[i] [2]=0;

for (i=1; i<=nt; i++)
for (j=1; j<=np; j++)

fscanf(input,"%d", &inf[i][j]);

printf("This is input matrix: \n");

/*for (i=1; i<=nt; i++)
for (j=1; j<=np; j++)

printf("%d", inf[i][j]);
fprintf(output, "%d", inf[i][j]);
if (j==np) {printf("\n");
fprintf(output,"\n");)

*1

fprintf(output,"This is input matrix: \n");
for (i=1; i<=nt; i++)

for (j=1; j<=np; j++)

fprintf(output,"%d", inf[i][j]);
if ((j%10) == 0)

fprintf(output," ");
if (j==np)

fprintf(output,"\n");

229

for (i=1; i<=nt; i++)
for (j=1; j<=np; j++)

fscanf(input,"%d", &otf[i][j]);

/*printf("This is output matrix: \n");
fprintf(output,"This is output matrix: \n");
for (1=1; i<=nt; i++)

for (j=1; j<=np; j++)

printf("%d", otf[i][j]);
fprintf(output,"%d", otf[i][j]);

if (j==np) {printf("\n");fprintf(output,"\n");}

*1

fprintf(output,"This is output matrix: \n");
for (i=1; i<=nt; i++)

for (j=1; j<=np; j++)

fprintf(output,"%d", otf[i][j]);
if ((j%10) == 0)

fprintf(output," ");
if (j==np)

fprintf(output,' \n");

for (i=1; i<=nt; i++)
fscanf(input, "%d", &d[i]);

for (i=0; i < nt; i++)
fscanf(input, "%d", &output_channel[i]);

printf("Transition durations are: \n");
fprintf(output,"Transition durations are: \n");
for (i=1; i<=nt; i++)

printf(" %d", d[i]);
fprintf(output," %d", d[i]);
if (i%10==0) fprintf(output, "\n");

printf("Output Bit Vector is: \n");
fprintf(output,"Output Bit Vector is: \n");
for (i=1; i<=nt; i++)

printf(" %d", outputvalue[i]);
fprintf(output," %d", output_value[i]);
if (i%10==0) fprintf(output, "\n");

fprintf(output, "\n");

for (j=1; j<=np; j++)
fscanf(input, "%d", &m[j]);

230

for (k=1; k<=np; k++)
fscanf(input, "%d", &limit_bit_num[k]);

printf("\nInitial marking is: \n");
fprintf(output,"\nlnitial marking is: \n");

for (j=1; j<=np; j++)

printf(" %d", m[j]);
fprintf(output," %d", m[j]);
if (i%10==0) fprintf(output, "\n");

•printf("\nInput Bit Vector is: \n");
fprintf(output,"\nInput Bit Vector is: \n");

for (j=1; j<=np; j++)

printf(" %d", limit_bit_num[j]);
fprintf(output," %d", limit_bit_num[j]);
if (i%10==0) fprintf(output, "\n");

fprintf(output, "\n");
fscanf(input, "%d", &ndt);
for (i=1; i<=ndt; i++)

fscanf(input, "%d", &dt[i][1]);
fscanf(input, "%d", &dt[i] [2]);

}

printf("\nDeactivating transition pairs are like this:\n");
printf("\nNumber of deactivating transition pairs are: %d\n", ndt);
fprintf(output,"\nDeactivating transition pairs are like this:\n");
fprintf(output,"\nNumber of deactivating transition pairs are: %d\n", ndt);

/*for (i=1; i<=ndt; i++)

printf("%d", dt[i][1]);
printf("%d", dt[i][2]);
fprintf(output,"%d", dt[i][1]);
fprintf(output,"%d", dt[i][2]);

*1

for (i=1; i<=ndt; i++)

fprintf(output,"%d'', dt[i][1]);
fprintf(output,"%d", dt[i][2]);

231

return 1;

int enabled_transitions(matrix inm, row_matrix z)

int i,j,k;

for (i=1; i<=nt; i++)
{

for (j=1; j<=np; j++)

/*printf("\n m[%d]=%d inm[%d][%d]=%d",

printf(" m[%d]-inm[%d][%d] = %d\n" ,
j,i,j, m[j]

-inm[i][j]); *

if ((m[j]-inm[i][j]) < 0) goto SPOT;

if (dd[i] > 0)
z[i] = 0;

else
4i] = 1;

SPOT:printf(" ");

/*printf("\n transition %d is checked\n", i);
getch();*/

/*printf("Z vector = ");
for (i=1; i<=nt; i++)

printf(% %d ", z[i]);
*1

/* This is to check passing parameters for enabled_transitions
for (i=1; i<=nt; i++)
{

for (j=1; j<=np; j++)
{

printf("%d", inm[i][j]);
if(j==np) printf("\n");
getch();

232

Checking of passing parameters finished here.
call enabled_transitions(inf) in the main program
and declare int enabled_transitions(matrix inm) in subprogram */

return 1;

int conflict (row_matrix dx, int q1)

int i,j,k,kj,kk;
int c[99];
int ci,cj;

kk=0;
kj=0;
q1=0;

/*printf("IN CONFLICT to check for dx[i] :\n");
for (i=1; i<=nt; i++)

printf("dx[%d] =%d\t", i,dx[i]);

printf("\n");
*1

for (i=1; i<=nt; i++)

if (dx[i] > 0)

kk=kk+1;/*printf("\nkk = %d\t", kk); */

c[kk]=i;/*printf("c[%d] = %ft", kk, c[kk]);*/
}

}

for (i=1; i<=kk-1; i++)

for (j=i+1; j<=kk; j++)

for (k=1; k<=np; k++)

if (inf[c[i]][k] >=1 && inf[c[j]][k] >=1)

/*printf("inf[%d][%d]: %d inf[%d][%d]: %d\n",
c[i],k,inf[c[i]][k],c[j],k,inf[c[j]][k]);*/

printf("TIME AT CONFLICT: %d \n",t);
fprintf(output,"\nTIME AT CONFLICT: %d \n",t);

printf("\nCONFLICT BETWEEN TRANSITIONS");
printf(" %d %d\n", c[i], c[j]);

233

fprintf(output, "CONFLICT BETWEEN TRANSITIONS");
fprintf(output," %d %d\n", c[i], CU]);
kj=kj+1;

q1=kj;
/*printf("q1=%d", q1);*/
goto PLACE;

PLACE: printf(" ");

}

q=q1;
/*printf("#of pairs of transitions with conflict are: %d\n", q1);*/
return 1;

int minimum(row_matrix dy, int mini, int tmini, mat rr, int hh)

int tx[99], ty[99];
int 1, tmn, mn, i,j;

1=0;
hh=0;
for (i=1; i<=99; i++)
{

rr[i]=0;
tx[i]=0;
ty[i]=0;

/*for (i=1; i<=nt; i++)
printf(" dd[%d] = %d", i, dd[i]);*/

for (i=1; i<=nt; i++)

if (dy[i] > 0)

/*printf("\ndy[%d] = %d", i, dy[i]);*/
1=1+1;/*printf(" 1= %d", 1);*/
tx[1]=dy[i];/*printf(" tx[%d] = %d",1,dy[i]);*/
ty[1]=i;/*printf(" ty[%d] = %d\n",1,i);*/

tmn=tx[1];
for(i=1; i<=1; i++)

if (tx[i] <= tmn)

tmn=tx[i];/*printf("tmn = %d", tx[i]);*/

234

mn=ty[i];/*printf("\tmn = %d\n", ty[i]);*/

)

mini=mn;/*printf("mini = %d", mini); */
tmini=tmn,/*printf("\t tmini %d", tmini);*/

for (j=1; j<=1; j++)

if (tx[j]==tmn)

hh=hh+1;/*printf("\thh = %d", hh);*/
rr[hh]=ty[j];/*printf("\trr[%d] = %d\n" , hh, rr[hh]);*/

)

min=mini;
tmin=tmini;
for(i=1;i<=hh;i++)

ra[i]=rr[i];
h=hh;

return 1;

int new_marking (row_matrix mm)
{
//int emergency_stop;
int i,j,k;
int b[99];
int flag[99];

k=0;
//emergency_stop=0;

for (i=1; i<=nt; i++)
b[i]=0;

for (i=1; i<=nt; i++)

if (f[i] > 0)

k=k+1;/*printf(""k = %d\t", k);*/
b[k]=i;/*printf("b[%d] = %d\n", k,b[k]);getch();*/

)

for (i=1; i<=k; i++)

for (j=1; j<=np; j++)

if (inf[b[i]][j] > 0)
{

235

if(limit_bit_num[j] <=11){
do{
digital_input(&num1);
decimal_binary (num 1 ,input_array);

}while(input_array[limit_bit_num[j]] != 1);
}

flag[j] = 1;

//printf("Check here for emergency stop\n");
if(limit_bit_num[np] <= 1 1) {

digital_input(&num1);
decimal_binary(num1,input_array);

if (input_array[limit_bit_num[np]] == 1)
emergency_stop = 1;

//printf("checking done\n");

if (emergency_stop != 1)

for (i=1; i<=k; i++)
for (j=1; j<=np; j++)

if (flag[j]==1)
mm[j]=mm[j]-inf[b[i]][j];

else

printf("Ernergency Stop is pressed\n");
printf("Execution Aborted due to emergency stop\n");
end_num=32;
digital_output(end_num);
getch();
exit(0);

return 1;

main()

int i,j,k,sleep_time;
clock_t end,start;
int trans;

236

num = 0;
num1=0;
sleep_time=0;
trans=0;

digital_output(num);

for(i=0; k=15; i++){
output_array[i] = 0;
input_array[i] = 0;

)
/*fp = fopen("try.in", "r");
for (i=1; i<=10; i++)

printf("This is for sim[%d]\n", i);
for (j=1; j<=2; j++)

fscanf(fp,"%d", &sim[i][j]);
printf("simp[%d]: %d", j, sim[i][j]);
getch();
printf("\n");

)
)

for (i=1; i<=10; i++)

printf("sim[%d]:",i);
for (j=1; j<=2; j++)

printf("%d ", sim[i][j]);

printf("\n");
)

getch();

for (i=1; i<=10; i++)

for (j.1; j<=2; j++)

dt[i] [j]=sim[i] [j];
printf("%d ", dt[i][j]);

)
getch();

*/

bx=0;
by=0;
count=0;

for (i=1; i<=99; i++)

237

dd[i]=0;
r[i]=0;
f[i]=0;
ff[i]=0;
atm[i]=0;

limit_bit_num[i]=0;
outputvalue[i];

t=0;
ct=0;
min=0;
tmin=0;
h=0;
pt=0;
q=0;
emergency_stop=0;

for (i=1; i<=10; i++)
ra[i]=0;

for (i=1; i<=99; i++)

for(j=1; j<=99; j++)

inf[i][j]=0;
otf[i][j]=0;
f[i]=0;

clrscr();
read_petri_net();

printf("\nHOW LONG THE SYSTEM HAS TO BE SIMULATED: \n");
printf("\nPlease give time units : ");
scanf("%d", &count);
fprintf(output, "\nTIME OF SIMULATION: %d \n", count);
printf("\nGive BX and BY : ");
scanf("%d", &bx);
scanf("%d", &by);
fprintf(output, "bx = %d", bx);
fprintf(output, " by = %d", by);
clrscr();
gotoxy(1,7);
printf("Transition in execution :");
gotoxy(1,10);

238

printf("Time after delay : ");

DOT:
for (i=1; i<=nt; i++)

f[i]=0;
ff[i]=0;

)

enabled_transitions(inf,f);
/*printf("\n before conflict F vector = ");
for (i=1; i<=nt; i++)

printf("\t %d ", f[i]);
getch();*/

for (i=1; i<=nt; i++)

if (f[i] > 0)

ff[i]=d[i] + t;
/*printf("\n ff[%d] = %d", i, ff[i]);*/

)

)

for (i=1; i<=nt; i++)

dd[i] = dd[i] + ff[i];
/*printf("\n dd[%d] = %d", i, dd[i]);*/

)

/*printf("\nIN MAIN befoe conflict\n"); getch();
for (i=1; i<=nt; i++)

printf(" dd[%d] = %d", i, dd[i]);*/

/* for (i=1; i<=nt; i++)
for (j=1; j<=np; j++)

printf("%d", inf[i][j]);
fprintf(output,"%d", inf[i][j]);
if (j==np) {printf("\n");
fprintf(output,"\n");)

*1

conflict(dd,q);

/*printf("q=%d\n", q);*/

if (q > 0)

239

{

printf("\nGive the number of transitions to be disabled:\n");
scanf("%d",&x);
printf("Give transitions to be disabled:\n");
fprintf(output, "Transitions disabled are: ");

for (i=1; i<=x; i++)

scanf("%d", &a[i]);
fprintf(output," %d ,",a[i]);

fprintf(output, 'so");

for (i=1; i<=x; i++)

dd[a[i]]=0;/*printf("dd[%d] = %d\n",a[i],dd[a[i]]);*/
f[a[i]]=0;/*printf("f[%d] = %d\n",a[i],f[a[i]]);*/

}

/*printf("\n After conflict F vector = ");
for (i=1; i<=nt; i++)

printf("\t %d ",f[i]);

getch();
*1

if (t > bx)

fprintf(output, "t = %d bx = %d\n",t,bx);
bx=bx+by;
fprintf(output, "TIME: %d\n", t);
fprintf(output, "MARKING: ");
for (i=1; i<=np; i++)

fprintf(output, " %d", m[i]);
if (1%10==0) fprintf(output, "\n");

}

fprintf(output, ' 1\n");

fprintf(output, "F-VECTOR: ");
for (i=1; i<=nt; i++)
{

fprintf(output, " %d", f[i]);
if (i%10==0) fprintf(output, "\n");

fprintf(output, "\n");

fprintf(output, "R-VECTOR: ");
for (i=1; i<=nt; i++)
{

240

fprintf(output, " %d", r[i]);
if (i% 10==0) fprintf(output, "\n");

fprintf(output, "\n");

fprintf(output, "ACTIVE TIME VECTOR: ");
for (i=1; i<=nt; i++)

fprintf(output, " %d", atm[i]);
if (i%10==0) fprintf(output, "\n");

fprintf(output, "\n");

/*printf("\n Before CONT F vector = ");

for (i=1; i<=nt; i++)
getch();

printf("\t %d r[%d]: %d\n ", f[i],i,r[i]);

getch();*/

for (i=1; i<=nt; i++)
{	 if ((f[i]==0) && (r[i]==0))

printf(" ");
else

goto CONT;

printf("***********Program terminated***********\n");
fprintf(output, "***********DEAD STATE***********\n");

goto POINT;

CONT: ct = ct + 1;

if (t > count) goto POINT;

minimum(dd,min,tmin,ra,h);

/*printf("min = %d\t\t", min);
printf(" tmin = %d\t", tmin);
printf("h = %d\t", h);
for(i=1; i<=h; i++)

printf("ra[%d] = %d\n", i, ra[i]);

pt=t; /*printf("\n pt= %d\t", pt);*/
t=tmin;/*printf("t= %d\n", t); */

241

for (i=1; i<=h; i++)

dd[ra[i]]=0;
/*printf("\n dd[%d] = %d\t", ra[i],dd[ra[i]]);*/
atm[ra[i]]=atm[ra[i]]+tmin-pt,
/*printf("atm[%d] = %d\n",ra[i],atm[ra[i]]);*/

for (i=1; i<=nt; i++)
{

r[i]=0;
/*printf("\n r[%d] = %d\t", i, r[i]);*/

for (i=1; i<=nt; i++)

if (dd[i] > 0)

r[i]=dd[i]-t;/*printf("\n r[%d] = %d\t", i, r[i]);*/
atm[i]=atm[i]+tmin-pt;/*printf("atm[%d] = %d\n",

i,atm[i]);*/

/*printf("\nbefore new marking F vector = ");
for (i=1; i<=nt; i++)

printf("\t %d ", f[i]);
printf("\n");

printf("\nbefore removing tokens MARKING m is = ");
for (i=1; i<=np; i++)

printf("\t %d ", m[i]);
printf("\n");

new_marking(m);

/*printf("After removing tokens MARKING m is = ");
for (j=1; j<=np; j++)

printf("\t%d", m[j]);

*/
/*printf("\nBefore depositing tokens MARKING m is = ");
for (j=1; j<=np; j++)

printf("\t%d", m[j]);

*/
for (j=1; j<=h; j++)

//printf(" Time : %d\t", t);

242

sleep_time = d[ra[j]];
gotoxy(30,7);
clreol();
printf("%d", ra[j]);
trans=ra[j];
num = num + output_channel[ra[j]-1];

digital_output(num);

if (emergency_stop==1)

printf("Transition being executed during emergency stop is %d\n",trans);
getch();

•
start = clock();
delay(sleep_time);
end = clock();
gotoxy(30,10);
clreol();
printf("%3.1f",(end - start) / CLK_TCK);
gotoxy(1,15);
for (j=1; j<=h; j++)

for (i=1; i<=np; i++)

m[i] = m[i] + otf[ra[j]][i];

/*printf("\nAfter depositing tokens MARKING m is = ");
for (j=1; j<=np; j++)

printf("\t%d", m[j]);
1*1

goto DOT;
POINT:
printf("\nEnd of sequence\n");
fprintf(output,"EXECUTION TERMINATED:\n ");
getch();

fclose(output);

243

Input file to the software package for the RTPN in Fig. 7.2. (b)

Number of places:	 13
Number of transitions: 	 8

Petri Net connectivity representation:

Input place ID: -->

Transition ID:

1000000000 000
0101001000 011
0010000000 001
0001100000 001
0000010000 001
0000001100 001
0000000010 001
0100000001 001

Output place ID: -->

Transition ID:

0100000000 000
0010000000 000
0001100000 000
0000010000 000
0000001100 000
0000000010 000
0100000001 000
0101001000 100

Transition duration vector D (contains 1st attribute of transition):

1 1 1 1 1 1 1 1

Output signal vector (contains 2nd attribute of transition):

0 102030-6

Initial marking (contains 1st attribute of place):

1001001000 0130

Input signal vector (contains 2nd attribute of place):

84-50-61-2 —10

244

Output file generated by the software package for the RTPN in Fig. 7 (b)

TIME: 1
MARKING: 0 1 0 1 0 0 1 0 0 0 0 1 1 0
F-VECTOR: 0 1 0 0 0 0 0 0 (transition 2 is enabled)
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 0 0 0 0 0 0 0

(transition 1 was active for 1 unit of time)
TIME: 2
MARKING: 0 0 1 0 0 0 0 0 0 0 0000
F-VECTOR: 0 0 1 0 0 0 0 0
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 0 0 0 0 0 0

TIME: 3
MARKING: 0 0 0 1 1 0 0 0 0 0 0000
F-VECTOR: 000 1 0000
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 0 0 0 0 0

TIME: 4
MARKING: 0 0 0 0 0 1 0 0 0 0 0 0 0 0
F-VECTOR: 0000 1 000
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 1 0 0 0 0

TIME: 5
MARKING: 0 0 0 0 0 0 1 1 0 0 0000
F-VECTOR: 0 0 0 0 0 1 0 0
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 1 1 0 0 0

TIME: 6
MARKING: 0 0 0 0 0 0 0 0 1 0 0000
F-VECTOR: 0 0 0 0 0 0 1 0
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 1 1 1 0 0

TIME: 7
MARKING: 0 1 0 0 0 0 0 0 0 1 0000
F-VECTOR: 0 0 0 0 0 0 0 1
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 1 1 1 1 0

TIME: 8
MARKING: 0 1 0 1 0 0 1 0 0 0 1 1 0 0
F-VECTOR: 0 0 0 0 0 0 0 0
R-VECTOR: 0 0 0 0 0 0 0 0
ACTIVE TIME VECTOR: 1 1 1 1 1 1 1 1
EXECUTION TERMINATED:

245

REFERENCES

Al-Jaar, R.Y., and Desrochers, A., "Performance Evaluation of Automated
Manufacturing Systems Using Generalized Stochastic Petri nets," IEEE Trans. on
Robotics & Automation, Vol. 6, No. 6, 1990, pp. 621-639.

Alanche, D., Benzakour, D.F., Gillid, P., Rodriguel, P. and Valette, R., "PSI: A Petri Net
based simulator for Flexible manufacturing systems," Advances in Petri Nets,
Lecture notes in computer science,188, Springer Verlag, 1984, pp. 1-14.

Anthony, I.R., "Flexible Manufacturing Systems: Issues and Implementation," Industrial
Management, Vol. 33, No. 4, July/Aug 1991, pp. 7-11.

Archetti, F. and Sciomachen, A., "Development, analysis and simulation of Petri Net
models: An application to AGV systems," OR models in FMSs, 1987.

Attaran, M. "Flexible Manufacturing Systems: Implementing an Automated Factory",
Information Systems Management, Vol. 9, No. 2, Spring 1992.

Balph, T. and Vittera, J., "Architectural considerations in the development of an IEEE
802.4 token bus chip set," IEEE 4th Annual International Conference on
Computers and Communications, Phoenix, AZ, March 1985, pp. 439-443.

Barad, M., and Sipper, D., "Flexibility in Manufacturing Systems: Definitions and Petri
net Modeling," International Journal of Production Research, Vol. 26, No. 2,
1988, pp. 237-248.

Berchi, R., and G. Frosi, "Design of the Material Handling System for a Manufacturing
Line," AIRO Workshop on Coordination Management by means of Petri Nets,
April, Modena, Italy, 1988.

Black, J.T., "Cellular Manufacturing Systems Reduce Setup Time, Make Small Lot
Production Economical," Industrial Engineering, Vol. 15, No. 11, November,
1983, pp. 39.

Bluementhal, Marjory and Dray, Jim, "The Automated Factory: Vision and Reality,"
Technology Review, Vol. 88, No. 1, January 1985, pp. 28-37.

Booch, B., Object-oriented Analysis and Design with Applications, The
Benjamin/Cummings Publ. Co., 1994.

Boucher, T.O., Jafari, M.A., and Meredith, G.A., "Petri Net Control of an Automated
Manufacturing Cell," Computers in Industrial Eng., Vol. 17 No. 1-4, 1989, pp.
459-463, .

Bozer, Y.A. and Srinivasan, M.M., " Tandem configurations for automated guided
vehicle systems offer simplicity and flexibility," Industrial Engineering, Vol. 21,
No. 1, 1989, pp. 23-27.

Bruno, G., and Marchetto, G., "Process translatable Petri nets for the Rapid Prototyping
of Process Control Systems," IEEE Trans. on Software Eng., Vol. 12, No. 2,
1986, pp. 346-356.

246

247
Buffa, Elwood, S., Meeting the Competitive Challenge: Manufacturing Strategies for

U.S. Companies, Richard Irwin, Ilinois, 1984, pp. 83.

Buzacott, J.A. and Yao, D.D., "Flexible Manufacturing Systems: A Review of Analytical
Models," Management Science, Vol. 32, No. 7, July 1986, pp. 890-905.

Cecil, J.A., K. Srihari, and E.R. Emerson, "A Review of Petri-net Applications in
Manufacturing," Intl. J. Adv. Mfg. Tech., V ol. 7, No. 3, 1992, pp. 168-177.

Chaar, J.K., D. Teichroew, and R.A. Voltz, "Developing Manufacturing Control
Software: a Survey and Critique," Intl. J. of Flexible Mfg. Sys., Vol. 5, No. 2,
1993, pp. 53-88.

Chaar, J.K., D. Teichroew, and R.A. Voltz, "Real-time Software Methodologies: Are
They Suitable for Developing Manufacturing Control Software?," Intl. J. of
Flexible Mfg. Sys., Vol. 5, No. 2, 1993, pp. 95-128.

Chaar, J.K., Voltz, R.A., and Davidson, E.S., "An Integrated Approach to Developing
Manufacturing Control Software", Proceedings of the 1991 IEEE Int. Conf. on
Robotics and Automation, Sacramento, CA, 1991.

Chan, C.C., and Wang, H.P., "Design and Development of a Stochastic High-level Petri
net System for FMS Performance Evaluation," Mt. J. of Prod. Res., Vol. 31, No.
10, 1993, pp. 2415-2440.

Chang, Y.C, Sullivan, R.S., Bagchi, U, and J.R, Wilson, J.R., "Experimental
Investigation of Real-time Scheduling in Flexible Manufacturing System," Annals
of Operations Research, Vol. 3, 1985, pp. 355-377.

Chocron, D., and Cerny, E., "A Petri net Based Industrial Sequencer," Proc. of IEEE Int.
Conf. and Exhibition on Industrial Control and Instrumentation, 18-22, March,
1980.

Courvoisier, R. Valette, A.Sahraoui and M. Combacau., "Specification and
Implementation Techniques for Multilevel Control and Monitoring of FMS,"
Computer Applications in Production and Engineering, F. Kumara and A.
Rolstadas (editors), Elsevier Science Publishers, IFIP, 1989, pp. 509-516.

Crockett, D., Desrochers, A.A., DiCesare, F., and Ward, T., "Implementation of a Petri
Net Controller for a Machining Workstation," Proceedings of the IEEE Conf. on
Robotics and Automation, 1987, pp. 1861-1867.

Cumings, S., "Developing Integrated Tooling Systems: A Case Study at Garrett Turbine
Engine Company," Proceedings of Fall Industrial Engineering Conference,
Boston, MA, 1986.

Dallas, D.B., "The Impact of FMS," Production, Vol. 9, No. 10, October 1984, pp. 33-38.

Darrow, W. P., "International Comparison of Flexible Manufacturing System
Technology," Interfaces, Vol. 17, November-December 1987:88.

David, R., and Alla, H., Petri Nets and Grafcet, Prentice Hall, New York, 1992.

248
Davis, W.J., Jackson, R.H.F. and Jones, A.T., "Real time optimization in the automated

manufacturing research facility", Progress in material handling and logistics,
J.A. White and I.W. Dence (editors), Springer Verlag, 1989.

Dhar, U.R., Overview of Models and DSS in Planning and Scheduling of FMS,
International Journal of Production Economics, Vol. 25, No. 1-3, Dec. 1991, pp.
121-127.

DiCesare F., and Desrochers, A.A., "Modeling, Control, and Performance Analysis of
Automated Manufacturing Systems using Petri Nets," Control and Dynamic
Systems, Vol. 47, C.T. Leondes (editor), Academic Press, 121-172, 1991.

Dimitrov, P., "The Impact of Flexible Manufacturing Systems (FMS) on Inventories,"
Engineering Costs and Production Economics, Vol. 19, Nos.1-3, May 1990, pp.
165-174.

Duffle, N.A., Chitturi, R. and Mou, Jong-I, "Fault-tolerant Heterarchical Control of
Heterogeneous Manufacturing System Entities," Journal of Manufacturing
Systems, Vol. 7, No. 4., 1988, pp. 315-328.

Egbelu, P.J. and Tanchoco, J.M.A., "Characterization of automatic guided vehicle
dispatching rules," International Journal of Production Research, Vol. 22, No. 2,
1984, pp. 359-374.

Egbelu, P.J. and Tanchoco, J.M.A., "Potentials for bidirectional guide path for
automated guided vehicle based systems," International Journal of Production
Research, Vol. 24, No. 6, 1986, pp. 1075-1097.

Falcione, A., and Krogh, B.H., "Design Recovery for Relay Ladder Logic," IEEE Control
Systems Magazine, April, 1993, pp. 90-98, .

Fernandez, E.B., and C.P. Han, "Object-oriented Design of Flexible Manufacturing
Systems," Proc. of 6th Annual Conf. on Recent Advances in Robotics, Gainesville,
FL, 1993.

Ferrarini, L., "An Incremental Approach to Logic Controller Design with Petri Nets,"
IEEE Trans. on Systems, Man, and Cybernetics, Vol. 22, No. 3, 1992, pp. 461-
473.

French, R.L., "Management Looking At CIM Must Deal Effectively With These Issues
And Realities," Industrial Engineering, Vol. 16 August 1984, pp. 70+.

Garg, K., "An Approach to Performance Specification of Communication Protocols
Using Timed Petri nets," IEEE Trans. on Software Eng., Vol. 11, No. 10, 1985,
pp. 1216-1255.

Gaymon, D.J., "Computers in the Tool Crib," Manufacturing Engineering, Vol. 103,
No. 9, September, 1986, pp. 41-44.

Gaymon, D.J., "Meeting Production Needs with Tool Management," Manufacturing
Engineering, September 1987, Vol. 104, No. 9, pp. 41-47.

249
Gershwin, B.S., and Berman, 0., "Analysis of Transfer Lines Consisting of Two

Unreliable Machines With Random Processing Times and Finite Storage
Buffers," AIIE Transactions, Vol. 13, No. 1, 1981, pp. 2-11.

Ghosh, B.K., "Design and Performance Analysis Models of Computer Networks in CIM
Systems," Computers in Industry, Vol. 12, 1989, pp. 141-152.

Gilbert, J.P. and Winter, P.J., "Flexible Manufacturing Systems: Technology and
Advantages," Production and Inventory Management, Vol. 27, No. 4, Fourth
Quarter 1986, pp. 53.

Glassey, C.R., and Hong, Y., "Analysis of Behavior of an Unreliable n-stage Transfer
Line With (n-l) Inter-stage Storage Buffers," International Journal of Production
Research, Vol. 31, No. 3, 1993, pp. 519-530.

Glassey, C.R., and S. Adiga, "Berkeley Library of Objects for Control and Simulation of
Manufacturing (BLOCS/M)," Applications of Object-Oriented Programming,
(editors) L.J. Pinson, and R.S. Wiener, Addison-Wesley Publishing Company,
1990, pp. 1-26.

Goldhar, Joel D., "What Flexible Automation Means to Your Business", Modern
Material Handling, Vol. 39, September 7, 1984, pp. 63-65.

Graham, J.H., S.M. Alexander, and W.Y. Lee, "Object-oriented Software for Diagnosis
of Manufacturing Systems," Proc. of the 1991 IEEE Int. Conf. on Robotics and
Automation, Sacramento, CA, 1991, pp. 1966-1971.

Gray, Ann E. and Stecke E. Kathryn., "Tool Management in	 Automated
Manufacturing: Operational Issues and Decision Problems," working chapter
series, CMOM 88-03, Williame Simon Graduate School of Business
Administration, Univ. of Rochester, November 1988.

Groenevelt, H., Pintelon, L., and Seidmann, A., "Production Batching With Machine
Breakdowns and Safety Stocks," Operations Research, Vol. 40, No. 5, 1992, pp.
959-971.

Guha, R.D, Lange and J. Basiouni, "Software Specification and Design Using Petri nets,"
Proceedings of 4th International Workshop on Software Specification and Design,
1987, pp. 225-230.

Gupta, D. and Buzacott, LA., "A Framework for Understanding Flexibility of
Manufacturing Systems," Journal of Manufacturing Systems, Vol. 2, No. 2,
1989, pp. 89.

Haidar, B., Fernandez, E.B., and Horton, T.B., "An Object-oriented Methodology for the
Design of Control Software for Flexible Manufacturing Systems," Proc. of 2nd
Workshop on Parallel and Distributed Real-time Systems," Cancus, Mexico, April
1994.

Harry, B. and Malcolm, H., and Koos, K., "FMS Implementation Management: Promise
and Performance," International Journal of Operations and Production
Management, Vol. 10, No. 1, 1990, pp. 5-20.

Harvey, R.E., "Factory 2000," Iron Age, Vol. 227, June 1984, pp. 72-76.

Hays, Robert H. and Wheelright, S.C., Restoring Our Competitive Edge: Competing
Through Manufacturing, John Wiley, New York, 1984, pp. 192.

Heywood, P., "Four Generations of FMS," American Machinist, Vol. 32, No. 3, March
1988, pp. 62-63.

Hodgson, T.J., King, R.E., Manteih, S.K. and Schultz, S.R., "Developing control rules for
an AGVS using Markov decision processes," Material Flow, Vol. 4, 1987, pp.
85-96.

Hsieh, S., and Shih, Y., "The Development of an AGVS Model by Union of the
Modularised Floor-path nets," hat. J. Adv. Mfg. Tech., Vol. 9, 1994, pp. 20-34.

Hsu, C.L., "Flexible Manufacturing System Controller Software Development by Object-
oriented Programming," Proc. of the Second Int. Conf. on Automation Tech.,
Taipei, Taiwan, 1992, pp. 53-59.

Huang, H., and Chang, P., "Specification, Modeling, and Control of a Flexible
Manufacturing cell," Int. J. of Prod. Res., Vol. 30, No. 11, 1992, pp. 2515-2543.

Huang, P.Y, "Analysis of the Necessary Conditions for Implementing JIT Production,"
Zero Inventory Philosophy and Practice, Seminar Proceedings, St. Louis, MO,
1984, pp. 24-29.

Huang, P.Y., and M. Sakurai, "Factory Automation: the Japanese Experience," IEEE
Transactions on Engineering Management, Vol. 37, No. 2, May, 1990, pp. 103-
108.

Hughes, Tom and Hegland, Don, "Flexible Manufacturing: The Way to the Winner's
Circle," Production Engineering, Vol. 30, No. 9, September 1983, pp. 55.

Inman, A.R., "Flexible Manufacturing Systems: Issues and Implementation," Industrial
Management, Vol. 33, No. 4, July/August 1991, 7-11.

Ismael, D. Jr., "Back to Basics: Just What is Involved in Implementing a Flexible
Manufacturing System ?," Industrial Engineering, Vol. 23, No. 4, April 1991, pp.
43-44.

Jafari, M.A., "An Architecture for a Shop-Floor Controller Using Colored Petri Nets,"
Journal of Manufacturing Systems, Vol. 4, No. 4, 1992, pp. 159-181.

Jain, S., "Basis for Development of a Generic FMS Simulator„" Proc. of the second
ORSA/TIMS Conf. on FMS:Operations research models and applications, Eds.
K.E. Stecke, and R. Sufi, 1986, pp. 393-403.

Jari, M., "The Success of FM investments: Case studies from Small Industrial
Economies," International Journal of Technology Management, Vol. 6, No. 3,
1991, pp. 277-291.

Johnson, M.E., L. Thompson, and R. Fontaine, "An Integrated Simulation and Shop-floor
Control System," Manufacturing Review, Vol. 5, No. 3, 1992, pp. 158-165.

250

251
Jones, A.T. and McLean, C.R., "A Proposed Hierarchical Control Model for Automated

Manufacturing Systems," Journal of Manufacturing Systems, Vol. 5, No. 1, 1986,
pp. 15-25.

Jothishankar, M.C., and Wang, H.P., "Determination of Optimal Number of Kanbans
Using Stochastic Petri nets," Journal of Manufacturing Systems, Vol. 11, No. 6,
1992, pp. 449-461.

Jukka, R. and limit T., "Economics and Success Factors of Flexible Manufacturing
Systems: The Conventional Explanation Revisited," International Journal of
Flexible Manufacturing Systems, Vol. 3, No. 2, 1990, pp. 169-190.

Kaighobadi, M., and K. Venkatesh, "Investigating the Performance of Push and Pull
Systems in Flexible Automation Environment Using Petri nets," Proc. of 1992
Decision Sciences Institute's Annual Meeting, San Francisco, CA, 1992, pp. 1253-
1255.

Kaighobadi, M., and Venkatesh, K., "Flexible Manufacturing Systems: an Overview," to
appear in Int. J. of Operations and Production Management., Vol. 14, No. 4,
1994, pp. 26-49.

Kakati, M. and Dhar, U.R., "Investment Justification in Flexible Manufacturing
Systems", Engineering Costs and Production Economics, Vol. 21, No. 3, 1991,
pp. 203-209.

Kaku, B.K., "Fitting Flexible Manufacturing Systems to the task: An Analysis of Current
Practices," Working chapter series MS/S 92-003, College of Business and
Management, University of Maryland, 1992.

Kiesler, Sara, "New Technology in the Workplace/Robotics: Cause and Effect," Public
Relations Journal, Vol. 39, No. 12, December 1983, 12-16.

Kimura, 0., and Terada, H., "Design and Analysis of Pull System, a Method of Multi-
stage Production Control," Mt. J. of Prod. Res., Vol. 19, No. 3, 1981, pp. 241-253.

King, R.E., Hodgson, T.J. and Monteith, S.K., "Evaluation of heuristic control strategies
for AGVs under varying demand and arrival patterns," Progress in material
handling and logistics, Springer Verlag, 1989.

Klahorst, Thomas,H., "Flexible Manufacturing Systems: Combining Elements to Lower
Costs, Add flexibility," Industrial Engineering, Vol. 32, No. 11, November 1981,
112-117.

Knapp, G.M., and Wang, H.P., "Modeling of Automated Storage/Retrieval Systems
Using Petri nets," Journal of Manufacturing Systems, Vol. 11, No. 2, 1992, pp.
20-29.

Kochikar, V.P., and Narendran, T.T., "On Using Abstract Models for Analysis of
Flexible Manufacturing Systems," Int. J. of Prod. Res., Vol. 32, No. 10, 1994, pp.
2303-2322.

Kochikar, V.P., and Narendran, T.T., "Modeling Automated Manufacturing Systems
Using a Modification of Coloured Petri nets," Robotics and Computer Integrated
Manufacturing, Vol. 9, No. 3, 1992, pp. 181-189.

Krinsky, I., Melnez, A., Mitenbarg, G.H. and Myers, &L., "Flexible Manufacturing
System Evaluation: An Alternative Approach," International Journal of Flexible
Manufacturing Systems, Vol. 3, No. 2, 1991, pp. 237-253.

Kwok, S.C., "A Case Report on Integrating FMS and Traditional Machine Tools,"
Flexible Manufacturing Systems, Society of Manufacturing Engineers, Dearborn,
MI, 1988.

Lee, L.C., "Parametric Appraisal of the JIT System," Mt. J. of Prod. Res., Vol. 25, No.
10, 1987, pp. 1415-1429.

Les, Gould., Smart Handling Doubles FMS Productivity, Modern Materials Handling,
Vol. 4, No. 1, January 1990, pp. 64-66.

Maccarini, G., Giardini, C., Zavanella, L. and Bugini.A., "Different kind of tool room
models for an FMS: a simulation approach and analysis, International AMSE
Conference., Vol. 4, 1987, pp. 87-89, Karlushe.

Mahadevan, B. and Narendran, T.T., " Design of an automated guided vehicle based
material handling system," International Journal of Production Research, Vol.
28, No. 9, 1990, pp. 1611-1622.

Maimon, O.Z. , "Real-time Operational Control of Flexible Manufacturing Systems,"
Journal of Manufacturing Systems, Vol. 6, No. 2, 1987, pp. 125-136.

Maione, B., Semeraro, Q., and B. Turchiano, 1986, "Closed Analytical Formula for
Evaluating FMS Performance Measure," Intl. J. of Prod. Res., Vol. 24, No. 3,
1986, pp. 583-592.

Malmborg, C.J., "A model for the design of zone control automated guided vehicle
systems," International Journal of Production Research, Vol. 28, No. 10, 1990,
pp. 1741-1758.

Marinov, D.D., and N. Todorov, "Software Development Approach in FMS," Computers
in Industry, Vol. 10, No. 3, 1988, pp. 171-175.

Mascolo, M.D., Frein, Y, Dallery, Y, and R. David, "An Unified Modeling of Kanban
systems Using Petri nets," Int. J. of Flexible Manufacturing Systems, Vol. 3,
1991, pp. 275-307.

Masory, 0., "Monitoring of Tool Wear Using Artificial Neural Networks," International
Journal of Material Processing Technology, Vol. 63, 1990.

Maxwell, W.L. and Muckstadat, J.A., "Design of automated guided vehicle systems,"
IIE Transactions, Vol. 14, 1982, pp. 114- 124.

May, B., "FMS Control Software Basics," Proc. of Flexible Mfg. Systems, Chicago,
Illinois, 1986.

Meyer, B., Object-oriented Software Construction, Prentice-Hall, 1988.

Michel, G., Programmable Logic Controllers: Architectures and Application, John Wiley
and Sons, England, 1990.

253

Monarchi, D.E., and G.I. Puhr, "A Research Topology for Object-oriented Analysis and
Design," Communications of the ACM, Vol 35, No. 9, 1992, pp. 35-47.

Monden, Y, "How Toyota Shortened Supply Lot Production Time, Waiting Time, and
Conveyance Time," Industrial Engineering, Vol. 13, No. 9, 1981, pp. 22-30.

Mullins, Peter J., "Feeding Flexible Manufacturing Systems," Automotive Industry, Vol.
164, November 1984, pp. 63-64.

Murata, T., B. Shenker, and S. Shatz, "Detection of Ada Static Deadlocks Using Petri net
Invariants," IEEE Trans. on Software Eng., Vol. 15, No. 3, 314-326, 1989.

Murata, T., Komoda, N., Matsumoto, K., and Haruna, K., "A Petri Net-based Controller
for Flexible and Maintainable Sequence Control and its Applications in Factory
Automation," IEEE Trans. on Industrial Electronics, Vol. 33, No. 1, 1986, pp. 1-

Murata, T., "Petri Nets: Properties, Applications and Analysis," Proc. of IEEE , Vol. 77,
No. 4, 1989, pp. 541-580.

Narahari, Y., and Viswanadham, N., 1985, "A Petri net Approach to the Modelling and
Analysis of FMSs," Annals of Operations Res., Vol. 30, 1985, pp. 449-472.

Narumol, U., and Daganzo, C.F., "Impact of Parallel Processing on Job Sequences in
Flexible Assembly Systems," International Journal of Production Research, Vol.
27, No. 1, 1986, pp. 73-89.

Naylor, A.W., and R.A. Voltz, "Design of Integrated Manufacturing System Control
Software," IEEE Trans. on Systems, Man, and Cybernetics, Vol. 17, No. 6, 881-
897, 1987.

Newton, D., "Simulation model helps determine how many automatic guided vehicles
are needed," Industrial Engineering, Vol. 17, No. 1, 1985, pp. 68-79.

Nof, S.Y., Handbook of industrial robots, John Wiley and Sons, Inc., New York, NY,
1985.

Occena, G. and Yokota, T., Modeling of an Automated Guided Vehicle System in a
Just-in-time Environment, International Journal of Production Research, Vol. 29,
No. 3, 1991, pp. 495-511.

Ould-Kaddour, N., and Courvoisier, M., "A Multi-tasking Environment Based on Petri
nets With Objects and Modula-2," Proc. of the 15th Annual Conf. of IEEE Indu.
Electronics Society, Philadelphia, PA, 1989, pp. 799-804.

Ozden, M., " A simulation study of multiple load carrying automatic guided vehicles in a
Flexible manufacturing system," International Journal of Production Research,
Vol. 26, No. 7, 1988, pp. 1353-1366.

Pessen, D.W., Industrial Automation: Circuit Design and Components, New York:
Wiley, 1989.

254
Pessen, D.W., "Ladder-Diagram Design for Programmable Controllers," Automatica,

Vol. 25, No. 3, 1989, pp. 407-412.

Primrose, P.L. and Leonard, R. "Selecting Technology for Investment in Flexible
Manufacturing," International Journal of Flexible Manufacturing Systems, Vol. 4,
No. 1, 1991, pp. 51-77.

Proth, J.M., "Discrete Manufacturing Systems: From Specification to Evaluation," Invited
lecture, Proc. of the Second Int. Conf. on Automation Technology, Taipei, Taiwan,
1992, pp. 7-8.

Raju, K., and Chetty, O.V.K., "Priority nets for Scheduling Fleixble Manufacturing
Systems," Journal of manufacturing systems, Vol. 12, No. 4, 1993, pp. 326-340.

Raju, K.R., and Chetty, O.V.K., "Design and Evaluation of Automated Guided Vehicle
Systems for Flexible Manufacturing Systems: An Extended Timed-Petri net-based
Approach,", International Journal of Production Research, Vol. 31, No. 5, 1993,
pp. 1069-1096.

Ram, S.S. and Yash, G.P., "Strategic Cost Measurement for Flexible Manufacturing
Systems", Long Range Planning, Vol. 24, No. 5, 1991, pp. 34-40.

Ranky, P., The Design and Operation of FMS: Flexible Manufacturing Systems, IFS
Publications Ltd., UK, 1986.

Reddy, C. E., Chetty, O.V.K., and Chaudhuri, D., "A Petri net Based Approach for
Analyzing Tool Management Issues in FMS," Int. J. of Prod. Res., Vol. 30, No. 6,
1992, pp. 1427-1446.

Reddy, C. E., Chetty, O.V.K., and Chaudhuri, D., "Design of a Tool Delivery System
Using Expert Simulation in FMS," Proceedings of the 6th Convention of
Computer Engineers, Trichy, India, September, 1990.

Reddy, C. E., Chetty, O.V.K., and Chaudhuri, D., "Expert Tool in Flexible
Manufacturing Systems," Proceedings of the International Conference on
Automation, Robotics and Computer Vision, Singapore, September, 1990.

Reddy, C. E., Chetty, O.V.K., and Chaudhuri, D., "Objective SIMTOOL in FMS,"
Proceedings of the 5th International Conference on CAD/CAM Robotics and
Factories of the Future, Norfolk, USA, December 2-5, 1990

Righini, G., "Modular Petri nets for Simulation of Flexible Production Systems," Int. J. of
Prod. Res., Vol. 31, No. 10, 1993, pp. 2463-2477.

Rogers, R.V., "Understanding Implications of Object-oriented Simulation and Modeling,"
Proc. of IEEE Int. Conf, on Systems, Man, and Cybernetics, Charlottesville, VA,
1991, pp. 285-289.

Rolston, L.J., "Modeling FMSs with MAP/1," Annals of Operations Research, Vol. 3,
1985, pp. 189.

Ross, D.T., "Structured analysis SA: A Language for Communicating Ideas," IEEE
Trans. on Software Eng., Vol. 3, No. 1, 1977, pp. 16-34.

255
Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented

Modeling and Design, Prentice Hall, Englewood Cliffs, 1991.

Sabuncuoglu, I. and Hommuertzheim, L., "An investigation of machine and AGV
scheduling rules in an FMS," Operation research models and applications, K.E.
Stecke and R. Suri (editors), 1989, pp. 261-266.

Sahraoui, A.E.K., and N. Ould-Kaddour, "Control Software Prototyping," Computers and
Industry, Vol. 20, No. 3, 1992, pp. 327-334.

Salomon, D.P. and Beigel, J.E., "Assessing Economic Attractiveness of FMS
Applications in Small-Batch Manufacturing," Industrial Engineering, June 1984,
pp. 88-96.

Sarkar, B.R., and Fitzsimmons, J.A., "The Performance of Push and Pull Systems: A
Simulation and Comparative Study," Int. J. of Prod. Res., Vol. 27, No. 10, 1989,
1715-1732.

Sarkar, B.R., "Simulating a Just in Time Production System," Computers and Indu. Eng.,
Vol. 16, No. l, 1989, pp. 127-130.

Scalpone, R.W., "Education Process Is Vital to Realization of CIM Benefits, Handling of
Pitfalls," Industrial Engineering, Vol. 16, No. 10, October 1984, pp. 110-116.

Schonberger, J.R., "Applications of Single-card and Dual-card Kanban," Interfaces, Vol.
13, No.4, 1983, pp. 56-67.

Schroer B.J. and Tseng, F.T., " Modeling complex manufacturing systems using discrete
event simulation," Computers and Industrial Engineering, Vol. 14, 1985, pp.
455-464.

Sheng, H.T., and Black, J.T., "Cellular Manufacturing System Modeling: The Petri net
approach," Journal of Manufacturing Systems, Vol. 9, No. 1, 1990, pp. 41-54.

Sheng, H.T., and Black, J.T., "Cellular Manufacturing System Modeling: the Petri net
Approach," International Journal of Manufacturing Systems, vol. 9, No. 1, 1990,
pp. 41-54.

Silva, M., and R. Valette, "Petri nets and Flexible Manufacturing," Advances in Petri
Nets, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 1990, pp.
374-417.

Silva, M., and Valette, R., "Petri Nets in Flexible Manufacturing," Advances in Petri
Nets, G. Rozenberg (editors). Springer-Verlag, 1990, pp. 375-417.

Smith, J., and S.B. Joshi, "Reusable Software Concepts Applied to the Development of
FMS Control Software," Intl. J. of Comp. Integrated Mfg., Vol. 5, No. 3, 1992,
pp. 182-196.

Spearman, L.M., Woodruff, D.L., and Hopp, W.J., "CONWIP: A Pull Alternative to
Kanban," Int. J. of Prod. Res., Vol. 28, No. 5, 1990, pp. 879-894.

256
Srinivasan, V.S., and Jafari, M.A., "Monitoring and Fault Detection in Shop Floor Using

Timed Petri nets," Proc. of IEEE Conf. on Systems, Man, and Cybernetics,
Charlottesville, VA, 1991, pp. 355-360.

Stecke, K. E., "Formulation and Solution of Nonlinear Integer Production Planning
Problems for Flexible Manufacturing Systems," Management Science, Vol. 29,
No. 3, March 1983, pp. 273-288.

Stecke, K. "FMS Design and Operating Problems and Solutions," Proc. of the 2nd
Intelligent Factory Automation Symposium, ISCIE, 1989, pp. 17-32.

Stecke, K.E, and J. Solberg, J.J, "Loading and Control Policies for Flexible
Manufacturing System," International Journal of Production Research, Vol. 19,
No. 5, 1981, pp. 481-490.

Stefano, Di. A., and Mirabella, 0., "A Fast Sequence Control Device Based on Enhanced
Petri nets," Microprocessors and Microsystems, Vol. 15, No. 4, 1991, pp. 179-
186.

Sturzenbecker, M.C., "Building an Object-oriented Environment for Distributed
Manufacturing Software, Proc. of the 1991 IEEE Int. Conf. on Robotics and
Automation, Sacramento, CA, 1991, pp. 1972-1978.

Suri, R., and G.W. Diehl, "MANUPLAN: A Precursor to Simulation for Complex
Manufacturing Systems," Proc. of Winter Simulation Conference, 1985.

Suri, R., and J.W. Dille, "A Technique for On-line Sensitivity . Analysis of Flexible
Manufacturing Systems," Annals of Operations Research, Vol. 3, 1985, pp. 381.

Tomek, Pavel., "Tooling Strategies Related to FMS Management," The FMS Magazine,
Vol. 5, No. 4, April 1986, pp.102-107.

Valavanis, K.P., "On the Hierarchical Modelling, Analysis and Simulation of FMSs
with Extended Petri nets," IEEE Transactions on Systems, Man and Cybernetics,
20(1), 1990, pp. 94-110.

Valette, R., Courvoisier, M,, Bigou, JM., and Albukerque, J., "A Petri net Based
Programmable Logic Controller," Computer Applications in Production and
Engineering, E.A. Warman (editor), North-Holland Publishing Company, IFIP,
1983, pp. 103-115.

Valvanis, K.P., "On the Hierarchical Modeling, Analysis and Simulation of FMSs with
Extended Petri nets," IEEE Trans. on Systems, Man and Cybernetics, Vol. 20,
No. 1, 1990, pp. 94-110.

Veeramani D., Upton, D.M. and Barash, M.M., "Cutting-Tool Management in Computer-
Integrated Manufacturing," International Journal of Flexible Manufacturing
Systems, Vol. 5, N0. 2, 1992, pp.238-265.

Venkatesh, K., and Chetty, O.V.K., "Petri Nets as an Efficient Modeling Tool for
Modeling Tool Management in FMSs," Proceedings of the 5th Annual Research
Conference on Recent Advances in Robotics, Florida Atlantic University, June
1992, pp. 583-594.

257

Venkatesh, K., and E.B. Fernandez, "Object-oriented Simulation and Control of Flexible
Manufacturing Systems Using Timed Petri nets and Ada", Technical Report
TR-CSE-92-93, Florida Atlantic University, Boca Raton, FL, 1993.

Venkatesh, K., and Kaighobadi, M., "Modeling, Simulation, and Analysis of Flexible
Assembly System Using Stochastic Petri Nets," Presented at Production and
Operations Management Society annual meeting, Orlando, FL, October 18-21,
1992.

Venkatesh, K., and M. Ilyas, "Modeling, Controlling, and Simulation of Local Area
Networks for Flexible Manufacturing Systems Using Petri nets," Computers and
Indu. Eng., Vol. 25, No. (1-4), 1993, pp. 155-158.

Venkatesh, K., Chetty, O.V.K., and Raju, K. R., "Simulating Flexible Automated
Forming and Assembly Systems," Journal of Material Processing and
Technology , Vol. 24, 1990, pp. 453-462.

Venkatesh, K., Ilyas, M., "Real-time Petri Nets for Modeling, Controlling, and
Simulation of Local Area Networks in Flexible Manufacturing Systems," (in
press) Computers and Industrial Engineering, Vol. 28, No. 1, 1995.

Venkatesh, K., Masory, 0, and Jie Wu, "Simulation and Scheduling of Robots in an
Flexible Factory Automated System Operating With JIT Principles Using Timed
Petri nets," Proc. of International Conference on Automation and Technology ,
Taipei, Taiwan, R.O.C., July 4-6, 1992, pp. 73-80.

Venkatesh, K., Mehdi, K., Zhou, M.C., and Caudill, R., "Augmented Timed Petri nets for
Modeling of Robotic Systems with Breakdowns," Journal of Manufacturing
Systems, Vol. 13, No. 4, 1994a, pp. 289-301.

Venkatesh, K., O.V.K. Chetty, and V. Radhakrishnan, "Software Development for Future
Unmanned Industries," Proc. of Int. Conf. on Design Automation and Comp.
Integrated Mfg., Coimbatore, India, 1991, pp. 80-91.

Venkatesh, K., Petri Nets - An Expeditious Tool for Modelling, Simulation and Analysis
of Flexible Multi Robot Assembly Systems, M. Tech. Project Report,
Manufacturing Engineering Section, Indian Institute of Technology, Madras,
India, 1990.

Venkatesh, K., Zhou, M.C., and Caudill, R., "Comparing Ladder Logic Diagrams and
Petri Nets for Sequence Controller Design through a Discrete Manufacturing
System," (in press) IEEE Trans. on Industrial Electronics, 1994.

Venkatesh, K., Zhou, M.C., Caudill, R., "A Control Software Design Methodology for
CIM Systems," Proc. of Rutgers Conf. on CIM in the Process Industries, East
Brunswick, NJ, April 25-26, 1994, pp. 565-579.

Venkatesh, K., Zhou, M.C., Caudill, R., "Evaluating the Complexity of Petri Nets and
Ladder Logic Diagrams to Design Sequence Controllers in Flexible Automation,"
Proc. of Seiken/IEEE Symp. on Emerging Technologies & Factory Automation,
Tokyo, Japan, Nov. 6-10, 1994, pp. 428-435.

258
Vernon, M., Zahorjan, J., and E.D. Lazowska, "A Comparison of Performance Petri nets

and Queuing Network Models," Proc. of the Int. Workshop on Modeling
Techniques and Performance Evaluation, Paris, France, 1987.

Voltz, R., T.N. Mudge, and D. Gal, "Using Ada as a Programming Language for Robot-
based Manufacturing Cells," IEEE Trans. on Systems, Man, and Cybernetics, Vol.
14, No. 6, 1984, pp. 863-878.

Vosniakos, G.C. and Mamalis, A.G., "Automated guided vehicle system design for FMS
applications," International Journal of Machine tools and Manufacture, Vol. 30,
1990, pp. 85-97.

Wang, H.P.B., and Hafeez, S.A., "Performance Evaluation of Tandem and Conventional
AGV Systems Using Generalized Stochastic Petri nets," Mt. J. of Prod. Res., Vol.
32, No. 4, 1994, pp. 917-932.

Wegner, P., "Capital Intensive Software Technology, Part 2: Programming in the large,"
IEEE Software, Vol. 1, No. 3, 1984, pp. 24-32.

Wysk, R.A., Egbelu, P.J., Zhou, C. and Ghosh, B.K.,1987, "Use of Spreadsheet
Analysis for Evaluating AGV Systems," Material Flow, Vol. 4, 1987, pp. 53-64.

Yilmaz, O.S. and Davis, R.P., "Flexible Manufacturing Systems: Characteristics and
Assessment," Engineering Management, Vol. 4, 1987, pp. 209-212.

Yim, D., and Linn, R.J., "Push and Pull Rules for Dispatching Automated Guided
Vehicles in a Flexible Manufacturing System," Int. J. of Prod. Res., Vol. 31, No.
1, 1993, pp. 43-57.

Zavanella, L., Maccarini, G.C. and Bugini, A., "FMS tool supply in a Stochastic
Environment: Strategies and Related Reliabilities," Intl. J. Mach. Tools
Manufacturing, Vol. 30, No. 3, 1990, pp. 389-402.

Zhou, M. C., and DiCesare, F., "Adaptive Design of Petri net Controllers for Error
Recovery in Automated Manufacturing Systems," IEEE Trans. on Systems, Man,
and Cybernetics, Vol. 19, No. 5, 1989, pp. 963-973.

Zhou, M. C., and DiCesare, F., Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, Kluwer Academic Publishers, Boston, MA, 1993.

Zhou, M. C., DiCesare, F., and Desrochers, "A Hybrid Methodology for Synthesis of
Petri Net Models for Manufacturing Systems," IEEE Trans. Robotics and
Automation, Vol. 8, No. 3, 1992b, pp. 350-361.

Zhou, M. C., F. DiCesare, and D. Rudolph., "Design and Implementation of a Petri net
Based Supervisor for a Flexible Manufacturing System," Automatica, Vol. 28, No.
6, 1992a, pp. 1999-2008.

Zhou, M.C., and Leu, M.C., "Modeling and Performance Analysis of a Flexible PCB
Assembly System Using Petri nets," Transactions of ASME, Journal of Electronic
Packaging, Vol. 113, 1991, pp. 410-416.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1994

	A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems
	Venkatesh Kurapati
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Flexible Manufacturing Systems: An Overview
	Chapter 3: Petri Nets as an Integrated Tool and Methodology in FMSs
	Chapter 4: Performance Evaluation of Push and Pull Pardigms in Flexible Automation
	Chapter 5: Augmented-Timed Petri Nets for Modeling Breakdown Handling
	Chapter 6: Real-Time Petri Nets for Control and Simulation
	Chapter 7: Comparison of Real-Time Petri Nets and Ladder Logic Diagrams
	Chapter 8: Conversion of Logic Control Specifications into Petri Net Models
	Chapter 9: An Object-Oriented Design Methodology for Development of FMS Control Software
	Chapter 10: Conclusions
	Appendix A: Software Package to Execute TPN and ATPN
	Appendix B: Software Package to Execute RTPN
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

