
Turku Centre for Computer Science

TUCS Lecture Notes
No 27, November 2017

Marina Waldén (Editor)

Proceedings of the 29th Nordic
Workshop on Programming
Theory

Foreword

This volume contains the extended abstracts of the talks to be presented at the 29th
Nordic Workshop on Programming Theory, NWPT’17, that will take place in Turku,
Finland, 1-3 November, 2017.

The objective of Nordic Workshop on Programming Theory is to bring together
researchers from the Nordic and Baltic countries interested in programming theory, in
order to improve mutual contacts and co-operation. However, the workshop also
attracts researchers outside this geographical area. In particular, it is targeted at early-
stage researchers as a friendly meeting where one can present work in progress. Typical
topics of the workshop include:

• semantics of programming languages,
• programming language design and programming methodology,
• programming logics,
• formal specification of programs,
• program verification,
• program construction,
• tools for program verification and construction,
• program transformation and refinement,
• real-time and hybrid systems,
• models of concurrency and distributed computing,
• language-based security.

This volume contains 21 extended abstracts of the presentations at the workshop
including the abstracts of the three distinguished invited speakers:

Prof. Marjan Sirjani Mälardalen University, Sweden and
Reykjavik University, Iceland

Prof. Marieke Huisman University of Twente, The Netherlands
Prof. John Hughes Chalmers University of Technology, Sweden

After the workshop selected papers will be invited, based on the quality and topic of
their presentation at the workshop, for submission to a special issue of The Journal of
Logic and Algebraic Methods in Programming.

Acknowledgements
The 29th Nordic Workshop on Programming theory is supported by Åbo Akademi
University Foundation and the City of Turku. Technical and administrative support is
provided by the Department of Information Technologies at Åbo Akademi University
and by Turku Centre for Computer Science (TUCS).

Programme Committee
Lars Birkedal Aarhus University, Denmark
John Gallagher Roskilde University, Denmark
Michael R. Hansen Technical University of Denmark, Denmark
Magne Haveraaen University of Bergen, Norway
Keijo Heljanko Aalto University, Finland
Fritz Henglein University of Copenhagen, Denmark
Thomas T. Hildebrandt IT University of Copenhagen, Denmark
Anna Ingolfsdottir Reykjavík University, Iceland
Einar Broch Johnsen University of Oslo, Norway
Jaakko Järvi University of Bergen, Norway
Yngve Lamo Bergen University College, Norway
Kim G. Larsen Aalborg University, Denmark
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Fabrizio Montesi University of Southern Denmark, Denmark
Wojciech Mostowski Halmstad University, Sweden
Olaf Owe University of Oslo, Norway
Philipp Rümmer Uppsala University, Sweden
Gerardo Schneider University of Gothenburg, Sweden
Cristina Seceleanu Mälardalen University, Sweden
Jiri Srba Aalborg University, Denmark
Tarmo Uustalu Tallinn University of Technology, Estonia
Jüri Vain Tallinn University of Technology, Estonia
Antti Valmari Tampere University of Technology, Finland
Marina Waldén Åbo Akademi University, Finland (chair)

Organizing Committee

Marina Waldén (chair)
Mojgan Kamali
Jonatan Wiik

Åbo Akademi University
Faculty of Sciences and Engineering
Department of Information Technologies
Vattenborgsvägen 3
FIN-20500 Turku, Finland

ISSN 1797-8831
ISBN 978-952-12-3608-2

Table of Contents

Invited Lectures
Marjan Sirjani
Event-based Analysis of Distributed Timed Actors ... 1

Marieke Huisman
Verification of Concurrent Software with VerCors ... 2

John Hughes
Testing the Hard Stuff and Staying Sane ... 3

Accepted submissions
Multilevel modelling
Juan Boubeta-Puig, Fernando Macías and Adrian Rutle
Towards an Autonomous Robot Architecture Combining Complex Event Processing and
Multilevel Modelling .. 4

Fernando Macías, Adrian Rutle and Volker Stolz
Coordination and Amalgamation of Multilevel Coupled Model Transformations 7

Parallel and Concurrent Programming
Shukun Tokas, Olaf Owe and Christian Johansen
Code Diversification Mechanisms for Securing the Internet of Things 10

Cosimo Laneve, Michael Lienhardt, Ka I Pun and Guillermo Román-Díez
Time analysis of actor programs ... 13

Junia Gonçalves
Effects in deterministic parallel programs .. 16

Distributed and Object Systems
Toktam Ramezanifarkhani, Elahe Fazeldehkordi and Olaf Owe
A Language-Based Approach to Prevent DDoS Attacks in Distributed Object Systems 19

Rui Wang, Lars Kristensen, Hein Meling and Volker Stolz
Model-based Testing of the Gorums Framework for Fault-tolerant Distributed Systems 22

Toktam Ramezanifarkhani, Farzane Karami and Olaf Owe
A High-Level Language for Active Objects with Future-Free Support of Futures 25

Petri nets
Frederik M. Bønneland, Jakob Dyhr, Mads Johannsen and Jiří Srba
Stubborn Versus Structural Reductions for Petri Nets .. 28

Anastasia Gkolfi, Einar Broch Johnsen, Lars Michael Kristensen and Ingrid Chieh Yu
Resource Management of Cloud-Aware Programs using Coloured Petri Nets 31

Synthesizing
Michael R. Hansen
On-the-fly solving of railway games .. 34

Isabella Kaufmann, Jiri Srba, Kim G. Larsen, Lasse S. Jensen and Søren M. Nielsen
Symbolic Synthesis for Non-Negative Multi-Weighted Games .. 37

Testing and Analysing
Raluca Marinescu, Predrag Filipovikj, Eduard Paul Enoiu, Jonatan Larsson and Cristina
Seceleanu
An Energy-aware Mutation Testing Framework for EAST-ADL Architectural Models 40

Wojciech Mostowski
Consequence Testing for Automotive Software through Mocking ... 43

Larissa Braz, Rohit Gheyi, Volker Stolz and Márcio Ribeiro
Analyzing Changes on Configurable Systems with #ifdefs .. 47

Models
Daniel Schnetzer Fava, Martin Steffen, Volker Stolz and Stian Valle
Operational Semantics of a Weak Memory Model inspired by Go ... 50

Fazle Rabbi and Yngve Lamo
A diagrammatic approach for bracing heterogeneous models .. 53

Mahsa Varshosaz, Mohammadreza Mousavi, Lars Luthmann and Malte Lochau
Expressive Power and Encoding of Transition System Models for Software Product Lines .. 57

Refinement algebra
Kim Solin
Abstract refinement algebra: a survey ... 60

Languages
Alejandro Rodríguez, Fernando Macías, Lars M. Kristensen and Adrian Rutle
Towards Domain-Specific CPN Modelling Languages ... 62

Robin Kaarsgaard and Michael Kirkedal Thomsen
RFun Revisited ... 65

Event-based Analysis of Distributed Timed Actors

Marjan Sirjani

Mälardalen University, Sweden and Reykjavik University, Iceland

Abstract

Actor models have been used for modeling and analyzing distributed and asynchronous
systems. Moreover, actors are being increasingly used in industry, and new actor-based
languages are designed and used by Google and Microsoft, for example Go, P and Orleans.
In the new era of cyber-physical systems, we need methods and techniques for safety
and performance assurance of timed models. Floating Time Transition System (FTTS)
is introduced as an event-based semantics for the actor-based language Timed Rebeca,
and it is used for efficient model checking and performance evaluation of timed actors. I
will explain FTTS and the action-based weak bisimulation relation between FTTS and
the standard semantics in Timed Transition System, and how this relation guarantees
preserving of the event-based properties. I will also show how Timed Rebeca is used in
safety assurance and performance evaluation of different systems, like Network on Chip
architectures, sensor network applications, Traffic Control systems, and quadcopter.

1

Verification of Concurrent Software with VerCors

Marieke Huisman

University of Twente, The Netherlands

Abstract

Concurrent software is inherently error-prone, due to the possible interactions and
subtle interplays between the parallel computations. As a result, error prediction and
tracing the sources of errors often is difficult. In particular, rerunning an execution with
exactly the same input might not lead to the same error. To improve this situation, we
need techniques that can provide static guarantees about the behaviour of a concurrent
program. In this presentation, I present an approach based on program annotations, which
is supported by the VerCors tool set. I will present the general set up of the approach, and
discuss what kind of programs can be verified using this approach. Then I will dive into
one concrete example, namely where we use the VerCors verification techniques to prove
that compiler directives for program parallellisations (as done in OpenMP, for example)
cannot change the behaviour of the program.

2

Testing the Hard Stuff and Staying Sane

John Hughes

Chalmers University of Technology, Sweden

Abstract

Even the best test suites can’t entirely prevent nasty surprises: race conditions, un-
expected interactions, faults in distributed protocols and so on, still slip past them into
production. Yet writing even more tests of the same kind quickly runs into diminishing
returns. I’ll talk about new automated techniques that can dramatically improve your
testing, letting you focus on what your code should do, rather than which cases should
be tested–with plenty of war stories from the likes of Ericsson, Volvo Cars, and Basho
Technologies, to show how these new techniques really enable us to nail the hard stuff.

3

Towards an Autonomous Robot Architecture Combining

Complex Event Processing and Multilevel Modelling

Juan Boubeta-Puig1, Fernando Maćıas2, and Adrian Rutle2

1 University of Cádiz, Spain, juan.boubeta@uca.es
2 Western Norway University of Applied Sciences, Norway, {fmac,aru}@hvl.no

Complex Event Processing (CEP) [5] is a cutting-edge technology that allows the real-
time analysis and correlation of large volumes of data, with the aim of detecting complex and
meaningful events and of inferring valuable knowledge for end users and systems. In order to
do this, so-called event patterns are used. These patterns specify which conditions must be met
in order to detect such situations of interest.

Multilevel Modelling (MLM) enables the definition of Domain-Specific Modelling Languages
(DSML) in a hierarchical manner [4]. In such a way a modelling language can be refined
an arbitrary number of times while maintaining its typing relations with the more abstract
languages, allowing for reusability and flexibility [7].

In this approach, we define an architecture for the control of autonomous systems using CEP,
in which the behaviour of such systems is specified using MLM techniques. The configuration
of the CEP engine is then generated through automatic code generation, removing the necessity
of the developer having previous knowledge of CEP technology, or even of the whole paradigm.

The situations that the autonomous system must detect and react to are event occurrences
or event sequences. A simple event is indivisible and happens at a point in time; a complex
event contains more semantic meaning which summarises a set of other events. Events can be
derived from other events by applying or matching event patterns; these are defined by using
specific languages developed for this purpose, known as Event Processing Languages (EPLs) [1].
A CEP engine is the software used to match these patterns over continuous and event streams,
and to raise alerts about complex events created when detecting such event patterns.

The main advantage of CEP is that complex events can be identified and reported in real
time, thus reducing latency in decision making, unlike other traditional methods. Other relevant
advantages are [3]: information overload prevention, human workload reduction, faster and
automatic reply and decision quality improvement.

In order to describe the correct behaviour of a system, such as a robot, we make use of
Model-Driven Software Engineering (MDSE), a software paradigm that uses abstractions for
modelling different aspects – behaviour and structure – of software systems, considering models
as first-class entities in all phases of software development [2]. Maćıas et al. [7] have proposed
an approach for the definition of behaviour models focusing on multilevel modelling hierarchies.

Taking the advantages of both paradigms, in this paper we present an autonomous ro-
bot architecture that combines CEP and multilevel modelling to detect relevant situations in
autonomous robots, as well as to automatically execute the appropriate actions. Our autonom-
ous robot architecture is composed of three tiers: Hardware, Message and Logic. Figure 1
illustrates this architecture along with all its components.

The Hardware tier includes the hardware components (sensors and actuators) together
with their controller modules. The sensor module receives readings of different sensors, such as
infrarred and colour, and sends this sensor data to a sensor message queue. At the same time,
the robot state module sends the state data to a state message queue. This module is also in
charge of receiving complex events and transforming them into data executable by actuators.

1
4

Boubeta-Puig et al. Boubeta-Puig et al.

Figure 1: Our autonomous robot architecture combining CEP and multilevel modelling.

The Message tier provides the message queues which make possible the integration between
the Hardware and Logic tiers. The sensor message queue receives the sensor data coming
from the sensor module, while the state message queue receives the state data from the robot
state module. Both queues forward this information into the CEP engine to be processed and
analysed. This tier has also the complex event message queue, which receives the complex events
generated by the CEP engine and sends them to the robot state module.

Finally, the Logic tier contains the CEP engine that provides the logic of the architecture.
CEP is mainly performed in 3 stages: (1) event capture: it receives events to be analysed by
the CEP engine; (2) analysis: from the event patterns previously defined, it will process and
correlate the information (events) to detect relevant situations in real time; and (3) response:
after detecting a particular situation, notify the system, software or device in question.

This engine supports the flow-based programming, i.e. a component-oriented programming
paradigm that allows us to define programs as networks of “black box” processes. These
processes can exchange data using predefined connections through message passing. Then, these
processes can be reconnected to create other programs without modifying them internally.

We have created a data flow inside the CEP engine composed of the following components:

• A sensor message queue source: this component subscribes to the sensor messages from
the sensor message queue. When a new message is received, then it is sent to the sensor
message to sensor event transformer.

• A sensor message to sensor event transformer : this is in charge of transforming the sensor
message into a specific event format: SensorEvent(timestamp Long, infrarred Float, col-
our String), in which the timestamp event property indicates when (in epochs) the event
has been created, while the infrarred and colour properties specify the values coming
from the corresponding sensors. An example of a simple event of this type can be:
SensorEvent(1505401100, 5000, “F3421A”).

• event types and patterns: this component represents all the simple event types and event
patterns which have been previously registered in the CEP engine in order to detect
situations of interest. When the conditions of a pattern are satisfied, then a complex
event is created alerting which pattern has been detected. Afterwards, this complex event
is sent to the complex event message queue sink.

• complex event message queue sink : this allows the communication from the CEP engine
to the Message tier by sending forward every complex event received.

2
5

Boubeta-Puig et al. Boubeta-Puig et al.

• state message queue source: this subscribes to the state messages from the state message
queue. Forwards every new message to the state message to state event transformer.

• A state message to state event transformer : this is responsible for transforming the state
message into a specific event format: StateEvent(timestamp Long, currentTask String),
in which the timestamp event property indicates when the event has been created, and
the currentTask specifies which task is doing the robot at that moment. An example of
a simple event of this type can be: StateEvent(1505401200, “GoFwd2”).

GoFwd

GoBck

GoBck

TurnL

TurnR

Obstacle

Border

Timeout

Input

Start

Task

Transition

Figure 2: Specification example.

In Figure 2, we display a simple specification of
the behaviour of a robot, extracted from [6]. This
example can be used to briefly illustrate the auto-
matic code generation part of our approach. The
generated code concerns the definition of event
types and patterns, through EPL files, based on
the elements displayed in Figure 2 and their types
(in blue). This particular robot has two kind of
sensors, and hence two simple event types that
can be generated from them. That is, one simple
event type is generated per input (red boxes), ex-
cept Timeout, which can be supported natively with EPL primitives. To process these simple
event types, two event patterns are automatically generated to detect when the property values
of such simple events pass a threshold (obstacle too close or border detected). Additionally,
another pattern is generated for the initial task, which gets created without preconditions. The
remaining code generation consists of encoding each particular transition (arrow) as a new event
pattern that gets fired as a response to the state (simple event type) of the actuators and the
complex event types related to the sensor values reaching a threshold.

We are working on implementing this process and the presented architecture using the Lego
EV3 platform and the Esper CEP engine, and generating Python, Java and Esper EPL code.

References

[1] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo. ModeL4CEP: Graphical domain-specific modeling
languages for CEP domains and event patterns. Expert Systems with Applications, 42(21):8095–
8110, Nov. 2015.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan
& Claypool Publishers, 2012.

[3] K. M. Chandy and W. R. Schulte. Event Processing: Designing IT Systems for Agile Companies.
McGraw-Hill, USA, 2010.

[4] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-specific
meta-modelling languages. Software & Systems Modeling, 14(1):429–459, 2015.

[5] D. Luckham. Event Processing for Business: Organizing the Real-Time Enterprise. Wiley, New
Jersey, USA, 2012.

[6] F. Maćıas, T. Scheffel, M. Schmitz, and R. Wang. Integration of runtime verification into metamod-
eling for simulation and code generation (position paper). In Y. Falcone and C. Sánchez, editors,
16th Intl. Conf. Runtime Verification, RV 2016, volume 10012 of LNCS, pages 454–461. Springer,
2016.

[7] F. Maćıas, U. Wolter, A. Rutle, F. Durán, and R. Rodriguez-Echeverria. Multilevel coupled model
transformations for precise and reusable definition of model behaviour. Submitted to Journal of
Logic and Algebraic Methods and Programming, 2017.

3
6

Coordination and Amalgamation of Multilevel Coupled

Model Transformations

Fernando Maćıas, Adrian Rutle, and Volker Stolz

Western Norway University of Applied Sciences, {fmac,aru,vsto}@hvl.no

The growing complexity of software systems is forcing industry to implement solutions which
enable a more abstract manipulation of software artefacts. Model-Driven Software Engineering
(MDSE) is one of the most suitable responses from the scientific communities to this challenge,
since it allows for the structural and behavioural specification of software systems in manners
that reconcile the mindsets and needs of software architects, developers, domain experts, clients
and all stakeholders in general. We believe that Domain-Specific (Meta)Modelling (DSMM) [3,
6] is an approach that could unite software modelling and abstraction, software design and
architecture, and organisational studies. This would help in filling the gap between these fields
which “could solve all kinds of problems and make modelling even more widely applicable than
it currently is” [13].

While structural modelling has advanced both in industry and academia due to mature
tools and frameworks, behavioural modelling has still a long way to go especially because of the
challenges related to the definition of dynamic semantics. One of the approaches for defining
dynamic semantics is based on model transformations, as we see examples in [12, 9, 11]. Two
characteristics of behavioural modelling are of special importance. First, since most behaviour
models have some commonality both in concepts and their semantics, reusing these model
transformations across behaviour models would be a huge gain. And secondly, behavioural
modelling is inherently multilevel since we define a metamodel for the modelling language at
one particular level while the semantics is described two levels below the metamodel [2, 10].
This is because the behaviour is reflected in the running instances of the models which conform
to the metamodel.

To achieve reusable multilevel model transformations which are suitable for definition of
behaviour, we have in earlier work [8] proposed the use of Multilevel Coupled Model Trans-
formations (MCMTs): multilevel to support the inherent multilevelness of domains and achieve
reusability by genericness, and coupled to support precision in rule definition and avoid repe-
tition of very similar rules. Hence, by utilising Multilevel Modelling (MLM) techniques for
DSMM we could exploit commonalities among Domain-Specific Modelling Languages (DSMLs)
through abstraction, genericness and definition of behaviour by reusable model transformations.
The reason for our choice is that existing approaches which employ reusable model transforma-
tions for the definition of behaviour models focus on traditional two-level modelling hierarchies
and their affiliated two-level model transformations (see [7] for a survey). Moreover, multilevel
aware model transformations [1] are relatively new and are not yet proven suitable for reuse
and definition of behavioural models.

Defining behaviour by rules would require a proper coordination for the application of these
rules. Running these MCMTs in different settings and applying them to different models would
require the users of the framework to coordinate them properly so that the right rules are applied
at the right time. An example is when two or more rules have overlap in their matches in a
way that applying one of them would make the others inapplicable. This is a first dimension of
conflict which needs to be resolved, where coordination and prioritisation might be helpful [5].

In a multilevel setting, rules defined at a lower abstraction level (more concrete) might
overlap in their matches with rules defined at a higher one (more abstract). This second

1
7

Coordination and Amalgamation of MCMTs Maćıas et al.

he

Head

t1

Tray

assembler

Assembler

c1

c2

ha

Handle

in in@2

plant

Figure 1: Example of double typing with orthogonal hierarchies.

C1
Container

M1
Machine

C2
Container

P1
Part

P2
Part

P3
Part

has

has

m1
M1

c1
C1

c2
C2

p1
P1

p2
P2

i:in@2 o:out@2

co1:contains@2

co2:contains@2

c1
C1

m1
M1

c2
C2

p3
P3

i:in@2 o:out@2

co3:contains@2

META

FROM TO

Figure 2: Rule to be applied on instances of Assembler.

Element Counter

value:int
has

c
Counter

x:value

e
Element h:has

e
Element

c
Counter

x++:value

h:has

META

FROM TO

Figure 3: Rule to be applied on in-
stances of Assembler.

conflict dimension can also be solved by layering, such that more abstract rules would get a
lower priority than the more concrete rules with an isomorphic left-hand side (LHS). However,
if the LHSs are not isomorphic, the rules need to be analysed and ultimately amalgamated.

The third dimension of conflict (which is the focus of this paper) arises when the system is
specified by combining two or more orthogonal hierarchies, like the ones displayed in Figure 1. In
this scenario, an existing hierarchy representing the domain of Product Line Systems (PLS) [9],
is augmented with a supplementary hierarchy that allows to include counters, that should be
increased under certain circumstances (see also [4]). In our particular example, the desired
combined behaviour is that the counter is increased every time a new part is assembled.

The original PLS hierarchy (right of Figure 1) can be manipulated by an MCMT that defines
the behaviour of machines of type Assembler, which take two separate parts and assemble them
together, generating a new part (see Fig. 2). An overview of the semantics of this graphical
representation for MCMTs can be found in [8]. For the supplementary hierarchy (left of Fig. 1)
that includes the counter, the MCMT displayed in Fig. 3 just states how to increment the value
of the counter.

The conflict between both MCMTs arises from the fact that both may be applicable at
the same time on the same instance model – actually, the increase counter MCMT is always
applicable in our example hierarchy. That is, while matches might be overlapping, these rules
might not be conflicting in the sense that they won’t disable each other. However, we will need

2
8

Coordination and Amalgamation of MCMTs Maćıas et al.

to amalgamate the rules in order to get the sum of the effects of applying both of them, and
getting our desired behaviour of increase the counter on every assembly.

Manually solving conflicts among rules related to different, orthogonal hierarchies in an ad-
hoc manner is not desirable, since it would eliminate both the structural decoupling that those
hierarchies had in the first place, and make the resulting set of amalgamated rules unsuitable for
further reuse. Moreover, modifying the rules by hand is an error-prone task that might modify
their originally intended behaviour. Hence, since using standard techniques like NACs and
priorities is not suitable in many scenarios, we are currently working on the possible adaptation
of amalgamation techniques already proposed for non-multilevel model transformations (see [4])
into our MLM setting, so that the typing relations among hierarchies can provide all (or at
least most of) the information required to automatically generate the amalgamated multilevel
rules. This process could then be combined with the proliferation process presented in [8] to
automatically generate a big set of two-level model transformation rules from a much smaller
initial set of MCMTs defined by the domain experts, hence leveraging the full power of DSML
creation through MLM techniques.

References

[1] C. Atkinson, R. Gerbig, and C. V. Tunjic. Enhancing classic transformation languages to support
multi-level modeling. Software & Systems Modeling, 14(2):645–666, 2015.

[2] J. de Lara and E. Guerra. Generic meta-modelling with concepts, templates and mixin layers. In
D. C. Petriu, N. Rouquette, and Ø. Haugen, editors, Model Driven Engineering Languages and
Systems: 13th Intl. Conf., MODELS 2010, Proceedings, Part I, pages 16–30. Springer, 2010.

[3] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-specific
meta-modelling languages. Software & Systems Modeling, 14(1):429–459, 2015.

[4] F. Durán, A. Moreno-Delgado, F. Orejas, and S. Zschaler. Amalgamation of domain specific
languages with behaviour. J.LAMP, 86(1):208–235, 2015.

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2006.

[6] S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Generation. Wiley,
2008.

[7] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwinger. Reuse
in model-to-model transformation languages: are we there yet? Software & Systems Modeling,
14(2):537–572, 2015.

[8] F. Maćıas, U. Wolter, A. Rutle, F. Durán, and R. Rodriguez-Echeverria. Multilevel coupled model
transformations for precise and reusable definition of model behaviour. Submitted to JLAMP, 2017.

[9] J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for modeling time-dependent beha-
vior of dsls. In IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2009, pages 51–55. IEEE Computer Society, 2009.

[10] A. Rutle, W. MacCaull, H. Wang, and Y. Lamo. A metamodelling approach to behavioural
modelling. In Proceedings of BM-FA ’12, pages 5:1–5:10. ACM, 2012.

[11] A. Schürr and A. Rensink. Software and systems modeling with graph transformations. Software
& Systems Modeling, 13(1):171–172, 2014.

[12] G. Taentzer. AGG: A graph transformation environment for modeling and validation of software.
In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations with
Industrial Relevance, 2nd Intl. Workshop, volume 3062 of LNCS, pages 446–453. Springer, 2003.

[13] J. Whittle, J. E. Hutchinson, and M. Rouncefield. The state of practice in model-driven engineer-
ing. IEEE Software, 31(3):79–85, 2014.

3
9

Code Diversification Mechanisms for

Securing the Internet of Things ∗

Shukun Tokas, Olaf Owe, and Christian Johansen

University of Oslo, Norway

Internet of Things (IoT) is the networking of physical objects (or things) having embedded
various forms of electronics, software, and sensors, and equipped with connectivity to enable
the exchange of information. IoT is gaining popularity due to the great benefits it can offer in
domestic and industrial settings as well as public infrastructures. However, securing IoT has
proven a complex task, which is largely disregarded by industry for which the business driving
force asks for functionality instead of safety or security. Securing IoT is also made difficult by
of the resource constraints on the majority of these devices, which also need to be cheap.

IoT devices are often deployed in large numbers. The fact that such a large amount of devices
are programmed in the same way allows an attacker to exploit one vulnerability in millions of
devices at once, thus with much more gains at the same cost. To address this challenge we
propose to consider inclusion of diversification and randomisation mechanisms, at program
design, implementation, and execution levels of IoT systems, to diversify observable program
behaviour and thus increase resilience. By resilience we mean the ability to resist against attacks
and the ability to recover quickly and with limited damages in case of infringements. Although
diversity cannot protect against all kinds of attacks, it has proven a strong defence mechanism.

Software diversity is a research topic with several recent comprehensive surveys [1, 2]. Diver-
sity techniques can be simply summarized as introducing uncertainty in the targeted program.
Detailed knowledge of the target software (i.e., the exact binary rather than the high level code)
is essential for a wide range of attacks, like memory corruption attacks, including control injec-
tion [3, 4, 5]. Diversity techniques strive to include in software implementations high entropy
so the attacker has a hard time figuring out the exact internal functioning of the system. The
range of techniques for diversification through program transformation is large, and include
approaches that vary with respect to threat models, security, performance, and practicality [1].

Software diversification has been applied at all levels of software, reaching the microproces-
sors level, the compiler or the network. Automated techniques from programming languages
like information flow static analysis [6] have been extended to the dynamic setting to protect
against code injection. Dynamic taint analysis [7] automatically detects injection attacks with-
out need for source code or special compilation for the monitored program, and hence works on
commodity software. TaintCheck [7] was an example tool that performs binary rewriting at run
time. Such techniques are still very popular and have been e.g., adopted for mobile operating
systems [8] to protect the privacy of mobile apps [9]. It is interesting to see how such modern
dynamic analysis techniques can be coupled with diversification techniques. Automated soft-
ware diversification can also be used to counter bugs in software at runtime, thus making the
system more robust, and applications to embedded systems have been proposed [10].

However, the diversification techniques are usually developed for standard operating systems
or processor architectures running on powerful computing devices like PCs or phones. There
is very little research on which diversification mechanisms can be applied to IoT and how.
Moreover, we are interested in automated diversification techniques, in particular, techniques
that can be employed at design and compile time, because these could be deployed e.g., on

∗This work was partially supported by the projects IoTSec and DiversIoT.

10

Code Diversification Mechanisms for Securing the Internet of Things Tokas, Owe and Johansen

version servers that distribute updates or patches to upgrade IoT devices in a seamless manner.
When trying to apply a diversification to IoT we are faced with two challenges: (I) IoT devices
are resource constrained (with limited computational and memory capabilities), and (II) we
need to generate a significant number of software variants (due to large number of IoT devices).

Following are some of the relevant techniques:

N-variant Technique One example of a manual diversification technique that one could think
of automating is the software design methodology N-variant [11]. The need for N teams
of developers developing N variants of the same software independently, from a common
specification, should be replaced with automated techniques based on algorithms with
mathematical guarantees (e.g., probabilistic or logical guarantees) that would produce
the N variants from the same software specification, or implementation given by only one
team of developers (e.g., [12]).

Overhead: Does not have any execution overhead, thus being good for the resource con-
straint nature of IoT devices. However, the overhead is in terms of programming resources
(budget, skills, time) required during development of the variants. It moreover incurs an
overhead proportional to N for maintenance and updates.

Applicability: This mechanism seems to be useful when it employs automated techniques
based on algorithms with mathematical guarantees (e.g., probabilistic or logical guaran-
tees) that would produce the N variants from the same software specification, or imple-
mentation given by only one team of developers. This mechanism is useful for developing
a fault tolerant system, as diverse sources of faults leads to transient effects.

Program Obfuscation Code transformation techniques change the source program P into a
(functionally) equivalent program P ′ [13]. The objective is to make low-level semantics
of programs harder and more complex for attacker to comprehend, without affecting the
program’s observable behavior. However, to have effective security and diversity the ob-
fuscated code should be difficult enough to reverse engineer. Collberg et al [13], identified
four main classes of transformation for code and data obfuscation: lexical transformation,
control flow transformation, data flow transformation, and preventive transformation.
These may involve renaming variable, altering control flow of program by using opaque
predicates or graph flattening, changing the data encoding, etc. After applying a series
of transformations, the obfuscated code is distributed to clients. This technique is an
effective defence against attacks based on reverse engineering and code tampering.

Overhead: However, it does incur an added cost due to memory usage and execution
cycles required to execute obfuscated code.

Applicability: Benefit of this technique is that it can be automated to generate large
number of code variants, in a platform independent manner (considering transformation
at source code level). It diversifies the code in terms of code space and execution timings,
and also it is effective against automated program analysis.

Insertion of Non-Functional Code Non-functional code can be inserted to generate delay
in execution or to indicate some space reservation in program memory. Adding any
number of NOP instruction does not change program semantics, but it generates diverse
binaries and makes the program execution more unpredictable to the attackers as the
variants will have different execution statistics. It can also be used to detect control flow
change due to instruction misalignment.

Overhead: Consumes only one clock cycle, overhead is proportional to number of NOP
instructions included.

2
11

Code Diversification Mechanisms for Securing the Internet of Things Tokas, Owe and Johansen

Applicabiity: It doesn’t degrade systems performance significantly and can be combined
with other diversification mechanisms to have an effective diversification strategy.

We plan to adapt, implement, and test the above techniques for IoT systems, and to analyse
how they can be combined. At a higher abstraction level, we want to propose and implement
a new technique where we want to make use of modern concurrent programming languages
like Creol [14] for developing the IoT system. We then take advantage of the inherent non-
determinism of concurrent programs to produce numerous sequentialized versions based on
varied thread scheduling policies (involving randomness). These sequential programs will be
deployed on the actual IoT device, preferably also going through more transformations as above.
This technique would prevent attacks based on knowledge of the precise timing of events. We
plan to develop and demonstrate this idea in detail using a case study.

References

[1] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated software diversity,” in
2014 IEEE Symposium on Security and Privacy, pp. 276–291, IEEE, May 2014.

[2] B. Baudry and M. Monperrus, “The multiple facets of software diversity: Recent developments in
year 2000 and beyond,” ACM Computing Surveys (CSUR), vol. 48, no. 1, p. 16, 2015.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: A new class of
code-reuse attack,” in 6th ASIACCS Symposium, pp. 30–40, ACM, 2011.

[4] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization,” in 2012 IEEE Symposium on Security
and Privacy, pp. 601–615, IEEE, May 2012.

[5] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented programming: Systems,
languages, and applications,” ACM Trans. Inf. Syst. Secur., vol. 15, pp. 2:1–2:34, Mar. 2012.

[6] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on
Selected Areas in Communications, vol. 21, pp. 5–19, Jan 2003.

[7] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis, and signa-
turegeneration of exploits on commodity software,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2005, San Diego, California, USA, The Internet Society, 2005.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones,” ACM Trans. Comput. Syst., vol. 32, pp. 5:1–5:29, June 2014.

[9] M. L. Polla, F. Martinelli, and D. Sgandurra, “A survey on security for mobile devices,” IEEE
Communications Surveys Tutorials, vol. 15, no. 1, pp. 446–471, 2013.

[10] A. Höller, T. Rauter, J. Iber, and C. Kreiner, “Towards dynamic software diversity for resilient
redundant embedded systems,” in Software Eng. for Resilient Systems, pp. 16–30, Springer, 2015.

[11] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE Transactions on software
engineering, no. 12, pp. 1491–1501, 1985.

[12] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser, “N-variant systems: A secretless framework for security through diversity.,” in USENIX
Security Symposium, pp. 105–120, 2006.

[13] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,” tech.
rep., Department of Computer Science, The University of Auckland, New Zealand, 1997.

[14] E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe object-oriented model for distributed
concurrent systems,” Theoretical Computer Science, vol. 365, no. 1-2, pp. 23–66, 2006.

3
12

Time analysis of actor programs

Cosimo Laneve1, Michael Lienhardt2, Ka I Pun3, and Guillermo Román-Dı́ez4

1 University of Bologna/INRIA, Italy
2 University of Turin, Italy

3 University of Oslo, Norway
4 Universidad Politécnica de Madrid, Spain

1 Motivation

Time computation for programs running on multicore or distributed systems is intricate and
demanding as the execution of a process may be indirectly delayed by other processes running on
different machines due to synchronizations. In this paper, we analyze the time of a basic actor
language by defining a compositional translation function that returns cost equations, which are
fed to an automatic off-the-shelf solver for obtaining the time bounds. Our approach is based on
a new notion of Synchronization sets, which captures possible difficult synchronization patterns
between actors and helps make the analysis efficient and precise. The actor language is intended
to be an effective model for staging the time cost of actor-based programming languages by
defining ad-hoc compilers.

2 The Time Analysis

In cloud architectures, services are bound by so-called service-level agreements (SLAs), which
regulate the costs in time and assign penalties for their infringements [3]. In particular, the
service providers need guarantees that the services meet the SLA, for example in terms of the
end-user response time, by deciding on a resource management policy, and by determining the
appropriate number of virtual machine instances (or containers) and their parameter settings
(e.g., their CPU speeds). In this contribution, we develop a technique allowing service providers
to select resource management policies in a correct way, before actually deploying the service.

The technique we follow is similar to the one in [7], where a statically typed intermediate
language has been defined in order to verify safety properties and certify code optimisations.
However, different from [7], our language, called alt, short for actor language with time, is
concurrent – includes task invocation and synchronization –, features dynamic actor creation,
and contains an operation defining the number of processing cycles required to be computed,
called wait(n), which is similar to the sleep(n) operation in Java.

The present work builds upon a previous article by the authors [5], where the computational
cost was estimated for functions with a very severe constraint: invocations were admitted
only either on the same actor or on newly created ones, i.e., no invocation on parameters.
For instance, according to this constraint, an invocation to a function inner(y), where the
first parameter is the actor executing the function, cannot occur in the body of a function
outer(x, y). The challenge is that, in this case, computing the cost of outer(x, y) requires to
know whether there is a synchronization between the actors x and y. In case there is, one has
to consider that inner(y) might be delayed by other functions running on y (which might be
independent from outer(x, y)). To overcome this issue, we compute synchronization sets, which
are the set of actors that potentially might interfere with the executions of each other. Then
we compose the cost of an invocation with the cost of the caller in two ways: (1) it is added

13

Time analysis of actor programs Laneve, Lienhardt, Pun, Román-Dı́ez

1 main(x, a, b) =
2 νy; νz; νw;
3 wait(1);
4 νh: bar(w, b);
5 νf : foo(y, z);
6 wait(a);
7 νg: gee(z);

8 fX;
9 wait(k3);

10 hX; gX;
11

12 bar(w, b) =
13 wait(b);

14 foo(y, z) =
15 wait(k2);
16 νh: huu(z);

17 hX;
18 wait(k4);
19

20 gee(z) =
21 wait(k5);
22

23 huu(z) =
24 wait(k6);

Execution 1

x z y w

1

a

k3

k6

k5

foo
k2

k4

gee

bar

huu

b

Execution 2

x z y w

1

a

k3

k6

k5

foo
k2

k4

gee

bar

huu

b

Execution 3

x z y w

1

a

k3

k6

k5

foo
k2

k4

gee

bar

huu

b

Figure 1: An alt program and three possible time computations

– corresponding to sequential compositions – if the arguments of the invocation and those of
the caller are in the same synchronization set; (2) it is the maximum value – corresponding to
parallel composition – otherwise. The analysis is carried out by a translation function that takes
an alt program and returns a set of cost equations. In order to compute synchronization sets
and to analyze cost compositions, this function has to manage aliases, which may be created
when an alt function is invoked with several copies of the same name. The translation of alt
programs into the solver input code [1, 4] is currently being prototyped. This tool, together
with the compiler we have defined in the authors’ earlier work [5], will allow us to automatically
compute the cost of programs in ABS, a modeling language for programming the cloud [6].

2.1 The Language alt

To illustrate the language alt, we discuss a simple example. The function main in Fig. 1 has
three arguments: x is the carrier actor, the other twos – a and b – are integer parameters. main
creates three new actors, y, z and w at line 2, and spawns several tasks on them at lines 4, 5
and 7. As the tasks are spawned on actors different from x, they will execute in parallel with
main. Their terminations are synchronized at lines 8 and 10 by means of hX, fX, and gX.
Note that main takes one of its integer arguments a, which is used in wait(·) operation at
line 6. The statement wait(e), where e is an integer expression, represents the advance of e
time units. This is the only term in our model that consumes time (a.k.a. that has a cost).
The expression e is a cost annotation specifying how many processing cycles are needed by
the subsequent statement in the code. Thus, the computation time of main depends on a’s
concrete value. Function foo invokes function huu on actor z. The other wait(·)-operations are
executed with some constants.

Fig. 1 also highlights the graphical representation of three possible executions of the code the-
rein. These three executions are obtained by choosing different values of a and b. Execution 1
describes the execution where a > k2, leading to the execution of huu on z begins before gee.
This case highlights how wait(k2), which is not executed on z , affects the subsequent execution
orders, and therefore must be included in the cost of invocations on z . Execution 2 describes
the execution where a < k2. The execution of huu is postponed until gee is finished on z , which
ultimately delays the execution of foo and its synchronization (hX at line 17) accordingly. Fi-
nally, Execution 3 describes an execution where the execution of bar takes longer than all the
other methods due to value of b.

2
14

Time analysis of actor programs Laneve, Lienhardt, Pun, Román-Dı́ez

2.2 Translation

The translation of a alt program associates to each of its methods m(x, y, n) = s a cost equation
of the form m(x, y, n) = e where e gives the cost of executing this method. Note that if s calls
other methods, e may depend of the cost of these other methods. As previously discussed,
the translation is based on the notion of Synchronization Sets which is an equivalence relation
between actors that may have unknown and possibly complex synchronization patterns. Our
analysis uses this relation to abstract every actors in the same synchronization set into one
single actor: as the synchronization pattern between these actors is unknown, the only sound
over-approximation is to consider that all of their tasks are synchronized, i.e., are executed in
sequence in one single actor. Using this abstraction, our analysis traverses the code of each
method, computing an abstract task queue for every synchronization set and accumulating costs
for every wait instructions executed in the method and the different awaited calls.

Consider for instance the method main in Fig. 1. This method contains four actors x, y, z
and w that result in three synchronization sets: {x}, {y, z} and {w}. The actors y and z are
in the same set because of the call foo(y, z) at line 5, which makes the synchronization pattern
between these two actors unknown from the main method. The translation of the main method
starts considering the abstract tasks queue of {x}, {y, z} and {w} to be empty and starting at
time 0 and accumulates the costs for all the queue in correspondances to the different method
calls. Synchronizations like hX at line 10 empties the distant queue of {w} and counts the
possible waiting time of the synchronization with a cost equal to the max of the distant queue
and the local one. For instance, the cost of hX is max(e, b) where e is the cost of the lines 5–9.

3 Summary

We have defined a low-level actor language and we study a technique for over-approximating the
computational time of the corresponding programs when they run on multicore or distributed
systems. Our results may be relevant in cloud computing because alt terms might be considered
as abstract descriptions of methods suited for SLA compliance. In that context, our analysis
could be used in combination with worst-case execution time (WCET) analysis [2] to display
correct upper-bounds of the values of cost-expressions written in wait() terms.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static Cost
Analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

[2] S. Blazy, A. Maroneze, and D. Pichardie. Formal Verification of Loop Bound Estimation for WCET
Analysis. In Procs. of VSTTE’13, volume 8164 of LNCS, pages 281–303. Springer, 2013.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Comp. Sys., 25(6):599–616, 2009.

[4] A. Flores Montoya and R. Hähnle. Resource analysis of complex programs with cost equations. In
Proceedings of APLAS 2014, volume 8858 of LNCS, pages 275–295. Springer, 2014.

[5] E. Giachino, E. B. Johnsen, C. Laneve, and K. I Pun. Time complexity of concurrent programs.
In Proceesdings of FACS 2015, pages 199–216. Springer, 2016.

[6] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language for
abstract behavioral specification. In Proceedings of FMCO 2010, volume 6957 of LNCS, pages
142–164. Springer, 2011.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system f to typed assembly language. ACM
Trans. Program. Lang. Syst., 21(3):527–568, 1999.

3
15

Effects in deterministic parallel programs

Junia Gonçalves

Roskilde University, Roskilde, Denmark
ju@cyberglot.me

Abstract

This work introduces an effect discipline to the λ LVar calculus for deterministic parallel
programs. We propose a Haskell library, lfx, that combines effect handlers and parallel
programming with LVars.

1 Introduction

Parallel programming can be a challenge considering it requires a deterministic execution, i.e. it
must provide an outcome observably equivalent to its sequential counterpart. LVars are shared
monotonic data structures for guaranteed-deterministic parallel programming [Kup15]. The
underlying idea of LVars is that order constraints in a shared data structure assist in the task of
assuring determinism: information is partially ordered and can only grow within the structure,
but never shrink. LVars are also a generalization of I-Structures for parallel computations – also
known as IVars within the Haskell community [MNJ11]. Original works on LVars also introduce
different calculi, targeting a broader algorithmic expressiveness. In this work, we only consider
the most basic calculus named λ LVar that defines put and get operations to an LVar.

The LVish library introduced by Kuper [Kup15] was the first step towards a type discipline
for the λ LVish calculus1, which is a Haskell library leveraging parallel programming in the same
spirit of the monad-par library [MNJ11]. The LVish library provides effect tracking of LVar
operations, as well as enforcing the inviability of effectful operations under certain circumstances
– e.g., trying to increment an LVar (defined as bump) that can only be put to (bump and put do
not commute, incurring in non-determinism). However, effect composition is done via monad
transformers and the mix does not create a cohesive effect system for the library due to effect
tracking and effect composition existing in different domains. To illustrate the issue, we provide
a code snippet (Listing 1) using the LVish library (available in [Kup15], page 108):

p :: (HasGet e, HasPut e) => ParVecT s1 String Par e s [String]
p = do { set ‘foo ‘; ptr <- reify;

forkSTSplit 3 (write 0 ‘bar ‘) (write 0 ‘baz ‘);
frozen <- liftST (freeze ptr); toList frozen }

Listing 1: Disjoint parallel mutation in LVish

In the computation p above, the Par monad is being stacked with the ST monad2 to enable
disjoint parallel updates, where disjoint chunks of a vector can be mutated in parallel without
loss of determinism. At type-level, no information suggests that disjoint mutation can happen
while put and get effects are encoded.

In this work, our key contribution is a Haskell library for deterministic parallel programming
with LVars using algebraic effects and handlers [Pre15]. lfx is briefly described here and avail-
able at https://github.com/cyberglot/lfx. The major improvement over the LVish library

1A more expressive version of the λ LVar calculus featuring data structure freezing and event handlers.
2The ST monad is Haskell’s standard monad for performing mutations on state. Its usage is witnessed by

forkSTSplit and liftST functions.

16

Effects in deterministic parallel programs Gonçalves

is an effect system that can track effects of operations defined in terms of lfx, explicitly encod-
ing effects at type-level. On the other hand, lfx is less expressive than the LVish library (more
on it in §4) and does not interface well with existing code written with monad transformers.

2 A tour of the lfx library in Haskell

As a trivial example (Listing 2), we declare a Nat data type and provide an implementation
for the BoundedJoinSemiLattice typeclass3, and we also define four as a computation with
parallel effects: we put 3 to the LVar, and get a value from it that should match the threshold
set of {1}4 and the computation deterministically returns 4. runPar is the canonical handler
of parallel computations over an LVar structure. The new function returns an LVar initialised
with a bottom value. The type of four is a computation (Comp) containing the Par effect, which
manipulates values of type Nat.

data Nat = Zero | Succ Nat
instance BoundedJoinSemiLattice Nat where
a \/ b = if a <= b then a else b
bottom = Zero

four :: Comp ’[Par] Nat
four = do

l <- new Zero
put (Succ (Succ (Succ Zero))) l
x <- get (>=(Succ Zero)) l
return (Succ x)

*Main > runPar four
Succ (Succ (Succ (Succ Zero)))

Listing 2: Handling a parallel computation

new :: BoundedJoinSemiLattice a
=> a -> Comp (Par ’: r) (LVar a)

get :: BoundedJoinSemiLattice a
=> (a -> Bool)
-> LVar a
-> Comp (Par ’: r) a

-- NFData constraint required to
-- force the evaluation of lazy thunks
put :: (NFData a, BoundedJoinSemiLattice a)

=> a
-> LVar a
-> Comp (Par ’: r) ()

Listing 3: Type signatures of LVar operations

In a second example (Listing 4), we have a new effect Logger and a handler runLogger

that work similarly to the Writer monad. By handling the computation four’ with run .

runPar’ . runLogger, we get a pair containing the result of the computation and the log
of an LVar get operation. runPar’ is a new handler that only performs LVar operations and
returns another computation, not a value. As a result, we combined the effects of parallel
execution with LVars and logging. Notice that Par and Logger String are explicitly stated in
the type of four’.

four ’ :: Comp ’[Par , Logger String] Nat
four ’ = do

l <- new Zero
put l (Succ (Succ (Succ Zero)))
x <- get (>=(Succ Zero)) l
log ("Get: " ++ show x)
return (Succ x)

*Main > (run . runPar ’ . runLogger) four ’
(Succ (Succ (Succ (Succ Zero)))
, "Get: Succ (Succ (Succ Zero))")

Listing 4: Handling a parallel computation with logging

-- runPar handlers for parallel computations
runPar :: Comp ’[Par] a -> a
runPar ’ :: Comp (Par ’: es) a -> Comp es a

-- canonical top -level handler for
-- computations without effects
run :: Comp ’[] a -> a

-- runLogger handler logs to an
-- internal state
runLogger :: Monoid b

=> Comp (Logger b ’: es) a
-> Comp es (a, b)

Listing 5: Canonical handlers and runLogger

3We also suppose an Ord Nat instance that defines an implementation of <= for the Nat data type.
4Threshold sets have been oversimplified to be predicates and are required in order to keep the get operation

deterministic. More on threshold sets in [Kup15].

2 17

Effects in deterministic parallel programs Gonçalves

3 The implementation of lfx

The lfx library implements the λ LVar calculus and features a work-stealing scheduler that
exploits GHC’s concurrent runtime in a similar fashion as the monad-par library. To inhabit
an LVar as showed in §2, a data type must be an instance of the BoundedJoinSemiLattice

typeclass and provide an implementation to bottom and \/ (least upper bound) operations – cor-
rectness of such implementations must be verified by the programmer. The lfx’s effect system
and handlers are based on Kiselyov et al.’s extensible effects [KSS13] and the freer package5.
Effects are explicitly stated in a type-level list (formally, an open union) where they can be
extracted from and performed by a handler. The effectful functions simply signal operations to
be performed while the handler is responsible for the actual execution. A computation Comp is
a tree of pure values (Val y) or effectul computations (Eff e k of effects and continuations).
The runPar handler traverses the computation tree while it calls the scheduler’s functions.

data Par a where -- algebraic data type defining LVar operations as the Par effect
New :: BoundedJoinSemiLattice a => a -> Par (LVar a)
Put :: BoundedJoinSemiLattice a => a -> LVar a -> Par ()
Get :: BoundedJoinSemiLattice a => (a -> Bool) -> LVar a -> Par a

new :: BoundedJoinSemiLattice a => a -> Comp (Par ’: r) (LVar a)
new a = send (New a) -- it signals a New operation to be performed

runPar x = Scheduler.runPar (go x) where
go (Val y) = return y
go (Eff e k) = case extract e of -- operations being extracted from the list of effects

New a -> do { l <- Scheduler.new a ; go (kApp k l) }
Put a v -> do { Scheduler.put v a; go (kApp k ()) }
Get p v -> do { s <- Scheduler.get p v; go (kApp k s) }

Listing 6: Fragments of lfx’s implementation

4 Future work

The current implementation of lfx library features the λ LVar calculus; however, our work is
intended to contemplate the λ LVish calculus in order to be competitive. In many configurations
the λ LVish calculus is not optimal: memoisation, task cancellation, disjoint parallel mutation,
which have been tackled by the LVish library, and their replication in the context of algebraic
effects and handlers is planned. A calculus formalising the semantics and the type system
implemented in the lfx library will finally be introduced in future works.

References

[KSS13] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to monad
transformers. In Chung-chieh Shan, editor, Proceedings of the 2013 ACM SIGPLAN Sympo-
sium on Haskell, Boston, MA, USA, September 23-24, 2013, pages 59–70. ACM, 2013.

[Kup15] Lindsey Kuper. Lattice-based Data Structures for Deterministic Parallel and Distributed
Programming. PhD thesis, Indiana University, 2015.

[MNJ11] Simon Marlow, Ryan Newton, and Simon L. Peyton Jones. A monad for deterministic par-
allelism. In Koen Claessen, editor, Proceedings of the 4th ACM SIGPLAN Symposium on
Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011, pages 71–82. ACM, 2011.

[Pre15] Matija Pretnar. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper.
Electr. Notes Theor. Comput. Sci., 319:19–35, 2015.

5Available at https://hackage.haskell.org/package/freer.

318

A Language-Based Approach to Prevent DDoS Attacks in Distributed
Object Systems ∗

Toktam Ramezanifarkhani, Elahe Fazeldehkordi, and Olaf Owe
Department of Informatics, University of Oslo, Norway

Abstract

Denial of Service (DoS) attacks and Distributed DoS (DDoS) attacks with higher severity are historically con-
sidered as one of the major security threats and among the hardest security challenges. Although there are lots of
defense mechanisms to overcome such attacks, they are making the headlines frequently and have become the hugest
cyberattacks, recently in 2016 and 2017. In this paper, our aim is to show how distributed program analysis can help
to combat these attacks as an additional layer of defense. We consider a high-level imperative and object-oriented
framework based on the actor model with support of asynchronous and synchronous method interaction, and shared
futures, which are sophisticated features applied in many systems today. Since the preceding step in these attacks is
flooding, we show how such communication can cause flooding and thus DoS or DDoS. Then, we provide a hybrid
approach including the static and dynamic phases in distributed systems to prevent these attacks statically and to
detect them at runtime based on the inline monitoring.

Introduction
Denial of Service (DoS) attacks are becoming crucial. Moreover, Distributed DoS (DDoS) attacks have even

higher severity and the worst DDoS attacks happened (multiple times) in 2016 and 2017 [3]. More than 90 reports
in the first month of 2017 were about DoS attacks. Recent DDoS attacks have imposed high financial overhead
as well. Since 70 percent of the exploited devices are unmanaged and have weaknesses, and since there are tens
of millions of such devices out there, we face a huge problem, and thus it is inevitable that applications in such
devices can be used as bot-nets again. Although there are lots of proposed defense mechanisms to overcome these
attacks [1, 2]such as packet filtering or intrusion detection systems, based on the recent experiences, they are not
enough and it is required to strengthen them. Moreover, existing bots are likely to live and they are not going
away for a while.

In our setting and underlying language, due to some sophisticated features such as asynchronous and non-
blocking method calls, it is even easier for the attacker to launch a DoS, because then undesirable waiting by the
attacker is avoided in the distributed setting. Therefore, we adapt a static technique to prevent flooding and thus
DOS attacks. Moreover, instrument the code for dynamically checking of probable attacks to prevent them at
runtime. By including the static analysis in the compilation phase, one obtains static and automatic built-in DoS
prevention, and dynamic DoS detection at runtime. In this paper we consider a high-level imperative and object-
oriented language based on the actor model with support of asynchronous and synchronous method interaction.
We explain our hybrid approach including the static and dynamic phases in this model of distributed systems, and
show some examples.

Static and Dynamic Attack Detection and Prevention: To launch a DoS attack, the attacker tries to
submerge the target server under many requests to saturate its computing resources. To do so, flooding attack by
method calls are effective especially when the server allocates a lot of resources in response to a single request. So,
we detect
• call-flooding: flooding from one object to another, which is similar to GET-based flooding, and

∗Work supported by the SCOTT and IoTSec (Norwegian Research Council) projects. SCOTT (www.scott-project.eu) has received
funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This
Joint Undertaking receives support from the European Unions Horizon 2020 research and innovation programme and Austria, Spain,
Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.

• parametric-call-flooding: flooding from one object to another when the target object allocates resources or
consume resources for each call.

For any set of methods that call the same target method, a call cycle could be harmful. The methods might
belong to the same or different objects with the same or different interface. With the possibility of non-blocking
calls, it is even more cost-beneficial for the attacker to launch a DoS, because then undesirable waiting by the
attacker is avoided in the distributed setting. By means of futures and asynchronous calls, a caller process can
make non-blocking method calls that we have considered in an example. This case can be detected statically,
involving several factors:
• There should not be lots of methods that can call the same method, simultaneously. With respect to static

detection, it is in general hard to see if the callee is the same for different calls. However, a category of self
calls can be detected.

• Although we can not trace calls statically, for each target method we can automatically instrument a security
code to check the number of calls it receives in a time frame, and block the callers as an anomaly detection
and reaction. Moreover, to minimize the runtime overhead, we statically detect critical methods, such as
those that are called as non-blocking or by the suspension method that are beneficial for the attackers and
do the instrumentation for runtime detection.

• To prevent and detect parameterized DoS or DDoS attacks, the same static and dynamic approach is used
while calls with parameters and resource allocations are considered as more serious situations.

• Since the possibility of infinite object creation as referred to as instantiation flooding could cause resource
consumption and DoS which could be detected statically, especially if those objects and their communication
can cause flooding requests in the bots such as clients in our example. Moreover, it is even worse if there
is instantiation flooding at the target side of the distributed code. However, this can be detected by static
analysis of the target.

Moreover, our anomaly detection is not based on source machine IP addresses that can be forged through a
proxy or IP address spoofing. Therefore, for runtime anomaly detection it is possible to check the situations in
which thousands of requests are coming to one object every single second specially when they have the same size
or parameter settings which is common in automatic flooding attacks.

An Example of Instantiation Flooding: Fig. 1 (a) exploits unbounded creation of client objects where
each client object is unaware of the attack. Interfaces are similar to those above and are not given. Each client
is innocent in the sense that it does not cause any attack by itself. However, the attacker object makes an attack
by using an unbounded number of clients to flood the same server s. The attacker does not wait for the connect
calls to complete, therefore it is able to create more and more work load for s in almost no time. The execution
of f=c!connect(s) causes an asynchronous call and assigns a future to the call. Thus no waiting is involved. It is
immediately followed by a recursive asynchronous call, causing the current run execution to terminate before a new
one is started. The attacker creates flooding by rapidly creating clients that each perform a resource-demanding
operation on the same server.

Static Analysis of DoS Attacks: We apply the static analysis of flooding presented in [4] for detection of
flooding of requests, formalized for the Creol setting. We adapt this notion of flooding to deal with detection of
DDoS attacks, which have a similar nature. The static analysis will look for flooding cycles in the code. According
to [4] flooding is defined as follows:

An execution is flooding with respect to a method m if there is an execution cycle, call it C, containing a
call statement o!m(e) at a given program location, such that this statement may produce an unbounded
number of uncompleted calls to method m, in which case we say that the call o!m(e) is flooding with
respect to C.

Flooding is detected by building the control flow graph of the program and locating control flow cycles as
shown in Fig. 1 (b). Then, the sets of weakly reachable calls, denoted calls, and the set of strongly reachable
call completions, denoted comps, in each cycle have to be analyzed. Flooding is reported for each cycle with a
nonempty difference between calls and comps, as explained in Fig. 1 (c). Note that the abbreviated notations for
synchronous calls and suspending calls are expanded to the more basic call primitives explained above.

Weakly reachable nodes are those that are reachable from the cycle by following a flow edge or a call edge.
A node is strongly reachable if it is on the cycle or is reachable without passing a wait node (outside the cycle)
unless the return node of the corresponding call is strongly reachable. Also nodes that lead to a strongly reachable

Figure 1. (a), Flooding by unbounded creation of innocent clients targeting the same server, (b)
Static detection of flooding, (c) Control Flow Graph, and (d) Top Level algorithm for detecting flooding
relative to a given cycle.

node without leaving an if-branch are also strongly reachable. A more precise detection is found in [4], which
distinguishes between weak flooding and strong flooding. Strong flooding is flooding under the assumption of
so-called favorable process scheduling. Strong flooding reflects the more serious flooding situations that persist
regardless of the underlying scheduling policy. In the detection of strong flooding, an enabled node is considered
strongly reachable if its predecessor flow node(s) are strongly reachable. With respect to DDoS, weak flooding of a
server is in general harmless unless the flooding is caused by a large enough number of objects. And strong flooding
is dangerous even from one single attacker. A server is often running on powerful hardware, even compared to
that of an attacker, in which case it suffices to look for strong flooding. However, weak flooding may be used to
discover botnet attacks, since in this case the combined speed of the attacker can be significantly higher than that
of the attacked object.

Static Analysis of the Instantiation Example: For the creation of an attacker object, new Attacker(s),
the following cycle is detected: - the initialization of the attacker calls run, run creates a client object c, run calls
c!connect(s), run terminates and calls itself recursively. The run call has a call edge to the flow graph of connect,
and connect has a call edge to the flow graph of register. The call to register waits for completion of register since
it is a blocking call, and the database calls made by register wait for the completion of these database calls. The
code for the database is not given, and therefore the analysis will be a worst case by considering such calls possibly
non-terminating. The control flow graph is given in Fig. 1 (d) The weakly reachable call nodes of the cycle, i.e.,
calls, are {1, 2, 3}, and the strongly reachable calls, i.e., comps, are {1}. This gives that calls − comps is {2, 3}.
Thus call 2 gives a potential flooding, but in this case it does not reflect a real flooding since each instance of call 2
is on a separate object. This could be understood by (an extension of) the static checking analysis since it is on a
new object generated in the same method. Furthermore, call 3 is detected as potentially flooding, and this reflects
a real flooding situation. Thus the analysis detects the dangerous flooding of the server s, which is a DDoS attack.

References

[1] C. Douligeris and A. Mitrokotsa. DDoS attacks and defense mechanisms: classification and state-of-the-art. Computer
Networks, 44(5):643–666, 2004.

[2] N. Gruschka and N. Luttenberger. Protecting web services from dos attacks by soap message validation. In IFIP
International Information Security Conference, pages 171–182. Springer, 2006.

[3] New Mirai variant hits target with 54-hour DDoS, 2016. https://www.infosecurity-magazine.com/news/new-mirai-
variant-hits-target-with/.

[4] O. Owe and C. McDowell. On detecting over-eager concurrency in asynchronously communicating concurrent object
systems. Journal of Logical and Algebraic Methods in Programming, 90:158 – 175, 2017.

Model-based Testing of the Gorums Framework for
Fault-tolerant Distributed Systems

Rui Wang1, Lars Michael Kristensen1,
Hein Meling2, Volker Stolz1

1 Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences
Email: {rwa@hvl.no,lmkr@hvl.no,vsto@hvl.no}

2 Department of Electrical Engineering and Computer Science
University of Stavanger, Email: {hein.meling@uis.no}

Abstract
Building cloud computing services that are highly available and resilient to failures

involves complex distributed system protocols. Ensuring the correctness of such protocols
is a challenging undertaking, particularly when dealing with concurrency and communi-
cation [4]. Distributed systems typically leverage a quorum system [8] to achieve fault-
tolerance, yet it remains challenging to implement fault-tolerance correctly. Model-based
testing (MBT) [7] is a promising approach that can help to improve the correctness of
such systems. It uses a model of the system under test (SUT) to generate test cases
and test oracles, so that a test adapter can use the generated test cases to execute the
SUT and compare the test results against the test oracles. This paper explores the use
of Coloured Petri Nets (CPNs) [3] for model-based testing applied to quorum-based dis-
tributed systems. Recently, the Gorums framework [6] has been developed to ease the
implementation of quorum-based distributed systems. We have used MBT to validate a
single-writer, multi-reader distributed storage implemented using the Go language and the
Gorums framework [9]. In this paper, we extend our existing testing framework to also
validate expected behaviour in the case of failures. We report on the improved coverage
and the framework’s ability to discover defects in the implementation.

Quorum-based Distributed Systems and Gorums

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum
Function

Invoke
RPCs

S1 S3S2

RequestReplies

Figure 1: Overview of Gorums abstractions.

Gorums is a library whose goal is to simplify
the development effort for building advanced
distributed algorithms for replication, such as
Paxos [5] and distributed storage [8]. These al-
gorithms are used to implement replicated ser-
vices, and they rely on a quorum system [8] to
achieve fault tolerance. That is, to access the
replicated state, a process only needs to con-
tact a quorum, i.e. a majority of the processes.
In this way, a system can provide service de-
spite the failure of some processes. However,
communicating with and handling replies from
sets of processes often complicates the proto-
col implementations. To reduce this complex-
ity, Gorums provides two core abstractions
(shown in Fig. 1): (a) a quorum call abstrac-
tion, used to invoke a set of RPCs (the gRPC [2] remote procedure calls developed from Google)

22

on a group of processes and to collect their responses, and (b) a quorum function abstraction
which is used to process responses and to determine if a quorum has been obtained. These
abstractions can help to simplify the main control flow of protocol implementations.

System Under Test: Gorums and Distributed Storage

CPN Tools

CPN

Testing

Model

Test Adapter
System Under Test

Distributed Storage

Client Application

Gorums

Test Cases

and Oracles

Figure 2: Overview of testing approach.

Fig. 2 gives an overview of the testing ap-
proach. We have implemented a distributed
storage system, with a single writer and mul-
tiple readers. The storage system has repli-
cated servers for fault-tolerance, and is imple-
mented using the Gorums framework. It also
consists of read and write quorum functions
and quorum calls. Additionally, we have im-
plemented a client application together with
the storage system and Gorums as the SUT.
To test our system, we have designed a corre-
sponding CPN testing model that we use to
generate test cases and oracles. We also im-
plemented a test adapter used to control the
execution of the SUT using the generated test
cases and compare the test results against test
oracles.

CPN Testing Model and Test Case Generation

Our constructed CPN testing model can generate both unit tests and system tests. The gener-
ation of test cases for the SUT is based on the analysis of executions of the CPN model. The
test cases generated for the quorum functions are unit tests, whereas the test cases generated
for quorum calls are system tests consisting of a fixed number of concurrent and interleaved
invocations of read- and write quorum calls. Fig. 3 shows the Read module of the CPN model.
Test cases for the Read quorum function can be obtained by considering the occurrences of
the ApplyReadQF transition, and when this transition occurs, the variable readreplies’ is bound
to the list of all replies that have been received from the servers. The test oracle can be ob-
tained by considering the value of the token on the place WaitingReply. The occurrences of the
ApplyReadQF transition can be detected using either state spaces or simulations:

State-space based detection. We explore the full state space of the CPN model. Whenever
an occurrence of the ApplyReadQF transition is encountered, we emit a test case based
on the current coloured token, together with the test oracle. In this case, we obtain test
cases for all the possible ways in which the quorum function can be invoked in the CPN
model.

Simulation-based detection. We run a simulation of the CPN model and use the monitor-
ing facilities of the CPN Tools [1] simulator to detect occurrences of the ApplyReadQF
transition and emit the corresponding test cases. The advantage of this approach over
the state-space based approach is scalability, while the disadvantage is potentially reduced
test coverage.

23

Waiting
Reply ReadxQFReadResult

ReadReplies

ReadxReadReplies

[]

Server
ToClient

In
ServerxChannel

Client
ToServer

Out
Channels

Out

Read In/Out

ReadCall

In/Out

Send
ReadReq

Apply
ReadQF

[readreplies' = readreplies^^[readreply],
 (v',t') = withHighestTimestamp(readreplies')]

(r,readreplies)

(r,readreplies')

(r,((v,t),b))

(r,((~1,0),false))

(s,READREPLY (r,readreply)::ch)

SendAllServers (READREQ r) chs

READINVOKED(r)

if (not b) andalso hasQuorum(readreplies')
then 1`READRESULT(r,v')
else empty

(r,[])

if hasQuorum(readreplies')
then (r,((v',t'),true))
else (r,((~1,0),false))

chs

(s,ch) In

Figure 3: The Read module of CPN model.

Experimental Results
To perform an evaluation of our model-based test case generation, we consider the code cover-
age obtained using different test drivers for concurrent and sequential execution of generated
test cases. In order to improve our previous work [9], we extended our CPN model and the test
adapter so that our experiments can also consider scenarios involving server failures of the SUT:
We implement a "process killer" in the test adapter that terminates one of the servers when
executing such test cases. Due to the fault-tolerance through replication of our distributed stor-
age, the system can still work successfully with one server failure. To evaluate the effectiveness
of capturing programming mistakes, we manually injected errors in both the read and write
quorum functions. After executing the generated test cases, the tests capture the injected errors
for both unit tests and system tests. We obtain statement coverage for read and write quorum
functions of 100 % for both system and unit tests, as long as both read and write calls are
involved. The statement coverage for read and write quorum calls is 96.7 %. For the Gorums
library as a whole, the statement coverage reaches 52.3 %. The reason for the lower coverage of
the Gorums library is that it contains code generated by Gorums’s code generator, and among
them, various auxiliary functions that are never used by our current implementation.

References
[1] CPN Tools. CPN Tools homepage. http://www.cpntools.org.
[2] Google Inc. gRPC Remote Procedure Calls. http://www.grpc.io.
[3] K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for Modelling and

Validation of Concurrent Systems. Communications of the ACM, 58(6):61–70, 2015.
[4] Jepsen. Distributed Systems Safety Analysis. http://jepsen.io.
[5] L. Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.
[6] T. E. Lea, L. Jehl, and H. Meling. Towards New Abstractions for Implementing Quorum-based

Systems. In 37th IEEE Intl. Conf. on Distributed Computing Systems (ICDCS), 2017.
[7] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing Approaches.

Software Testing, Verification and Reliability, 22:297–312, 2012.
[8] M. Vukolic. Quorum Systems: With Applications to Storage and Consensus. Morgan and Claypool,

2012.
[9] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Application of model-based testing on a

quorum-based distributed storage. In PNSE17, pages 177–196, 2017.

24

A High-Level Language for Active Objects with
Future-Free Support of Futures ∗

Toktam Ramezanifarkhani1, Farzane Karami1, and Olaf Owe1

Department of Informatics, University of Oslo, Norway

Keywords: Active Objects; Asynchronous Methods; Distributed Systems; Futures;

Introduction
The Actor model [1] has been adopted by a number of languages as a natural way of describing
distributed systems. The advantages are that it offers high-level system description and that
the operational semantics may be defined in a modular manner. The Actor model is based on
concurrent units communicating by means of message passing. A criticism of message passing
has been that its one-way communication paradigm may lead to complex programming when
there are dependencies among the incoming messages.

The Actor-Based Concurrent Language (ABCL) is a family of programming languages based
on the Actor model [3]. It makes use of futures [2] in order to make the communication more
efficient and convenient. A future is a read-only placeholder for a result that is desirable to
share by several actors. Future identities can be passed around as first class objects. This
model is suitable for modeling of service-oriented systems, and gives rise to efficient interaction,
avoiding active waiting and low-level synchronization primitives such as explicit signaling lock
operations. The notion of promises gives even more flexibility than futures by allowing the
programmer to talk about the result of call even before the call has been made.

One may combine the Actor model and object-orientation using the paradigm of concurrent,
active objects, and using methods rather than messages as the basic communication mecha-
nism [7]. This opens up for two-way communication. This is for instance done by the Creol
language [5] using so-called call labels to talk about calls, implementing method calls and replies
by asynchronous method passing. Creol introduced cooperative scheduling, allowing mechanisms
for suspension and process control. A process may suspend while waiting for a condition or a
return value. For instance await f? makes a process suspend until the reply associated with
label f appears, resulting in passive waiting. One may also make use of the future mechanism
to generalize this setting so that several objects may share the same method result, given as a
future. For instance the ABS language [6] is based on the Creol concurrency model, allowing
the call labels of Creol to be first class, thereby supporting futures.

In this setting the two-way communication mechanism is replaced by a more complex pat-
tern, namely that a method call generates a future object where the result value can be read
by a number of objects, as long as they know the future identifier. Thus for a simple two-way
call, the caller will need to ask or wait for the future. This means that each call has a future
identity, and that the programmer needs to keep track of which future corresponds to which
call. Our experience is that futures are only needed once in a while, and that basic two-way
communication suffices in most cases. Thus the flexibility of futures (and promises) comes at
a cost. Moreover, implementation-wise, garbage collection of futures is non-trivial, and static
analysis of various aspects, such as deadlock, in presence of futures is more difficult. With
futures, even normal calls are more complex due to the overhead of the future mechanism.

∗Work supported by the IoTSec and DiversIoT projects (Norw. Research Council) and SCOTT (EU, JU).

25

Active Objects with Future-Free Support of Futures Ramezanifarkhani, Karami & Owe

In this paper we consider the setting of active objects and compare a future-less program-
ming paradigm to the programming paradigm of future-based interaction. For the future-less
programming paradigm we choose a core language derived from Creol, but without call labels
nor futures. Comparison of paradigms can be done with respect to several dimensions and
criteria. We will use the fairly obvious criteria given by expressiveness, efficiency, syntactic
complexity, and semantic complexity. Other criteria could also be relevant, such as information
security aspects and tool friendliness.

Future mechanisms
Languages may have explicit or implicit support of futures [4, 2]. Implicit futures support
the “wait by need” principle. However, when considering cooperative scheduling it is essential
that the suspension points are explicit, and we therefore focus on explicit support of futures
in the comparison below. Languages based on explicit futures have (a subset of) the following
mechanisms (providing ABS style syntax):

• creation of a future (f:=o!m(e))
• first class future operations (assignment, parameter passing)
• polling a future, i.e., using an if-statement to check if a future is resolved (if f? then .. else ..)
• waiting for a future while blocking, i.e., active waiting (x:= get f)
• waiting for a future while suspending, i.e., passive waiting (await f?)

Here f is a future variable, m a method, o an object, e a list of actual parameters, and x a
program variable. A non-blocking version of get, can be done by await f ?; x:= get f, and is
abbreviated await x:= get f. In general, polling may lead to complicated branching structures,
and is often avoided in languages with support of explicit futures.

A high-level, future-less language for active objects
We build on the Creol model for active objects, but avoid call labels (and futures). Object
interaction is done by so-called asynchronous method calls, implemented by asynchronous mes-
sage passing. This means that communication is two-way, passing actual parameters from the
caller to the callee object when a method is called, and passing method return values from the
callee to the caller when the method execution terminates. We include the Creol primitives for
process control and conditional suspension, using the syntax await condition , where condition
is a Boolean condition. The syntax for method calls is as follows:

• x:=o.m(e)[s] for a blocking call where s is done while waiting for the future to be resolved,
and if needed, active waiting happens after s (as in f:=o!m(e); s ; x:= get f, using Creol)

• await x:=o.m(e)[s] for a non-blocking call, where the suspension point is after s (as in
f:=o!m(e); s ; await x:= get f, using Creol/ABS)

• o!m(e), for calls where no return value is needed.

Here [s] may be empty as in x:=o.m(e)/await x:=o.m(e), or may include additional calls as in
for instance await x:=o1.m1(e1)[<calculate e2>; await y:=o2.m2(e2)[s]], where the suspension
point is after s, passively waiting for both calls to complete. In this manner, programs with
nested call-get structures can be expressed without futures.

For the comparison we note that the future mechanism involves non-trivial garbage collec-
tion. Even if a future is short-lived, it may be complex to detect when it is no longer needed.

2 26

Active Objects with Future-Free Support of Futures Ramezanifarkhani, Karami & Owe

Comparison
By defining “future” classes supporting the future primitives above, as illustrated below, we
show that our high-level core language is expressive enough to define futures, by means objects
of (one of the) future classes. This means that efficient two-way interaction is directly supported,
without garbage collection and future objects, while futures can be obtained, when needed, by
using future objects. In the former case, efficiency is better than in an implementation using
futures, in the second case it is similar (modulo optimizations). For programs with a majority of
two-way interaction, efficiency is improved by our paradigm. We also note that programming
with two-way interaction is conceptually simpler, since the declaration and usage of future
variables are avoided. This is also beneficial for static analysis, since in static analysis of future
retrieval (get) one typically needs to associate a call statement with each get statement. This
can in general be difficult, and it is less modular when these associations cross class boundaries.
Program reasoning is also more complex in the presence of first class futures [8].

Our language is able to encode futures in a straight forward manner. For instance the ABS
code f:=o!m(e) is imitated by f:= new Fut_m(o,e) in our language, where class Fut_m is a
predefined class, outlined below with initial code, a local method start , and exported methods:

class Fut_m(o,par) {
Bool res:= false; // is the future resolved?
T value; // the value of the future when resolved

{start()} // initial code
Void start(){await value:=o.m(par); res:=true} // see comment below
Bool resolved(){return res} // polling
Bool await_resolved(){await res; return true} // waiting until resolved
T get(){await res; return value} // waiting for the resolved value

}

In start we use await when polling is allowed, then the future object will be able to perform
incoming call requests, and for instance return the appropriate result of polling requests. (The
class parameters should here have the types given by the method m.)

A more detailed comparison will be made in the full paper.

References
[1] C. Hewitt, P. Bishop, R. Steiger: A Universal Modular Actor Formalism for Artificial Intelligence.

IJCAI. 1973.
[2] H. Baker, C. Hewitt: The Incremental Garbage Collection of Processes. Proc. Symposium on

Artificial Intelligence Programming Languages, ACM Sigplan Notices 12, 8. pp. 55-59. 1977.
[3] ABCL: An Object-Oriented Concurrent System. A. Yonezawa ed, MIT Press 1990.
[4] R.H. Halstead: MultiLisp: A Language for Concurrent Symbolic Computation. TOPLAS, 1985.
[5] E. B. Johnsen, O. Owe: An Asynchronous Communication Model for Distributed Concurrent Ob-

jects, Journal of Software and Systems Modeling 6(1): 39-58, Springer 2007.
[6] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen: ABS: A Core Language for Ab-

stract Behavioral Specification. Formal Methods for Components and Objects: 9th International
Symposium, FMCO 2010, Graz, LNCS vol. 6957, pp. 142-164. 2010.

[7] F. de Boer et al: A Survey of Active Object Languages. ACM Computing Surveys 50(5):1-39, 2017.
[8] C.C. Din, O. Owe: Compositional reasoning about active objects with shared futures. Formal

Aspects of Computing, vol. 27, Issue 3, pp 551-572. May 2015.

327

Stubborn Versus Structural Reductions for Petri Nets?

Frederik Bønneland, Jakob Dyhr, Mads Johannsen, and Jiří Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.

State space analysis of distributed systems is often a time and resource consuming task. Explicit
analysis methods perform an exhaustive search in the state space, generated by considering every
interleaving action in the analysed system, in our case a Petri net [7]. The number of states can
be of exponential size and is commonly referred to as the state-space explosion problem. Methods
like partial order reductions such as stubborn sets [10,9,8], and structural reductions [3], alleviate
the problem by directly or indirectly removing executions that do not need to be searched. Both
reductions preserve correctness relative to a given reachability query, meaning that a query is satisfied
in the original net iff it is satisfied in the reduced net.

In Petri nets, stubborn reductions remove redundant interleavings of transitions during the state
space exploration, reducing on-the-fly the state space that has to be searched through. On the
other hand, structural reductions are based on a number of syntax modifying rules that, when
applicable, reduce the size (number of places and transitions) of the Petri net itself, hence decreasing
the size of the resulting state space [3]. Based on models from the 2015 Model Checking Contest
(MCC) [5], structural reduction reduced on average the size of nets by 35%. The winner of the
contest was LoLA [11] using primarily stubborn reductions among other reduction techniques. Since
structural reductions can be done as a preprocessing while stubborn reductions can be applied
during the state space exploration, both techniques can be combined. Up to our knowledge, the
effect of combining these two techniques have not yet been investigated in detail. The combination
of these two techniques is the main contribution of this abstract, together with a precise definition of
stubborn set reduction described in a general framework of labelled transition systems. Furthermore,
it is specialized to the Petri net model extended with inhibitor arcs and handling all cardinality and
fireability propositions that appear in the model checking contest.

We shall first present our approach to the partial order reduction technique via stubborn sets
for Petri nets and prove that the reduction preserves the correctness of reachability queries. For
applying this to Petri nets with inhibitor arcs, we define an interesting set of transitions for a given
reachability query at a given marking, and a closure algorithm that transforms the interesting set
into a stubborn set. Lastly, we implement stubborn reductions in the tool TAPAAL [2]. The tool
already supports structural reductions [3], hence we can compare the combination of both stubborn
and structural reductions, evaluated on a large benchmark of models from MCC’16 [4].

Reductions on Labelled Transition Systems (LTS). An LTS is a triple (S, A,→) where S
is a set of states, A is a set of actions (or labels), and → ⊆ S × A × S is a transition relation. A
reduction identifies the sets of actions (called stubborn actions) in each state that are required to be
executed in order to reach a state satisfying some property. For an LTS T = (S, A,→), a reduction
of T is a function St : S → 2A. We let St(s) = A \ St(s). For a given reduction St, we define a
reduced transition relation −→

St
⊆ → such that s a−→

St
s′ iff s

a−→ s′ and a ∈ St(s).
We require that a reduction St satisfies two axioms. Axiom W allows us, in a series of executed

actions, to move the stubborn actions to the beginning.

W For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if s wa−−→ s′ then s

aw−−→ s′.

Let G ⊆ S be a given set of goal states. Axiom R states that when starting in a non-goal state, the
execution of only non-stubborn actions cannot reach any goal state from G.

R For all s ∈ S if s 6∈ G and s
w−→ s′ where w ∈ St(s)

∗
then s′ 6∈ G.

Axioms W and R ensure that for any path from an initial state to a goal state, there exists a
path in the reduced transition relation leading also to a goal state, moreover preserving the lengths
of minimal paths.

? Based on the master thesis [1].

2 Stubborn Versus Structural Reductions for Petri Nets

Theorem 1 (Reachability preservation). Let (S, A,→) be an LTS, G ⊆ S a set of goal states,
and s0 ∈ S. Let St be a reduction satisfying W and R. If s0 −→n s where s ∈ G then s0 −→

St

m s′

where s′ ∈ G and m ≤ n. If s0 −→
St

m s where s ∈ G then s0 −→m s.

Petri Nets. Let N = (P, T,W, I) be a Petri net, where P is a finite set of places, T is a finite set
of transitions, W : (P ×T)∪(T ×P)→ N0 (where N0 = N∪{0}) is a weight function for regular arcs,
and I : (P ×T)→ N∞ (where N∞ = N∪{∞}) is a weight function for inhibitor arcs. LetM(N) be
the set of all markings for N , and let T (N) = (M(N), T,→) be the LTS for N such that M t−→M ′

iff for all p ∈ P we have W ((p, t)) ≤ M(p) < I((p, t)) and M ′(p) = M(p) −W ((p, t)) + W ((t, p)).
For a formula ϕ, from the MCC Property Language [4], and a Petri net N , there is a goal set of
markings defined as Gϕ = {M |M ∈M(N) and M |= ϕ}. The interesting set of transitions AM (ϕ)
of a marking M are the transitions that, when fired, can alter the truth value of ϕ from false to
true. Interesting sets are an extension of attractor sets from [8], and are generated recursively on the
syntax of ϕ. Stubborn sets are generated by applying the closure described in [6] to the interesting
set of transitions extended to inhibitor arcs, although it is known to be non-optimal [10].

Experiments. Experiments are executed using the database of models from MCC’16 [4]. For
each model there are three categories of queries: reachability cardinality (RC), reachability fire-
ability (RF), and deadlock (DL). For RC and RF there is a total of 16 queries for each category,
where we select and perform experiments on the initial 5 queries. We focus on four reachability
algorithms: Base TAPAAL using exhaustive search, Stub TAPAAL adding stubborn reduction,
Struct TAPAAL adding structural reduction, and StubStruct TAPAAL using both stubborn and
structural reductions. We do pairwise comparison of the algorithms. For each query, an algorithm
gets a point relative to another algorithm, as follows. Exclusive: answers the query while the op-
ponent algorithm does not. Time: answers the query at least 10% faster, disregarding queries that
are solved in less than 10 seconds by both algorithms. States: answers the query by exploring fewer
states, disregarding queries that are exclusively answered. Memory: answers the query by using
at least 10% less peak memory, disregarding queries that are exclusively answered. Table 1 shows
the number of queries solved by each algorithm (in 15 minute timeout for RC and RF, and 1 hour
timeout for DL). Pairwise comparison between the four algorithms is shown in Table 2.

number of queries solved
cat. queries Base Stub Struct StubStruct
RC 1565 817 961 879 996
RF 1565 1082 1184 1125 1212
DL 313 211 238 221 239
total 3443 2110 2383 2225 2447

Table 1: Number of queries solved by each algorithm

Conclusion. Adding stubborn and structural reduction improves the verification of base TAPAAL,
as seen in Table 2a and Table 2b. In both cases, Base TAPAAL still has some exclusive answers,
which we expect is due to models not being very reducible, leaving only the overhead of using
the reduction techniques. Stubborn reduction performs overall better than structural reduction in
Table 2d, however, there is a considerable number of queries where structural reduction answers ex-
clusively or simply more efficient in terms of time, states and memory. When comparing Table 2a, 2b
and 2c, we notice the combined efficiency of stubborn and structural reduction. There is a significant
increase in the number of exclusive answers when combining the two reductions. We notice that,
when adding stubborn reduction to structural reduction, there appear some new exclusive answers
to Base as well as a considerable number of faster answers. This suggests that the reduction tech-
niques conflict on a number of instances and the stubborn reduction loses efficiency after structural
reduction is applied and we are left with the computational overhead. Table 2f displays the contri-
bution of adding stubborn reduction to Struct (current TAPAAL implementation). The addition
of stubborn reduction increases performance significantly, however, there are some queries that can
be solved using only the structural reduction as seen in Table 2f, that the stubborn reduction does
not follow to the same degree as seen in Table 2e.

Acknowledgements. We thank Peter Gjøl Jensen for his technical assistance with the implemen-
tation.

Stubborn Versus Structural Reductions for Petri Nets 3

Base vs Stub
cat. exclusive time states memory
RC 13 157 80 208 22 401 9 144
RF 9 111 71 176 22 584 10 184
DL 2 29 13 40 13 174 4 41
total 24 163 173 424 57 1159 23 369

(a)

Base vs Struct
cat. exclusive time states memory
RC 2 64 31 97 17 257 4 75
RF 2 45 40 89 16 306 4 95
DL 0 10 5 19 17 79 0 23
total 4 119 76 205 50 642 8 193

(b)

Base vs StubStruct
cat. exclusive time states memory
RC 11 190 90 245 22 477 9 155
RF 9 139 87 213 21 667 8 196
DL 2 30 10 47 23 154 4 45
total 22 359 187 505 66 1298 21 396

(c)

Stub vs Struct
cat. exclusive time states memory
RC 115 33 183 104 337 186 124 32
RF 87 28 169 94 512 186 154 37
DL 20 3 37 9 131 47 32 7
total 222 64 389 207 980 419 310 76

(d)

Stub vs StubStruct
cat. exclusive time states memory
RC 2 37 37 84 14 320 5 74
RF 6 34 50 69 23 326 6 61
DL 0 1 5 10 15 88 0 12
total 8 72 92 163 52 734 11 147

(e)

Struct vs StubStruct
cat. exclusive time states memory
RC 22 139 88 192 20 429 9 141
RF 12 99 73 156 22 589 8 158
DL 2 20 9 35 14 132 4 33
total 36 258 170 383 56 1150 21 332

(f)

Table 2: Algorithm comparisons—in RC and RF there are in total 1565 queries, in DL 313 queries

References
1. Frederik M. Bønneland, Jakob Dyhr, and Mads Johannsen. A Simplified and Stubborn Approach to CTL

Model Checking of Petri Nets. Master’s thesis, Department of Computer Science, Aalborg University,
2017.

2. Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen, Mikael H Møller, and
Jiří Srba. TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In TACAS’12,
volume 7214 of LNCS, pages 492–497. Springer Berlin Heidelberg, 2012.

3. Jonas F. Jensen, Thomas Nielsen, Lars K. Oestergaard, and Jirı Srba. TAPAAL and Reachability
Analysis of P/T Nets. In Transactions on Petri Nets and Other Models of Concurrency XI, volume 9930
of LNCS, pages 307–318. Springer Berlin Heidelberg, 2016.

4. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, G. Chiardo, A. Hamez, L. Jezequel,
A. Miner, J. Meijer, E. Paviot-Adet, D. Racordon, C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg,
G. Tri.nh, and K. Wolf. Complete Results for the 2016 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2016/results.php, June 2016.

5. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti, A. Hamez, E. Lopez-
Bobeda, L. Jezequel, J. Meijer, E. Paviot-Adet, C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-
Mieg, and K. Wolf. Complete Results for the 2015 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2015/results.php, 2015.

6. Lars Michael Kristensen, Karsten Schmidt, and Antti Valmari. Question-guided stubborn set methods
for state properties. In Formal Methods in System Design, volume 29, pages 215–251. Kluwer Academic
Publishers-Plenum Publishers, 2006.

7. Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Mathematical Institute of the University of
Bonn, 1962.

8. Karsten Schmidt. Stubborn sets for standard properties. In International Conference on Application
and Theory of Petri nets, volume 1639 of LNCS, pages 46–65. Springer Berlin Heidelberg, 1999.

9. Antti Valmari. Stubborn sets for reduced state space generation. In International Conference on Ap-
plication and Theory of Petri Nets, volume 483 of LNCS, pages 491–515. Springer Berlin Heidelberg,
1989.

10. Antti Valmari and Henri Hansen. Stubborn set intuition explained. In Proceedings of the International
Workshop on Petri Nets and Software Engineering, PNSE, volume 10470 of LNCS, pages 213–232.
Springer Berlin Heidelberg, 2016.

11. Karsten Wolf. Running LoLA 2.0 in a Model Checking Competition. In Transactions on Petri Nets and
Other Models of Concurrency XI, volume 9930 of LNCS, pages 274–285. Springer Berlin Heidelberg,
2016.

Resource Management of Cloud-Aware Programs

using Coloured Petri Nets

Anastasia Gkolfi1, Einar Broch Johnsen1,
Lars Michael Kristensen2, and Ingrid Chieh Yu1

1 Department of Informatics, University of Oslo, Norway
{natasa, einarj, ingridcy}@ifi.uio.no

2 Western Norway University of Applied Sciences, Norway
lmkr@hvl.no

1 Introduction

There is today an increasing interest in using cloud computing infrastructure, which provides on
demand and elastic resource provisioning. Applications which are able to autonomously make
use of this elasticity to adjust their resource usage to their resource needs, are said to be cloud
aware. Cloud-aware applications need to explicitly express resource management policies, hence
they should be written in appropriate programming languages. Real-Time ABS [7] (hereafter
RT-ABS) proposes a programming model with many features for resource awareness, using
a conceptual separation between the cost of a computation and the resource capacity of the
infrastructure. These features allow deployment decisions to be made explicitly, which make
RT-ABS suitable for modelling cloud applications. RT-ABS has been used to evaluate the
performance of different deployment scenarios related to load balancing or different deployment
architectures by means of simulation (e.g., [7]).

In this talk, we address similar questions from a model-analysis perspective. We have chosen
Petri nets for their suitability to model resources, concurrency and synchronization. Specifically,
we construct a hierarchical coloured Petri net [5] (hereafter CPN), whose net captures the
semantics of RT-ABS and whose markings are abstractions of RT-ABS program configurations.
The advantage is that since resource awareness is represented by the tokens, the model checker
[1] of coloured Petri nets (CPN Tools) can provide answers related to resource management
by means of state space exploration. Our hierarchical CPN model has been constructed with
two levels (called the imperative layer and the deployment layer, see Fig. 1, each modelling the
fragment of the language with the corresponding features). We first explain the kind of analysis
that can be achieved by the (self-contained) imperative layer and then how the correlation
between the two layers can lead to answers about resource management.

2 The Imperative Layer

The imperative layer of the model is self-contained. It models the communication mechanism of
RT-ABS. RT-ABS is an actor-based language, where active objects combine the asynchronous
communication of actors with object-oriented programming by means of asynchronous method
calls and synchronisation on futures [6]. This can possibly lead to communication deadlocks.
The implementation of the communication mechanism of the language as a coloured Petri net
can detect static deadlocks (see [4]). In particular, CPN markings are abstractions of the RT-
ABS program configurations such that active objects are represented as tokens in the model and
deadlock situations can be detected by particular place markings. For example, in Fig. 3 we can

31

Resource Management of Cloud-Aware Programs Gkolfi, Johnsen, Kristensen and Yu

Imperative Layer

Deployment Layer

I/O

I/O

Figure 1: The two layered model

Figure 2: Deadlock Detection

see a module of the implementation related to the communication mechanism. The colourset
of the place ”Blocked Objects” caries information about the identity of the object which makes
a method call (caller), as well as the process that the callee object creates in order to execute
this method call. If there is a marking where both the caller object and the callee are blocked
in the same place waiting each other to execute, then there is a deadlock (of course this can be
generalised for more that two objects, see [4] for details). In Fig. 2 we can see such a deadlock
situation detected from the model for a RT-ABS implementation of the publisher-subscriber
example [4, 8].

The implementation is supported by a full soundness proof where we prove that program
configurations are in abstract simulation relation with CPN markings. An important issue is
that the model has been constructed according to the semantics of the language by using the
Abstract Interpretation Framework (e.g., [2, 3]) and it supports dynamic creation of abstract
objects. This led to the construction of a single and fixed-size model for all RT-ABS programs,
which was important for gaining scalability in the size of the programs.

3 The Deployment Layer

The deployment layer, as it is shown in Fig. 1, is linked to the imperative layer and, in par-
ticular, it adds resource awareness to it. It is designed in a similar way, i.e. it is based on the
semantic rules of the deployment fragment of RT-ABS [7] and it supports features like dynamic
deployment component creation, resource reallocation, moving of objects to different deploy-
ment components, and discrete ABS time. As it was mentioned in the introduction section,
the computation cost and the resource capacity are two features that, in RT-ABS, were kept
separated for a more precise performance analysis. Since the cost is directly related to the
communication between active objects, this layer is complementary to the imperative one. The
markings are abstract configurations and the model checker (CPN Tools) can be used to answer
questions related to resource analysis. In particular, it can detect whether there is starvation,
check if a better resource distribution can avoid starvation and optimise resource usage.

2 32

Resource Management of Cloud-Aware Programs Gkolfi, Johnsen, Kristensen and Yu

(p27)

In/Out

PAIRFULLOBJPROCLIST

[]

In/Out

(p22)

Out
INT

1

Out

Blocked
Objects

List
(p26)

In/Out FULLOBJPROCLIST

[((0,0,0,[0],[0]),0)]

In/Out

Communication
Pairs
(p24)

Out
PAIRFULLOBJPROC

((0,0,0,[0],[0]),((0,0,0,[0],[0]),0))

Out

COST
(p3)

In/Out
COST

0

In/Out

Blocked
Objects
(p17)

In/OutFULLOBJPROC

2`((0,0,0,[0],[0]),0)

In/Out

Idle
Objects
(p16)

In/Out

FULLOBJ

In/Out

Process
Counter

(p4)
In/Out

PROC

0

In/Out

caller
(p28)

In

FULLOBJ

In

Busy
objects
(p15)

In/Out
FULLOBJ

In/Out

(p25)

In/Out
BOOL

false

In/Out

List of
callees
(p21)

In/Out
OBJPROCLIST

[]

In/Out

(p12)

In/Out
OBJ

1

In/Out

(p19)

In
INT

In

The Callee
is Idle
(a21)

if b2=true then
ob14 =ob25
else ob14<>ob25

The Callee
is Busy
(a22)

if b2=true then ob14 =ob25 else ob14<>ob25

The Callee
is Blocked

(a23)

ob10=ob25 andalso
ob14<>ob10 andalso
(if b2=true then ob26=ob14 else ob26<>ob14)

((ob14,u10,t9,pl11,cl11),((ob25,u22,t19,ins pl22 (p12+1),ins cl21 c6),p12+1))::pfopl

1

if hd fopl1=((ob14,u10,t9,pl11,cl11),0) then ((ob14,u10,t9,pl11,cl11),p5+1)::tl fopl1
else fopl1

((ob14,u10,t9,pl11,cl11),((ob8,u5,t5,ins pl5 (p5+1),ins cl5 c5),p5+1))

c5

((ob25,u22,t19,pl22,cl21),p20)

((ob25,u22,t19,pl22,cl21),p20)

if pl5=[0] then (ob8,u5,t5,[p5+1],[c5]) else (ob8,u5,t5,ins pl5 (p5+1),ins cl5 c5)

p12

(ob14,u10,t9,pl11,cl11)

(ob9,u5,t5,pl5,cl5)

b2

(ob8,u5,t5,pl5,cl5)

b2

fopl1

(ob9,p5+1)::obpl

obpl

p5

pfopl

if b2=true then
((ob25,u22,t19,pl22,cl21),p5+1) else
((ob25,u22,t19,pl22,cl21),p20)

((ob25,u22,t19,ins pl22 (p12+1),ins cl21 c6), p20)

((ob14,u10,t9,pl11,cl11),((ob25,u22,t19,ins pl22 (p12+1),ins cl21 c6),p12+1))

ob9

(ob14,u10,t9,pl11,cl11)

if b2=true then ((ob26,u23,t20,pl23,cl22),p12+1) else ((ob26,u23,t20,pl23,cl22),p21)

if hd fopl1=((ob14,u10,t9,pl11,cl11),0) then ((ob14,u10,t9,pl11,cl11),p5+1)::tl fopl1 else fopl1

((ob14,u10,t9,pl11,cl11),((ob9,u5,t5,ins pl5 (p5+1),ins cl5 c5),p5+1))

obpl

1

fopl1

1

(ob10,p12+1)::obpl

ob10

p12+1

p5+1

pfopl

fopl2

if b2=true then
((ob25,u22,t19,pl22,cl21),p5+1) else
((ob25,u22,t19,pl22,cl21),p20)

(ob8,p5+1)::obpl

obpl

((ob14,u10,t9,pl11,cl11),((ob9,u5,t5,ins pl5 (p5+1),ins cl5 c5),p5+1))::pfopl

b2

c5

((ob25,u22,t19,pl22,cl21),p20)

1

(ob9,u5,t5,ins pl5 (p5+1),ins cl5 c5)

1

1

p5

((ob26,u23,t20,pl23,cl22),p21)

if b2=true then ((ob26,u23,t20,pl23,cl22),p12+1)::ins (rm ((ob25,u22,t19,pl22,cl21),p20) (tl fopl2)) ((ob25,u22,t19, ins pl22 (p12+1),ins cl21 c6),p20) else ins (rm ((ob25,u22,t19,pl22,cl21),p20) fopl2) ((ob25,u22,t19, ins pl22 (p12+1),ins cl21 c6),p20)

(ob14,u10,t9,pl11,cl11)

ob8

((ob14,u10,t9,pl11,cl11),((ob8,u5,t5,ins pl5 (p5+1),ins cl5 c5),p5+1))::pfopl

p5+1

c6

pfopl

1 1`[]

1 1`1

1 1`[((0,0,0,[0],[0]),0)]

1

1 1`0

2 2`((0,0,0,[0],[0]),0)

1 1`0

1 1`false

1 1`[]

1 1`1

Figure 3: The ”callee” module of the Imperative Layer

4 Conclusion and Future Work

In this abstract, we have presented a CPN model of the semantics of a programming language
(RT-ABS) that is of fixed size for any program in terms of the net in the model, which thereby
supports scalability in the size of programs. It contains two layers, the imperative layer which
abstractly simulates the communication mechanism of the language and can be used to detect
static deadlocks, and the deployment one, which adds resource awareness to the model. The
CPN model can be used to verify starvation freedom, to find better deployment scenarios (if
any) for starvation avoidance, and to optimise resource usage (ongoing work). A soundness
proof for the deployment layer is also in progress. As a future work, we are planning to go
towards the direction of CPN-based test case generation of resource aware programs and apply
model based game theory and/or combinatorics to find optimal resource strategies.

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.

[2] P. Cousot. Semantic foundations of program analysis. In Program Flow Analysis: Theory and
Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., 1981.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Fourth Annual Symposium on Principles
of Programming Languages, pages 238–252. ACM Press, 1977.

[4] A. Gkolfi, C. C. Din, E. B. Johnsen, I.C. Yu. Translating Active Objects into Colored Petri Nets
for Communication Analysis. In Proc. FSEN 2016, LNCS 10522. Springer, 2017. To appear.

[5] K. Jensen and L. M. Kristensen. Coloured Petri Nets – Modelling and Validation of Concurrent
Systems. Springer, 2009.

[6] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language for
abstract behavioral specification. In Proc. Formal Methods for Components and Objects (FMCO
2010), volume 6957 of Lecture Notes in Computer Science, pages 142–164. Springer, 2011.

[7] E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. Integrating deployment architectures and
resource consumption in timed object-oriented models. Journal of Logical and Algebraic Methods
in Programming, 84(1):67—91, 2015.

[8] O. Owe and I. C. Yu. Deadlock detection of active objects with synchronous and asynchronous
method calls. In Proceedings of NIK 2014, 2014.

333

On-the-fly solving of railway games (Work in progress)
Michael R. Hansen, Technical University of Denmark

Abstract

The goal of this work is to synthesize correct-by-construction control programs for railway
networks by use of game theory. It builds upon [3], where a model of railway networks is
introduced comprising specifications of the following elements:
• A set of named linear segments,
• a set of named point segments,
• a connector component describing how segments are put together,
• placement of signals on linear points,
• the initial positions of n trains, together with a specification of the direction of movement

of each train, and
• the final destinations for the n trains.

A concrete example of railway network, from [3] is given in Fig. 1. This figure shows a layout

Figure 1: Florence Station, Italy. This drawing was kindly provided by Alessandro Fantechi.

of roughly a quarter of Florence Station, Italy. I consists of 69 linear segments, 23 points and
46 signals. The coloured boxes are signals that are placed on linear sections.

A signalling plan is a mapping from train positions to configurations of points of signals. A
signalling plan can be considered a control program in the following sense: In a given state it
describes how signals and points are configured, so that a train not hindered by a red signal
can move to the next linear segment.

When a train moves, the system may enter a crash state
• if it bumps into another train, or

34

easychair: Running title head is undefined. easychair: Running author head is undefined.

• if it drives into a point that does not allow movement in the direction of the train, or
• if there is no next segment in the direction of the trains movement.

A correct signalling plan is a plan that brings the trains from their initial positions to their
destinations without ever entering a state from which a crash is possible.

The problem generating a correct signalling plan is, in [3], reduced to finding a winning
strategy of a two-player turn-based reachability game, where one player is the control system
and the other is a “vicious super train driver”, where
• the control system in charge of points and signals, that is, when the control system has

the turn, it sets points and signals (without moving the trains), and
• the super train driver controls movements of all trains (while obeying the signals), that

is, he selects one train not hindered by a red signal to move (if possible).
The super train driver wins a play if the destinations are not reached, while the control system
wins if all trains safely move from the initial positions to their destinations. A strategy is
winning for the control system if it safely brings the trains from their initial positions to their
destination, no matter what the opponent does.

The size of the game graph grows exponentially in the number of trains, the number of
points and the number of signals, unless it is taken into account that only signals and points
placed immediately in from of a train are relevant. In that case the size of the game graph
grows exponentially “only” in the number of trains.

When solving the game using a global, backwards reachability algorithm [1], the biggest
synthesis problem that was solved in [3] was for Florence Station having 4 trains moving from
left to right (see Fig. 1). That took 8.1s on a machine having a 2.7-GHz Intel-Core-i5 processor
and 8 GB of memory, and the generated game graph had 220773 vertices. The program ran
out of memory in connection with problems for Florence Station having 5 trains.

In terms of the size of the railway networks that could be handled, the results in [3] were
encouraging as Florence Station has a size resembling the biggest stations handled by model-
checking approaches in the railway domain, e.g. [5, 6]. Note, however, that the models in [5]
are more detailed and they focus on interlocking tables (and not on signalling plans).

The backward reachability algorithm used by [3] generates the complete game graphs and
finds the complete winning regions for the two players, that is, it performs far too much work
as only winning states on a path from initial states, where trains are in their initial positions,
to final states, where trains are at their destinations, are relevant.

Therefore, an initial attempt on using local, on-the-fly techniques has been conducted. In
particular, a backend solver based on Liu and Smolka’s Local2 algorithm [4] for evaluating
minimal fixed points of dependency graphs is implemented in F#. The core part of this imple-
mentation is shown in Fig 2.

This programs is basically performing a (clever) depth-first search that generates the relevant
part of the game graph while solving the game. Initial experiments using this algorithm show
significant improvements compared to using global solving techniques. For example,
• Florence Station with 4 trains is solved in 27 ms generating 382 states
• Florence Station with 8 trains (where 4 are moving from left to right and 4 are moving

in the opposite direction) is solved in 19s generating 99720 states
These experiments were conducted on a machine having a 2.7-GHz Intel-Core-i7 processor and
16 GB of memory.

These preliminary results are encouraging, and a few examples of next steps could include:
• Improved data structure, including techniques for a more lazy edge generation. Initial ex-

periments (not yet conducted on railway network problems) has shown 10-20 % reductions
in the number of generated states

2 35

easychair: Running title head is undefined. easychair: Running author head is undefined.

• Investigation of winning strategies. It is not clear what constitutes a good winning strat-
egy.

• Sound transformations of winning strategies in order to avoid stop-and-go movement of
the trains.

References
[1] D. Berwanger. Graph games with perfect information. Course notes, Master Parisien de Recherche

en Informatique, 2013.
[2] M.R. Hansen and H. Rischel. Functional programming using F#. Cambridge Univ. Press, 2013
[3] P. Kasting, M.R. Hansen, and Steen Vester. Synthesis of Railway-Signaling Plans using Reachabil-

ity Game. Proceedings of the 28th Symposium on the Implementation and Application of Functional
Programming Languages (IFL 2016), pages 9:1–9:13, ACM, New York, NY, USA 2017

[4] X. Liu and S.A. Smolka S.A. Simple linear-time algorithms for minimal fixed points. In Automata,
Languages and Programming. ICALP 1998. LNCS 1443. Springer, 1998, pp 53-66

[5] L. H. Vu. Formal Development and Verification of Railway Control Systems - In the context of
ERTMS/ETCS Level 2. PhD thesis, Technical University of Denmark, 2015.

[6] L. H. Vu, A.E. Haxthausen and J. Peleska. Formal modelling and verification of interlocking
systems featuring sequential release. Science of Computer Programming: 133, 2017

type Game<’N when ’N: comparison>() =
abstract member edges: ’N -> ’N list list
abstract member goal: ’N list
member this.solve (start: ’N list) =

let win = new C5.ArrayList<bool option>()
let toNode = new C5.HashDictionary<int,’N>()
let toVertex = new C5.HashDictionary<’N,int>()
let deps = new C5.ArrayList<(int * int list) list>()
let vertexOf n = ...
let load v = ...
let startVertices = List.map vertexOf start
...
for v in startVertices do

win.[v] <- Some false
for m in this.goal do

win.[vertexOf m] <- Some true

let rec loop = function
| [] -> toList win
| (k,vs)::hes when win.[k] = Some true -> loop hes
| (k,vs)::hes ->

match List.skipWhile (fun v -> win.[v] = Some true) vs with
| [] -> win.[k] <- Some true; loop(hes@(deps.[k]))
| v::vs’ when win.[v] = Some false -> deps.[v] <- (k,vs’)::deps.[v]; loop hes
| v::vs’ -> win.[v] <- Some false; deps.[v] <- [(k,vs’)]; loop (load v @ hes)

loop (List.collect load startVertices)

Figure 2: The core of Liu and Smolka’s Local2 algorithm [4] formulated in F#

336

Symbolic Synthesis for Non-Negative Multi-Weighted Games∗

Lasse S. Jensen, Isabella Kaufmann, Kim G. Larsen, Søren M. Nielsen & Jiří Srba
Department of Computer Science, Aalborg University, Denmark

Complex systems are an integral part of everyday life and the correctness of these systems is an area
of great interest. For several safety-critical application areas the cost of undefined behaviour in a system
can be very high, thus creating the demand for a more thorough verification. Traditionally model checking
has been applied to verification of quantitative models like weighted timed automata [1] and 1-weighted
extensions CTL [3]. In this area we provide a decidability result for a multi-weighted CTL (WCTL).
While model checking verifies an existing system, the next step is synthesis which allows for the automatic
generation of a controller derived from a formal specification. Synthesis is a very active topic and recent
algorithmic contributions include optimised algorithms for LTL and CTL [5, 7] as well as energy games
with multiple weights [6] and on-the-fly algorithms for reachability and safety games [2]. We present a
generalised approach to synthesis which extends the current state-of-the-art by handling multiple weights
with both lower- and upper-bounds.

Multi-weighted formalism We define a multi-weighted extension of a Kripke structure (n-WKS) as
a tuple K = (S, s0,AP , L, T) where S is a set of states, s0 ∈ S is the initial state, AP is a set of atomic
propositions, L : S → P(AP) is a labelling function and T ⊆ S × Nn

0 × S is the transition relation. Let
w ∈ Nn

0 then we denote the ith component of w by w[i], where 1 ≤ i ≤ n. With this in mind we are ready
to formulate a WCTL over an n-WKS as follows:

φ := true | false | a | ψ1 ▷◁ ψ2 | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⇒ φ2 | φ1 ⇔ φ2 |
reset #i in φ | AX φ | EX φ | AG φ | EG φ | AF φ | EF φ | Eφ1Uφ2 | Aφ1Uφ2

ψ := #i | c | ψ1 ⊕ ψ2

where a ∈ AP , ▷◁ ∈ {≤,≥}, ⊕ ∈ {+, ·,−}, c ∈ N0, and 1 ≤ i ≤ n is a component index in a vector.
A run ρ in the n-WKS K is an infinite or finite sequence of states and transitions and we define the cost
of a run as the sum of all vectors along the traversed edges. It is based on this cost that we evaluate the
sub-formula (ψ1 ▷◁ ψ2) defined with a vector component.

Theorem 1 The model checking problem for WCTL is undecidable on a finite 3-WKS, but decidable on a
finite n-WKS when we restrict comparison to (ψ ▷◁ c) and remove subtraction s.t. ⊕ ∈ {+, ·}.

Game Theoretic Framework One way to work with software synthesis is from a game theoretic
view. We look at two-player games where one player acts as the controller and the other player acts as
the environment. The game is defined as a tuple (G, φ) where G is the game graph and φ is the winning
condition. We define the game graph as an n-WKS where the edges are annotated with n-dimensional
non-negative vectors and are divided between the players into two disjoint sets Te ∪ Tc, where Te belongs to
the environment and Tc belongs to the controller. The winning conditions are expressed in WCTL. To gain
familiarity with this formalism we refer to example 1 which depict a game modelling a self-driving car.

Example 1: Self-driving car
In Figure 1 we show a simple model of a self-driving car, where the dotted lines belong to the environment
and the solid lines to the controller. The winning condition is illustrated as a WCTL specification φ,
bounding the consumption of time and fuel.
∗Based on the master thesis [4]

1

2

s0

{start}

s1 s2

{dest}

Legend = (time, fuel)
(1, 3)

(2, 1)

(4, 5)

(2, 0)

(1, 1)

φ = AF




#1 ≤ 3∧
#2 ≤ 3∧

dest




Figure 1: The game graph G modeling a self-driving car and an anti congestion system. The first component on each
weight, is the discrete units of time spent, and the second is the units of fuel consumed. The winning condition is expressed
as a WCTL specification φ, where #i is the accumulated weight of the ith component in the cost

To define the state of a game we say that a configuration (s, w) ∈ S × Nn
0 in the game consist of the

current state s and the accumulated cost w. Notice that the accumulated cost is always non-negative as
the vectors on the edges are non-negative. We define the set of all configurations as C. The game is played
by moving from configuration to configuration, where (s0, 0n) is the initial position. Given a configuration
(s, w) we proceed in the following manner:

– If all outgoing transitions belong to Tc, then the controller must choose.
– If all outgoing transitions belong to Te, then the environment must choose.
– If there are both outgoing transitions in Tc and Te, then the environment may choose from Te or force

the controller to choose from Tc.

Once either the controller or the environment has chosen an edge (s, c, s′) ∈ Te ∪ Tc the next configu-
ration becomes (s′, w + c). The controller’s choices are based on a strategy σ that, given history of the
game, outputs the controller’s next move. Based on the strategy’s choices and all choices available to the
environment, we unfold the game into an n-WKS. When the unfolded game restricted by the strategy,
satisfy the winning condition φ we define it as a winning strategy. Hence the controller wins the game if
they have a winning strategy. Below we show the winning strategy, as well as the unfolding, for the game
presented in example 1.

Example 2: Winning strategy for the self-driving car
The example below is a strategy σ for the controller based on Figure 1.

σ(s0) = s0
(2,1)−−→ s1 σ(s0

(1,3)−−→ s1) = s1
(2,0)−−→ s2 σ(s0

(2,1)−−→ s1) = s1
(1,1)−−→ s2

Notice that the unfolded game satisfies the specification φ, thus σ is a winning strategy,

s0

s0
(1,3)−−−→ s1 s0

(1,3)−−−→ s1
(2,0)−−−→ s2 {dest}

s0
(2,1)−−−→ s1 s0

(2,1)−−−→ s1
(1,1)−−−→ s2 {dest}(2, 1)

(1, 3)

(1, 1)

(2, 0)

Figure 2: The unfolded game G↾σ where G↾σ ⊨0n φ

Synthesis As WCTL is undecidable we define the reachability sub-class RWCTL as follows:

φ := AFψ

ψ := a | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | #i ▷◁ c.

Synthesis for WReach holds two main challenges; ensuring that we account for all possible behaviours of
the environment and representing a possibly infinite set of vectors satisfying some lower-bound. Our goal
is to create an algorithm that can detect and extract a winning strategy if one exist. Intuitively we do this
by calculating a set of winning configurations (s, w). A configuration (s, w) is winning with respect to a
specification AFψ if there is a winning strategy σ s.t. for the unfolded game, denoted G↾σ, we have that
G↾σ, s ⊨w AFψ. We begin by identifying all configurations which trivially satisfy the objective. The set is

References 3

defined as F0 = {(s, w) ∈ C | s |=w ψ}. From the initial set we identify additional winning configuration by
backwards traversal of the game graph. This is captured in the set Fi that is inductively defined for all i ∈ N

s.t. Fi = Fi−1 ∪ Add(Fi−1) where Add calculates the set of configurations guaranteed to be able to reach a
winning configuration in Fi−1 in a single transition. The function accounts for the environment’s choices,
by only including a new configuration whenever all environmental edges and at least one controllable edge
(if one exist), can lead to a winning configuration. Hence we create an increasing sequence of winning
configurations F0 ⊆ F1 ⊆ . . . Fi = Fi+1. We say that when Fi = Fi+1 the set is final.
Lemma 1 A configuration (s, w) ∈ Fi for some i ∈ N iff (s, w) is winning.

To illustrate this approach we calculate Fi for the game presented in example 1 and show that the final
set contain the configuration (s0, 0n), implying that there is a winning strategy from the initial position.

Example 3: Calculation of winning configurations
Recall Figure 1, for the game (G, φ) then we have that φ = AF(#1 ≤ 3 ∧ #2 ≤ 3 ∧ dest) and we compute
F0 = {(s2, (k, j)) | 0 ≤ k ≤ 3 and 0 ≤ j ≤ 3} and Fi for any i ∈ N until Fi = Fi+1 s.t.,

F1 = F0 ∪ {(s1, (k, j)) | 0 ≤ k ≤ 2 and 0 ≤ j ≤ 2} ∪ {(s1, (k, j)) | 0 ≤ k ≤ 1 and 0 ≤ j ≤ 3}
F2 = F1 ∪ {(s0, (k, 0)) | 0 ≤ k ≤ 1}
F3 = F2 ∪ ∅

Note that we cannot add s0 before F2 because the only transition which leads directly to s2 is (s0, (4, 5), s2) ∈
Tc which breaks the upper-bounds.

If we only considered upper-bounds this algorithm would be sufficient as it would ensure a finite amount of
configurations. However, the challenge of handling the possible infinite sets satisfying a lower-bound still
remains.

Symbolic representation We find that an infinite set of non-negative vectors can be represented
symbolically- As all configurations have a non-negative cost we can define these with this symbolic rep-
resentation. Furthermore we can easily adapt the definition of F0 and Fi to work with this symbolic
representation, thus giving us an algorithm for WReach synthesis.
Theorem 2 The synthesis problem for a finite game (G, φ), where φ is a WReach formula, is EXPTIME-
complete.

Future Work We propose to further investigate synthesis for WCTL, as well as extend the formalism
to include partial observations and stochastic variables, to more realistically model the behaviour of the
environment. This work will be part of the PhD studies of Isabella Kaufmann.

References
[1] Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. “Model-Checking One-Clock Priced Timed Au-

tomata”. In: FOSSACS 2007. Vol. 4423. LNCS. Springer, 2007, pp. 108–122.
[2] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. “Efficient on-

the-fly algorithms for the analysis of timed games”. In: CONCUR 05. Vol. 3653. LNCS. Springer, 2005,
pp. 66–80.

[3] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaerlund Oestergaard. “Efficient
model-checking of weighted CTL with upper-bound constraints”. In: STTT 18.4 (2016), pp. 409–426.

[4] Lasse S. Jensen, Isabella Kaufmann, and Søren M Nielsen. Symbolic Synthesis of Non-Negative Multi-
Weighted Games with Temporal Objectives. 2017.

[5] Barbara Jobstmann and Roderick Bloem. “Optimizations for LTL Synthesis”. In: FMCAD ’06. FMCAD
’06. IEEE Computer Society, 2006, pp. 117–124.

[6] Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. “Fixed-Dimensional Energy Games are in
Pseudo-Polynomial Time”. In: ICALP 2015. Vol. 9135. LNCS. Springer, 2015, pp. 260–272.

[7] Tobias Klenze, Sam Bayless, and Alan J. Hu. “Fast, Flexible, and Minimal CTL Synthesis via SMT”.
In: CAV 2016. Vol. 9779. LNCS. Springer, 2016, pp. 136–156.

An Energy-aware Mutation Testing Framework for
EAST-ADL Architectural Models

Raluca Marinescu∗, Predrag Filipovikj∗, Eduard Enoiu∗, Jonatan Larsson†, and Cristina Seceleanu∗

∗{first.last}@mdh.se, †jln13010@student.mdh.se
Mälardalen University, Väster̊as, Sweden.

Background and Motivation. Early design artifacts of embedded systems, such as architectural
models, represent convenient abstractions for reasoning about a system’s structure and functionality.
One such example is the Electronic Architecture and Software Tools-Architecture Description Lan-
guage (East-adl) [3], a domain-specific architectural language that targets the automotive industry.
East-adl is used to represent both hardware and software elements, as well as related extra-functional
information (e.g., timing properties, triggering information, resource consumption). Testing architec-
tural models [1] is an important activity in engineering large-scale industrial systems, which sparks a
growing research interest. Modern embedded systems, such as autonomous vehicles and robots, have
low-energy computing demands, making testing for energy usage increasingly important. Nevertheless,
testing resource-aware properties of architectural models has received less attention than the functional
testing of such models. In our previous work [11], we have outlined a method for testing energy con-
sumption in embedded systems using manually created faults based on statistical model checking of
a priced formal system model. In this paper, we extend our previous work by showing how mutation
testing [6] can be used to generate and select test cases based on the concept of energy-aware mutants–
small syntactic modifications in the architectural model, intended to mimic real energy faults. Test
cases that can distinguish a certain behavior from its mutations are sensitive to changes in the model,
and hence considered to be good at detecting faults. The main contributions of this paper are: (i)
an approach for creating energy-related mutants for East-adl architectural models, (ii) a method for
overcoming the equivalent mutant problem [9] (i.e., the problem of finding a test case which can distin-
guish the observable behavior of a mutant from the original one), (iii) a test generation approach based
on Uppaal Statistical Model Checker (SMC) [4], and (iv) a test selection criteria based on mutation
analysis using our Mats tool1 [8].

Proposed Framework. In this section, we describe our mutation testing framework that uses energy
consumption goals to automatically select test suites based on random system simulations. The frame-
work is enabled by transforming the East-adl model into a network of priced timed automata (PTA)
[10]. It is composed of several steps, mirrored in Figure 1:

EAST-ADL
Architectural

Model

Energy-Aware
Mutation
Operators

EAST-ADL
Mutated
Models

EAST-ADL
Non-Equivalent
Mutant Models

MATS

UPPAAL
SMC

Mutation
Detection

Mutated
Priced-Timed

Automata

Original
Priced-Timed

Automata

1 2

2 3
4

5

EAST-ADL
Mutated
Models

EAST-ADL
Mutated
Models

EAST-ADL
Mutated
Models

EAST-ADL
Non-Equivalent
Mutant Models

Priced-Timed
Automata

Non-Equivalent
Mutants

Mutated
Priced-Timed

Automata

Mutated
Priced-Timed

Automata

Test SuiteTest Suite

Figure 1: Overview of the energy-aware mutation testing framework.

1 Mats is an open source software and is available at https://github.com/JLN93/MATS-Tool

40

A Resource-aware Mutation Testing Framework Marinescu et al.

(1) Energy-Aware Mutant Generation. The consumption of a resource r for an East-adl com-
ponent represents the accumulated resource usage up to some point in time. Based on this assumption,
resources can be classified as continuous or discrete [13] . In this paper, we focus on energy consump-
tion, which is a continuous resource assumed to evolve linearly in time (r(t) = n × t, where n ∈ N
and t is the elapsed time). Since in East-adl the resource usage annotation is provided at component
level, we define the total energy consumption of the system as rtotal(t) =

∑m
i=1 ri(t), where m is the

number of functional components. In mutation testing, faults are injected based on a predefined set of
mutation operators. Ideally, such mutants should represent commonly-occurring faults, but to the best
of our knowledge, there is no previous work on identification of resource-related faults at the architec-
tural level. Given this, we propose a set of mutation operators applied on: (i) the East-adl resource
annotation (Energy Consumption Replacement Operator (ero)), (ii) the timing behavior of an East-
adl component (Period Replacement Operator (pro), Execution Time Replacement Operator (ero)),
and (iii) the structure of the functional architecture (Component Removal Operator (cro), Compo-
nent Insertion Operator (cio), and Triggering pattern Replacement Operator (tro)). These mutation
operators are systematically applied to the entire East-adl model, resulting in a set of energy-aware
mutants, each simulating one syntactic model change.

(2) East-adl to PTA. In order to use Uppaal SMC for test case generation, we transform the East-
adl model (with energy consumption annotations) into a PTA model. Each East-adl component
is automatically transformed into a network of two PTA: an interface automaton, which encodes
the interface of the component, and a behavior automaton, used to model the component’s internal
behavior. The triggering of each component, timing information, as well as the resource annotations, are
included in the interface PTA. The energy consumption starts at the moment data is read from the input
ports until the component writes the data to the output ports. This means that the energy consumed
by each component increases with the execution time, modeled as a cost “c” in PTA (c(t) = nc × t,
where nc ∈ N is the rate of consumption over time t), but not when the component is idle (c′(t) = 0). A
monitor automaton is added to compute the energy used by the system based on the energy consumed
by each component. For more details, we refer the reader to our previous work [10].

(3) Detection of Equivalent Mutants. Let On be the original PTA model and Mm be a mutant
of the former obtained by applying a predefined mutant operator. We say that models On and Mm are
equivalent if there is no input parameter for which the difference in energy consumption of the models
exceeds some predefined threshold within some bounded time limit. Otherwise, there is a valuation of
the input parameters for which the mutant can be detected. From the above, it is obvious that the
mutant equivalence check can be reduced to a satisfiability problem [5]. Let Φ = {ϕ1, ϕ2, ..., ϕk} and
Ψ = {ψ1, ψ2, ..., ψl} denote the set of constraints for the energy consumption of cn and cm in On and
Mm, respectively. The mutant Mm is not equivalent to On if the following conjunction evaluates to true:

∃ lk.
k∧

i=1

ϕi(lk)∧
l∧

j=1

ψj(lk)∧(|cn−cm| ≥ threshold), where lk is an arbitrary input parameter. Reducing

the mutant equivalence checking to a satisfiability problem has been considered in other frameworks.
Brillout et. al [2] exploits a similar technique for functional testing of Simulink models. In comparison,
our framework is specifically tailored for resource-aware mutation testing of architectural models. The
HiLiTe tool [12] is another example of using an SMT solver for improving test case generation for large-
scale complex and constrained models. Given the fact that the energy consumption is of continuous
nature, we have to resort to a specialized type of SMT-solving suitable for hybrid systems [7].

(4) Test Suite Generation. We create executable test cases using the Mats tool [8], by extracting
the input parameters and the energy values at predefined time points from the simulation traces
produced by Uppaal SMC. Each test input is a vector of signals where the time-dependent behavior
of the model is executed using an ordered sequence of signals. Mats uses Uppaal SMC for obtaining
simulation traces over a predefined number of runs of the system model. A simulation can be formulated
as the property: simulate n[bound]{E1, .., Ek} in Uppaal SMC, where n is the number of simulations to
be performed, bound is the time bound on the simulations, and E1, .., Ek are the monitored expressions.
Each test case is executed on both the original model and its mutated counterpart. In order to minimize
the final set of test cases we remove the test cases not contributing to the mutation score [8].

(5) Mutant Detection Criteria. We show how to detect energy mutants using the Mats tool. A

2
41

A Resource-aware Mutation Testing Framework Marinescu et al.

mutant is detected by a test suite if the energy signal diverges drastically at certain time points from
the expected values (e.g, substantial energy deviations). To measure the mutant-revealing ability of a
test suite, we use a quantitative measure of a mutant detection oracle. Let a test case T be generated
for a mutated model M, and let EM = EM1, ..., EMN be the set of energy signals obtained by running
M for the test inputs in T and sampled at N time points. Let EO = EO1, ..., EON be the corresponding
expected energy signals. We use a threshold to check if the distance between each value of EO and EM

at each time point is larger than this threshold. If there is at least one energy value in EM for which
the distance is larger than the expected threshold then we consider the mutant M detected.

Conclusions and Future Work. In this paper we have outlined a framework for energy-aware
mutation testing of East-adl architectural models. Given the large number of energy mutations
we aim to reduce the number of equivalent mutants by employing an SMT-solver. In addition, this
framework selects test suites contributing to the overall mutation score using Uppaal SMC and Mats.
Future work aims to apply this framework on an industrial case to expose its strengths as well as
limitations both in terms of test efficiency and effectiveness.

Acknowledgements. The authors of this work are supported by the following projects: Swedish
Governmental Agency for Innovation Systems (VINNOVA) and ECSEL (EU’s Horizon 2020) under
grant agreement No 737494, VINNOVA VeriSpec project 2013-01299, Swedish Research Council (VR)
project “Adequacy-based testing of extra functional properties of embedded systems” and the Swedish
Knowledge Foundation (KKS) project DPAC – “Dependable Platforms for Autonomous systems and
Control”.

References
[1] Antonia Bertolino, Paola Inverardi, and Henry Muccini. Software architecture-based analysis and testing:

a look into achievements and future challenges. Computing, 95(8):633–648, 2013.

[2] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Purandare, Philipp Rümmer,
and Georg Weissenbacher. Mutation-based test case generation for Simulink models. In Formal Methods
for Components and Objects, pages 208–227. Springer, 2010.

[3] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Papadopoulos, et al. The EAST-ADL archi-
tecture description language for automotive embedded software. In Model-based engineering of embedded
real-time systems, pages 297–307. Springer, 2010.

[4] Alexandre David, Kim Larsen, Axel Legay, Marius Mikučionis, Danny Poulsen, Jonas Van Vliet, and Zheng
Wang. Statistical model checking for networks of priced timed automata. Formal Modeling and Analysis
of Timed Systems, pages 80–96, 2011.

[5] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

[6] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, 1978.

[7] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: δ-reachability analysis for hybrid
systems. In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 200–205. Springer, 2015.

[8] Jonatan Larsson. Automatic Test Generation and Mutation Analysis using UPPAAL SMC. In Bachelor
of Science Thesis Report. MDH Diva, 2017.

[9] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. Overcoming the equivalent
mutant problem: A systematic literature review and a comparative experiment of second order mutation.
IEEE Transactions on Software Engineering, 40(1):23–42, 2014.

[10] Raluca Marinescu, Eduard Enoiu, and Cristina Seceleanu. Statistical Analysis of Resource Usage of Em-
bedded Systems Modeled in EAST-ADL. In VLSI Symposium, pages 380–385. IEEE, 2015.

[11] Raluca Marinescu, Eduard Enoiu, Cristina Seceleanu, and Daniel Sundmark. Automatic Test Generation
for Energy Consumption of Embedded Systems Modeled in EAST-ADL. In International Conference on
Software Testing, Verification and Validation Workshops, pages 69–76. IEEE, 2017.

[12] Hao Ren, Devesh Bhatt, and Jan Hvozdovic. Improving an Industrial Test Generation Tool Using SMT
Solver. In NASA Formal Methods Symposium, pages 100–106. Springer, 2016.

[13] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A Resource Model for Embedded
Systems. In International Conference on Engineering of Complex Computer Systems. IEEE, 2009.

3
42

Consequence Testing for Automotive Software through
Mocking (Extended Abstract)∗

Wojciech Mostowski
Center for Research on Embedded Systems, Halmstad University, Sweden

wojciech.mostowski@hh.se

1 Introduction
In an earlier paper [9], using a small but complete case study from an automotive domain,
we have described the method and challenges in model-based testing (MBT) [11] of low level
C code designed to run in a multi-vendor library scenario [4]. In this short paper we discuss the
idea of consequence testing of possible defects in the libraries stemming from the differences in
particular vendor implementations and inevitable specification drifts [2]. The principle idea and
approach is through injecting faults into executable models, rather than the actual (typically
very complicated) code, and plugging this faulty model into the software to be tested using a
mocking mechanism [10] – a model-based “emulation” of a software component. A faulty model
is much easier to construct than injecting the faults in the actual implementation. Moreover,
having full control over the model and its execution-time behaviour, it is much easier to lead
the faulty component behaviour during testing to witness a failure in the complete system.
Such faulty models can be constructed by hand to introduce particular kinds of faults, or can
be generated with automata learning techniques [8] applied on known faulty or specification
non-compliant implementations.

This work is part of an on-going project AUTO-CAAS [3], where techniques to aid and
automate model-based testing of automotive software adhering to the Autosar [4] industry
standard are investigated.

2 Model-Based Testing of Autosar using QuickCheck
The simplest concrete example of an Autosar component and a client code that utilises it is
that of a message box (MBox) implemented over a circular buffer (CirqBuff). The particular
method and tool that we use in our project is QuickCheck [1, 6]. In QuickCheck, a model is an
Erlang [5] functional program that follows a predefined structure and API to form a behavioural
description of a given software component. The properties that can be checked with generated
tests are postconditions (test oracles) of single operations and model invariants. The model also
defines the symbolic execution state of the component under test and operation preconditions,
both of which define the valid execution traces for the tests to be generated. For the software
under test written in C, which is the case for the Autosar components, QuickCheck provides a
flexible interface that allows to abstract the C function calls in the model and seamlessly run the
underlying C implementation during the actual testing. The general philosophy of QuickCheck
is to run several short tests quickly to detect problems early, rather than creating large and
complex testing scenarios for which failures are extremely difficult to analyse. Should a larger

∗This work is supported by the Swedish Knowledge Foundation grant for the AUTO-CAAS project.

143

Consequence Testing for Automotive Software through Mocking W. Mostowski

test case need to be generated to exhibit a bug, QuickCheck offers a mechanism to shrink the
test data to a smaller, possibly minimal, set that leads to the same failure.

The method for specifying the message queue and testing it with QuickCheck is described in
detail in [9], which includes full specification for the circular buffer library and the message box
implementation1. Though simplistic, this method is representative, in terms of the process and
associated challenges, of specifying and testing large scale Autosar projects with QuickCheck [2].

3 Consequence Testing Through Mocking
The two key enabling mechanisms in QuickCheck for consequence testing are the call-out spec-
ifications and the mocking API. Call-out specifications are given in a process algebra-like lan-
guage [10] and describe the calls to other components that the operation is allowed or required
to make. The mocking API allows to trace these calls by providing a C wrapper around function
calls in the system under test to intercept and analyse the lower-level calls. More importantly,
the mocking API can replace the calls in the system under test with its own implementations.
This allows us to execute a program over a specified library that is essentially emulated by
QuickCheck with a modelled behaviour. This way, we can introduce faults on the level of li-
braries without modifying the library original C code (which in the worst case might not even
be available). Instead, we plug in different models instead of the library. These plugged in
models can either have a fully correct behaviour or a faulty one. The faulty behaviour in turn,
can be either purposely injected to test the resistance of the top-level software against buggy
libraries, or represent known drifts or non-compliances from the specification to check if (and
how) these drifts affect the top-level behaviour of the system. In other words, to test whether
the software accounts for these known possible drifts. In the general methodology, we keep
plugging in such faulty components into the system to test for the (absence of) consequences
of low-level faults in the top-level behaviour.

For example, Figure 1 shows a concrete snapshot from our message box specification where
the call to CirqBuffPush of the circular buffer library is specified to have a hidden fault in
that it silently limits the buffer size to 128 bytes, regardless of what the user specified during
initialisation. Such a fault could be, e.g., caused by memory limitation on a small embedded
platform. The top of the figure gives a specification that assumes a correct behaviour of the
circular buffer provided the user fulfils the precondition, i.e., one is not trying to overflow the
buffer, while the bottom part specifies the faulty behaviour – CirqBuffPush returns 1 indicating
an error, when elements past the 128 boundary are pushed into the queue.

4 On-Going Research
The testing of the message box with QuickCheck based on the specification in Fig. 1 does not
immediately reveal the problem with the limited circular buffer. In fact, the tests generated
by default simply pass. This is because the MBT strategy of QuickCheck needs to be driven
towards hitting the 128 byte mark, which is not the default behaviour (following the minimal
testing approach mentioned earlier).

In our small example, the bug is triggered easily by a couple of additions to the specification
to weight the post message calls more and to extend the average length of the test cases. How-
ever, in a more general case, this is not sufficient. Our technique so far assumes the introduction
of single faults and manually driving the testing process towards hitting these faults. Ideally,

1https://github.com/parai/OpenSAR.

2 44

Consequence Testing for Automotive Software through Mocking W. Mostowski

% Only allow posting messages to a non-full box:
post_message_pre(S) -> S#mbox_state.ptr /= undefined

andalso length(S#mbox_state.elements) < S#mbox_state.size.
. . .
% Underlying call to CirqBuffPush always succeeds (returns 0):
post_message_callouts(S, [_, Value]) ->

?CALLOUT(mbox, ’CirqBuffPush’, [?WILDCARD, Value], 0).

% Faulty implementation fails with return value 1 when over 128 elements
% are placed in the buffer:
post_message_callouts(S, [_, Value]) ->

?CALLOUT(mbox, ’CirqBuffPush’, [?WILDCARD, Value],
if length(S#mbox_state.elements) < 128 -> 0; true -> 1 end).

Figure 1: Model-based fault injection.

one would prefer to indicate which parts of the specifications should be considered faults, and
let the tool drive the test generation process automatically to reach these specification areas.
It can be just one state in the specification or a whole group of states that represent a family of
faults. Thus, the first challenge is to provide specification means to mark faulty behaviours, the
second is to develop a test generation routine geared towards reaching these faulty behaviours.

One possible approach is to use automata learning techniques to build such fault models [8]
by learning the fault state space of a component from a collection of successful and failed test
case runs. A fault model of this kind, which generalises single faults into fault scenarios, can be
then used to drive test generation by only accepting model transitions that possibly lead to the
fault states. Driving the test generation this way is not difficult and can be solved by stating
specific pre-conditions that only enable model transitions eventually leading to faults. With
automata learning, the main challenge are the scalability issues when applied to non-trivial
systems. Initial ideas for this are presented in [8].

5 Conclusions
We briefly discussed a technique and some associated challenges for discovering high-level faults
in software that works with multi-vendor automotive libraries, which may or may not adhere
to the official specification. Our technique builds on model-based testing and utilises features
available in our particular MBT tool QuickCheck – call-out specifications and library calls
mocking. In the long run, the developed techniques should serve in improving testing of (future)
autonomous functions in automotive software, which due to the inherent complexity and safety
requirements are the next difficult target in testing [7].

References
[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software with QuviQ

QuickCheck. In Proceedings of ERLANG’06, pages 2–10. ACM, 2006.

345

Consequence Testing for Automotive Software through Mocking W. Mostowski

[2] T. Arts, J. Hughes, U. Norell, and H. Svensson. Testing AUTOSAR software with QuickCheck.
In Eighth IEEE International Conference on Software Testing, Verification and Validation Work-
shops, pages 1–4, 2015.

[3] T. Arts and M.R. Mousavi. Automatic consequence analysis of automotive standards (AUTO-
CAAS). In First International Workshop on Automotive Software Architectures (WASA 2015),
pages 35–38. ACM Press, 2015.

[4] AUTOSAR BSW and RE Conformance Test Specification, Release 4.0, Revision 2, 2011.
[5] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly, 2009.
[6] J. Hughes. QuickCheck testing for fun and profit. In Proceedings of PADL’07, pages 1–32. Springer,

2007.
[7] P. Koopman and M. Wagner. Challenges in autonomous vehicle testing and validation. In 2016

SAE World Congress, 2016.
[8] S. Kunze, W. Mostowski, M.R. Mousavi, and M. Varshosaz. Generation of failure models through

automata learning. In Second International Workshop on Automotive Software Architectures
(WASA 2016), pages 22–25. IEEE Society, 2016.

[9] Wojciech Mostowski, Thomas Arts, and John Hughes. Modelling of Autosar libraries for large
scale testing. In Holger Hermanns and Peter Höfner, editors, 2nd Workshop on Models for For-
mal Analysis of Real Systems (MARS 2017), volume 244 of Electronic Proceedings in Theoretical
Computer Science, pages 184–199. Open Publishing Association, April 2017.

[10] J. Svenningsson, H. Svensson, N. Smallbone, T. Arts, U. Norell, and J. Hughes. An expressive
semantics of mocking. In Fundamental Approaches to Software Engineering, volume 8411 of LNCS,
pages 385–399. Springer, 2014.

[11] J. Tretmans. Model-based testing and some steps towards test-based modelling. In Formal Methods
for Eternal Networked Software Systems, volume 6659 of LNCS, pages 297–326. Springer, 2011.

4 46

Analyzing Changes on Configurable Systems with #ifdefs

Larissa Braz1, Rohit Gheyi1, Volker Stolz2, Márcio Ribeiro3

1 Federal University of Campina Grande, Brazil
2 Høgskulen på Vestlandet, Norway

3 Federal University of Alagoas, Brazil

Introduction
Most software systems are frequently changed by developers during the development process. These

changes may have consequences in several parts of the system. Change impact analysis is the task of
finding the consequences of a change to the system code [1]. However, manual approaches to detect the
impacts of a change may not be applicable on most systems, due to the large size of current systems and
the number of dependencies between involved entities [2].

Mongiovi et al. [3] present SAFIRA that analyzes two versions of a Java/AspectJ program and identify
the methods impacted by the change. It decomposes the transformation into a set of small-grained
transformations and formalizes a set of laws to calculate the impact of each small-grained transformations
separately. Impact analysis approaches may be useful when analyzing changes performed on Java code.
For example, SAFEREFACTORIMPACT [3] uses SAFIRA to analyze code changes and generate tests only
for the impacted methods.

In the context of the C language, Frama-C [4] is a plug-in that allows the automatic computation of the
set of statements impacted by a selected statement of a system. CppDepend1 is a static analysis tool for
C/C++ code. It allows analyzing and visualizing code dependencies by doing impact analysis. However,
most of the C available tools, such as GCC,2 consider only one version of the system at a time. In addition,
they consider only one configuration of the system per analysis. Generating, compiling, and testing all
configurations may be costly and not feasible for most configurable systems due to the high number of
potential variants [5, 6]. Therefore, in practice developers usually only check few configurations of the
code or the default one.

Variability-aware parsers, such as TypeChef [7], analyze the code by considering the complete
configuration space. They generate abstract syntax trees (AST) enhanced with all variability information.
However, the time-consuming setup and compilation process of these tools hinder the analysis of some
systems. TypeChef still misses interactions between preprocessor features and lacks flexibility. Both
aspects are addressed in SuperC, another variability-aware parser [8]. It is faster than TypeChef, but
it does not perform type-checking analysis. Moreover, none of the previous approaches consider code
changes to reduce the effort of evaluating configurable systems.

In this work, we propose an analyzer of changes on configurable systems with #ifdefs. We use
change impact analysis to identify impacted macros. We consider that a macro is directly impacted when
the change modifies it. A macro is indirectly impacted when it enables the compilation of semantically
impacted code. For example, if a change affects a variable that is later used under the M1 macro, then M1
is indirectly impacted by the change. We show that this approach removes false negatives that we have
not been able to handle in our previous impact analysis [9].

Improving the Impact Analysis Approach
In our previous work [9], we propose CHECKCONFIGMX, a change-centric tool to compile config-

urable systems with #ifdefs. As input, it receives two versions of a file from a configurable system
1https://www.cppdepend.com/ 2https://gcc.gnu.org/

47

Analyzing Changes on Configurable Systems with #ifdefs Braz et al.

1 int x = 0;
2 #ifdef M1 && !M2
3 int y = x + 1;
4 #endif

(a) Code snippet of the original file.

1
2 #ifdef M1 && !M2
3 int y = x + 1;
4 #endif

(b) Code snippet of the modified file.

Listing 1: Code changes introducing a compilation error (use of undeclared variable).

implemented with #ifdefs. Next, it performs an impact analysis using text diff to identify the modified
lines and the impacted macros. It yields the set of impacted configurations as a set of enabled #defines
and compiles only them. As a result, it returns the introduced compilation errors and their related
configurations. However, CHECKCONFIGMX impact analysis may have false negatives since it does
not consider the structure of the system to identify impacted macros that have no code changes within
#ifdefs. For example, consider the code snippet presented by Listing 1a. The developer performs a
change where she removes the declaration of the variable x. However, this variable is still used within the
#ifdef M1 && !M2 block. Listing 1b presents the modified code. CHECKCONFIGMX does not detect
the compilation error (use of undeclared variable) introduced by Listing 1.

In this work, we propose an improvement for CHECKCONFIGMX impact analysis. After receiving
two versions of a configurable system, we use xtc [8] to generate an AST of each one. Figures 1a and 1b
represent xtc’s output for Listings 1a and 1b, respectively. Mandatory codes are represented under a
Conditional and an 1 (always true) nodes, while codes under #ifdefs blocks are represented under a
Conditional and a <macro(s) condition(s)> nodes. Next, we compare both ASTs to identify the changes.
In this example, we note that the left branch of the External Declaration Unit node was removed from
the first AST to the second one. Then, we search this branch leaf nodes to identify variables or function
names. As a result, we find the node x, which we marked with horizontal lines in Figure 1a. Following,
we search all occurrences of x in the modified file AST, which we marked with vertical lines in Figure 1b.
Finally, for each occurrence, we walk its branch up to identify if its inside an #ifdef block, if positive we

Translation	 Unit

External	 Declaration	 Unit

Conditional

1

Declaration

Declaration
List

Syntax
Language

“ïnt”

Simple
Declarator

Syntax
Text

“x”

Initializer
Opt

Initializer

Syntax
Text

“0”

Conditional

Defined	M1	&&	!Defined	M2

Declaration

Declaration
List

Syntax
Language

“int”

Simple
Declarator

Syntax
Text

“y”

Initializer
Opt

Initializer

Additive
Expression

Primary	
Identifier

Syntax
Text

“x”

Syntax
Language

“+”

Syntax
Text

“1”

(a) AST of original code (Listing 1a).

Translation	 Unit

External	 Declaration	 Unit

Conditional

Defined	M1	&&	!Defined	M2

Declaration

Declaration
List

Syntax
Language

“int”

Simple
Declarator

Syntax
Text

“y”

Initializer
Opt

Initializer

Additive
Expression

Primary	
Identifier

Syntax
Text

“x”

Syntax
Language

“+”

Syntax
Text

“1”

(b) AST of modified code (Listing 1b).

Figure 1: ASTs generated by xtc for both file versions of Listing 1.

2 48

Analyzing Changes on Configurable Systems with #ifdefs Braz et al.

1 static const char hush_version_str [] ALIGN1 = "HUSH_VERSION="BB_VER;

Listing 2: Code from hush.c from BusyBox before preprocessing.

consider the macro(s) as impacted. In our example, we identify that the M1 and M2 macros are impacted,
which we marked with diagonal lines in Figure 1b.

However, parsers, such as TypeChef and SuperC, may break when parsing C code that has not been
preprocessed. For example, these parsers may not parse the code presented by Listing 2 due to missing
declarations of the ALIGN1 and BB_ver macros. In cases like that, we use an alternative approach to
identify impacted macros after code changes. For example, receiving Listing 1 as input, if the parser
fails, we identify that the first line of Listing 1a (int x = 0;) changed, since it is removed from the
code in Listing 1b. Next, we remove the keywords (int), the operators (= and +), and the numbers (1).
We yield a set of words: {x}. Then, we search all occurrences of the words in the modified code. As a
result, we identify the set of impacted lines of the modified code: {2}. Then, we identify {M1, M2} as
the set of impacted macros. Next, we follow the same steps as in the AST-approach: we generate and
compile all impacted configurations based on the impacted macros. As a result, we identify the use of an
undeclared variable in configuration M1.

Conclusions
By not considering the impact of the transformations applied to a configurable system, exhaustive

approaches may have to analyze all possible configurations. Our previous evaluation results [9] show
evidence that CHECKCONFIGMX can be useful in analyzing transformations applied to files with a
large number of macros. However, due to its simple impact analysis, CHECKCONFIGMX may miss
some compilation errors. To reduce the number of false negatives, in this work, we extend our previous
work [9] by improving its change impact analysis. We identify impacted macros using AST or through a
word-search approach. As future work, we intend to evaluate our new change impact analysis on open
source projects, and compare it with CHECKCONFIGMX previous change impact analysis.
Acknowledgement Supported by the bilateral SIU/CAPES/10032 project “Modern Refactoring”.

References
[1] X. Ren, B. Ryder, M. Stoerzer, and F. Tip. Chianti: A change impact analysis tool for Java programs. In ICSE,

pages 664–665, 2005.
[2] S. Lehnert. A taxonomy for software change impact analysis. In IWPSE-EVOL, pages 41–50, 2011.
[3] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba. Making refactoring safer through impact analysis.

SCP, 93:39–64, 2014.
[4] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c: A software analysis perspective.

FAC, 27(3):573–609, 2015.
[5] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-based product lines. TOSEM, 21(3):1–39,

2012.
[6] A. Iosif-Lazar, J. Melo, A. Dimovski, C. Brabrand, and A. Wasowski. Effective analysis of c programs by

rewriting variability. Programming Journal, 1(1):1, 2017.
[7] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger. Variability-aware parsing in the

presence of lexical macros and conditional compilation. In OOPSLA, pages 805–824, 2011.
[8] P. Gazzillo and R. Grimm. SuperC: Parsing all of C by taming the preprocessor. In PLDI, pages 323–334, 2012.
[9] L. Braz, R. Gheyi, M. Mongiovi, M. Ribeiro, F. Medeiros, and L. Teixeira. A change-centric approach to

compile configurable systems with #ifdefs. In GPCE, pages 109–119, 2016.

349

Operational Semantics of a Weak Memory Model
inspired by Go

Daniel S. Fava,1 Martin Steffen,1 Volker Stolz1,2 and Stian Valle1

1 Dept. of Informatics, University of Oslo
2 Western Norway University of Applied Sciences

A memory model dictates which values may be returned when reading from memory. In a parallel
computing setting, the memory model affects how processes communicate through shared memory. The
design of a proper memory model is a balancing act. On one hand, memory models must be lax enough
to allow common hardware and compiler optimizations. On the other, the more lax the model, the harder
it is for developers to reason about their programs. In order to alleviate the burden on programmers, a
weak memory model should provide what is called the data-race freedom guarantee, which allows
reasoning in terms of sequential consistency provided a program is data-race free.

In this paper we present a theory for weak memory with channel communication as the sole syn-
chronization primitive. There are few studies on channel communication as a synchronization primitive
for a weak memory model. We formalize the memory model in a small-step operational semantics and
implement it in an executable semantics framework [4] from which we obtain an interpreter. Similar to
Boudol and Petri, we favor an operational semantics because it allows us to prove the DRF guarantee
“at the programming language level.” This yields a more concrete interpretation of the DRF guarantee
as compared to formalisms in which the notion of a program is abstracted away, often in the form of a
graph [1].

The calculus we propose is inspired by the Go programming language developed at Google, which
recently gained traction in networking applications, web servers, distributed software and the like. It
features goroutines (i.e., asynchronous execution of function calls resembling lightweight threads) and
buffered channel communication in the tradition of CSP or Occam.

The Go memory model

The happens-before relation is used in the Go memory model to describe which reads can observe which
writes to the same variable. It says, for example, that within a single goroutine, the happens-before rela-
tion boils down to program order and, between goroutines, events can appear to happen out of program
order. If the effects of a goroutine are to be observed by another, a synchronization primitive must be
used in order to establish a relative ordering between events belonging to the different goroutines. The
Go memory model advocates channel communication as the main method of synchronization [3]. In
particular, it states that a send on a channel happens before the corresponding receive from that channel
completes. Our semantics incorporates channels for message passing, goroutines for asynchronous code
execution, and it allows for out-of-order execution where writes to memory can be arbitrarily delayed.

Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values are written generally as v and include
booleans, integers, and etc (these more obvious values are not explicitly listed on the table). Note that
local variables (or registers) are also counted as values and are denoted r. Names (or references) are also
considered values and are denoted n. Names are used, for example, when referring to different channels
– when presenting the semantics, we will use c for indicating a reference to a channel.

A new channel is created by make (chan T,v), where T represents the type of values carried by
the channel, and the non-negative integer v the channel’s capacity. Sending a value over a channel and

50

v ::= r | n values
e ::= t | v | load z | z := v expressions

| make (chan T,v) | ← v | v← v | close v | pend v
| if v then t else t | go t

g ::= v← v | ← v | default guards
t ::= let r = e in t | ∑i let ri = gi in ti threads

Table 1: Abstract syntax

receiving a value as input from a channel are written respectively as v1← v2 and← v. After the operation
close, no further values can be sent on the specified channel. Attempting to send values on a closed
channel leads to a panic. The expression pend v represents the state immediately after sending a value
over a channel. Note that pend is part of the run-time syntax as opposed to the user-level syntax, i.e., it
is used to formulate the operational semantics of the language but is not part of the syntax available to
the programmer.

Starting a new asynchronous activity (i.e., goroutine) is done using the go-keyword. Select-statements,
written using the ∑-symbol, consist of a finite set of guarded branches. The let-construct let r = e in t
combines sequential composition and the use of scopes for local variables r. It becomes sequential com-
position when r does not occur free in t. We use semicolon as syntactic sugar in such situations.

Operational semantics with delayed writes

Programs consist of the parallel composition of goroutines 〈σ , t〉, write events n(|z:=v|), and channels
c[q f ,qb]. Write events are 3-tuples from N×X ×Val; they record the shared variable being written to
and the written value, together with a unique identifier n. In the current semantics, read accesses to the
main memory cannot be delayed; consequently, there are no read events.

In addition to the code t to be executed, goroutines 〈σ , t〉 contain local information about earlier
memory interaction. Local states σ are are tuples of type 2(N×X)× 2N abbreviated as Σ. We use the
notation (Ehb,Es) to refer to the tuples. The first component of the local state, Ehb, contains the identities
of all write events that have happened before the current stage of the computation of the goroutine. The
second component of the local state, Es, represents the set of identities of write events that, at the current
point, are shadowed (i.e., no longer visible to the goroutine).

The reduction rules for reads and writes are given on Table 2. From a goroutine’s point of view,
its reads and writes appear in program order. This is guaranteed by the absence of delayed reads and
by disallowing reads from obtaining values of writes that have been shadowed. Writes from other
goroutines, however, may appear out of order: writes are placed on a global pool and subsequent reads
can read any write from the pool as long as the event has not been shadowed from the reader’s point of
view.

Synchronization between goroutines is achieved by communicating via channels, as shown in Ta-
ble 2. A channel is of the form c[q f ,qb], where c is a name and (q f ,qb) a pair of queues referred to
as forward and backward queue. For convenience, we use c f and cb when referring to channel’s c
forward and backward queues. When creating a channel (cf. rule R-MAKE), the forward channel is ini-
tially empty but the backward is not: it is initialized by a queue of length |c|, which corresponds to the
capacity of the channel (the channel is synchronous when capacity is 0). In order to account for the syn-
chronization power of channels, in addition to communicating a value, the queues are managed so that
“happened before” and “shadowed” knowledge are also exchanged between communicating partners.

See our technical report for a detailed description of the semantics [2].

51

q = [σ⊥, . . . ,σ⊥] |q|= v fresh(c)
R-MAKE

p〈σ ,let r = make (chan T,v) in t〉 −→ νc (p〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q])
R-SEND

p〈σ ,c← v; t〉 ‖ c f [q]−→ p〈σ ,pend c; t〉 ‖ c f [(v,σ) :: q]

σ ′ = σ +σ ′′
R-PEND

cb[q2 :: σ ′′] ‖ p〈σ ,pend c; t〉 ‖ c f [q1]−→ cb[q2] ‖ p〈σ ′, t〉 ‖ c f [q1]

σ ′ = σ +σ ′′ v 6=⊥
R-RECEIVE

c f [q1 :: (v,σ ′′)] ‖ p〈σ ,let r =← c in t〉 ‖ cb[q2]−→ c f [q1] ‖ p〈σ ′,let r = v in t〉 ‖ cb[σ :: q2]

σ ′ = σ +σ ′′
R-RECEIVE⊥

c f [(⊥,σ ′′)] ‖ p〈σ ,let x =← c in t〉 −→ c f [(⊥,σ ′′)] ‖ p〈σ ′,let x =⊥ in t〉

¬closed(c f [q])
R-CLOSE

c f [q] ‖ p〈σ ,close (c); t〉 −→ c f [(⊥,σ) :: q] ‖ p〈σ , t〉

σ = (Ehb,Es) σ ′ = (Ehb +(n,z),Es +Ehb(z)) fresh(n)
R-WRITE

p〈σ ,z := v; t〉 −→ νn (p〈σ ′, t〉 ‖ n(|z:=v|))
σ = (,Es) n /∈ Es

R-READ
p〈σ ,let r = load z in t〉 ‖ n(|z:=v|)−→ p〈σ ,let r = v in t〉 ‖ n(|z:=v|)

Table 2: Operational semantics: message passing and memory reads/writes

Contributions

• We define a novel semantics for weak memory with channel communication as synchronization
primitive;

• We prove that our proposed weak memory upholds the data-race freedom guarantee;

• We present our implementation in an executable semantics framework, which allows us to derive
an interpreter for programs in the target language.

References
[1] G. Boudol and G. Petri. Relaxed memory models: An operational approach. In Proceedings of

POPL ’09, pages 392–403. ACM, January 2009.

[2] Daniel Fava, Martin Steffen, Volker Stolz, and Stian Valle. An operational semantics for a weak
memory model with buffered writes, message passing, and goroutines. Technical Report 466, Uni-
versity of Oslo, Dept. of Informatics, April 2017.

[3] Go memory model. The Go memory model. https://golang.org/ref/mem, 2016.

[4] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework. Journal of
Logic and Algebraic Methods in Programming, 79(6):397–434, 2010.

52

A diagrammatic approach for bracing
heterogeneous models

Fazle Rabbi and Yngve Lamo

Western Norway University of Applied Science, Bergen, Norway
Fazle.Rabbi@hvl.no, Yngve.Lamo@hib.no

1. Introduction: Today’s software systems are complex and involves interaction among sev-
eral devices and applications using heterogeneous platforms. For modeling software systems
we need to consider various aspects of systems. In order to deal with the complexity of soft-
ware systems, software engineers usually separate the aspects of software systems which leads
to different models. Decomposing a system based on aspects (such as structure and behav-
ior) facilitate abstraction and provides flexibility in updating the decomposed sub-modules.
However, to reason about the system as an integrated whole and to support concurrent co-
evolution of subsystems we need to coordinate and synchronize models that are representing
different aspects of a system and represent distributed systems. Requirements for integrating
heterogeneous distributed systems are increasing with the rapid technological advancements.
Therefore, model composition is becoming a key issue in requirements analysis and design
of complex systems. This requires formalization to understand and develop satisfactory so-
lutions. The study of integrating heterogeneous systems is a complex process consisting of
information and expert knowledge management, modeling, simulation, and decision making
support [2].

The modeling concerns for the representation of complex systems require techniques for
handling composition of heterogeneous artefacts. Efforts have been made in [3, 4] to specify the
integration of heterogeneous systems by the integration of heterogeneous modeling languages.
They categorized the need for language integration into three groups: language aggregation,
language embedding, and language inheritance. An algebraic approach for integrating lan-
guages have been studied in [1, 6] where the authors used a Common Algebraic Specification
Language (CASL) for the specification and development of modular software systems. How-
ever, these approaches are based on textual languages. We propose to use a diagrammatic
approach for modeling complex software systems and propose a formal modeling approach
to compose heterogeneous models in a coherent way. We demonstrate its application for the
optimization of distributed resources. The formal modeling approach is presented by means
of composite specifications which provide reusable patterns for the structural composition of
software models. It can be used for modeling in the small in a sense that it can deal with mod-
eling artefacts such as models, metamodel elements and relations between them; it can also
be used for modeling in the large in a sense that we can coordinate heterogeneous modeling
systems with composite specifications.

2. Composite specification: The formalization of composite specification is discussed as
an approach for constructing complex software models. In this formalization, we integrate
several modeling artefacts to define software structures. Composite specification can be used
for constructing the structure of individual software models as well as correlating complex
structures of distributed software models. As a motivation consider the following model
integration problem. Consider two distributed systems for an orthopedic department and a
radiology department in a hospital. To model these distributed systems we need to define

1
53

A diagrammatic approach for bracing heterogeneous models F. Rabbi and Y. Lamo

different domain concepts and constraints. These two systems share some resources and we
need to model the interdependency of the systems with an integrated system model. There
are some overlapping of concepts and constraints in these two systems and we need to specify
inter-model constraints representing the global constraints governing the overall system. To
model the resource allocation of the distributed systems and their optimization we wish to
use a game theory model. Therefore we need to model the game theoretic perspective of
the distributed resource allocations and link them with the distributed software models. To
cope with this situation, we require a modeling framework that allows heterogeneous model
integration and supports both modeling small and large distributed systems. We propose to
use a modeling formalism with so-called composite specification that supports such model
composition requirements. Inter-model constraints of heterogeneous systems can be specified
using composite specification and it provides a building block for integrating software models
in a coherent way. Composite specification may have numerous applications in software
engineering as various applications can be modeled by combining different elements/aspects
of models and/or modeling artefacts.

Formalization: We adapt the formalization of the Diagram Predicate Framework (DPF)[8, 5]
by generalizing the components of diagrammatic specifications. DPF uses the concept of
diagram predicates to specify constraints on a diagrammatic specification. A DPF predicate
signature Σ = (PΣ, αΣ) consists of a collection of predicate symbols and a mapping of the
predicate symbols to their arity graph. In DPF, a diagrammatic specification S = (G,CS : Σ)
is given by a graph G and a set of atomic constraints CS : Σ. The shape graph G is given by a
collection of nodes, edges, source, and target maps. The atomic constraints are added to the
graph G by means of graph homomorphism from the shape of a predicate to G, δ : αΣ(p) →
G. In this paper, we generalize the concepts of diagrammatic specification and propose to
use composite specification for modeling heterogeneous systems. Composite specification
is formalized as a set of specifications, relationship among the specifications, and a set of
structural constraints. The specifications and relationships constitute the shape of a composite
specification. Similar to DPF, structural constraints are added to the shape of a composite
specification by a structure preserving map from the arity of a predicate.

Definition 1 (Composite specification). Given a predicate signature Σ = (PΣ, αΣ), a composite
specification C is defined recursively as follows:

• a DPF specification S = (G,CS : Σ) is a composite specification;

• let N be a set of composite specifications, then a composite specification is given by

– a set of composite specifications S ⊆ N,

– a set of edges between elements of S,

– a set of atomic constraints on the shape of C with p ∈ PΣ

A Composite specification describes the structure of a model which allow us to compose
modeling elements through substitution. Complex structures may be formulated with com-
posite specifications by specifying structural constraints. In order to be a valid composition,
the structural constraints must be satisfied.

We obtain a modeling language MC for model composition by means of a composite
specifications. The semantic of a composite specification is described in a fibred manner
i.e., the semantics of a composite specification is given by the set of its instances. Models

2
54

A diagrammatic approach for bracing heterogeneous models F. Rabbi and Y. Lamo

are usually underspecified in the early phases and therefore we need to define models with
abstract information. Composite specifications are often defined with underspecification such
that there is usually not a single system that realizes a model, but a larger set of realizations
is allowed. Further refinement of a composite specification is achieved by replacing abstract
information with concrete modeling elements. During the early stage software developer often
deals with an incomplete or inconsistent model. Model transformation techniques can play an
important role in completing an incomplete model and/or repairing an inconsistent model.

In our presentation at the workshop we will present a variety of composition patterns and
show how composite specifications can be used for both modeling in the small and modeling in
the large. To show the applicability of the proposed method, we will demonstrate an application
of model composition for optimizing distributed resource allocations in a healthcare context.
Figure 1 illustrates an example of a composite specification where S0 − S5 are representing
composite specifications. Specification S0 is representing a game theory model consisting
of three choices of a player P1 and two choices of a player P2. The choices are linked to
software model specifications (S1− S5) representing the resource allocation of the system. For
simplicity the detailed specification of the models are not presented in this abstract. We wish to
present a formal approach for composing heterogeneous models based on the MDE techniques
presented in [7].

S5

S4

S3

P1

P2

C1

C2

C3

C4

C5

S0

S2

S1

Figure 1: Example of a composite specification

References

[1] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brckner, P. D. Mosses, D. Sannella, and A. Tarlecki. Casl:
the common algebraic specification language. Theoretical Computer Science, 286(2):153 – 196, 2002.

[2] A. Bagdasaryan. Systems theoretic techniques for modeling, control, and decision support in complex
dynamic systems. CoRR, abs/1008.0775, 2010.

[3] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled. In Proceedings of the
Twelfth Workshop on Language Descriptions, Tools, and Applications, LDTA ’12, pages 7:1–7:8, New York,
NY, USA, 2012. ACM.

[4] A. Haber, M. Look, A. Navarro Perez, P. Mir Seyed Nazari, B. Rumpe, S. Völkel, and A. Wort-
mann. Integration of heterogeneous modeling languages via extensible and composable language
components. In Proceedings of the 3rd International Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2015, pages 19–31, Portugal, 2015. SCITEPRESS - Science and
Technology Publications, Lda.

3
55

A diagrammatic approach for bracing heterogeneous models F. Rabbi and Y. Lamo

[5] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle. DPF Workbench: A Diagrammatic Multi-
Layer Domain Specific (Meta-)Modelling Environment, pages 37–52. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[6] T. Mossakowski. Relating casl with other specification languages: The institution level. Theor. Comput.
Sci., 286(2):367–475, Sept. 2002.

[7] F. Rabbi. MDE Techniques for Modeling and Analysis of Complex Software Systems. PhD thesis, Department
of Informatics, University of Oslo, Norway, 2017.

[8] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department of
Informatics, University of Bergen, Norway, 2010.

4
56

Expressive Power and Encoding of Transition System
Models for Software Product Lines

Mahsa Varshosaz1, Lars Luthmann3, Malte Lochau3,4, and Mohammad Reza
Mousavi1,2

1 Halmstad University, Halmstad, Sweden
mahsa.varshosaz@hh.se

2 University of Leicester, Leicester, UK
mm789@leicester.ac.uk

3 Technische Universität Darmstadt, Darmstadt, Germany
{lars.luthmann,malte.lochau}@es.tu-darmstadt.de

4 University of Passau, Passau, Germany

Abstract
Several formalisms have been proposed for modeling Software Product Lines (SPLs),

such as Modal Transition Systems (MTSs) and their extensions, Feature Transition Systems
(FTSs), and Product Line Transition Systems (PL-LTSs). In this talk, we review our past
work on comparing the expressive power of these formalisms and providing encodings
between them. Namely, we show that FTSs are strictly more expressive than MTSs and
are exponentially more succinct than PL-LTS.

As MTSs are well-studied and there are tools for analysis of such models, we move on
to find a connection between FTSs and MTSs. To this end, we seek an encoding from FTSs
into sets of MTSs, as FTSs are more expressive than individual MTSs. We present initial
ideas on an encoding that preserves the behavior of FTS and results in a set of MTSs.

1 Introduction
Software Product Line (SPL) engineering is a commonly used development technique aiming
for mass production and customisation of families of software systems. In SPL engineering, a
set of software systems, with well-defined commonalities and variabilities, are developed based
on a common core and platform. Furthermore, systematic reuse is enabled in different phases
of software development by using SPL engineering.

There are different analysis techniques that have been used for quality assurance of SPLs.
Some of these analysis techniques such as model checking and model-based testing require a
model of the system. Using conventional techniques for modeling individual products in an
SPL can be time consuming and costly, as the number of the products can be potentially large.
Several formalisms have been extended and introduced for efficient modeling of software product
lines. Feature Transition Systems (FTSs) [3], Modal Transition Systems [7] and their extensions
[4, 6, 1], and Product Line Calculus of Communicating Systems (PL-CCSs) [5] are among these
formalisms that have been used for modeling SPLs. These models can be compared in terms
of properties such as expressive power and compactness.

In [2], we have compared the expressive power of three fundamental models used for modeling
SPLs, namely, FTSs, MTSs, and PL-CCSs. The results show that FTSs are strictly more
expressive than MTSs as persistent choices and exclusive behavior cannot be represented by
MTSs.

Modal transition systems have been extensively studied and there are tools supporting
analysis of this type of models. Hence, in this work in progress, we are developing a connection
between MTSs and FTSs and possibly a translation between them that preserves the behavior.

57

Varshosaz et al.

Modal transition systems are extensions of Labeled transition Systems (LTSs) in which the
set of transitions are divided into two sets, namely, may and must transitions. An MTS is
defined as a tuple (S,A,−→2,−→♦, sinit), where S is a set of states, sinit is the initial state, A is
a set of actions, and −→2⊆−→♦⊆ S ×A× S, where −→2 is the set of must transitions, which can
be used for representing the mandatory behavior and −→♦ is the set of may transitions, which
can be used for representing the optional behavior. Based on the refinement relation given for
MTSs in [7], an LTS that refines an MTS, should implement all the must-transitions and also
can include some (or none) of the may transitions.

Feature transition systems are also extensions of LTSs used for modding SPLs. An FTS can
be defined as a tuple (S,A, F,→,Λ), where S is a set states, A is a set of actions, F is a set of
features, →⊆ S × A × B(F) × S, where B(F) represents the set of all propositional formulae
over a set of variables that represent features in F , is the set of transitions, and Λ represents the
set of valid products in the product line. Each transition in an FTS has a presence condition
(represented as a propositional formula) that determines in which product models the transition
is present. A projection operator is given in [3], for generating valid LTSs that implement an
FTS.

The main goal in this work is to present an encoding from FTSs to MTSs such that the
behaviour is preserved. As mentioned before, MTSs cannot represent exclusive behavior and
also persistent choices. Hence, the result of translation of an FTS is a set of MTSs. By splitting
the behavior between different MTSs, the exclusive behavior can be included in separate MTSs.

Assume that FTS, MTS, and LTS, respectively, denote the class of FTSs, MTSs, and LTSs;
Assuming that E : FTS → 2MTS, denotes our encoding from FTSs into MTSs. Furthermore,
for an arbitrary mts ∈ MTS, we denote the set of all LTSs implementing mts by JmtsK, and
the set of LTSs implementing an arbitrary fts ∈ FTS is denoted by JftsK. One of the properties
that is proved for the encoding is as follows:

∀fts ∈ FTS ∀lts ∈ JftsK · ∃lts ′ ∈
⋃

mts∈E(fts)

JmtsK · lts ↔ lts ′ ∧

∀fts ∈ FTS ∀ lts ∈
⋃

mts∈E(fts)

JmtsK · ∃ lts ′ ∈ JftsK · lts ↔ lts ′

where ↔ represents bisimilarity relation. Considering an arbitrary FTS fts, the above state-
ments mean that for each lts that is a valid implementation of fts, there is an LTS implementing
one of the MTSs resulted from the encoding of fts that is bisimilar with lts and vice versa.

As a part of our work we are aiming for implementing the encoding and application of this
approach on different case studies, in which the behavior of the SPL is represented as an FTS
and then generating MTSs that preserve the behavior.

References
[1] Nikola Beneš, Jan Křetínský, Kim G. Larsen, Mikael H. Møller, and Jiří Srba. Parametric modal

transition systems. In Proceedings of the 9th International Conference on Automated Technology
for Verification and Analysis, ATVA’11, pages 275–289, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] H. Beohar, M. Varshosaz, and M. R. Mousavi. Basic behavioral models for software product lines:
Expressiveness and testing pre-orders. Science of Computer Programming, 2015. In Press, available
online.

[3] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying variability-intensive systems and their application to LTL model
checking. IEEE Transactions on Software Engineering, 39(8):1069–1089, 2013.

2
58

Varshosaz et al.

[4] H. Fecher and H. Schmidt. Comparing disjunctive modal transition systems with an one-selecting
variant. The Journal of Logic and Algebraic Programming, 77(1-2):20–39, 2008. The 16th Nordic
Workshop on the Prgramming Theory (NWPT 2006).

[5] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model checking software product lines.
In Formal Methods for Open Object-Based Distributed Systems, volume 5051 of LNCS, pages 113–
131. Springer, 2008.

[6] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In Proceedings of
the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), pages 108–117, Jun 1990.

[7] K.G. Larsen and B. Thomsen. A modal process logic. In Proc. of the 3rd Annual Symposium on
Logic in Computer Science, pages 203–210. IEEE, 1988.

3
59

Abstract refinement algebra: a survey

Kim Solin

Åbo Akademi, Åbo, Finland

Refinement algebras are axiomatic algebras intended for total-correctness reasoning about pro-
grams. The most basic refinement algebra, von Wright’s demonic refinement algebra [13], is a
modification of Kozen’s Kleene algebra with tests [5] to accommodate total correctness and,
consequently, the refinement calculus [2]. Technically, a refinement algebra is an idempotent
semiring with an iteratation operator (S,u, ; ,ω ,>, 1) where u caputures demonic choice, ; cap-
tures sequential composition, ω caputures a possibly non-terminating iteration, 1 is skip, and
> is the miraculous program.

The axiomatic framework allows for multiple models, including the motivating model of
predicate transformers, and for significant reuse of established results in related algebras. More-
over, the axiomatic framework also easily lends itself to reasoning about angelic choice [9],
enabledness and termination [12], probabilistic programs [7, 6], data refinement [11], and con-
currency [3]. Algebras of this kind are highly suitable for automated reasoning [1, 4].

In this talk, I survey the background to abstract, axiomatic reasoning about program re-
finement based on semiring structures, and the main achievements of this line of research. I
also discuss a number of research avenues and open problems, including combining semirings
for reasoning about epistemic agents [8, 10] with refinement algebra to achieve a framework for
reasoning about security.

References

[1] Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth. Kleene algebra with tests and demonic
refinement algebras. Archive of Formal Proofs, 2014, 2014.

[2] Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Systematic Introduction.
Graduate Texts in Computer Science. Springer, 1998.

[3] Ian J. Hayes, Robert J. Colvin, Larissa A. Meinicke, Kirsten Winter, and Andrius Velykis. An
algebra of synchronous atomic steps. In John S. Fitzgerald, Constance L. Heitmeyer, Stefania
Gnesi, and Anna Philippou, editors, FM 2016: Formal Methods - 21st International Symposium,
Limassol, Cyprus, November 9-11, 2016, Proceedings, volume 9995 of Lecture Notes in Computer
Science, pages 352–369, 2016.

[4] Peter Höfner and Georg Struth. Automated reasoning in Kleene algebra. In Frank Pfenning,
editor, Automated Deduction - CADE-21, 21st International Conference on Automated Deduction,
Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer
Science, pages 279–294. Springer, 2007.

[5] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443, 1997.

[6] Larissa Meinicke and Ian Hayes. Probabilistic choice in refinement algebra. In Philippe Audebaud
and Christine Paulin-Mohring, editors, Mathematics of Program Construction, 9th International
Conference, MPC 2008, Marseille, France, July 15-18, 2008. Proceedings, volume 5133 of Lecture
Notes in Computer Science, pages 243–267. Springer, 2008.

[7] Larissa Meinicke and Kim Solin. Refinement algebra for probabilistic programs. Formal Asp.
Comput., 22(1):3–31, 2010.

[8] Kim Solin. A sketch of a dynamic epistemic semiring. Inf. Comput., 208(5):594–604, 2010.

[9] Kim Solin. Dual choice and iteration in an abstract algebra of action. Studia Logica, 100(3):607–
630, 2012.

60

[10] Kim Solin. Modal semirings with operators for knowledge representation. In Joaquim Filipe
and Ana L. N. Fred, editors, ICAART 2013 - Proceedings of the 5th International Conference
on Agents and Artificial Intelligence, Volume 2, Barcelona, Spain, 15-18 February, 2013, pages
197–202. SciTePress, 2013.

[11] Kim Solin. Encoding and decoding in refinement algebra. In Wolfram Kahl, Michael Winter, and
José Nuno Oliveira, editors, Relational and Algebraic Methods in Computer Science - 15th Interna-
tional Conference, RAMiCS 2015, Braga, Portugal, September 28 - October 1, 2015, Proceedings,
volume 9348 of Lecture Notes in Computer Science, pages 209–224. Springer, 2015.

[12] Kim Solin and Joakim von Wright. Enabledness and termination in refinement algebra. Sci.
Comput. Program., 74(8):654–668, 2009.

[13] Joakim von Wright. Towards a refinement algebra. Sci. Comput. Program., 51(1-2):23–45, 2004.

2
61

Towards Domain-Specific CPN Modelling Languages

Alejandro Rodŕıguez Tena1, Fernando Maćıas1,
Lars Michael Kristensen1, and Adrian Rutle1

Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences, Bergen

{arte,fmac,lmkr,aru}@hvl.no

Software systems engineering is a comprehensive discipline involving a multitude of activ-
ities such as requirements engineering, design and specification, implementation, testing, and
deployment. Model-driven software engineering (MDSE) [4] is one of the emergent responses
from the scientific and industrial communities to tackle the increasing complexity of software
systems. MDSE utilises abstractions for modelling different aspects – behaviour and struc-
ture – of software systems, and treats models as first-class entities in all phases of software
development. One way to increase the adoption of MDSE is to develop modelling approaches
which reflect the way software architects, developers and designers, as well as organisations,
domain experts and stakeholders handle abstraction and problem-solving. In this context,
domain-specific (meta)modelling (DSMM) [5] has been proposed as an approach to unite soft-
ware modelling and abstraction, software design and architecture, and organisational studies.
The main aim is to fill the gap between these fields and make modelling more widely applicable
than it currently is [15].

The development of distributed software systems is particularly challenging. A major reason
is that these systems possess concurrency and non-determinism which means that the execution
of such systems may proceed in many different ways. To cope with the complexity of modern
concurrent systems, it is therefore crucial to provide methods that enable debugging and testing
of central parts of the system design prior to implementation and deployment [7]. Since con-
currency, communication and synchronisation are increasingly present in our lives, it is priority
to put efforts in improving the current techniques to deal with them. One way to approach
the challenge of developing concurrent systems is to build an executable model of the system.
Constructing a model and simulating it usually leads to significant insights into the design and
operation of the system considered and often results in a simpler and more streamlined design.

Modelling of distributed systems. Coloured Petri Nets (CPNs) form a graphical language
designed to construct models of distributed systems i.e. communication protocols [6], data
networks [3], distributed algorithms [11] and embedded systems [2]. CPNs combine classical
Petri nets [10] with the functional programming language Standard ML [14]. The modelling
language is suited for discrete-event processes that include choice, iteration, and concurrent
execution. A CPN model of a system is an executable model representing the states of the
system and the events (transitions) that can cause the system to change state. The CPN
modelling language also makes it possible to organise a model into a hierarchically related set
of modules, and it has a time concept to represent the time taken to execute events.

One advantage of CPNs is that they contain few but powerful modelling constructs. This
means that the modeller has few constructs that need to be mastered in order to apply the
language. However, several recent applications of CPNs [13] have shown that it would be
beneficial to be able to develop domain-specific variants that would make it possible to support:

Modelling patterns representing commonly used approaches to capture concepts from the
problem domain.

1
62

Domain-Specific CPN Tena et. al

Modelling restrictions forcing the modeller to use only certain constructs in the language
when modelling concepts from the problem domain.

Subtyping of elements allowing specific interpretation of certain model elements such as
places, transitions, and arcs.

Figure 1 (left) shows an example from the embedded software domain [8] in which substitution
transitions and certain places have been subtyped as representing interfaces and events for code
generation purpose. Figure 1 (right) shows an example from the control system domain in
which modelling patterns are used to consume events (Fig 1(right,top)) and update a process
variable (Fig 1(right,bottom)) based on input received from the environment. The patterns in
turn put restrictions on the arcs and arc expressions.

Bus

In/Out
DevicexMsg

Speed In/Out

INT

~1

IO_Speed
(DOSER,SPEED(v'))

v

v'

Figure 1: Examples of domain-specific concepts in CPN models.

A Metamodel for Coloured Petri Nets. The lack of extensibility of the CPN language
and lack of adaptability provided by CPN Tools have motivated us to develop a model-driven in-
frastructure for CPN. The first step towards this has been to develop a metamodel for CPN. The
definition of this metamodel will support application of model transformations (for definition
of model semantics), domain-specific metamodelling (for creation of domain-specific versions of
CPN), and abstraction (for definition of modelling patterns and restrictions).

There exists work on metamodels for Petri Nets [1]. These metamodels have been developed
for the purpose of tool interoperability for general purpose Petri nets, and not the domain-
specific aspects that we aim to address. Figure 2 shows a first attempt to develop a metamodel
with the Eclipse Modeling Framework (EMF). The next step is to put this metamodel in a
multilevel context using MultEcore [9] to facilitate refinement of concepts from CPN to reflect
domain concepts. This metamodel captures all models that can be built using CPN [7]. In
addition to the concepts represented by the class model in the figure, we have the following
constrains in the metamodel:

• A module cannot be a submodule of itself, i.e., if we follow the associations through
substitution transitions and modules then we cannot encounter the same module twice.

• If a port is associated with a socket place, then the socket place must be connected to a
substitution transition that has the module to which the port belongs as its submodule.

• Associated port and (socket) places must have identical colour sets, and if the port place
has an initial marking it must be equal to the associated socket place.

These constrains can be expressed using the Object Constraints Language (OCL). However,
in order to obtain a more uniform metamodel, we are currently investigating how they can be
expressed directly using formal diagrammatic notations in DPF [12].

2
63

Domain-Specific CPN Tena et. al

Figure 2: Metamodel for Colored Petri Nets

References

[1] Petri nets markup language. http://www.pnml.org/papers.php.

[2] M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control systems, volume
267. Springer, 2005.

[3] J. Billington and M. Diaz. Application of Petri nets to communication networks: Advances in
Petri nets. Number 1605. Springer Science & Business Media, 1999.

[4] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan
& Claypool Publishers, 2012.

[5] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-specific
meta-modelling languages. Software & Systems Modeling, 14(1):429–459, 2015.

[6] J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri Nets, Advances
in Petri Nets, volume 3018 of Lecture Notes in Computer Science. Springer, 2004.

[7] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology Transfer,
9(3):213–254, Jun 2007.

[8] L. Kristensen and V. Veiset. Transforming cpn models into code for tinyos: A case study of the
rpl protocol. In Proc. of ICATPN’16, volume 9698 of LNCS, pages 135–154. Springer, 2016.

[9] F. Maćıas, A. Rutle, and V. Stolz. MultEcore: Combining the best of fixed-level and multilevel
metamodelling. In MULTI, volume 1722 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[10] W. Reisig. Petri nets: an introduction, volume 4. Springer Science & Business Media, 2012.

[11] W. Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets. Springer
Science & Business Media, 2013.

[12] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department
of Informatics, University of Bergen, Norway, 2010.

[13] K. I. F. Simonsen, L. M. Kristensen, and E. Kindler. Pragmatics annotated coloured petri nets
for protocol software generation and verification. TopNoC, 11:1–27, 2016.

[14] J. D. Ullman. Elements of ML programming. Prentice-Hall, Inc., 1994.

[15] J. Whittle, J. E. Hutchinson, and M. Rouncefield. The state of practice in model-driven engineer-
ing. IEEE Software, 31(3):79–85, 2014.

3
64

RFun Revisited

Robin Kaarsgaard and Michael Kirkedal Thomsen

DIKU, Department of Computer Science, University of Copenhagen
{robin, m.kirkedal}@di.ku.dk

We describe here the steps taken in the further development of the reversible functional
programming language RFun. Originally, RFun was designed as a first-order untyped language
that could only manipulate constructor terms; later it was also extended with restricted support
for function pointers [6, 5]. We outline some of the significant updates to the language, including
a static type system based on relevant typing, with special support for ancilla (read-only)
variables added through an unrestricted fragment. This has further resulted in a complete
makeover of the syntax, moving towards a more modern, Haskell-like language.

Background In the study of reversible computation, one investigates computational models
in which individual computation steps can be uniquely and unambiguously inverted. For pro-
gramming languages, this means languages in which programs can be run backward and get a
unique result (the exact input). Though the field is often motivated by a desire for energy and
entropy preservation though the work of Landauer [3], we are more interested in the possibility
to use reversibility as a property that can aid in the execution of a system; an approach which
can be credited to Huffman [1]. In this paper we specifically consider RFun. Another notable
example of a reversible functional language is Theseus [2], which has also served as a source of
inspiration for some of the developments described here.

Ancillae Ancillae (considered ancillary variables in this context) is a term adopted from
physics to describe a state in which entropy is unchanged. Here we specifically use it for
variables for which we can guarantee that their values are unchanged over a function call. We
cannot put too little emphasis on the guarantee, because we have taken a conservative approach
and will only use it when we statically can ensure that it is upheld.

1 RFun version 2

In this section, we will describe the most interesting new additions to RFun and how they differ
from the original work. Rather than showing the full formalisation, we will instead argue for
their benefits to a reversible (functional) language.

Figure 1 shows an implementation of the Fibonacci function in RFun, which we will use as a
running example. Since the Fibonacci function is not injective (the first and second Fibonacci
numbers are both 1), we instead compute Fibonacci pairs, which are unique. Hence, the first
Fibonacci pair is (0, 1), the second to (1, 1), third (2, 1), and so forth.

The implementation in RFun can be found in Figure 1 and consists of a type definition Nat

and two functions plus and fib. Here, Nat defines the natural numbers as Peano numbers,
plus implements addition over the defined natural numbers, while fib is the implementation
of the Fibonacci pairfunction. Further, Figure 2 shows an implementation of the map function.

1.1 Type system

With Milner’s motto that “well-typed programs cannot go wrong,” type systems have proven
immensely successful in guaranteeing fundamental well-behavedness properties of programs. In

65

RFun Revisited Kaarsgaard and Thomsen

data Nat = Z | S Nat

plus :: Nat → Nat ↔ Nat

plus Z x = x

plus (S y) x =
let x’ = plus y x

in (S x’)

fib :: Nat ↔ (Nat, Nat)
fib Z = ((S Z), Z)
fib (S m) =
let (x, y) = fib m

y’ = plus x y

in (y’, x)

Figure 1: RFun program computing Fibonacci pairs.

map :: (a ↔ b) → [a] ↔ [b]
map fun [] = []
map fun (l:ls) =
let l’ = fun l

ls’ = map fun ls

in (l’: ls’)

Figure 2: Map function in RFun.

reversible functional programming, linear type systems (see, e.g., [2]) have played an important
role in ensuring reversibility.

Fundamentally, a reversible computation can be considered as an injective transformation
of a state into an updated state. In this view, it seems obvious to let the type system guarantee
linearity, i.e., that each available resource (in this case, variable) is used exactly once. Though
linearity is not enough to guarantee reversibility, it enables the type system to statically reject
certain irreversible operations (e.g., projections). However, linearity is also more restrictive than
needed: if we accept that functions may be partial (a necessity for r-Turing completeness), first-
order data can be duplicated reversibly. For this reason, we may relax the linearity constraint
to relevance, i.e., that all available variables must be used at least once. This guarantees that
values are never lost, while also enabling implicit duplication of values.

A useful concept in reversible programming is access to ancillae, i.e., values that remain
unchanged across function calls. Such values are often used as a means to guarantee reversibility
in a straightforward manner. For example, in Figure 1, the first input variable of the plus

function is ancillary; it’s value is tacitly returned automatically as part of the output. To
support such ancillary variables at the type level, a type system inspired by Polakow’s combined
reasoning system of ordered, linear, and unrestricted intuitionistic logic [4] is used. The type
system splits the typing contexts into two parts: a static one (containing ancillary variables and
other static parts of the environment), and a dynamic one (containing variables not considered
ancillary). This gives a typing judgment of Σ; Γ ` e : τ , where Σ is the static context, and Γ
the dynamic one.

Whereas we must ensure that variables in the dynamic context Γ are used in a relevant
manner to guarantee reversibility, there are no restrictions on the use of variables in the static
context – these can used as many or as few times (including not at all) as desired. To distinguish
between ancillary and dynamic variables at the type level, two different arrow types are used:
t1 → t2 denotes that the input variable is ancillary, whereas t1 ↔ t2 denotes that it is dynamic.
As such, the type of plus in Figure 1 signifies that the first input variable is ancillary, and the
second is dynamic.

A neat use of ancillae is to provide limited support for behaviour similar to higher-order
functions. For example, the usual map function is not reversible, as not every function of
type [a] ↔ [b] arises as a functorial application of some function of type a ↔ b. However, if
we consider the input function f :: a ↔ b to be ancillary, one can straightforwardly define a
reversible map function (see Figure 2) as one of type (a ↔ b) → ([a] ↔ [b]). In this way, ancillae
can be considered as a slight generalization of the parametrized maps found in Theseus [2].

1.2 Duplication/Equality

In the first version of RFun, duplication and equality was included as a special operator, which
could perform deep copying or uncopying reversibly, depending on the usage. However, we have

2 66

RFun Revisited Kaarsgaard and Thomsen

found that understanding the semantics this operator often poses a problem for programmers.
To remedy this, we propose to use type classes, and implement equality instead using a type

class similar to the EQ type class found in Haskell. As in Haskell, the functions needed to be
member of this class can often be automatically derived.

1.3 First-match policy

The first-match policy (FMP) is essential to ensuring injectivity of individual functions. It
states that a returned value of a function must not match any previous leaf of the function;
this can be compared to checking the validity of an assertion on exit.

In the first version of RFun, the check to ensure that the first-match policy was upheld was
always performed at run-time, and, thus, posed a limitation to the performance. However, with
the type system, it will now often be possible to perform this check statically, as the types of the
leaves or even the ancillae inputs can be orthogonal. E.g. in the plus function (in Figure 1), the
use of ancillae input ensures that the FMP is always upheld, while map (in Figure 2) is reversible
by orthogonality of the leaves. Unfortunately, this cannot always be guaranteed statically, and
the fib function (in Figure 1) is an example where a runtime check is still required.

1.4 Conclusion

In this paper we have outlined the future development of the reversible function language RFun.
A central element of this is the development of the type system. However, it is important to
note that type correctness is a sufficient condition for reversibility only because we assume
partiality. Thus, it might be that case that the domain (and range) of the function is very
small or even empty. It is valid to consider how useful a reversible function with an empty
domain actually is.

The work shows both an interesting new application of relevant type systems, and gives
RFun a more modern design that will make it easier for programmers to understand.

Acknowledgements This work was partly supported by the European COST Action IC
1405: Reversible Computation - Extending Horizons of Computing.

References

[1] D. A. Huffman. Canonical forms for information-lossless finite-state logical machines. IRE Trans-
actions on Information Theory, 5(5):41–59, 1959.

[2] R. P. James and A. Sabry. Theseus: A high level language for reversible computing. Work in
progress paper at RC 2014. Available at www.cs.indiana.edu/~sabry/papers/theseus.pdf, 2014.

[3] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development, 5(3):183–191, 1961.

[4] J. Polakow. Ordered Linear Logic and Applications. PhD thesis, Carnegie Mellon University, 2001.

[5] M. K. Thomsen and H. B. Axelsen. Interpretation and programming of the reversible functional lan-
guage. In Proceedings of the 27th Symposium on the Implementation and Application of Functional
Programming Languages, IFL ’15, pages 8:1–8:13. ACM, 2016.

[6] T. Yokoyama, H. B. Axelsen, and R. Glück. Towards a reversible functional language. In A. De Vos
and R. Wille, editors, Reversible Computation, RC ’11, volume 7165 of LNCS, pages 14–29.
Springer-Verlag, 2012.

367

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3608-2
ISSN 1797-8831

http://www. tucs.fi

tucs@abo.fi

M
arina W

aldén (Editor)
Proceedings of the 29th N

ordic W
orkshop on Program

m
ing Theory

